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1 Motivation

“I would like to describe a field, in which little has been done, but in which an enormous
amount can be done in principle. . Furthermore, a point that is most important is that it
would have an enormous number of technical applications. What | want to talk about is
the problem of manipulating and controlling things on a small scaRe¢hard P. Feynman,
There's Plenty of Room at the Bottom, American Physical Society Caltech, Dec. 29, 1959

In our quest for a deeper understanding of physical and biological phenomena, we move
into the “small scale” world of quantum mechanics. The rules of this world herald new types
of materials and devices [1, 2, 3]. Quantum information systems and instruments of mea-
surement promise an exponential improvement in speed and/or resolution compared to their
classical counterparts. Many of these systems inherently rely on estimation for their normal
operation, e.g, atomic clocks, measuring electrical, thermal, and photonic characteristics, bio-
metrics, magnetometry, and gravimetry. Somewill require estimation to determineif the system
is meeting performance demands and then apply a control adapted to the specific estimated er-
ror, e.g, [4, 5, 6, 7, 8]. Estimation will also be used for simply gaining an understanding of
observed phenomena.

Despite the promise and various laboratory successes, for many of these quantum systems
ab initio models do not yet exist which can be used to optimize the design or determine a robust
control for actual application. The only practical approach is quantum system identification
— that is — identifying a model from measurements, either as an intrinsic part of their oper-
ation or in a calibration/tuning stage prior to operation. In particular, instrumentation noise,
decoherence, and modeling errors are all sources of uncertainty which either separately or in
combination hinder the ability of the device to meet performance demands. Finally, common to
all methods of quantum system identification, as well as quantum control design [9, 10], isthe
computational burden imposed by the dimension of the parameter space.

2 What was proposed

We proposed to investigate a method of identification which has the potential to alleviate all the
aforementioned problems. The question we posed was:

Can/;-norm minimization, which has had enormous success in signal processing

for estimating a sparse variable from highly incomplete and noisy measurements,
be applied to significantly improve the accuracy and efficiency of quantum system
identification?

The basic mathematical foundations for ¢;-norm minimization, often generally referred to as
Compressive Sensingan be found in [11, 12]. (A web search on Compressive Sensing will
bring many tutorials and testimonials). In general, for ¢;-norm minimization to be effective,
the underlying signal (or parameter space) must be sparse. Thisin turn allows for a significant
reduction in the number of measurements (resources) needed for reconstructing the signal. Of
course if the sparsity pattern is known then standard methods can be applied. Why it works so
well is because the ¢;-norm is a convex heuristic for sparsity, which is not a convex function.



The analogy has been made that it is like solving a Sudoku puzzle: only afew given numbers
in the grid will force a unique solution even if the grid islarge.

Since compressive sensing methods can reduce resources by orders of magnitude, the ben-
efits from a positive answer to the above question for quantum estimation would alleviate (or
remove) the computational burden. Beyond this, as miraculous as it may sound, this estimation
method would impact the device performance directly much as it has for digital and medical
imaging, e.g, [13, 14].

3 Hoped for benefits

If successful, the potential benefits include the following.

e Ancilla assisted quantum process tomography would achieve the same accuracy with a
significantly smaller number of ancilla. (A quantum process tomography example in
[15], repeated here in a later section, using ¢;-norm minimization required only 36 mea-
surements to estimate 256 parameters compared to standard methods which require 256
measurements.)

e Quantum metrology devices which rely on entangled states to enhance accuracy would
find relief in the number of entangled particles required.

e Phase estimation, which is the example posed for Phase |, is at the heart of Shor’s algo-
rithm (the quantum Fourier transform). Compressive sensing methods could significantly
impact the ancillareal-estate required for the associated error-correction.

¢ Instrumentation limitations in both state preparation and measurement protocols would
not hinder estimation efficiency.

¢ If Hamiltonian identification really is fast and easy, then this suggests the very important
possibility of a non-qubit quantum analog compulte.

4 Proposed tasks

To achieve the hoped for benefits we proposed a two-phase program. Phase was to be a the-

oretical study to develop the mathematical and computational tools for ¢;-norm minimization

applied to quantum process tomography and quantum parameter estimation metrology. If Phase

| was successful, then Phase |1 would bring in experimental components based on the mathe-

matical and computational tools developed in Phase I. The actual scope and level of effort for

Phase Il will be determined in collaboration with DARPA prior to the end of the Phase | effort.
To commence we posed the following Phase | tasks:

e Task |.1 Extend the ¢;-norm minimization theory to QPT. Specifically, answer the ques-
tion: Isthe scaling of resources linear in the number of qubits?

e Task |.2 Develop computationally efficient ¢;-norm minimization algorithms which are
specific for QPT.



e Task 1.3 Apply the results of Tasks 1.1 and 1.2 to quantum metrology. Specifically, for
phase estimation in a noisy environment, answer the questions: Does the algorithm de-
scribed previously converge to the correct phase within a prescribed tolerance? Does
it use less resources than standard approaches? Can entangled inputs be eliminated or
reduced in dimension?

As states in our proposal, it was assumed that if Phase | is successful and deemed a*“GO”
by DARPA, then the theory and tools developed up to that point will provide for experiments
to help further devel op the tools and theory. Given the emerging new concepts and software for
performing quantum system identification, it was envisioned that it would be important to have
a flexible working laboratory system to test the tools and refine them. Or more poetically, as
Feynman put it [16]:

“The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth!

We proposed to test the capabilities of quantum system identification via¢,-norm minimiza-
tion with two types of experimental systems: an optical interferometer and atomic Rb, each of
which provides a flexible system with well understood characteristics. Both of these systems
are available at Princeton. Although we could not specify exactly the tasks for Phase 11, we did
propose the following task framework to befilled in after a“GO” decision has been reached.

e Task I1.1 Over the Phase Il period a full battery of quantum system identification tests
could be performed to benchmark the new algorithmic capabilities and provide feedback
for computational improvements as well as further theoretical developments.

5 What was achieved

Early in the program, and very much earlier than anticipated, we demonstrated the effectiveness
of using Compressive Sensing (CS) algorithms for Quantum process Tomography (QPT) on
simulated data. (§A contains a copy of the paper.). Soon thereafter we extended CS theory
for QPT to account for the restrictions imposed by quantum mechanics. We showed that for a
d-dimensional system, where standard QPT requires O(d*) configurations, CS heralds O(sd)
configurations, where s is the sparsity level associated with the best s-sparse approximation
(the actual system need not be sparse). Over the next several months — in fact almost up to the
end of the originally proposed period of performance — using data obtained from a two-qubit
photonic experiment at the Center for Quantum Computer Technology, Department of Physics,
The University of Queensland, Australia, we demonstrated, for the first time, the use of CS for
QPT, which we called CQPT for Compressed Quantum Process Tomograprhe theoretical
and experimental work was published eventually in PRL, a copy of which is contained in §B.

To summarize this: the process matrix for this 2-qubit experiment is 16x16. Taking into
account the trace preserving condition, QPT requires estimating 240 real parameters. Standard
methods of QPT would require at least that number of experimental configurations. Using CS
methods, we obtain a 97% fidelity with 32 selected configurations and a 94% fidelity with 18
selected configurations.



These are just afew of the typical experimental results. All these conform extremely well
with our early simulations, as well as being similar in character to what has been seen in audio
and video processing. In these latter applications the signal sizes are significantly larger, e.g.,
0(10°), hence, specialized agorithms have been developed to account for the signal structure.
A future effort isto develop special algorithmic structures for larger QPT.

Due to the early theory development, and especially the unanticipated and exciting early
experimental success, and the time required to gather the data, some of the Phase | goals were
refined, some re-defined, and some have been out of reach in the time remaining. We are very
pleased about the impact of the success with “real” data which now compels some advanced
and new broad and promising research directions:

e Introduction of atailored theory and associated experiment design method for effective
scaling on multi-qubit systems.

e Development of CS for Hamiltonian identification.

e Demonstrate that these 1D tools can be used for control and/or device design, where in
the latter case, to correct for manufacturing exigencies.

Applications for CS applied to quantum systems are just emerging in many areas. One can
envision, aswe havein the Phase | proposal, applicationsto interferometry, quantum metrol ogy,
magnetrometry, spectroscopy, and so on.

On a personal note, in my initial discussions with Dennis Healy we mused about what the
potential could be for this program. He was very optimistic, but at the time, | was not ready to
stick my neck out that far. Considering our success at thistime, Dennis was right!

6 What remainsto bedone

Despite two no cost extensions, we ran out of time to thoroughly develop and test our ideas for
applying compressed sensing methods to problems in Hamiltonian identification. Nonetheless
we did develop a CS theory of Hamiltonian identification valid for short time scales. (This
complements our previous work in Hamiltonian parameter estimation [17].) The paper on this
subject will appear soon in PRA. A copy iscontained in §C.

What we were ultimately after was a theory and associated computational method appli-
cable to problems in quantum metrology or more genera interferometry problems. These are
essentially single parameter estimation problem. A brief summary of what we were (and are
still) thinking now follows,

Figure 1 is a block-diagram operational representation of a general interferometer. Here
the unknown system S(¢,) consists of aunitary U(¢,) in channel a dependent on an unknown
phase ¢, followed by an unknown noise operation £ acting on both channels a and b. The usual
assumption is that the unitary is of the form U(¢,) = exp(i¢oH ) with unknown phase ¢, and
known Hamiltonian H [18]. Typically the range of the phase parameter is known.

The interferometric set-up is envisioned initially as a Mach-Zehnder interferometer (Fig. 2)
with the addition of extrabeam splittersin both armsto create photon | oss as expressed schemat-
ically in Fig. 1. Figure 2 shows a schematic of the classica Mach-Zehnder interferometer for
phase estimation.
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Figure 1. General configuration for interferometric phase estimation
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Figure 2: Classical Mach-Zehnder interferometer.

For single parameter (phase) estimation the limit of theoretical accuracy in the ideal noise-
free case has been examined in depth, e.g, [19], [20], [21], [18], [22], [23]. These studiesreveal
that special preparation of the instrumentation — the probe — can achieve an asymptotic variance
smaller than the Cramér-Rao lower bound, the so-called Quantum Cramér-Rao bound, or the
Quantum Fisher Information (QFI). Specifically, the unique quantum property of entanglement
can increase the parameter estimation convergence from the shot-noise limit of 1/+/N to the
Heisenberg limit 1/N, which arises from the uncertainty principle [24]. In the latter case N
refersto the dimension of an entangled state. The theoretical QFI, however, will not be obtained
in the presence of noise, i.e., decoherence. As stated in [25]:

“Existing treatments come to the conclusion that the benefit from highly entangled states
deteriorates quickly even if only a small amount of noise is present in the system ... states
of thistype aretypically very fragile: In optical interferometry, the well-studied NOON state
promises to provide Heisenberg limited sensitivity in phase estimation ... the loss of merely
asingle photon renders this state useless since it collapses into a product of two Fock states
which can not acquire any phase information.”

Fig. 6 shows a 2-qubit system where the ideal single-parameter unitary is corrupted by ampli-
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Figure 3: Fisher Information vs. number of entangled states for varying levels of amplitude
damping .

tude dampingy. In photonic systems ~ is the probability of a photon loss. In the ideal case
(v = 0) Fisher information rises linearly with the number of entangled states. However, even
for a small amount of noise at the 5% level we start to see a significant loss of information.
In addition to this sensitivity to noise, the QFI may also be unreachable simply because the
instrumentsare limited, i.e., not all states can be prepared and not all measurement schemes are
possible, e.g, [26, 17].

To alleviate these problems we proposed using a bank of estimators applied to the data,
where each estimator is tuned to one of a number of finite estimates of the unknown phase pa-
rameter. For each phase estimate ¢ we will generate from theideal unitary U (¢) an orthonormal
basis set for quantum operations on the combined channel ab. A quantum process tomography
will then be performed by solving an Z;-norm minimization problem (compressed sensing) to
obtain the phase estimate dependent process matrix. The final phase estimate is selected as the
one with the smallest /;-norm of the associated process matrix.

If this approach is successful, then three significant benefits would immediately accrue.
First, phase estimation would be accomplished in noisy environments. At present thisisavery
difficult task [25]. Secondly, the number of entangled particles might be greatly reduced. Lastly,
this may also reveal an aternative to the phase estimation algorithms proposed for the Fourier
transform step in many quantum algorithms [27, §5].
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Abstract

For aninitially well designed but imperfect quantum information system, the process ma-
trix isalmost sparse in an appropriate basis. Existing theory and associated computational
methods (¢;-norm minimization) for reconstructing sparse signals establish conditions
under which the sparse signal can be perfectly reconstructed from a very limited number
of measurements (resources). Although a direct extension to quantum process tomog-
raphy of the ¢;-norm minimization theory has not yet emerged, the numerical examples
presented here, which apply .1-norm minimization to quantum process tomography, show
asignificant reduction in resources to achieve a desired estimation accuracy over existing
methods.
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Quantum Process Tomogr aphy via ¢;-norm Minimization

Robert L. Kosut
SC Solutions, Sunnyvale, CA 940@®sut @csol uti ons. com

For an initially well designed but imperfect quantum infation system, the process matrix is almost sparse
in an appropriate basis. Existing theory and associatedpuatational methods/(-norm minimization) for
reconstructing sparse signals establish conditions untlexh the sparse signal can be perfectly reconstructed
from a very limited number of measurements (resources)hodiigh a direct extension to quantum process
tomography of the/;-norm minimization theory has not yet emerged, the numkeexamples presented here,
which apply#;-norm minimization to quantum process tomography, shovgaifstant reduction in resources
to achieve a desired estimation accuracy over existingadeath

Quantum process tomograpli@PT) refers to the use of complete set of measuremerits,, rank 4) > n.

measured data to estimate the dynamics of a quantum systemThe paper is organized as follows: QPT formalism is de-

[1, 2]. Unfortunately, in the general case, the dimension ofcribed next, followed by a discussion of the genesis of pro-

the parameter space for QPT can be prohibitive, scaling excess matrix (almost) sparsity. A form of tlie minimization

ponentially with the number of qubits. This in turn places th for QPT is then presented followed by numerical examples

same burden on resourcesy, the number of applied inputs, and some concluding remarks.

measurement outcomes, and experiments to achieve a desiredQPT Formalism— Recall that the state-to-state dynamics

accuracy, as well as estimation computational compleXity. of an open finite-dimensional quantum system can be de-

number of approaches have been developed to alleviate thégribed in the following canonical form [1]:

burden. Of note are the various forms of ancilla assisted 2 ;

QPT (see [3] for a review), and the use of symmetrisation p= Za,ﬂ:l Xaplapl'y 1)

to estimate sglected process properties [4]. nge we IdTef‘sevrclherep, p € C™*™ are the input and output state, respec-

a method which can be used either alone or in conjunction} v of di . X are the elements of the? o

with any of the aforementioned approaches. The underlyin%ve Y, OT dImensiomn, Xas . X
L7 - - X rocess matrixX, and the matrice§,, form an orthonormal

premise is that for an intially well engineered design, the o basis set fon, x n complex matrices:

ject that describes the quantum dynamics ploeess matrix '

will be almost sparsén the appropriate basis. Certainlyinthe  {T', € C*" |Tr I, I'g = dap, a, 8 =1,...,n*} (2)

ideal case of a perfect unitary channel, in the correspandin

ideal basis, the process matrix is maximally spaitse,it has

a singlenon-zero element. Since environmental interaction

cannot be totally eliminated, the actual process matrikig t

ideal basis will be populated with many small elements, and X > 0 (positive semidefinite) 3
1 2

thus, is almost sparse. S XagT e = I, 3)

These are the conditions under which methods uging
norm minmization — often referred to &ompressive Sens-
ing — are applicable [5, 6, 7]. Specifically, for a class of
incomplete linear measurement equations=£ Az, A €
R™ "™ m <« n), constrained/;-norm minimization (mini-
mize ||z||,. subject toy = Azx), a convex optimization prob- . e
lem, garuéﬁerfeétly egfyimate t%e sparse varlijabl'éhese rr|10eth- Denote byi = 1,...,n0u the distinctoutcomesand by

ods also work very well for systems which do not satisfy the{fk :bl”’. oo Tefy tr:je e_xhperlme.ntatonﬂgg;atlons €.g. any q
theoretical conditionsi.e., for almost sparse variables and <NOPS” assoclated with state inputs and/or measurement de

with measurement noise. vices. The measurement outcomes are recorded from iden-
) o tical experiments in each configuratigrrepeatedVy, times.

certain conditions on the matrik, to realize perfect recovery, ; gccurred in configuratioh. The QPT data are the recorded
the number of measurements, scales with the product of gytcome counts,

the log of the number of variablesand the sparsity. Since _

QPT parameters are linear in probability outcomes, anescal {Nigli=1,...,nout, k=1,...,ncrg } (4)
expon(_enua!lywnh thg num_berofqubns,thls approach hisra whereN = S [y, = S 0ei Sow i the total num-
a possible linear scaling with qubits. The theory, howevas, ber of experimefnts =l cn=

not as yet been extended to QR e numerical examples here Estimating the process matrix An empirical estimatef

are not meant to lend support to this scaling as they are Onl3fhe probability of measuring outcomé configurationt can
presented for the two-qubit cas€he examples do, however, be obtained from (4) as
es ’

show more than an order of magnitude savings in resourc
over a standard constrained least-squares estimatiog asin Pt = N /Ny, (5)

It is assumed that the quantum system to be estimatsahis
letely positive and trace preserviGf@PTP). The set of feasi-
le process matrices is then restricted to the convex s6j,[8,

It follows from (3) that the number of real parameters in the
process matrix is* —n2. Forg qubitsn = 29, hence, scaling
with parameters is exponential in the number of qubits.
Collecting data— A common method for collecting data
from a quantum system is via repeated identical experiments



From the Born Rule thenodel probabilityof outcome: given
configurationk with observableM;y is, p;x, = Tr Mk pk,

where from (1) 5 = 2"2 Xaﬁl“apkf%. In terms of the

a,f=1

process matrixX, the Born rule then becomes,

|X] in Natural-Basis |X] in Ideal/SVD-Basis

ideal

pi(X) = Tr Gy X ©)
(Gik)ap = rFngMikFaPk

Thenguenese MatricesG;, € C™*™ capture the effect of mea
surements in the matrix basis set (2). For each outcothe
complete set of configurations is the combination of all ¢h
matrices and the input statey, Gik}Z;ffi.

A process matrix estimate can be obtained by minirr
ing the difference between the empirical probability esties
py, ¥ and the model probabilitigs;, (X) subject to the feasi-
bility constraint (3). Using a “least-squares” measurerobp
ability error leads to estimating the process matrix by isgjv
the optimization problem:

minimize Vis(X) = Y2, (05 — pan(X))? @)
subject to X satisfies (3)

Because the outcomes of each experiment are independ:
maximum likelihood approach can also be consideired,

mln!mlze VML().().: - Zlk Nix log pir(X) (8) FIG. 1: Absolute values of the elements of the process mairix
subject to X' satisfies (3) C'%16 for: (a) ideal in the Natural-Basis: (b) ideal in Ideal/SVD-

L . Basis; (c) actualg,r = 0.05) in Natural-Basis, (d) actuapfs =
Both (7) and (8) are convex optimization problems with the, ) iy deal/SVD-Basis:(e) actuabf: — 0.2) in Natural-Basis, (f)
optimization variables being the elements%f[8, 9]. The  sctyal g1 = 0.2) in Ideal/SVD-Basis.

resulting solution (estimate) will always be CPTP (3). Unfo

tunately, as already mentioned, the dimension of the parame

ter spaces’ — n”,n = 27) can severely strain resources 10 ;.\ 1o+ ic referred to here as the “|deal/SVD-Basid;’, =
the point of impracticality. To see this more clearly, lee¢th __ - _ 2 i

linear relation in (6) between the,ncg; model probability  2_a/—1 Varal'ar € C™*"}4_,, The equivalent process ma-
outcomes and the? elements of the process matrix be repre-{rix, in this basis, denoted b¥;qc., is maximally sparse with

sented by Aoy ners x 7 matrixg, i.e., a single non-zero element, specificalliqeal)11 = n. As
will always be the case, the actual channel will be a perturba
P=GgX (9) tion of the ideal unitary. If the noise source is small thes th

process matrix in the nominal basis will be almost sparse.

wherej, X are vectors formed from the,, and elements of Example: Noisy two-qubit memory Consider a system
X, respectively. Accounting for the? linear constraints in  which is ideally a two-qubit quantum memory, this =
(3), X can be recovered from either (7) or (8) to within any I,,n = 4. Suppose the actual system is a perturbation of
desired accuracy by using enough dataif (4) sufficiently  identity by independent bit-flip errors in each channel occu
large), provided that rari) > nousnceg > n* —n2. There-  ring with probabilitypy,¢. Forpys = 0.05 andpys = 0.2, the
fore it would seem that the resourcesg,,;sn.t;, Must also  respective channel fidelities are about 0.90 and 0.64, vibich
scale exponentially with the number of qubits. This, howeve quantum information processing would need to be discovered
is not the case when the process matrix is almost sparse abg QPT and then corrected for the device to ever work. Refer-
where the sparsity pattern is not known[17]. ring to Fig.1, in the Natural-Basis, Fig.1(a), the idé&lx 16
Almost sparsity of the process matrix With no noise process matrix has 16 non-zero elements ou25d, all of
the ideal channep — p for a quantum information sys- magnitude one. Using the Ideal/SVD-Basis the correspond-
tem is a unitaryj.e, p = UpUT. Let{[, € cnxn}g; ing process matrix as shown in Fig.1(b) hasireglenon-zero
denote the “Natural-Basis” for matrices @"*", i.e., each element of magnitude = 4 — it is clearly maximally sparse.
basis matrix has a single non-zero element of one. In thi§ig-1(c)-(d) and (e)-(f), respectively, show the effecttoé
basis, the process matrix associated with the ideal unitarfvo py¢ levels in the two basis sets. In the Ideal/SVD-basis

chaznnel has the rank-1 formXigeas = az' with 2 € Fig.1(d) and (f) show that the actual (noisy) process medric
C"", ztz = n. A singular value decomposition (SVD) gives are almost sparse.
Xideal = Vdiagn,0,...,0)VT with V' € C™*™ a unitary. Sparsity minimizationr— A known heuristic for minimizing

An equivalent process matrix can be formed from the SVDsparsity without knowing the sparsity pattern, and alsawcc



ing the benefit of using fewer resources, is to minimizefihe o ‘ ‘ ;
norm of the vector of variables [5, 6, 9]. For QPT the equiva- o Xp,,G € CFXFE
lentZ, norm is defined here as the sum of the absolute values o Xy, G € C256%256

of the real and imaginary parts of each element of the process
matrix. There are many related approaches to incorporiste th
norm. For example, an estimateXfcan be obtained by solv-

ing the following convex optimization problem:[18]

._.
O\
.

Il =0.0296

RMS estimation error

107 s X e iceatllims
2 )
minimize [|X|,, = >0 51 (IRe Xap| + [Im Xop)) ; :
subjectto V(X)) < o, X satisfies (3) -} o
(10) ‘ ‘ 2
with, e.g, V(X)) from (7) or (8). The optimization parameter ° experiments per C;:’ﬁguraﬁon o Y 500
o is used to regulate the tradeoff between fittiigo the data (@) pos = 0.05
by minimizingV (X) vs. minimizing the sparsity ok via the o =5
¢1-norm. Selecting is often done by averagirig(X ) over a 10° ‘ :
series of surrogates fof obtained from anticipated scenarios o Xy, g€ Cz@:fzge
or iterating estimation and experiment desigu, [8]. ° Xey, GEC
In the examples to follow we use the modification of (10) 5 107}
suggested in [7], referred to there a&-feweighted mini- g X =o01068
mization.” In this approach a weighteég-norm is used with g e e
the weights determined iteratively. The algorithm desedlib E 1072} 2
in [7] is: 2 ?
Initializeo >0, e >0, W = I, ol * =
Repeat ‘ ‘ i
1. SOIVe fOI‘X ° experiments per cosr?figuration (x10 3) %

minimize |[WX|,, (11) (B)pur =020
subjectto V(X) < ¢, X satisfies (3) FIG. 2: RMS estimation errof Xrue — Xest|,,,. VS. number of
experiments per configuration: selected columns of (13)orkrars
show the deviation from 50 runs at each setting.
. la-minimization (O): Xest = X, is from (7) using all 16 in-
w diag A/ (jz1] + €)1/ (2] + €)) (12)  put/output combinations. This gives a matgxe C*****°° as de-

z =X fined in (9) which is full rankj.e., rankG) = 256.
Z1-minimization (0): Xest = X¢, is from (11)-(12) using 6 in-
puts and 6 measurements obtained from the columns of thadeco

2. Update weights

Until convergence the objective stops decreasing or a max-

imum number of iterations is reached. matrix in (13). This givess € C*6*25 which is full rank, i.e,
In each of the examples to follow the procedure for QPT isFank¥) = 36.
(i) solve (7) to obtainX,,; (ii) sete = 1.3 V (X, ); (iii) solve
the reweighting algorithm (11)-(12) foxy, .

Example: QPT of noisy two-qubit memory For the sys-  [AX [l = (1/n)(Tr AXTAX)'/? vs. the number of ex-
tems from the example in Fig.1, the inputs and measuremenReriments per input selected from the set (13) [19]. Theltesu
are selected from the set of two-qubit statés), | + ) = shown are frqm SImUI.aFIODS dgscnbed in the caption.
(la)+ b)) /vV2, | =) = (la)—i|b))/v2witha,b = 1,.. ., 16. The benefit of¢;-minimization compared to the standard

coowr
coro
oroo
~ooo
corm
O =OK
—moom
orrO
morRO

i 0

Specifically, the available set of states are the 16 colunfins d’2-Minimization is seen most clearly with small amounts of
the matrices data from highly incomplete measurements. For example, for
’ pre = 0.05 [Fig.2(a)], at50 x 102 experiments per input for
[ ] : [ [ Lo 0o the 6-input/6-output configuratiqg € C3¢x256) the/; RMS
Ve i 0 o3, estimation error i$.0019. Compare this to thé, error of
(13 0.0012 at500 x 10® experiments per input for the 16-input/16-
Considering only coincident input/measurement count}, [10 output configurationq € C256x256). The latter improvement
the relevant probability outcomes (6) are, can be attributed mostly to the 10-fold increase in the numbe
of experiments per input. The additional resources to aehie
pab(X) = ¢!, Xgap, X € C16%16 (14) this are significantj.e, 16 inputs for/y vs. 6 for¢;, and
(gab)a = OTaty, a=1,...,16 additionally, an increase in thetal number of experiments
from 6 x 50 x 102 to 16 x 500 x 103. It is certainly not in-
with ¢, ¢ (a,b) € {1,...,16} the selected columns of (13). tuitive that to estimate the 240 parameters of the process ma
Fig.2 shows the error in estimating the process matrixrix, the clearly incomplete set of measurements using 86ly
AX = Xue — Xest @S measured by the RMS matrix norm outcomes ¢ in Fig.2) could produce results not only similar
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to, but for each number of experiments per input, even betteéRMS norm|| X ||, _, which is effectively they norm of X.

than the full input case with all 256 combinations of inputs Solving the 6-input/6-output casé {n Fig.2) forpy,s = 0.05

and measurementsi(in Fig.2). As seen thé, error is about  with infinite data gives an RMS error 0f11, which is con-

1/2 thely error. Also, reweighting reduced the (unweighted)siderably larger than the error between the actual and ideal

£y error by 1/2-1/3. of 0.03 (solid line in Fig.2(a)). The estimate gets even wors
Comparing the estimation errors with the error between thevith finite data. This again emphasizes the advantagg of

actual and ideal (solid lines in Fig.2) suggests that attleasminimization for sparse signal reconstruction [5, 6].

3 . . H — . . . . .
50 x 10° experiments per input are needed to achieve a suf- ~, . jusions— The use of theé, -norm minimization meth-

ficient post-QPT error correction towards the ideal unitaryods of Compressive Sensing [5, 6, 7] appear to apply equally
Fig.2 also reveals_thz_;\t the estimation errors are very amil el to sparse QPT. The examp’les’ of sparse process matrices
for both levels of bit-flip errorpy, € {0.05,0.20}. Thisis ex- resented here are meant to represent typical initial ifaper
pla}lned by the Cramgr-Rao bc.)und. which defines the asym esigns. The numerical results illustrate how estimaten r
totic error of any unbiased estimatag., the RMS decays as g4 ,rce tradeoffs can be obtained. Additionally, the finging
A/VN. HereA s effectively the error between the empirical suggest that QPT resources need not scale exponentiatly wit
(5) and actual (6) probabilities which by definition is of erd qubits. In the ideal case, the theoretical question of showi

one; .th.'s provides alrea.soln:_:lble fit to the data in Fig.2. linear scaling with sparsity using minimization for QPT re-
Infinite data— With infinite data the measurements are . .ino open

effectively noise-free, so the empirical probability esttes S ]
are equivalent to the true probabilities. Infinite data-esti Becausé; minimization uses considerably fewer resources
mates are obtained by solving (7) and (11)-(12) with the Contha_n standard QPT, use in an_on-llne setting comb|_n_ed with
straintV(X) < o replaced by the linear equality constraint OPtimal quantum error correction tuned to the specific QPT
pir(X) = pir(Xuue). For the numerical examples here, (14) €rrors is compellinge.g, [11, 12, 13]. Another future direc-
gives the linear equality’, (X — Xorue)gap = 0. tion is in conjunction with Hamiltonian parameter estirati

In the examples, bot%b(g from (11)-(12) andX,, from Here a b_ank of_estlmator§ can be applied to the data where
(7) were numerically equai t&,re. This is to be ezxpected each estimator is tuned via the Ideal/SVD-Basis to one of a

for X,, because of the complete set of 256 full rank mea_numberof finite samples of the unknown parameters. Such an
2

surements. Almost sparsity makes perfect estimation piessi 2PProach may prove useful for a small number of parameters.
with the highly incomplete set of 36 measurements. In quantum metrology often a single uncertain parameter is t

The infinite data case is useful for evaluating different-con be estimated in an unknown noisy environmery, [14, 15].

figuration strategies in simulatiome., consider only those Acknowledgments- Thanks to A. Gilchrist, I. Walmsley,
that result in a good estimate. D. Lidar, H. Rabitz, and M. Mohseni for suggestions and com-

To stress the efficacy df;-minimization as a heuristic for ments. The idea of applyin§ minimization to QPT arose
sparsity, consider replacing tlie norm in (11)-(12) with the  during discussions at [20] .
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The resources required to characterize the dynamics of engineered quantum systems —
such as quantum computers and quantum sensors — grow exponentially with system size.
Here we adapt techniques from compressive sensing to exponentially reduce the exper-
imental configurations required for quantum process tomography. Our method is appli-
cable to processes that are nearly sparse in a certain basis and can be implemented using
only single-body preparations and measurements. We perform efficient, high-fidelity es-
timation of process matrices of a photonic two-qubit logic gate. The database is obtained
under various decoherence strengths. Our technique is both accurate and noise robust,
thus removing a key roadblock to the devel opment and scaling of quantum technologies.
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The resources required to characterize the dynamics of engineered quantum systems—such as quantum
computers and quantum sensors—grow exponentially with system size. Here we adapt techniques from
compressive sensing to exponentially reduce the experimental configurations required for quantum
process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and
can be implemented using only single-body preparations and measurements. We perform efficient, high-
fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under
various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key
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roadblock to the development and scaling of quantum technologies.

DOI: 10.1103/PhysRevLett.106.100401

Understanding and controlling the world at the
nanoscale—be it in biological, chemical or physical
phenomena—requires quantum mechanics. It is therefore
essential to characterize and monitor realistic complex
quantum systems that inevitably interact with typically
uncontrollable environments. One of the most general
descriptions of the dynamics of an open quantum system
is a quantum map—typically represented by a process
matrix [1]. Methods to identify this matrix are collectively
known as quantum process tomography (QPT) [1,2]. For a
d-dimensional quantum system, they require O(d*) experi-
mental configurations: combinations of input states, on
which the process acts, and a set of output observables.
For a system of n qubits—two level quantum systems—
d =12". The required physical resources hence scale
exponentially with system size. Recently, a number of
alternative methods have been developed for efficient and
selective estimation of quantum processes [3]. However,
full characterization of quantum dynamics of comparably
small systems, such as an 8-qubit ion trap [4], would still
require over a billion experimental configurations, clearly
impractical. So far, process tomography has therefore
been limited by experimental and off-line computational
resources, to systems of 2 and 3 qubits [5-7].

Here we adapt techniques from compressive sensing
to develop an experimentally efficient method for QPT. It
requires only O(s logd) configurations if the process matrix
is s compressible in some known basis, i.e., it is nearly
sparse in that it can be well approximated by an s-sparse
process matrix. This is usually the case, because engi-
neered quantum systems aim to implement a unitary
process which is maximally sparse in its eigenbasis.
In practice, as observed in liquid-state NMR [8], photonics
[5,9,10], ion traps [11], and superconducting circuits [6],

0031-9007/11/106(10)/100401(4)
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a near-unitary process will still be nearly sparse in this
basis, and still compressible. The near sparsity is due to
few dominant system environment interactions. This is
more apparent for weakly decohering systems [12].

We experimentally demonstrate our algorithm by esti-
mating the 240 real parameters of the process matrix of a
canonical photonic two-qubit gate, Fig. 1, from a reduced
number of configurations. From just 18 and 32 configura-
tions, we obtain fidelities of 94% and 97% with process
matrices obtained from an overcomplete set of all 576
available configurations.

Compressive sensing provides methods for compression
of information carried by a large-size signal into a signifi-
cantly smaller one along with efficient convex opti-
mization algorithms to decipher this information [13].
Originally developed to exploit compressible features of

Y
f &
g4t

Tomography

State Preparation Gate

fowr  JHwP  EPBS  DAPD

FIG. 1 (color online). Experimental scheme. Two-photon in-
puts were prepared with either (a) a high-rate, nonscalable, two-
photon source or (b) a low-rate, scalable, four-photon source.
The qubits are encoded using polarization, as described in the
text. The quantum process is a photonic entangling gate. A
measurement configuration is defined as some combination of
state preparation and an observable, implemented here with
quarter- and half-wave plates (QWP, HWP), polarizers (PBS),
and photon detectors (APD). For details see [19].

© 2011 American Physical Society
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audio and video signals, compressive sensing is now ap-
plied to: simulations of compressive sensing for QPT [14],
ghost imaging [15], and state tomography for low-rank
density matrices [16]. The latter provides a quadratic re-
duction of physical resources from d? for standard tomog-
raphy to O(rdlog?d) for a density matrix of rank r with the
added advantage that rank is basis independent. Recently,
this method has been useful in efficient state tomography
of one-dimensional systems approximated by matrix prod-
uct states [17].

Under reasonable assumptions, a quantum map on a
d-dimensional space has the general representation [1],

dZ
Sp)="Y XaplarTh (1)
a, =1

where y, the d?> X d? process matrix, is positive semi-
definite, y =0, and trace preserving, 3, s XaﬁFLFa =
1;, with {I" ,} an orthonormal matrix basis set, Tr(I‘}}Fa) =
04p- Note that sparsity is a property of the map represen-
tation not the map itself. Data is collected by preparing
an ensemble of identical systems in one of the states
{p1,..., px}, inputting them to the process y, and then
measuring an observable M from the set {M, ..., M,}.
For a pair (p, M), the outcome will be yy,=
Tr(S(p)M). If the experiment is repeated for all configu-
rations, i.e., (p;, M;), i = 1,..., m = k€, the relation be-
tween the vector of outcomes y = [yu, p---» Ym, p, |
and the true process matrix, denoted by y,, can be repre-
sented by a linear map y = ®y,, where Y, is the vector-
ized form of the process matrix y, and ® is an m X d*
matrix of coefficients of the form Tr(I", p,»FLM )/ Jm.

In general, estimating a sparse process matrix with an
unknown sparsity pattern from an underdetermined set
of linear equations (m < d*) would seem highly unlikely.
Compressive sensing, however, tells us that this can be done
by solving for y from the convex optimization problem:

minimize ||y, subject to [ly — ®xll,, =&, (2)

and positive-semidefinite and trace-preserving conditions
as defined above. The parameter & quantifies the level
of uncertainty in the measurements, that is, we observe
y = ®x, +w with |[wll,, = e. From [18], recovery via
(2) is ensured if (i) the matrix ® satisfies the restricted
isometry property:

s e - el
R AT AT

=1+ 6 3)

for all s-sparse x;(s), x»(s) process matrices; (ii) the
isometry constant §,, < V2 — 1 and (iii) the number of
configurations m = Cyslog(d*/s). Under these conditions,
the solution y* of (2) satisfies,

. . C - .
IX* — Xolle, = _;”)(0(5) — Xolle, + Cre “4)

where x(s) is the best s-sparse approximation of y, and
Cy, C,, C, are constants on the order of O(5;), see [19].
The restricted isometry property states that two s-sparse
process matrices y;(s) and y,(s) can be distinguished if
their relative distance is nearly preserved after the measure-
ments. If the measurements are noise free, € = 0, and y,
is s sparse, xo = xo(s), then the right-hand side of (4)
is zero leading to perfect recovery, y* = y,. Otherwise
the solution tends to the best s-sparse approximation of
the process matrix plus the additional term due to measure-
ment error &. If for an n-qubit QPT with d = 2" the con-
ditions of the above analysis are satisfied, then the number
of experimental configurations m scales linearly with sn,
specifically, m = Cys(4nlog2 — logs) = O(sn). In [19],
using the measure concentration properties of random ma-
trices, following the arguments in [20], we show that if ® is
constructed from random input states {p;}, and random
observables {M;}, then the restricted isometry in (3) holds
with high probability. Also a test is presented to certify
the sparsity assumption.

A nearly sparse process matrix can be recovered from an
exponentially smaller number of measurement outcomes
to within the bounds of (4) by solving (2). We now test our
algorithm experimentally against standard QPT on a two-
qubit gate under a range of decoherence—and thus spar-
sity—conditions. We used a photonic controlled-phase,
Cz, gate, Fig. 1 where the qubits are encoded in orthogonal
polarization states of single photons (|H), horizontal,
and |V), vertical). We performed full process tomography
[5,9,10] of the gate with both two-photon and four-photon
arrangements, preparing 16 pairwise combinations of
the 4 input states {|H), |V), |D), |[R)} and, for each input,
measuring 36 two-qubit combinations of the observables
{IH),1V), D), |A), IR), IL)}, ~ where  |D(A)> = (|H >
+|v>)/v2 and |R(L)> = (|H > *i|V>)//2. These
576 input-output configurations represent an overcomplete
set which allows the best possible estimate of the quantum
process, denoted 576 [5].

The compressed quantum process tomography (CQPT)
estimate of the 16 X 16 process matrix, Y,,, is obtained by
solving (2) with y = Cyp and ® = C;G where p is the
vector of 576 experimental probabilities corresponding to
each of the 576 configurations, G is the 576 X 256 matrix
obtained from all the configurations with the basis set{I',},
and C, is the m X 576 matrix corresponding to taking a
selection of m = 576 of all possible configurations. The
basis set is obtained from the singular-value decomposition
of the ideal Cz gate: the process matrix in this basis is
maximally sparse with a single nonzero (1, 1) element. The
measurement error bound & in (2) is chosen to be just
slightly larger than \/m o, where o is the minimum feasible
root-mean-square level obtained from (2) using all con-
figurations, i.e., with Cy = I57. We quantify decoherence
using the process purity, P = Tr(x2,/d?), which varies
from O for a completely decohering channel, to 1
for a unitary process: in our experiment we used six
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FIG. 2 (color online). Process fidelities vs number of input-
output configurations, for each compressive QPT estimate, y,,,
in the gate basis of the ideal Cz gate for the lowest measured
noise level, P = 0.91. The dashed line shows the fidelity of the
full estimate F(U., xs76) = 0.89 (black diamond). Error bars
are obtained by solving (2) for 50 different random combinations
of m inputs and observables.

decoherence levels (see [19] for details), giving purities
of {0.62,0.74,0.77,0.79, 0.86, 0.91} = 0.01.

Figure 2 shows, for the lowest decoherence level,
the process fidelities [5] versus the number of randomly
selected configurations, m. Each process matrix, {x,,},
is obtained by solving (2). We use the fidelity bet-
ween (i) the compressive measurement and the ideal,
F(U., xm); and (ii) the compressed and optimal measure-
ments, F(xs76 xm). Note that as m increases the fidelity
with the ideal converges to the value of 0.89 obtained
from ys76; likewise, the fidelity with the full estimate
converges to unity. Similar plots exist for every level of
decoherence, with fidelities reduced accordingly.

We have so far used random selections of probabilities
from the full data set, which allows us a comprehensive
test of CQPT. Experiments, however, do not yield

Re(xn)

iz

FIG. 3 (color online).

probabilities but physical quantities, e.g., count rates. To
date, algorithms for more efficient state [16] or process
tomography have assumed probabilities as a starting point.
Since normalization is an issue to some extent in all
physical architectures, it will be necessary to investigate
the robustness and scalability of algorithms for real-world
experiments.

For our photonic two-qubit gate, which is lossy and
intrinsically probabilistic, the probabilities were obtained
by normalizing counts using a full basis set of observables
extracted from all measurements, /5;5. Having sufficient
configurations to allow for normalization necessarily im-
poses limits on CQPT efficiency: for low m, we are re-
stricted in how random our selections can be. (Details and
some permissible configurations in [19]). As an example,
Fig. 3 shows process matrices reconstructed via CQPT
from just one of these configurations compared to the
respective full data estimates. We used 32 combinations
of the 16 inputs {|H), |V), |D), |R)}®?> and 2 observables
{IR)|I), |I)|R)}, where I is the identity. The agreement is
excellent as one can see from the fidelities and the correct
reproduction of imaginary elements—which are ideally
zero. Another striking feature is that we obtain highly
faithful reconstructions of a nonlocal process using only
local measurements [2].

A further crucial test is whether CQPT enables us to
locate errors and implement necessary corrections: a com-
mon example is identifying local rotations that move the
process closer to the ideal. By optimizing F(U,,, x32),
we calculated local corrections to ys;; applying them to
the full estimate ys76, F (U, Xs76) improved, on average,
over all decoherence levels, by 4.1%. This is very close to
the average 4.9% improvement obtained by calculating
and applying local corrections directly to xs7¢. Even a
low-configuration CQPT estimate of a noisy process there-
fore enables improvements.

iz

Real and imaginary process matrix elements in the Pauli basis for the CQPT estimate y3,, 32 configurations

(left) vs full data estimate ys74, 576 configurations (right) for (a) a low noise, two-photon experiment, P = 0.91, and (b) a high-noise,
four-photon experiment, P = 0.62. The CQPT reconstructions have fidelities, F(xs7, x32), of 95% and 85%, respectively. The CQPT
estimation accuracy is excellent for low noise, and reliable even for high noise, see [19] for more details.
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FIG. 4 (color online). Absolute values of the 256 process
matrix elements of ys;¢ for our lowest and highest noise level,
sorted by relative magnitude [with respect to the (1, 1) element]
in the Cz basis (top) and the Pauli basis (bottom). The error
threshold, which indicates the required number of configura-
tions, is shown in grey.

That high-fidelity estimates are obtained by CQPT can be
understood from the error bound (4) which shows that the
CQPT estimate tends towards the best s-sparse approxima-
tion of the true process, Ys76. Figure 4 shows the process
matrix elements, sorted by relative magnitude, for low- and
high-noise levels, in two basis sets. The s-sparse approxi-
mation levels indicated in (4) are reached where the matrix
elements drop below the error threshold (0.01-0.02). For the
corresponding m, we can therefore expect a successful,
high-fidelity, CQPT reconstruction. In the Cz basis, the
plots show that for low noise, s € [20, 30], which correlates
well with the fidelities in Fig. 2; for high noise s € [40, 60].
Although the process matrix is still somewhat sparse in the
Pauli basis (Fig. 3). Figure 4(b) indicates that ~100 con-
figurations are needed to obtain an estimate of comparable
quality. Furthermore, the sorted magnitude values in the CZ
basis decay exponentially, which is sufficient to declare
the process matrix s compressible, see, e.g., [21,22]. In-
triguingly, this exponential decay is a signature of model-
based compressive sensing where the scaling goes from
m = O(slog(d/s))tom = O(s) [22]. This demands further
investigation, since it appears that QPT fits this framework,
particularly when the process matrix is expanded in the
ideal basis corresponding to the unitary design goal.

Our experimental results are supported numerically
by simulations of a 2-qubit process as well as simulation
studies for 3- and 4-qubit systems which show the same
type of compressibility, see [19]. Applying CQPT to larger
systems will require careful attention to classical postpro-
cessing which—as in QPT—scales exponentially. The
standard software we used here (see [19]), can easily
handle 2- and 3-qubit CQPT systems. For larger systems,
more specialized software can increase speed by orders of
magnitude, see, e.g., [21].

A number of research directions arise from this work:
incorporating knowledge of model structure properties;
tightening the bounds on scaling laws; understanding

how near-sparsity s and rank r vary with system dimen-
sion, d; pursuing highly efficient convex-computational
algorithms; and selection of optimal configurations.
Compressive tomography techniques can also be applied
to quantum metrology and Hamiltonian parameter estima-
tion: for example, estimating selective properties of
biological or chemical interest in molecular systems and
nanostructures with typically sparse Hamiltonians [23].
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APPENDIX A: NORMS

Definitions of the norms used throughout the paper. For a
vector x € C",

el = VoTz = /S Tl
||35||e1 = Zi:l |zil.

For a matrix A € C"™*" with rank(A4) = r < min{m,n}
and singular values 01 > 09 > --- > g, > 0,

(AL)

Induced £ norm [[All, = supyy, 1 [|Azll,, = o1
Frobenius norm || A, = /Tr(ATA) = />_, o?
Nuclearnorm  ||Al|, = Tr(VATA) =%"_ 0,

(A2)
In the main theorem of CQPT we evaluate the dis-
tance between the vectorized form of two process matrices,
X2 — X1ll,,- It is interesting to see what is the relation be-
tween this distance and a more natural measure of distance
between two maps. A commonly used definition of distance
between two quantum maps Sz and S is ||S2 — Sy =
dsupy p [tr[ASz2(B) — AS (B)]| for all matrices A and B
such that ||A|l, = [Bllg, = 1. This can be equiva-
lently expressed as dsupy p [tr[(72 — 71)A ® B]| where 7,
(a = 1, 2) is the Jamiolkowski state equivalence of S, defined
as % > 10 (i®@8a(]9)(j]). The distance ||S2—S1]| is upper
bounded by d||72—71||« [4]. Using the orthonormality proper-
ties of the basis I',, one can show ||72 —71||ro = ||x2—X1]|fro-
Finally we can use ||Al|. < v/7||4]|fo (7 is the rank of matrix
Ay to find [[X2 = X1ll, = llS2 = Sull-

APPENDIX B: RESTRICTED ISOMETRY PROPERTY
FROM A CONCENTRATION INEQUALITY

A common approach to establish the restricted isometry
property (RIP), Eqn.(3) in the paper, for a matrix A € C™*"
with m < n is by introducing randomness in the elements
of this matrix. This approach benefits from measure concen-
tration properties of random matrices. For QPT for the mea-
surment matrix ® € C™*4" in Eqn.(2) of the paper, we show
how to achieve this with random preparation of the intial states
and a random selection of the measurement operators. The
proof is based on the results in [5] which show that if ® is a
random matrix which satisfies the concentration property,

2 2 2 —2mC3(ds
Pr {|[[0allf, — [lallf, | > o, |23, } < 2e72"C9), B1)

for all z € C%", where 6, € (0,1) and C5(J,) only depends
on ¢, then ® satisfies the RIP,

2 2 2
(1 =09) llslle, < 1Pzslly, < (1 +05) [leslly, (B2

for all s-sparse 5 € C4". This version of RIP is equivalent
to Eqn.(3) in the paper.

In classical signal processing, each element of the ¢ ma-
trix can be independently selected from a random distribution
such as Gaussian or Bernoulli. For QPT there is no freedom
for random independent selection of every element of the ®
matrix. However, as described in the paper, the rows of ¢
can be independently and randomly selected. To see this, re-
call that for each experimental configuration we can initial-
ize the system randomly in a state p € {p; € CI*4}F |
and then measure an observable M randomly chosen from
{M; € CdXd}le. The corresponding matrix ¢ then has

m = k¢l independent random rows {¢] € C*N}m  with
correlated elements of each row since they are functions of
the same M and p. Observe, however, that although @ is a
random matrix, because it is constructed from quantum states
and observables of a finite dimensional system, it is bounded.

4
As a consequence, Vx € C%, we get,

2
wy/m) ||z,

2
(we/m) 2|7, < at(dig])e < "
< < ulzlf,

B
el < Bl .
where E denotes expectation with respect to ¢ and
Wey, Wy, U, £ are constants. Next we apply,

Hoeffding’s concentration inequality Let vq,...,v,, be
independent bounded random variables such that v; falls in
the interval [a;, b;| with probability one. Then for S =", v;
and any t > 0 we have,

e—ZtQ/Zi(qu—ai)z
2%/ X (bi—ay)?

Pr{S - E(S) > t}

Pr{S - E(S) < —t} B4

<
<

In our problem v; = \¢jx|2 and S = ||<I>x||i. From the above
inequalities and the relations in (B3) we find V¢, t_ > 0 and
Vo,

Pr{S—u||:c||i > t+} < Pr{S—E(S) >t}
< 672ti/(wu7w2)2

Pr{SlexHZ < ft_} < Pr{S—E(S) <t}
S 672t27/(wu7w/g)2

(BS)



The choice of t4 = (6s + 1 — u) H33||?2 andt_ = (L -1+

Js) Hx||?2 in the above inequalities yields

Pr {| ], - |z

2
o

(B6)
with € = min{l — u,¢ — 1}. We also need ¢ and ¢_ to be
positive that imposes the condition 1 — §s < £ < u < 1 + 6.
Since the obervable M can be scaled by any real factor, a
sufficient condition is u/¢ < (1 4+ d5)/(1 — d5).

Next we reproduce the connection between the measure
concentration (B6) and restricted isometry as demonstrated in
[5]: Let X be a set of vectors with cardinality s: #(X,) = s.
We choose a set Y C X such that [|y[|,, = 1 forally € Y,
we have minyey ||z — yl|,, < d5/4 forall v € X. The car-
dinality of such a set Y can always be chosen to be smaller
than (12/d5)® [6]. There from (B6) we find

—2m(8s/2+4€)2
(wy —wp)?2

Pr{|I®yllf, — 11 = 8,/2} <2(12/8,)"

or equivalently 1 — §,/2 < ||<I>y||§2 < 1+ J,/2 holds with
probability exceeding

P =1-2(12/8,)° exp(—2m(3s/2 + €)*/(w, — wy)?).

Define z to be the smallest number such that ||®2'||,, <1+ 2
for all 2’ with ||z'||,, = 1. For a vector y € Y we have,

9s
1

from which it follows that z < &, for any 0 < §; < 1.
In a similar fashion we can prove 1 — d5 < [|®2’||,,. This
completes the proof that RIP (B2) holds with probability ex-
ceeding P for all x € X;. The number of sets X, with
#X, = sis (V) < (eN/s)®. Therefore RIP fails to be sat-
isfied with probability 2 exp(—2m(8,/2 + €)2/(w, — we)? +
s[log(eN/s)+1log(12/ds)]). For a sufficiently small constant
Co, if Cps < m/log(N/s), we can find a constant 0 < Cj
such that the probability of a failure of RIP becomes smaller
than exp(—C3m) provided that C3 < 2m(d/2 + €)%/ (w, —
wy)? —s[log(eN/s)+1og(12/8,)]. This guaranteed exponen-
tially small chance of RIP failure is the key to the logarithmic
scaling of the resources in CQPT. If RIP is satisfied the Iy
norm minimization algorithm works to find a sparse solution.
Here we proved that by increasing the number of configura-
tions m would exponentially decrease the chance of RIP fail-
ure. This completes the connection between the concentration
measure (B6) and the restricted isometry property.

Js
[@2’[l,, < @y, + 12" =), <1+ =

<1+ Z4(1+2)

APPENDIX C: PERFORMANCE OF THE ALGORITHM

In Ref. [2], the accuracy of the /1 -norm minimization problem
is given by (C2). The parameters C; and Cs are explicitly
given in terms of the isometry constant J:

24 (2v2—2)4, AT+, ©n
T (V2 T 1 (V2 1),

> b, ], } < 2e-2m6rt0?

To present all the distances based on [;-norm we can use
Nyll, < llylli, < v D||yl|i,, for a D-dimensional vector y
and obtain the algorithm performance as

—x = Old2 = = 2
X" = Xoll,, < N [Xo(s) = Xollg, +d°Cae (C2)
However the performance inequality presented in the paper
has a tighter bound.

APPENDIX D: SPARSITY ASSUMPTION CERTIFICATION

A test to certify the sparsity assumption can be concluded
from (C2) and the probability of RIP being satisfied exceed-
ing 1 — e~™C(%) for m configurations. Suppose an esti-
mate x,, is obtained for m configurations. If the measure
[Xm+1 = Xmll,,» which quantifies an incremental improve-
ment in the estimated process matrix, converges toward zero
for a polynomially large m, the sparsity assumption is certi-
fied.

APPENDIX E: NORMALIZATION AND PRECISION ISSUES

In the formulation of CQPT a random selection of the expec-
tation values vy, ,, are not available in our experiment. Due
to photon loss the detector counts are not conclusive, hence, a
complete set of counts corresponding to a complete set of ob-
servables is required to produce meaningful expectation val-
ues Yz, ,p,;- A solution to this problem is to limit the measure-
ments to few-body observables. For k-body measurements
a total number of 2* complementary observables need to be
measured. Since m, the number of measurements, is expo-
nentially small we can choose k limited to few-body opera-
tors, k = k42, and even single-body as we did in the exper-
iment. For a fully random selection of observables, the total
number of measurements m will be increased by a constant
factor 2F . Still this number is exponentially small. This re-
dundancy, however, can be avoided by using the outcomes of
all 2% observables. This selection scheme is not fully random,
rather it is a deterministic-random way of choosing observ-
ables.

As discussed in the paper, random selections of probabili-
ties from the full data set, although exhibiting results which
are entirely consistent with compressive sensing theory, are
inconsistent with how data is actually collected in this kind
of standard photonic experiment. In practice we are limited
to measure few-body observables. For low m, the configura-
tions must allow for normalisation, i.e. we are restricted in
how random our low-number selections can be. A selection
of some of these permissible configurations are shown in Ta-
ble I. Here we see some of the remarkable results promised by
the theory of compressed sensing, e.g., a 98% fidelity from 32
configurations and a 94% fidelity from only 18 configurations.

Another issue to consider is experimental precision. The
expectation values of k-body observables of random states re-
duce for a larger k. This implies the need for a larger number



Inputs | Observables | m | F(xs76, xm) | F(Ucz, Xm)

HVDR*?|HVDARL*?|576 1 0.88
HVDR*?| {RLIR} |32 0.98 0.89
{DLID} 0.97 0.87
HVDR*%| RL*?2 64 0.95 0.86
DAxDA 0.95 0.86
VDR*? | {RLIR} |18 0.94 0.86
{DLID} 0.93 0.88
VDR*? RL*? 36 0.94 0.87
DAX? 0.94 0.84

TABLE I: Fidelity assessment of some selected configurations that
are available in our experiment.

of statistical samples. Fortunately, this issue is not a problem
for our scheme since we can take k£ as small as we want, as
discussed above.

APPENDIX F: CLASSICAL POSTPROCESSING

The estimation results computed from the experimental data
were all obtained by solving equation 2 in the main text by
using “off-the-shelf” MATLAB based software. Specifically,
we used YALMIP to call the convex solver SDPT3 [7, 8]. On a
standard desktop it takes about 2 sec of CPU-time to solve (2)
for the full 576 configuration set. This software can handle 3-
qubit systems but it is more advisable to migrate to more spe-
cialized software where orders of magnitude speed increases
are possible, e.g., [3].

APPENDIX G: EXPERIMENTAL DETAILS

The quantum gate used in the experiment is a photonic
controlled-phase gate, Fig. 1 [9]. It is based on a single par-
tially polarising beam splitter (PPBS), having different reflec-
tivity, 77\/2%, 1 =0, for the horizontal and the vertical polar-
isation of input photons. Due to two-photon interference, the
input state |V'V') undergoes a 7 phase shift |VV) — —|VV)
whenever the two photons leave the PPBS through different
output ports. Correct operation of the gate is signalled by a
coincidence detection in these output modes; the gate is thus
probabilistic, with a success probability of 1/9.

The gate acts on photonic qubits created via spontaneous
parametric downconversion (SPDC). Downconversion is in-
trinsically a random process: consequently the created states
contain small amounts of higher-order emission—e.g. |22)
as well as the desired |11)—which appear as decoherence in
a quantum process [10, 11]. The ratio of higher order terms
to the desired photon pair number increases with the pair cre-
ation probability, which in turn is proportional to the pump
laser power. Once can therefore—to some extent—control the
decoherence in a process via the laser power.

In order to cover a comprehensive range of decoherence, we
performed six experiments with 2-photon states directly cre-

A loss
Vv

%
control
bl

‘ beam-splitter (reflectance n=1/3) Ml PBS

FIG. 1: Detailed representation of the Cz-gate in dual rail encoding.
Each qubit is represented by two paths, one for each logical basis
state, |0) = |H) and |1) = |V) [9].
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FIG. 2: Fidelities vs. purities for m = 32 corresponding to the
configurations in Table 1.

ated via a single SPDC emission, and one experiment with
4-photon states created in two independent SPDC sources,
where one photon of each SPDC process was used as a trigger.
The latter experiment is more representative of large-scale
systems, where independent photon sources will be required.
It has significantly reduced count rates, and reduced two-
photon interference between photons in the quantum gate due
to both the pump-induced decoherence and group-velocity
mismatch [11], reflected in the low purity of the process in
this case of 0.62.

Typical count rates for 2-photon experiments are 2000 co-
incident counts per second, full QPT, building up reasonable
statistics, takes about 2.5 hours; in contrast, 4-photon experi-
ments have much lower rates, 1 four-fold coincidence per sec-
ond, and take 2 days. The 32-configuration CQPT reduces
tomography times to 8 minutes and 2.6 hours respectively: a
clear advantage.

Fig. 2 shows the effect of varying laser pump power on
CQPT estimation accuracy for one of the single-observable
configurations from Table I. Specifically for the 32 configura-
tions arising from all combinations of the 16 inputs HVDRx-
HVDR and 2 outcomes {RLIR}. As pump power increases,
the process purity, as measured by Tr(x2,5)/16 decreases;



effectively the signal to noise ratio deteriorates. As might be
expected, the worst-case fidelity decreases with process pu-
rity. The estimated channel fidelity is however remarkably
robust, staying very close to the actual channel fidelity.

APPENDIX H: SIMULATION RESULTS

QPT is performed by solving Eqn. (2) in the paper with
noise-free experiments (¢ = 0) for a system designed to be
a 2-qubit quantum Fourier transform (QFT) with unitary rep-
resentation Uyg, € C**4, which interacts with an unknown
environment via the total constant (time-independent) Hamil-
tonian, H=1, ® Hqy+yH with H randomly selected and
normalized to ||H||=1; ~ is thus the interaction magnitude.
The simulated system ygm € C16%16 is extracted via the
partial trace over the environment for v € {0.5,1.0,1.25}.
Each of these induces a fidelity with respect to the ideal uni-
tary, F(Uqst, Xsim) € {0.70,0.80,0.95} The estimates from
Eqgn. (2) in the paper are obtained in the singular value de-
composition (SVD)-basis [, in Eqn.(1) of the paper of the
ideal QFT. The process matrix of the ideal unitary in this ba-
sis is maximally sparse with the single non-zero 1,1-element
equal to n = 4 [1]. The environmental interactions make the
process matrix nearly sparse, i.e., compressible.

To form the measurement matrix & € C™*256, we ran-

domly generated 4 and 16 input pairs |1)1) ® |¢2) and 2, 4,
and 6 random selections from the single-body Pauli observ-
ables {IX,IY,IZ, X1,YI, ZI}. This gives 6 configurations
with m € {8, 16,24, 32,64, 96}, for which u/¢ ~ 1.3 ensur-
ing 6 ~ 0.13. Fig. 3 shows the fidelities F (X, Xsim) Of the
reconstructed estimates X, and the simulated process matri-
ces Xsim for all 18 combinations of m and interaction magni-
tudes .

These results arise from the relative sparsity of the process
matrix in the SVD-basis of the ideal QFT. Fig. 4 shows 3D bar
plots of the real and imaginary elements of the true and esti-
mated process matrices for m = 64, F(Uqgt, Xsim) = 0.70,
and F(X64, Xsim) = 0.93. In the SVD-basis (row 2), the true
process matrix exhibits the expected large 1,1-element with
the remaining elements much smaller by comparison. The es-
timated channel fidelity is 0.71.

In Fig. 3, F(Xm, Xsim) (White bars) trends to increase with
m, more so for F = 0.7 than for 7 = 0.95, and rises a bit
sharply at different m values. Just as for the experimental
results, this can be connected to the actual sparsity of the sim-
ulated process matrices. Figure 5, just like Fig.4 in the main
text, shows the absolute sorted process matrix elements rela-
tive to the 1,1-element. Where each plot crosses the threshold
of 0.02, we see that the number of elements above this value
increases with decreasing decoherence . If these are taken
as the s-sparse approximation levels indicated in the theory,
Eqn. (4) in the paper, then (approximately) s € {30, 50, 100}
correspond to F(Ugs, Xsim) € {0.95,0.80.0.70}. This corre-
lates well with how F (X, Xsim) varies with resources m.

T
]:<Uqft7 Xsim) =
0.95 N

) =0.95
0.85

1 . . Y
F(Usgts, )fsim) =0.8 ~ —

" O A 11
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0.9 7]:(Uqft7 Xsim) =0.7 _ -~ M N |

0.8 |
ool Ml Hull W pT o pl
8 16 24 32 64 96
Configurations (m)

FIG. 3: Fidelities vs. configurations for each process matrix estimate
Xm from Eqn. (2) in the paper in the SVD basis of the ideal QFT uni-
tary. Black bars: simulated compared to ideal process F (Uqgt, Xsim )-
Gray bars: estimate compared to ideal F(Uqst, Xm ). White bars:
estimate compared to simulated process F (Xm, Xsim)-

FIG. 4: Real and imaginary x elements for m=64, F(Uqft, xsim) =
0.71, v=1.25. Row 1: True process matrix in the natural ba-
sis. Row 2: True process matrix in SVD-basis of ideal unitary.
Row 3: Estimated process matrix projected to the natural basis ,
F(Uqte, xm) = 0.71.
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11-element) for F(Uqsy, S™°) € {0.95,0.80,0.70}.
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FIG. 6: Absolute values of the process matrix elements sorted by
relative magnitude (with respect to the 11-element) all in the ideal
SVD basis (in this case for an identity operator on the system) for
three cases: blue ysim € C!°*!6 with F(I4, xsim) = 0.84; red
Xsim € CO**% with F(Is, xsim) = 0.83; green xsim € C2°6%256
with f([m, Xsim) = 0.85;

APPENDIX I: BEYOND 2-QUBITS

Standard QPT scales exponentially, thus for 3 and 4 qubits
the number of required experimental configurations is, respec-
tively 4,032 and 65,280. As we have shown theoretically, ex-
perimentaly, and lastly via the previous simulations, CQPT
shows quite a different scaling. Fig. 6 shows the absolute
values, sorted by relative magnitude, of the process matrices
arising from a random selection of a perturbed system near
identity, i.e., a quantum memory, corresponding to similar fi-
delities. The process matrices elements are shown in a ba-
sis corresponding to the ideal identity. Again taking 0.01 as
a threshold we see that for 2-qubits we get m =~ 30 which
is similar to our experimental results and those supported by
the plots in Figures 4 in the main text and here in 5. Fig. 6
predicts for 3-qubits m =~ 100, and for 4-qubits m ~ 300.
These simulation results show first that the process matrices
are compressible, and in addition are consistent with the ex-
perimental results in Fig. 4 in the main text. To actually per-
form the estimaton, that is solve Eqn. (2) in the paper, as pre-
viously mentioned, requires specialized compressed sensing
algorithms optimized for speed and efficiency, e.g., [3].
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Abstract

We develop an efficient and robust approach for quantum measurement of nearly-sparse
many-body quantum Hamiltonians based on the method of compressive sensing. This
work demonstrates that with only O(s log(d)) experimental configurations, consisting of
random local preparations and measurements, one can estimate the Hamiltonian of a d-
dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis.
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which is generally not scalable. We numerically simulate the performance of this algo-
rithm for three- and four-body interactions in spin-coupled quantum dots and atoms in
optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine
structure and unknown system-bath interactions.
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We develop an efficient and robust approach to Hamiltoniantification for multipartite quantum systems
based on the method of compressed sensing. This work derai@ssthat with onlyO (s log(d)) experimental
configurations, consisting of random local preparatiorss measurements, one can estimate the Hamiltonian
of ad-dimensional system, provided that the Hamiltonian is lyesssparse in a known basis. We numerically
simulate the performance of this algorithm for three- angtfmody interactions in spin-coupled quantum dots
and atoms in optical lattices. Furthermore, we apply therétlyn to characterize Hamiltonian fine structure
and unknown system-bath interactions.

PACS numbers:

I. INTRODUCTION unknown parameters. Unfortunately, quantum state and pro-
cess tomography cannot readily exploit this potentiallgfuls

The dynamical behavior of multipartite quantum systems ideature.
governed by the interactions amongst the constituentesti The highly nonlinear feature in the required inversion of
Although, the physical or engineering considerations mayaboratory data was studied in Ref.[9] in which closed-loop
specify some generic properties about the nature of quantutgarning control strategies were used for the Hamiltonian
dynamics, the specific form and the strength of multi-platic identification. In that approach one estimates the unknown
interactions are typically unknown. Additionally, quamtu Hamiltonian parameters by tailoring shaped laser pulses to
systems usually have an unspecified interaction with theienhance the quality of the inversion. Identification of time
surrounding environment. In principle, one can charapteri independent (or piece-wise constant) Hamiltonians haee be
quantum dynamical systems via “quantum process tomograstudied for single-qubit and two-qubit cases [13, 14] tafyer
phy” (QPT) [1-8]. However, the relationship between rele-the performance of quantum gates. Estimation of these Hamil
vant physical properties of a system to the information gathtonians is typically achieved via monitoring the expectati
ered via QPT is typically unknown. Alternatively, knowlexlg Vvalues of some observable, e.g. concurrence, which are time
about the nature of inter- and intra- many-body interaation periodic functions. Through Fourier transform of this sign
within the system and/or its environment can be constructethe identification task is reduced to finding the relativealoc
by identifying a set of (physical or effective) Hamiltonipa-  tion of the peaks and heights of the Fourier spectrum [13, 14]
rameters generating the dynamics [9-18]. Currently, a scaBayesian analysis is another method proposed for robust es-
able approach for efficient estimation of a full set of Hamilt timation of a two-qubit Hamiltonian [15]. The difficulty wit
nian parameters does not exist. these methods is then scalability with the size of the system

The dynamics of a quantum system can be estimated b§ symmetrization method for efficient estimation of the mag-
observing the evolution of some suitable test states. Tams ¢ Nitude of effective two-body error generators in a quantum
be achieved by a complete set of experimental configurationgomputer was studied in [16] by monitoring quantum gate av-
consisting of appropriate input states and observables me&rage fidelity decay. Recently, it was demonstrated thattlir
sured at given time intervals. Knowledge about the dynamor selective QPT schemes could be used for efficient identifi-
ics may then be reconstructed via inversion of the laboyatorcation of short-time behavior of sparse Hamiltonians [1s7] a
data by fitting a set of dynamical variables to the desired-acc Suming controllable two-body quantum correlations witk-au
racy. Estimating Hamiltonian parameters from such a procelliary systems and the exact knowledge of the sparsity patte
dure faces three major problems: (1) The number of requirednother scheme for the determination of the coupling param-
physical resources grows exponentially with the degrees oters in a chain of interacting spins with restricted cdtaro
freedom of the system [1-8]. (2) There are inevitable statisbility was introduced in Ref. [18].
tical errors associated with the inversion of experimeaitaa In this work, inspired by recent advances in classical digha
[1-8]. (3) The inversion generally involves solving a set of processing known asompressed sensifi9], we use random
nonlinear and non-convex equations, since the propagator local input states and measurement observables for efficient
a nonlinear function of Hamiltonian parameters [9-18]. TheHamiltonian identification. We show how the difficulties twit
first two problems are always present with any form of quanthe nonlinearity of the equations can be avoided by either a
tum tomography, but the last problem is specific to the taslshort time or a perturbative treatment of the dynamics. We
of Hamiltonian identification as we wish to reconstruct thedemonstrate that randomization of the measurement observ-
generators of the dynamics. Many quantum systems involvables enables compressing the extracted Hamiltonian-infor
two-body local interactions, so the goal is often to esténat mation into a exponentially smaller set of outcomes. This is
sparse Hamiltonians with effectively a polynomial numbier o accomplished by a generalization of compressed sensing to



utilize random matrices with correlated elements. This apof the above affine equation (2) is

proach is applicable for Hamiltonians that are nearly spars

in a known basis with an arbitrary unknown sparsity pattern Djk = z’tz (W] Lo, M;] [¢k) ha 3)
of parameters. The laboratory data can then be inverted by «

solving a convex optimization problem. This algorithm is
highly tolerant to noise and experimental imperfectionse T
power of this procedure is illustrated by simulating thraed
four-body Hamiltonians for neutral atoms in an opticaliéatt
and spin-coupled quantum dot systems, respectively. Ewurt
more, we directly apply the algorithm to estimate Hamilsoni
fine structure and characterize unknown system-bath itxtera
tions for open quantum systems.

Here we introduce the experimental outcomeg;as= p;, —
(| M |r), since(ii| M; |¢) is a priori known. The re-
lation (3) corresponds to a single experimental configanati
h (M;,|¥r)). For ad-dimensional system, the total number of
Hamiltonian parameters, is d2. Thus, one requires the same
number of experimental outcomes;; that leads tai? lin-
early independent equations. For a systemm @fubits, this
number grows exponentially with asd = 22". In order
to devise an efficient measurement strategy we will focus on
physically motivatedhearly sparséHamiltonians.

Il QUANTUM DYNAMICAL EQUATIONS A HamiltonianH is considered to be-sparse if it only con-

tainss non-zero parametefs., }. More generally, a Hamilto-

The time evolution of a quantum system in a pure statenianH is termed nearlg-sparse, for a threshoid if at mosts

is governed by the Shrodinger equatiod|y(t)) /dt =  coefficientsh, (H = Y h,I'») have magnitude greater than
—iH [¢(t)). The solution of this equation for a time- nh,,,, whereh,,.. = max(hy). By definition, the sparsity
independent Hamiltonian can be simply expressé¢@3) =  is basis dependent. However, for local interactions, treisba

exp(—itH) |1(0)). In principle, the Hamiltonian of the sys- in which the Hamiltonian is sparse is typically known from
tem H can be estimated by preparing an appropriate set of tegthysical or engineering considerations.

states{|iyx)} and measuring the expectation value of a set of

observable§ M, } after the system has evolved for a certain

period of time. The expectation value of these observalales ¢ lll. COMPRESSED HAMILTONIAN ESTIMATION

be expressed as

, , Our algorithm is based on general methods of so-called
Pik = (Mj)y, = (r] e Mye™ "™ |yy,) (1)  compressed sensing that recently have been developed in sig
nal processing theory [19]. Compressed sensing allows for
Equation (1) implies that the experimental outcofies.}  condensing signals and images into a significantly smaller
are nonlinear functions of the Hamiltonian parameters. Tamount of data, and recovery of the signal becomes possi-
avoid the difficulties of solving a set of coupled nonlinearple from far fewer measurements than required by traditiona
equations we consider the short time behavior of the systenmethods.
Monitoring the short time dynamics of the system is valid Compressed sensing has two main steps: encoding and de-
when the relevant time scales of the system evolution salkoding. The information contained in the signal is mapped
isfy ¢ < K~' where, for positive operator-valued measureinto a set of laboratory data with an exponentially smakerr
(POVM) operatorg( M }, the constanf equals2||H||syec-  resentation. This compression can be achieved by randemiza
The general expression &f is given in appendix B, also see tion of data acquisition. The actual signal can be recovered
appendix A for definition of the norms. This yields the lin- via an efficient algorithm based on convex optimization meth
earized form of the Eq. (1) ods. Compressed sensing has been applied to certain quantum
tomography tasks. Standard compressed sensing has been di-
Pk = (k| Mj |vr) + it (x| [H, My |r) + O(K?t*) (2)  rectly used for efficient pseudothermal ghostimaging [40, 2
Recently, a quadratic reduction in the total number of mea-
The linear approximation contains enough information tosurements for quantum tomography of a low rank density ma-
fully identify the Hamiltonian and the higher order terms dotrix has been demonstrated using a compressed sensing ap-
not provide additional information. The short-time appfox proach [22].
mation implies prior knowledge about the system dynamical Here, we first describe how the Hamiltonian information is
time-scale or the order of magnitude | ||s,... This prior  compressed into the experimental data. The output of aesing|
knowledge can be available from generic physical and engimeasurement is related to the unknown signal (Hamiltonian
neering considerations. For example, in solid-state quant parameters) through the relation (3). Suppose wertrgfif-
devices the time-scale of single qubit rotations is typycah  ferent experimental configurations (i.ez, different pairs of
the order of 1-10 ns. The switching time for exchange inter{A7;, |+))). This yields a set of linear equations
actions varies among different solid-state systems frogtdp
100ps, (for more details see appendix B.) ;/} _ q)ﬁ )
We expand the Hamiltonian in an orthonormal bddis },
where T(FLFﬁ) =ddap: H=73_ holo.Heredisthedi- where ® is a m x d? matrix with elements®;,, =
mension of the Hilbert space. In this representation theiHam it/\/m (Y| [T, M;] |¢x) (A factor 1/y/m is included for
tonian parameters are the coefficielts The expanded form simplifying the proofs, appendix C). In general has to be



3

greater than or equal & in order to solve Eq. (4). AHamil- noisy data a§lp’ — ®h||;, < ¢ wheree is the noise threshold.
tonian estimation attempt witlh < d? seems impossible as Note that includes the error of linearization (see Eq.(2)) that
we face an underdetermined system of linear equations witts O(/mKt?). Denoteh, as the true representation of the
an infinite number of solutions. However, any twsparse  Hamiltonian. For a thresholg, 2((s) is an approximation to
Hamiltoniansh; andhs still can be distinguished via a prop- hg obtained by selecting theelements ofy as those that are
erly designed experimental setting, if the measurementxnat larger thamh,, ., and setting the remaining elements to zero.
® preserves the distance betwégrandh, to a good approx- Now we state our main result:

imation:

(1=6,)||ha—hall7, < [|@(ha—h)|[7, < (1+35)[|he—Ra]|7, IV. ALGORITHM EFFICIENCY
(5)

for a constand, € (0,1). A smallerd, ensures higher distin- If the measurement matrik € C™*?" is drawn randomly
gU|$hab|I|ty ofs-sp_arse I_-Iamlltomans, The inequality rela_mon from a probability distribution that satisfies the concextion
(5) is termed aestricted isometry propertfRIP) of the matrix inequality in (5) withs, < v/2 — 1, then there exist constants

® [23]. We now discuss how to construct a maatistying . .. 7 ", < 0 such that the solutioh* to the convex opti-
this inequality, and how small the valuenfcan be made. mization problem

The RIP (5) for a matrixp can be established by employ-
ing the measure concentration properties of random matrice minimize||h)|;,
In each experiment the test state and the measurement ob-

H /
! X - <
servable can be drawn randomly from a set of configurations subject tof[p’ — ®h|, <, (7)
{M;, |+x)} realizable in the laboratory. The independent se-g4tisfies
lection of|yy) and M; leads to a matrixp with independent
rows but correlated elemenbs, , in each row. Thus the stan- N dq
dard results from compressed sensing theory are not applica 177 = holli, < E"ho(s) = holli, + dze (8)

ble here (appendix C).

In contrast, here we derive a concentration inequality for avith probability> 1 — 2e~™¢s provided that,
matrix with independent rows and correlated columns as the
backbone for the RIP of our quantum problem in appendix C. m > cyslog(d*/s), 9)
Using Hoeffding’s inequality, we show that for any Hamilto- L
nianh and a random matrig with column only correlations, where the performance of ia minimizer, Eq. (8),,an_d the
the random variablg®h||? is concentrated arourjgh||? with Fecessary boundl < v/2 — 1 are derived by Candés in Ref.

a high probability, i.,eV 0 < § < 1 25]- - .
As an example, for a system consistingrofinteracting

Prob{|||®h[]?, — [|B|[%] > 6][n|2} < 2¢~meo(6+e)* (g)  qubits, the exponential number of parameters describiag th
dynamics22”, can be estimated with a linearly growing num-

for some constants) andc;. ber of experimentsn > c3s5(8log(2)n — log(s)). The sec-

Using the above inequality, now we can show how an ex-ond term,dse, indicates that the algorithmic performance is
ponential reduction in the minimum number of the requiredbounded by the experimental uncertainties. Consequéaitly,
configurations can be achieved for Hamiltonian estimationfully sparse Hamiltonians and = 0 the exact identification
The inequality (6) is defined for ang while the inequal- of an unknown Hamiltonian is achievable. The properties of
ity in the definition of RIP, Eq.(5), is for ang-sparseh. the ensemble from which the states and measurement observ-
As shown in Ref. [24], there is an inherent connectionables are chosen would determine the paramigtand con-
between these two inequalities. It is proved that any masequently the performance of the algorithm. The linear4inde
trix @ satisfying (6) has RIP with probability greater than pendency of th& matrix rows for a random set of local state
1 — 2exp(—meo(83 + ¢1)? + sllog(d*/s) +log(12e/65)]).  preparations and observables can be guaranteed by a polyno-
In addition, whenevemn > cyslog(d*/s), for a sufficiently mial level of computational overhead before conducting the
large constant, one can find a constan§ > 0 such that the experiments.
likelihood of the RIP to be satisfied converges exponentiall A certification for the nearly sparsity assumption can be ob-
fast to unity asl — 2 exp(—csm,). tained from Egs.(8) and (9) as follows: Suppageis the al-

The set of experimental configurations defined by Eq (4)gorithm’s outcome forn configurations. The nearly sparsity
and the concentration properties given by Eq (5) and (6) caassumption is certified on the fly during the experiment,éf th
be understood as encoding the information of a sparse Hamigstimation improvemerthy, . ; — h}, || converges to zero for
tonian into a space with a lower dimension. Next we neecd polynomially large total number of configurations.
to provide an efficient method for decoding in order to re-
cover the original Hamiltonian. The decoder is simply the

minimizer of thel; norm of the signah. Implementing this V. PHYSICALLY NEARLY SPARSE HAMILTONIAN
decoder is a special convex optimization problem, which can
be solved via fast classical algorithms, yet not stricktgls Although physical systems at the fundamental level involve

able. Furthermore, the encoding/decoding scheme is rtdust local two-body interactions, many-body Hamiltonians pfte



describe quantum dynamics in a particular representation o A. Three-body interactions in optical lattices
in well defined approximate limits. The strength of the non-

local k-body terms typically is much smaller than the two-  an optical lattice is a periodic potential formed from in-
body terms with strengti and decreases with the numler  terference of counterpropagating laser beams where heutra
For a fixed sparsity thresholgl £, is defined as the largest 4toms are typically cooled and trapped one per site. Conside
numberk: for which k-body terms have strength larger than foyr sites in two adjacent building blocks of a triangular op
nJ. Then the number of the elements of-aparse approxi- jcg| lattice filled by two species of atoms [29]. The interac
mation of an-body Hamiltonian grows linearly a8(ng(ky)),  tion between atoms is facilitated by the tunneling rtbe-
where they (k) is determined by the geometry of the system.yyeen neighboring sites and collisional couplitigeshen two

A general class of many-body interactions arises whemr more atoms occupy the same site. For each site an effective
we Change the basis for a bosonic or ferminoic SyStem e)(spin is defined by the presence of one type of atom as the up-
pressed by a (typically local) second-quantized Hami#ioni - statet and the presence of the other type as the down-$tate
to a Pauli basis, e.g., via a Jordan-Wigner transformationthree-body interactions between atoms in a triangulacapti
For fermionic systems the interactions are imposed phygica |attice can be significant. The effective Hamiltonian foisth
from Coulomb’s force and Pauli exclusion principle. The system is studied in Ref. [29]. The on-site collisional rate
second-quantized Hamiltonian for these systems can be gefion 17, and tunneling rateg = J' = 2J* are taken to be the
erally written as: same in all sites, alst = Uy = U}y = 2.12U;, = 10kH .

. The effective Hamiltonian of the 4-spin system is
H=> bytfag+ Y bpgretfafaras,  (10)

_ o __x (v o __ 0 (X «
Pq Pq,T,8 Hopt—tatt = E biojoly +b5050% 107,  (13)
ja=w,y,z

where the annihilation and creation operatars§nd dj re-
spectively) satisfy the fermionic anti-commutation relas:  where {b$, b5} are functions of{.J, U} and their explicit
{ai,a}} = 6;; and{as, a;} = 0 [26]. For example, in chem-  forms are given in appendix D. The ratip= |.J/U| quan-

ical systems the coefficients,, andh,,-s can be evaluated tifies the sparsity level. For a fixed value Bf a smallerJ
using the Hartree-Fock procedure fr single-electron ba- |eads to weaker three-body interactions and thereforefeehig
sis functions. The Jordan-Wigner transformation can treen blevel of sparsity. As expected, this enhances the algorithm
used to map the fermionic creation and annihilation opesato performance.

into a representation in terms of Pauli matriées 6¥,6°. We assume that the system can be initialized in a ran-
This allows for a convenient implementation on a quantumdom product statéy,) = [¢}) ® ... ® |¢}), where|y)
computer, as was demonstrated recently for the efficient simare drawn from the Fubini-Study metric induced distribatio
ulation of chemical energy of molecular systems [27]. Anim-The required observables for the algorithm are uniformly se
portant example of a Coulomb based Hamiltonian is the spintected from single qubit Pauli operatofs?, o, o}. This
coupled interactions in quantum dots which has the follgwin choice of states and observables allows fora 0.37 <

Pauli representation: V2 — 1. Let us denote the extracted Hamiltonian and the
_ true Hamiltonian byH* and Hy,..., respectively. Here, the
H = Z biyj_,k_,...oj; R0y ® cré cee (11) performance of the algorithm is defined by the relative error
ij ke 1 —||H* = Hyruell fro/ || Hiruell fro- The results for different
number of configurations are depicted in Fig. (1), for vasiou
whereA, B, C, - - - indicate the location of the quantum dots, values ofJ. As evident in Fig.(1), performance accuracy of

, o's are Pauli operators, ar; «,... generally represents a aboved4% can be obtained with only 80 settings significantly
many-body spin interacting term. In practice, these Hamil-smaller than approximatefyx 10* configurations required in
tonians are highly sparse or almost sparse due to symmetgypT.

considerations associated with total angular momentu [28  The robustness of this scheme was also investigated for
For example the Hamiltonian for the case of four quantumi0% random error in simulated experimental data leading to
dots (A, B, C, D) takes the general form [28]: about a 5% reduction in the overall performance.

Hezchange = J Z 0;.0;+ J'[(0a.08)(cc.0p)
A<i<j<D B. Four-body interactions in quantum dots

+ (0a.0¢)(op.op) + (ca.0p)(op.0c)], (12)
Another important class of effective many-body Hamilto-

Another class of effective many-body interactions oftennians can be obtained for electrons in quantum dots coupled
emerge in a perturbative and/or short time expansion of dythrough an isotropic (Heisenberg) or anisotropic exchamge
namics, such as effective three-body interactions betweeteraction. For example the Hamiltonian for the case of four
atoms in optical lattices [29] that we study in this work. guantum dots 4, B, C, D) takes the general form Eq. (12).

Next, we simulate the performance of our algorithm for es-The first term in the summation is a two-body Heisenberg ex-
timation of such sparse many-body Hamiltonians in opticalchange interaction and the last three terms are four-bady sp
lattices [29] and quantum dots [28]. interactions. In certain regimes, the rali/.J| can reach up
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FIG. 1. The Hamiltonian estimation average performancélus-i
trated for a system of four adjacent sites in an opticaldattor dif-
ferent tunneling rates], and collisional coupling/ = 10kH z. The
error bars demonstrate the standard deviation of the pesfiace due
to the random and independent selectiomofonfigurations (shown
only for J = 5kHz). Performance accuracy of abo96% with
only 60 settings is achievable for= 1k H z, which is significantly
smaller than aboud x 10* required experimental configurations in
QPT.

to 16%. The amplitude of) = |.J'/.J| determines the sparsity
level of the Hamiltonian.

Here we use an efficient modification of signal recovery

referred as "reweighted -minimization” which is described

in appendix E. The performance of this algorithm is demon
strated in Fig. (2) that shows a significant reduction of th
required number of settings in contrast to the standard QPT.
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FIG. 2: Estimation of the exchange interaction Hamiltorfianfour
electrons in quantum dots. The average performance of thaepr
dure is illustrated for different values of’/.J| with 50 iterations of
thel,-reweighted minimization. The standard deviations arevsho
only for |J'/J| = 0.1 It is demonstrated that onl§0 different con-
figurations are sufficient for estimating the unknown Haomilan
with an accuracy above5% for |J'/J| = 0.05, instead of about
6 x 10" required settings via QPT.
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VI. V. CHARACTERIZATION OF HAMILTONIAN FINE
STRUCTURES AND SYSTEM-BATH INTERACTIONS

A. Hamiltonian fine estimation

In many systems a primary model of the interactions is
often known through physical and/or engineering consider-
ations. Starting with such an initial model we seek to im-
prove our knowledge about the Hamiltonian by random mea-
surements. Let's assume the initial guess about the Hamil-
tonian Hy is close to the true fornH,,,. that is ||A
Hiruwe — Hol| < ||Hiruel|- Therefore for a perturbative treat-
mentwe demant|{|A|| < 1, which is a much weaker require-
ment compared to|| H:-..|| < 1. We can approximate Eq.
(1) in the paper to find

pik ~ (k| M [¥r)

t
+ i (Yl /O e Ae="Hods, M) [yg),  (14)

where MY = o M;e~Ho [31]. This equation is linear

in A, consequently, in a similar fashion as above, the com-
pressed sensing analysis can be applied for efficient estima
tion of the fine structure of Hamiltonians.

B. Characterizing system-bath interactions

The identification of a decoherence process is a vital task
for quantum engineering. In contrast to the usual approfch o
escribing dynamics of an open quantum system by a Kraus
map or a reduce master equation, here we use a microscopic
Hamiltonian picture to efficiently estimate the systemhbat
coupling terms generating the overall decoherence process
However since we consider a full dynamics of the system and
bath, this method can be applied to a finite size environment
such as a spin bath, or a surrogate Hamiltonian modeling of a
infinite bath. In the latter case a harmonic bath of oscitkto
is approximated by a finite spin bath [32].

Consider an open quantum system with a total Hamiltonian:

d

H=Hs®Ig+1s® Hp+ Hsp (15)

and
Hsp =Y ApgSp® By (16)

p,q

where Hg (Hp) denotes the system (bath) free Hamilto-
nian andHgp is the system-bath interaction with coupling
strengths{ )\, ,}, and a complete operator basis of the system
and bath beind S, } and{B,}, respectively.

We develop a formalism to estimalg , parameters in the
weak system-bath coupling regime and with the sparsity as-
sumption that a few number of, , have a significant value.

The Liouvilian dynamical equation is

d

—,PSB

dt (t)=(Lo+ Z ApaLpq)pss(t)]

pq

(17)



where Ly[.] = —i[Hs ® Ip + Is @ Hp,.] and L,4[.] = where\, ., means largest eigenvalue.
—i[Sp, ® By, .]. Inthe regime of weak coupling to a finite bath,
[|Hsg|| < min{||Hs||, ||HEg||}, the Liouvillan equation (17)

. Ay o = T
can be solved perturbatively if timesatisfiest||Hsp|| < 1. [[Allgro trace(ATA) (A3)
For an initial system density stgtg, using the matrix identity
given in Ref. [31] we find the measurement outcomes as
Appendix B: Analysis of the short time approximation
Pk =~ tr(prMj) (18) PP Y PP
t
+ Z/\pqtr([/ dset==)C0 £ 5L [py], M) The short time monitoring of the system’s dynamics re-
P 0 quires a prior knowledge of the dynamical time scales. In

the solid-state quantum devices, in particular in the odnte
of quantum control and quantum information-processing, th
time-scale of single qubit rotations is typically on the erd
of 1-10 ns. The switching time for exchange interactions
Varies among different solid-state systems. For supergtind
ing phase qubit the duration of a swap gate is about 10 ns [35].
For electron-spin qubits in quantum dots and in donor atoms
VIl OUTLOOK (Heisenberg models) [36—38], and also for quantum dots in
' cavities (anisotropic exchange interactions) [39] theptiog

, . ) ime is between 10-100ps, while for exciton-coupled quan-
We have introduced an efficient and robust experlment_aﬁum dots (XY model) and Forster energy transfer in multichro
procedure for the identification of nearly sparse Hamikoni 5 qric complexes the relevant time scale is in the order of
ans using only separable (local) random state pfePa@mS 1ps. Next we rigorously derive bound on the evolution time
measurements. There are a number of future directions ang ;¢ guarantees the validity of the short time approxinmatio

open problems associated with this work. It is not known . . :
how the performance of the algorithm depends on the distribu For an input stat@/y.), the expectation value of an observ

tion of the ensemble from which the states and measuremefi lea; is

observables are drawn. Also, a general closed-loop learn- iHt iH

ing approach for updating the knowledge of sparsity basis of Pit = (¥k(0)| Mj [¢x()) = (x| " Mje™ """ [¢hy) (BL)
an arbitrary Hamiltonian is an interesting open problent tha .

will be of importance for generic compressed system identi- Considering the expansion of the propagatot”’* = I —
fication. The presented method for Hamiltonian estimatioritH — 5t*H? + ..., we find

is promising for drastic reduction in the number of experi-

where; is a system only observable. This affine function
between the outcomes;;, and coupling parameterS\,, }

is similar to Eq.(2) in the paper for Hamiltonian estimation
Consequently, the compressed sensing algorithm can be e
ployed for computing A, }s.

mental configurations. However the classical resources for pik = (Wi Mj |Yr) + it (Yi| [H, M;] |r)
post-processing is not scalable. A fully scalable Hamidan 2
estimation method might be achievable via a hybrid of com- = 5 (Ol H, [H, My]] [e) + . (B2)

pressed sensing and DMRG (Density-Matrix Renormalization

Group) methods [33]. A compressed tomography method can terefore, for the linearization assumption, it is suffitie
also be developed for nearly sparse quantum processes 34}, nave for thé'th term

[ times
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A tighter bound can be found for operatdid/;} from a

POVM as
Appendix A: vectors and operator norm
N, [H, [ M) spee < 21 H]Spee (B4)
In this paper we use the following different norms:
For a vectorr, To derive this we use
=Vl = il Al
el = Vatalally = 3 laid - AD 14 Bl < 1ABllapec I BAllpee < 2| Allsecl 1Bl g
’ (BS)
For a matrixA, and||A]|2,.. = [[AAT||spee-

This gives a single bound sufficient for linearizatiagn
[Al[spec = 1/ Amaz(ATA) (A2) %HI—IH_1

spec*



Appendix C: RIP from a concentration inequality M can be scaled by any real number, a sufficient condition is
g/f < (149)/(1—9). Forthe simulations in this paper, this

In this work, we generalize the standard compressed sen&atio becomes.176.
ing algorithm such that the necessity for independent rarndo
ness in all elements of the measurement matsixcan be
avoided. A common approach to establish RIP ([24]) for a
matrix ® is by introducing randomness in the elements of this
matrix. This approach benefits from measure concentration
properties of random matrices. In classical signal prangss ~ Let us consider four sites in two adjacent building blocks
each elemend;; ,, can be independently selected from a ran-of a triangular optical lattice filled by two species of atorhs
dom distribution such as Gaussian or Bernoulli. Whereas ind|. Atoms interact by tunneling between neighboring sites,
the Hamiltonian estimation formulation (Eq. (4) in the pgpe J' andJ*, and through collisional couplings in the same site,
there is no freedom for independent selection ofdhmatrix ~ U. The Hamiltonian for such system can be written as [29]:
elements.

Appendix D: 4-sites optical lattice Hamiltonian

Here we prove the concentration inequality that we em- J12 4 gt JB g8
ployed for establishing the restricted isometry property. Hopt—tatt = Z(O'O?’T - OQ?T)GJ Tj+1
Though® is a random matrix, because it is constructed J
from quantum states and observables of a finite dimensional 21(JV+ Yt gt vy
system, it is bounded. Thus we are able to appbeffd- = U2 * U 050511+ 050511)
ing’s concentration inequalityif v4, ..., v,, are independent g3 _ i3
bounded random variables such that Pfobe [a;, b;]} = 1, + Z 0.14T0§0’f+1 O5to
then forS = )" v, J

2 2 -0 GM(J%? o% o +olo? oY)
Prob{S — E(S) >t} < e~ 2"/ 2:(bi—ai) : U2 705419542 T 0505410519)s

Prob{S — E(S) < —t} < e_2t2/2i(bi_ai)2 (C1) (D1)

for anyt > 0. (HereE denotes the expectation value.) Setwhereo;"*"* are Pauli operators.
v; = |¢lx|? for arowe;. ThenwithS = 3, v; = || Px|[7,

we getvz,

Al dixE: R ightedl;-minimizati
v; = xT(¢z¢j)«T c (1/m)[wl7wu]||l'||122 ppendaix eweligntedi-minimization
_ 2 2
E(S) = El[®z|[;, € [, glll=[lz, (C2) In order to simulate our alogrithm performance for estimat-

ing the above Hamiltonian we use an iterative algorithm that
outperforms the standard norm minimization [30]. This
procedure entails initializing a weight matrixX = I;. and

a weight factow > 0, and repeating the following steps until

for constantsu;, w,, f, g. Note thatf andg are the min and
max singular values d&(®®). From (C2) we find/t ., ¢ >
0 andVz,

Prob{s — gllz|2, > t;} < Prob{S —E(S) > t,} convergence is reached:
2
Prob{S — f|lz[[;, < —t-} < Prob{S —E(S) < —t_} 1. Solve forh, minimize||Wh||;,
These together with (C1) and (C2), and the choice,of= subject to|p’ — ®hli, <e.
(64+1—g)|lzl[}, andt_ = (f — 1+ )||||?, yields 2. Update weights
s W = diag(1/(|ha] + o), 1/(hae| +0)).  (ED)

Prob{]|®z|, — ||z[|7,| = 6||z][7,} < 2¢ Twu=0®  (C3) . I . :
whereh = vedh;) is the Hamiltonian vectorized formp is
with ¢ = min{l — g, f — 1}. To ensure that,,¢_ > 0, the measurement matrix aptlis the experimental data with
we needl —§ < f < g < 14 4. Since the observable a noise thresholel
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