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1 Motivation

“I would like to describe a field, in which little has been done, but in which an enormous
amount can be done in principle.. . . Furthermore, a point that is most important is that it
would have an enormous number of technical applications. What I want to talk about is
the problem of manipulating and controlling things on a small scale.”Richard P. Feynman,
There’s Plenty of Room at the Bottom, American Physical Society Caltech, Dec. 29, 1959

In our quest for a deeper understanding of physical and biological phenomena, we move
into the “small scale” world of quantum mechanics. The rules of this world herald new types
of materials and devices [1, 2, 3]. Quantum information systems and instruments of mea-
surement promise an exponential improvement in speed and/or resolution compared to their
classical counterparts. Many of these systems inherently rely on estimation for their normal
operation, e.g., atomic clocks, measuring electrical, thermal, and photonic characteristics, bio-
metrics, magnetometry, and gravimetry. Some will require estimation to determine if the system
is meeting performance demands and then apply a control adapted to the specific estimated er-
ror, e.g., [4, 5, 6, 7, 8]. Estimation will also be used for simply gaining an understanding of
observed phenomena.

Despite the promise and various laboratory successes, for many of these quantum systems
ab initio models do not yet exist which can be used to optimize the design or determine a robust
control for actual application. The only practical approach is quantum system identification
– that is – identifying a model from measurements, either as an intrinsic part of their oper-
ation or in a calibration/tuning stage prior to operation. In particular, instrumentation noise,
decoherence, and modeling errors are all sources of uncertainty which either separately or in
combination hinder the ability of the device to meet performance demands. Finally, common to
all methods of quantum system identification, as well as quantum control design [9, 10], is the
computational burden imposed by the dimension of the parameter space.

2 What was proposed

We proposed to investigate a method of identification which has the potential to alleviate all the
aforementioned problems. The question we posed was:

Can�1-norm minimization, which has had enormous success in signal processing
for estimating a sparse variable from highly incomplete and noisy measurements,
be applied to significantly improve the accuracy and efficiency of quantum system
identification?

The basic mathematical foundations for �1-norm minimization, often generally referred to as
Compressive Sensing, can be found in [11, 12]. (A web search on Compressive Sensing will
bring many tutorials and testimonials). In general, for �1-norm minimization to be effective,
the underlying signal (or parameter space) must be sparse. This in turn allows for a significant
reduction in the number of measurements (resources) needed for reconstructing the signal. Of
course if the sparsity pattern is known then standard methods can be applied. Why it works so
well is because the �1-norm is a convex heuristic for sparsity, which is not a convex function.
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The analogy has been made that it is like solving a Sudoku puzzle: only a few given numbers
in the grid will force a unique solution even if the grid is large.

Since compressive sensing methods can reduce resources by orders of magnitude, the ben-
efits from a positive answer to the above question for quantum estimation would alleviate (or
remove) the computational burden. Beyond this, as miraculous as it may sound, this estimation
method would impact the device performance directly much as it has for digital and medical
imaging, e.g., [13, 14].

3 Hoped for benefits

If successful, the potential benefits include the following.

• Ancilla assisted quantum process tomography would achieve the same accuracy with a
significantly smaller number of ancilla. (A quantum process tomography example in
[15], repeated here in a later section, using �1-norm minimization required only 36 mea-
surements to estimate 256 parameters compared to standard methods which require 256
measurements.)

• Quantum metrology devices which rely on entangled states to enhance accuracy would
find relief in the number of entangled particles required.

• Phase estimation, which is the example posed for Phase I, is at the heart of Shor’s algo-
rithm (the quantum Fourier transform). Compressive sensing methods could significantly
impact the ancilla real-estate required for the associated error-correction.

• Instrumentation limitations in both state preparation and measurement protocols would
not hinder estimation efficiency.

• If Hamiltonian identification really is fast and easy, then this suggests the very important
possibility of a non-qubit quantum analog computer.

4 Proposed tasks

To achieve the hoped for benefits we proposed a two-phase program. Phase was to be a the-
oretical study to develop the mathematical and computational tools for �1-norm minimization
applied to quantum process tomography and quantum parameter estimation metrology. If Phase
I was successful, then Phase II would bring in experimental components based on the mathe-
matical and computational tools developed in Phase I. The actual scope and level of effort for
Phase II will be determined in collaboration with DARPA prior to the end of the Phase I effort.

To commence we posed the following Phase I tasks:

• Task I.1 Extend the �1-norm minimization theory to QPT. Specifically, answer the ques-
tion: Is the scaling of resources linear in the number of qubits?

• Task I.2 Develop computationally efficient �1-norm minimization algorithms which are
specific for QPT.
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• Task I.3 Apply the results of Tasks I.1 and I.2 to quantum metrology. Specifically, for
phase estimation in a noisy environment, answer the questions: Does the algorithm de-
scribed previously converge to the correct phase within a prescribed tolerance? Does
it use less resources than standard approaches? Can entangled inputs be eliminated or
reduced in dimension?

As states in our proposal, it was assumed that if Phase I is successful and deemed a “GO”
by DARPA, then the theory and tools developed up to that point will provide for experiments
to help further develop the tools and theory. Given the emerging new concepts and software for
performing quantum system identification, it was envisioned that it would be important to have
a flexible working laboratory system to test the tools and refine them. Or more poetically, as
Feynman put it [16]:

“The test of all knowledge is experiment. Experiment is the sole judge of scientific ‘truth.’”

We proposed to test the capabilities of quantum system identification via �1-norm minimiza-
tion with two types of experimental systems: an optical interferometer and atomic Rb, each of
which provides a flexible system with well understood characteristics. Both of these systems
are available at Princeton. Although we could not specify exactly the tasks for Phase II, we did
propose the following task framework to be filled in after a “GO” decision has been reached.

• Task II.1 Over the Phase II period a full battery of quantum system identification tests
could be performed to benchmark the new algorithmic capabilities and provide feedback
for computational improvements as well as further theoretical developments.

5 What was achieved

Early in the program, and very much earlier than anticipated, we demonstrated the effectiveness
of using Compressive Sensing (CS) algorithms for Quantum process Tomography (QPT) on
simulated data. (§A contains a copy of the paper.). Soon thereafter we extended CS theory
for QPT to account for the restrictions imposed by quantum mechanics. We showed that for a
d-dimensional system, where standard QPT requires O(d4) configurations, CS heralds O(sd)
configurations, where s is the sparsity level associated with the best s-sparse approximation
(the actual system need not be sparse). Over the next several months – in fact almost up to the
end of the originally proposed period of performance – using data obtained from a two-qubit
photonic experiment at the Center for Quantum Computer Technology, Department of Physics,
The University of Queensland, Australia, we demonstrated, for the first time, the use of CS for
QPT, which we called CQPT for Compressed Quantum Process Tomography. The theoretical
and experimental work was published eventually in PRL, a copy of which is contained in §B.

To summarize this: the process matrix for this 2-qubit experiment is 16x16. Taking into
account the trace preserving condition, QPT requires estimating 240 real parameters. Standard
methods of QPT would require at least that number of experimental configurations. Using CS
methods, we obtain a 97% fidelity with 32 selected configurations and a 94% fidelity with 18
selected configurations.
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These are just a few of the typical experimental results. All these conform extremely well
with our early simulations, as well as being similar in character to what has been seen in audio
and video processing. In these latter applications the signal sizes are significantly larger, e.g.,
O(106), hence, specialized algorithms have been developed to account for the signal structure.
A future effort is to develop special algorithmic structures for larger QPT.

Due to the early theory development, and especially the unanticipated and exciting early
experimental success, and the time required to gather the data, some of the Phase I goals were
refined, some re-defined, and some have been out of reach in the time remaining. We are very
pleased about the impact of the success with “real” data which now compels some advanced
and new broad and promising research directions:

• Introduction of a tailored theory and associated experiment design method for effective
scaling on multi-qubit systems.

• Development of CS for Hamiltonian identification.

• Demonstrate that these ID tools can be used for control and/or device design, where in
the latter case, to correct for manufacturing exigencies.

Applications for CS applied to quantum systems are just emerging in many areas. One can
envision, as we have in the Phase I proposal, applications to interferometry, quantum metrology,
magnetrometry, spectroscopy, and so on.

On a personal note, in my initial discussions with Dennis Healy we mused about what the
potential could be for this program. He was very optimistic, but at the time, I was not ready to
stick my neck out that far. Considering our success at this time, Dennis was right!

6 What remains to be done

Despite two no cost extensions, we ran out of time to thoroughly develop and test our ideas for
applying compressed sensing methods to problems in Hamiltonian identification. Nonetheless
we did develop a CS theory of Hamiltonian identification valid for short time scales. (This
complements our previous work in Hamiltonian parameter estimation [17].) The paper on this
subject will appear soon in PRA. A copy is contained in §C.

What we were ultimately after was a theory and associated computational method appli-
cable to problems in quantum metrology or more general interferometry problems. These are
essentially single parameter estimation problem. A brief summary of what we were (and are
still) thinking now follows.

Figure 1 is a block-diagram operational representation of a general interferometer. Here
the unknown system S(φ0) consists of a unitary U(φ0) in channel a dependent on an unknown
phase φ0 followed by an unknown noise operation E acting on both channels a and b. The usual
assumption is that the unitary is of the form U(φ0) = exp(iφ0H) with unknown phase φ0 and
known Hamiltonian H [18]. Typically the range of the phase parameter is known.

The interferometric set-up is envisioned initially as a Mach-Zehnder interferometer (Fig. 2)
with the addition of extra beam splitters in both arms to create photon loss as expressed schemat-
ically in Fig. 1. Figure 2 shows a schematic of the classical Mach-Zehnder interferometer for
phase estimation.
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Figure 2: Classical Mach-Zehnder interferometer.

For single parameter (phase) estimation the limit of theoretical accuracy in the ideal noise-
free case has been examined in depth, e.g., [19], [20], [21], [18], [22], [23]. These studies reveal
that special preparation of the instrumentation – the probe – can achieve an asymptotic variance
smaller than the Cramér-Rao lower bound, the so-called Quantum Cramér-Rao bound, or the
Quantum Fisher Information (QFI). Specifically, the unique quantum property of entanglement
can increase the parameter estimation convergence from the shot-noise limit of 1/

√
N to the

Heisenberg limit 1/N , which arises from the uncertainty principle [24]. In the latter case N
refers to the dimension of an entangled state. The theoretical QFI, however, will not be obtained
in the presence of noise, i.e., decoherence. As stated in [25]:

“Existing treatments come to the conclusion that the benefit from highly entangled states
deteriorates quickly even if only a small amount of noise is present in the system ... states
of this type are typically very fragile: In optical interferometry, the well-studied N00N state
promises to provide Heisenberg limited sensitivity in phase estimation ... the loss of merely
a single photon renders this state useless since it collapses into a product of two Fock states
which can not acquire any phase information.”

Fig. 6 shows a 2-qubit system where the ideal single-parameter unitary is corrupted by ampli-
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Figure 3: Fisher Information vs. number of entangled states for varying levels of amplitude
damping γ.

tude dampingγ. In photonic systems γ is the probability of a photon loss. In the ideal case
(γ = 0) Fisher information rises linearly with the number of entangled states. However, even
for a small amount of noise at the 5% level we start to see a significant loss of information.
In addition to this sensitivity to noise, the QFI may also be unreachable simply because the
instruments are limited, i.e., not all states can be prepared and not all measurement schemes are
possible, e.g., [26, 17].

To alleviate these problems we proposed using a bank of estimators applied to the data,
where each estimator is tuned to one of a number of finite estimates of the unknown phase pa-
rameter. For each phase estimate φ we will generate from the ideal unitary U(φ) an orthonormal
basis set for quantum operations on the combined channel ab. A quantum process tomography
will then be performed by solving an �1-norm minimization problem (compressed sensing) to
obtain the phase estimate dependent process matrix. The final phase estimate is selected as the
one with the smallest �1-norm of the associated process matrix.

If this approach is successful, then three significant benefits would immediately accrue.
First, phase estimation would be accomplished in noisy environments. At present this is a very
difficult task [25]. Secondly, the number of entangled particles might be greatly reduced. Lastly,
this may also reveal an alternative to the phase estimation algorithms proposed for the Fourier
transform step in many quantum algorithms [27, §5].
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A Quantum process tomography via �1-norm minimization
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Abstract

For an initially well designed but imperfect quantum information system, the process ma-
trix is almost sparse in an appropriate basis. Existing theory and associated computational
methods (�1-norm minimization) for reconstructing sparse signals establish conditions
under which the sparse signal can be perfectly reconstructed from a very limited number
of measurements (resources). Although a direct extension to quantum process tomog-
raphy of the �1-norm minimization theory has not yet emerged, the numerical examples
presented here, which apply .1-norm minimization to quantum process tomography, show
a significant reduction in resources to achieve a desired estimation accuracy over existing
methods.
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Quantum Process Tomography via ℓ1-norm Minimization

Robert L. Kosut
SC Solutions, Sunnyvale, CA 94085(kosut@scsolutions.com)

For an initially well designed but imperfect quantum information system, the process matrix is almost sparse
in an appropriate basis. Existing theory and associated computational methods (ℓ1-norm minimization) for
reconstructing sparse signals establish conditions underwhich the sparse signal can be perfectly reconstructed
from a very limited number of measurements (resources). Although a direct extension to quantum process
tomography of theℓ1-norm minimization theory has not yet emerged, the numerical examples presented here,
which applyℓ1-norm minimization to quantum process tomography, show a significant reduction in resources
to achieve a desired estimation accuracy over existing methods.

Quantum process tomography(QPT) refers to the use of
measured data to estimate the dynamics of a quantum system
[1, 2]. Unfortunately, in the general case, the dimension of
the parameter space for QPT can be prohibitive, scaling ex-
ponentially with the number of qubits. This in turn places the
same burden on resources,e.g., the number of applied inputs,
measurement outcomes, and experiments to achieve a desired
accuracy, as well as estimation computational complexity.A
number of approaches have been developed to alleviate this
burden. Of note are the various forms of ancilla assisted
QPT (see [3] for a review), and the use of symmetrisation
to estimate selected process properties [4]. Here we present
a method which can be used either alone or in conjunction
with any of the aforementioned approaches. The underlying
premise is that for an intially well engineered design, the ob-
ject that describes the quantum dynamics, theprocess matrix,
will be almost sparsein the appropriate basis. Certainly in the
ideal case of a perfect unitary channel, in the corresponding
ideal basis, the process matrix is maximally sparse,i.e., it has
a singlenon-zero element. Since environmental interactions
cannot be totally eliminated, the actual process matrix in this
ideal basis will be populated with many small elements, and
thus, is almost sparse.

These are the conditions under which methods usingℓ1-
norm minmization – often referred to asCompressive Sens-
ing – are applicable [5, 6, 7]. Specifically, for a class of
incomplete linear measurement equations (y = Ax, A ∈
R

m×n, m ≪ n), constrainedℓ1-norm minimization (mini-
mize‖x‖ℓ1

subject toy = Ax), a convex optimization prob-
lem, can perfectly estimate the sparse variablex. These meth-
ods also work very well for systems which do not satisfy the
theoretical conditions,i.e., for almost sparse variables and
with measurement noise.

The underlying theory ofℓ1 minimization shows that under
certain conditions on the matrixA, to realize perfect recovery,
the number of measurements,m, scales with the product of
the log of the number of variablesn and the sparsity. Since
QPT parameters are linear in probability outcomes, and scale
exponentially with the number of qubits, this approach heralds
a possible linear scaling with qubits. The theory, however,has
not as yet been extended to QPT.The numerical examples here
are not meant to lend support to this scaling as they are only
presented for the two-qubit case.The examples do, however,
show more than an order of magnitude savings in resources
over a standard constrained least-squares estimation using a

complete set of measurements,i.e., rank(A) ≥ n.
The paper is organized as follows: QPT formalism is de-

scribed next, followed by a discussion of the genesis of pro-
cess matrix (almost) sparsity. A form of theℓ1 minimization
for QPT is then presented followed by numerical examples
and some concluding remarks.

QPT Formalism.— Recall that the state-to-state dynamics
of an open finite-dimensional quantum system can be de-
scribed in the following canonical form [1]:

ρ̂ =
∑n2

α,β=1 XαβΓαρΓ†
β (1)

whereρ, ρ̂ ∈ C
n×n are the input and output state, respec-

tively, of dimensionn, Xαβ are the elements of then2 × n2

process matrixX , and the matricesΓα form an orthonormal
basis set forn × n complex matrices:

{

Γα ∈ C
n×n

∣

∣Tr Γ†
αΓβ = δαβ , α, β = 1, . . . , n2

}

(2)

It is assumed that the quantum system to be estimated iscom-
pletely positive and trace preserving(CPTP). The set of feasi-
ble process matrices is then restricted to the convex set [8,9],

X ≥ 0 (positive semidefinite)
∑n2

α,β=1 XαβΓ†
βΓα = In

(3)

It follows from (3) that the number of real parameters in the
process matrix isn4−n2. Forq qubitsn = 2q, hence, scaling
with parameters is exponential in the number of qubits.

Collecting data.— A common method for collecting data
from a quantum system is via repeated identical experiments.
Denote byi = 1, . . . , nout the distinctoutcomes, and by
k = 1, . . . , ncfg the experimentalconfigurations, e.g., any
“knobs” associated with state inputs and/or measurement de-
vices. The measurement outcomes are recorded from iden-
tical experiments in each configurationk repeatedNk times.
Let Nik denote the number of times out ofNk that outcome
i occurred in configurationk. The QPT data are the recorded
outcome counts,

{Nik |i = 1, . . . , nout, k = 1, . . . , ncfg } (4)

whereN =
∑ncfg

k=1 Nk =
∑ncfg

k=1

∑nout

i=1 Nik is the total num-
ber of experiments.

Estimating the process matrix.— An empirical estimateof
the probability of measuring outcomei in configurationk can
be obtained from (4) as,

pemp
ik = Nik/Nk (5)



2

From the Born Rule themodel probabilityof outcomei given
configurationk with observableMik is, pik = Tr Mikρ̂k,

where from (1),ρ̂k =
∑n2

α,β=1 XαβΓαρkΓ†
β. In terms of the

process matrixX , the Born rule then becomes,

pik(X) = Tr GikX

(Gik)αβ = Tr Γ†
βMikΓαρk

(6)

Thenoutncfg matricesGik ∈ C
n×n capture the effect of mea-

surements in the matrix basis set (2). For each outcomei, the
complete set of configurations is the combination of all these
matrices and the input states:{ρk, Gik}ncfg

k=1.
A process matrix estimate can be obtained by minimiz-

ing the difference between the empirical probability estimates
pemp

ik and the model probabilitiespik(X) subject to the feasi-
bility constraint (3). Using a “least-squares” measure of prob-
ability error leads to estimating the process matrix by solving
the optimization problem:

minimize VLS(X) =
∑

i,k (pemp
ik − pik(X))

2

subject to X satisfies (3)
(7)

Because the outcomes of each experiment are independent, a
maximum likelihood approach can also be considered,i.e.,

minimize VML(X) = −∑

i,k Nik log pik(X)
subject to X satisfies (3)

(8)

Both (7) and (8) are convex optimization problems with the
optimization variables being the elements ofX [8, 9]. The
resulting solution (estimate) will always be CPTP (3). Unfor-
tunately, as already mentioned, the dimension of the parame-
ter space (n4 − n2, n = 2q) can severely strain resources to
the point of impracticality. To see this more clearly, let the
linear relation in (6) between thenoutncfg model probability
outcomes and then4 elements of the process matrix be repre-
sented by annoutncfg × n4 matrixG, i.e.,

~p = G ~X (9)

where~p, ~X are vectors formed from thepik and elements of
X , respectively. Accounting for then2 linear constraints in
(3), X can be recovered from either (7) or (8) to within any
desired accuracy by using enough data (N in (4) sufficiently
large), provided that rank(G) ≥ noutncfg ≥ n4 − n2. There-
fore it would seem that the resources,noutncfg, must also
scale exponentially with the number of qubits. This, however,
is not the case when the process matrix is almost sparse and
where the sparsity pattern is not known[17].

Almost sparsity of the process matrix.— With no noise
the ideal channelρ → ρ̂ for a quantum information sys-
tem is a unitary,i.e., ρ̂ = UρU †. Let {Γ̄α ∈ C

n×n}n2

α=1

denote the “Natural-Basis” for matrices inCn×n, i.e., each
basis matrix has a single non-zero element of one. In this
basis, the process matrix associated with the ideal unitary
channel has the rank-1 form,Xideal = xx† with x ∈
C

n2

, x†x = n. A singular value decomposition (SVD) gives
Xideal = V diag(n, 0, . . . , 0)V † with V ∈ C

n×n a unitary.
An equivalent process matrix can be formed from the SVD
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FIG. 1: Absolute values of the elements of the process matrixX ∈
C

16×16 for: (a) ideal in the Natural-Basis; (b) ideal in Ideal/SVD-
Basis; (c) actual (pbf = 0.05) in Natural-Basis, (d) actual (pbf =
0.05) in Ideal/SVD-Basis;(e) actual (pbf = 0.2) in Natural-Basis, (f)
actual (pbf = 0.2) in Ideal/SVD-Basis.

in what is referred to here as the “Ideal/SVD-Basis,”{Γα =
∑n2

α′=1 Vα′αΓ̄α′ ∈ C
n×n}n2

α=1, The equivalent process ma-
trix, in this basis, denoted byXideal, is maximally sparse with
a single non-zero element, specifically,(Xideal)11 = n. As
will always be the case, the actual channel will be a perturba-
tion of the ideal unitary. If the noise source is small then the
process matrix in the nominal basis will be almost sparse.

Example: Noisy two-qubit memory.— Consider a system
which is ideally a two-qubit quantum memory, thusU =
I4, n = 4. Suppose the actual system is a perturbation of
identity by independent bit-flip errors in each channel occur-
ring with probabilitypbf . Forpbf = 0.05 andpbf = 0.2, the
respective channel fidelities are about 0.90 and 0.64, whichfor
quantum information processing would need to be discovered
by QPT and then corrected for the device to ever work. Refer-
ring to Fig.1, in the Natural-Basis, Fig.1(a), the ideal16 × 16
process matrix has 16 non-zero elements out of256, all of
magnitude one. Using the Ideal/SVD-Basis the correspond-
ing process matrix as shown in Fig.1(b) has asinglenon-zero
element of magnituden = 4 – it is clearly maximally sparse.
Fig.1(c)-(d) and (e)-(f), respectively, show the effect ofthe
two pbf levels in the two basis sets. In the Ideal/SVD-basis
Fig.1(d) and (f) show that the actual (noisy) process matrices
are almost sparse.

Sparsity minimization.— A known heuristic for minimizing
sparsity without knowing the sparsity pattern, and also accru-
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ing the benefit of using fewer resources, is to minimize theℓ1-
norm of the vector of variables [5, 6, 9]. For QPT the equiva-
lent ℓ1 norm is defined here as the sum of the absolute values
of the real and imaginary parts of each element of the process
matrix. There are many related approaches to incorporate this
norm. For example, an estimate ofX can be obtained by solv-
ing the following convex optimization problem:[18]

minimize ‖X‖ℓ1
≡ ∑n2

α,β=1(|Re Xαβ| + |Im Xαβ |)
subject to V (X) ≤ σ, X satisfies (3)

(10)
with, e.g., V (X) from (7) or (8). The optimization parameter
σ is used to regulate the tradeoff between fittingX to the data
by minimizingV (X) vs. minimizing the sparsity ofX via the
ℓ1-norm. Selectingσ is often done by averagingV (X) over a
series of surrogates forX obtained from anticipated scenarios
or iterating estimation and experiment design,e.g., [8].

In the examples to follow we use the modification of (10)
suggested in [7], referred to there as “ℓ1-reweighted mini-
mization.” In this approach a weightedℓ1-norm is used with
the weights determined iteratively. The algorithm described
in [7] is:

Initialize σ > 0, ε > 0, W = In4

Repeat

1. Solve forX

minimize ‖WX‖ℓ1
subject to V (X) ≤ σ, X satisfies (3)

(11)

2. Update weights

W = diag (1/(|x1| + ǫ), . . . , 1/(|xn4 | + ǫ))

x = ~X
(12)

Until convergence– the objective stops decreasing or a max-
imum number of iterations is reached.

In each of the examples to follow the procedure for QPT is:
(i) solve (7) to obtainXℓ2 ; (ii) setσ = 1.3 V (Xℓ2); (iii) solve
the reweighting algorithm (11)-(12) forXℓ1 .

Example: QPT of noisy two-qubit memory.— For the sys-
tems from the example in Fig.1, the inputs and measurements
are selected from the set of two-qubit states:|a〉, | + 〉 =

(|a〉+|b〉)/
√

2, |−〉 = (|a〉−i|b〉)/
√

2 with a, b = 1, . . . , 16.
Specifically, the available set of states are the 16 columns of
the matrices,
[

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

]

, 1√
2

[

1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

]

, 1√
2

[

1 1 1 0 0 0

−i 0 0 1 1 0

0 −i 0 −i 0 1

0 0 −i 0 −i −i

]

(13)
Considering only coincident input/measurement counts [10],
the relevant probability outcomes (6) are,

pab(X) = g†abXgab, X ∈ C
16×16

(gab)α = φ†
aΓαφb, α = 1, . . . , 16

(14)

with φa, φb (a, b) ∈ {1, . . . , 16} the selected columns of (13).
Fig.2 shows the error in estimating the process matrix

∆X = Xtrue − Xest as measured by the RMS matrix norm
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FIG. 2: RMS estimation error‖Xtrue − Xest‖rms
vs. number of

experiments per configuration: selected columns of (13). Error bars
show the deviation from 50 runs at each setting.
ℓ2-minimization (�): Xest = Xℓ2

is from (7) using all 16 in-
put/output combinations. This gives a matrixG ∈ C

256×256 as de-
fined in (9) which is full rank,i.e., rank(G) = 256.
ℓ1-minimization (♦): Xest = Xℓ1

is from (11)-(12) using 6 in-
puts and 6 measurements obtained from the columns of the second
matrix in (13). This givesG ∈ C

36×256 which is full rank, i.e.,
rank(G) = 36.

‖∆X‖rms = (1/n)(Tr ∆X†∆X)1/2 vs. the number of ex-
periments per input selected from the set (13) [19]. The results
shown are from simulations described in the caption.

The benefit ofℓ1-minimization compared to the standard
ℓ2-minimization is seen most clearly with small amounts of
data from highly incomplete measurements. For example, for
pbf = 0.05 [Fig.2(a)], at50 × 103 experiments per input for
the 6-input/6-output configuration(G ∈ C

36×256) theℓ1 RMS
estimation error is0.0019. Compare this to theℓ2 error of
0.0012 at500×103 experiments per input for the 16-input/16-
output configuration (G ∈ C

256×256). The latter improvement
can be attributed mostly to the 10-fold increase in the number
of experiments per input. The additional resources to achieve
this are significant,i.e., 16 inputs forℓ2 vs. 6 for ℓ1, and
additionally, an increase in thetotal number of experiments
from 6 × 50 × 103 to 16 × 500 × 103. It is certainly not in-
tuitive that to estimate the 240 parameters of the process ma-
trix, the clearly incomplete set of measurements using only36
outcomes (♦ in Fig.2) could produce results not only similar



4

to, but for each number of experiments per input, even better
than the full input case with all 256 combinations of inputs
and measurements (� in Fig.2). As seen theℓ1 error is about
1/2 theℓ2 error. Also, reweighting reduced the (unweighted)
ℓ1 error by 1/2-1/3.

Comparing the estimation errors with the error between the
actual and ideal (solid lines in Fig.2) suggests that at least
50 × 103 experiments per input are needed to achieve a suf-
ficient post-QPT error correction towards the ideal unitary.
Fig.2 also reveals that the estimation errors are very similar
for both levels of bit-flip error,pbf ∈ {0.05, 0.20}. This is ex-
plained by the Cramér-Rao bound which defines the asymp-
totic error of any unbiased estimator,i.e., the RMS decays as
∆/

√
N . Here∆ is effectively the error between the empirical

(5) and actual (6) probabilities which by definition is of order
one; this provides a reasonable fit to the data in Fig.2.

Infinite data.— With infinite data the measurements are
effectively noise-free, so the empirical probability estimates
are equivalent to the true probabilities. Infinite data esti-
mates are obtained by solving (7) and (11)-(12) with the con-
straintV (X) ≤ σ replaced by the linear equality constraint
pik(X) = pik(Xtrue). For the numerical examples here, (14)
gives the linear equalityg†ab(X − Xtrue)gab = 0.

In the examples, bothXℓ1 from (11)-(12) andXℓ2 from
(7) were numerically equal toXtrue. This is to be expected
for Xℓ2 because of the complete set of 256 full rank mea-
surements. Almost sparsity makes perfect estimation possible
with the highly incomplete set of 36 measurements.

The infinite data case is useful for evaluating different con-
figuration strategies in simulation,i.e., consider only those
that result in a good estimate.

To stress the efficacy ofℓ1-minimization as a heuristic for
sparsity, consider replacing theℓ1 norm in (11)-(12) with the

RMS norm‖X‖rms, which is effectively theℓ2 norm of ~X.
Solving the 6-input/6-output case (♦ in Fig.2) forpbf = 0.05
with infinite data gives an RMS error of0.11, which is con-
siderably larger than the error between the actual and ideal
of 0.03 (solid line in Fig.2(a)). The estimate gets even worse
with finite data. This again emphasizes the advantage ofℓ1

minimization for sparse signal reconstruction [5, 6].

Conclusions.— The use of theℓ1-norm minimization meth-
ods of Compressive Sensing [5, 6, 7] appear to apply equally
well to sparse QPT. The examples of sparse process matrices
presented here are meant to represent typical initial imperfect,
designs. The numerical results illustrate how estimation re-
source tradeoffs can be obtained. Additionally, the findings
suggest that QPT resources need not scale exponentially with
qubits. In the ideal case, the theoretical question of showing
linear scaling with sparsity usingℓ1 minimization for QPT re-
mains open.

Becauseℓ1 minimization uses considerably fewer resources
than standard QPT, use in an on-line setting combined with
optimal quantum error correction tuned to the specific QPT
errors is compelling,e.g., [11, 12, 13]. Another future direc-
tion is in conjunction with Hamiltonian parameter estimation.
Here a bank of estimators can be applied to the data where
each estimator is tuned via the Ideal/SVD-Basis to one of a
number of finite samples of the unknown parameters. Such an
approach may prove useful for a small number of parameters.
In quantum metrology often a single uncertain parameter is to
be estimated in an unknown noisy environment,e.g., [14, 15].
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process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and

can be implemented using only single-body preparations and measurements. We perform efficient, high-

fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under

various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key

roadblock to the development and scaling of quantum technologies.
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Understanding and controlling the world at the
nanoscale—be it in biological, chemical or physical
phenomena—requires quantum mechanics. It is therefore
essential to characterize and monitor realistic complex
quantum systems that inevitably interact with typically
uncontrollable environments. One of the most general
descriptions of the dynamics of an open quantum system
is a quantum map—typically represented by a process
matrix [1]. Methods to identify this matrix are collectively
known as quantum process tomography (QPT) [1,2]. For a
d-dimensional quantum system, they requireOðd4Þ experi-
mental configurations: combinations of input states, on
which the process acts, and a set of output observables.
For a system of n qubits—two level quantum systems—
d ¼ 2n. The required physical resources hence scale
exponentially with system size. Recently, a number of
alternative methods have been developed for efficient and
selective estimation of quantum processes [3]. However,
full characterization of quantum dynamics of comparably
small systems, such as an 8-qubit ion trap [4], would still
require over a billion experimental configurations, clearly
impractical. So far, process tomography has therefore
been limited by experimental and off-line computational
resources, to systems of 2 and 3 qubits [5–7].

Here we adapt techniques from compressive sensing
to develop an experimentally efficient method for QPT. It
requires onlyOðs logdÞ configurations if the process matrix
is s compressible in some known basis, i.e., it is nearly
sparse in that it can be well approximated by an s-sparse
process matrix. This is usually the case, because engi-
neered quantum systems aim to implement a unitary
process which is maximally sparse in its eigenbasis.
In practice, as observed in liquid-state NMR [8], photonics
[5,9,10], ion traps [11], and superconducting circuits [6],

a near-unitary process will still be nearly sparse in this
basis, and still compressible. The near sparsity is due to
few dominant system environment interactions. This is
more apparent for weakly decohering systems [12].
We experimentally demonstrate our algorithm by esti-

mating the 240 real parameters of the process matrix of a
canonical photonic two-qubit gate, Fig. 1, from a reduced
number of configurations. From just 18 and 32 configura-
tions, we obtain fidelities of 94% and 97% with process
matrices obtained from an overcomplete set of all 576
available configurations.
Compressive sensing provides methods for compression

of information carried by a large-size signal into a signifi-
cantly smaller one along with efficient convex opti-
mization algorithms to decipher this information [13].
Originally developed to exploit compressible features of

FIG. 1 (color online). Experimental scheme. Two-photon in-
puts were prepared with either (a) a high-rate, nonscalable, two-
photon source or (b) a low-rate, scalable, four-photon source.
The qubits are encoded using polarization, as described in the
text. The quantum process is a photonic entangling gate. A
measurement configuration is defined as some combination of
state preparation and an observable, implemented here with
quarter- and half-wave plates (QWP, HWP), polarizers (PBS),
and photon detectors (APD). For details see [19].
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audio and video signals, compressive sensing is now ap-
plied to: simulations of compressive sensing for QPT [14],
ghost imaging [15], and state tomography for low-rank
density matrices [16]. The latter provides a quadratic re-
duction of physical resources from d2 for standard tomog-
raphy to Oðrdlog2dÞ for a density matrix of rank r with the
added advantage that rank is basis independent. Recently,
this method has been useful in efficient state tomography
of one-dimensional systems approximated by matrix prod-
uct states [17].

Under reasonable assumptions, a quantum map on a
d-dimensional space has the general representation [1],

S ð�Þ ¼ Xd2

�;�¼1

�������
y
� (1)

where �, the d2 � d2 process matrix, is positive semi-

definite, � � 0, and trace preserving,
P

�;�����
y
��� ¼

Id, with f��g an orthonormal matrix basis set, Trð�y
���Þ ¼

���. Note that sparsity is a property of the map represen-

tation not the map itself. Data is collected by preparing
an ensemble of identical systems in one of the states
f�1; . . . ; �kg, inputting them to the process �, and then
measuring an observable M from the set fM1; . . . ;M‘g.
For a pair (�, M), the outcome will be yM;� ¼
TrðSð�ÞMÞ. If the experiment is repeated for all configu-
rations, i.e., (�i, Mi), i ¼ 1; . . . ; m ¼ k‘, the relation be-
tween the vector of outcomes y ¼ ½yM1;�1

; . . . ; yMm;�m
�T

and the true process matrix, denoted by �0, can be repre-
sented by a linear map y ¼ � ~�0, where ~�0 is the vector-
ized form of the process matrix �0 and � is an m� d4

matrix of coefficients of the form Trð���i�
y
�MiÞ=

ffiffiffiffi
m

p
.

In general, estimating a sparse process matrix with an
unknown sparsity pattern from an underdetermined set
of linear equations (m< d4) would seem highly unlikely.
Compressive sensing, however, tells us that this can be done
by solving for � from the convex optimization problem:

minimize k ~�k‘1 subject to ky�� ~�k‘2 � "; (2)

and positive-semidefinite and trace-preserving conditions
as defined above. The parameter " quantifies the level
of uncertainty in the measurements, that is, we observe
y ¼ ��0 þ w with kwk‘2 � ". From [18], recovery via

(2) is ensured if (i) the matrix � satisfies the restricted
isometry property:

1� �s �
k� ~�1ðsÞ �� ~�2ðsÞk2‘2
k ~�1ðsÞ � ~�2ðsÞk2‘2

� 1þ �s (3)

for all s-sparse �1ðsÞ, �2ðsÞ process matrices; (ii) the

isometry constant �2s <
ffiffiffi
2

p � 1 and (iii) the number of
configurationsm � C0s logðd4=sÞ. Under these conditions,
the solution �? of (2) satisfies,

k ~�? � ~�0k‘2 �
C1ffiffiffi
s

p k ~�0ðsÞ � ~�0k‘1 þ C2" (4)

where �0ðsÞ is the best s-sparse approximation of �0 and
C0, C1, C2 are constants on the order of Oð�sÞ, see [19].
The restricted isometry property states that two s-sparse
process matrices �1ðsÞ and �2ðsÞ can be distinguished if
their relative distance is nearly preserved after the measure-
ments. If the measurements are noise free, " ¼ 0, and �0

is s sparse, �0 ¼ �0ðsÞ, then the right-hand side of (4)
is zero leading to perfect recovery, �? ¼ �0. Otherwise
the solution tends to the best s-sparse approximation of
the process matrix plus the additional term due to measure-
ment error ". If for an n-qubit QPT with d ¼ 2n the con-
ditions of the above analysis are satisfied, then the number
of experimental configurations m scales linearly with sn,
specifically, m � C0sð4n log2� logsÞ ¼ OðsnÞ. In [19],
using the measure concentration properties of random ma-
trices, following the arguments in [20], we show that if� is
constructed from random input states f�ig, and random
observables fMig, then the restricted isometry in (3) holds
with high probability. Also a test is presented to certify
the sparsity assumption.
A nearly sparse process matrix can be recovered from an

exponentially smaller number of measurement outcomes
to within the bounds of (4) by solving (2). We now test our
algorithm experimentally against standard QPT on a two-
qubit gate under a range of decoherence—and thus spar-
sity—conditions. We used a photonic controlled-phase,
CZ, gate, Fig. 1 where the qubits are encoded in orthogonal

polarization states of single photons (jHi, horizontal,
and jVi, vertical). We performed full process tomography
[5,9,10] of the gate with both two-photon and four-photon
arrangements, preparing 16 pairwise combinations of
the 4 input states fjHi; jVi; jDi; jRig and, for each input,
measuring 36 two-qubit combinations of the observables

fjHi; jVi; jDi; jAi; jRi; jLig, where jDðAÞ> ¼ ðjH >

�jV>Þ= ffiffiffi
2

p
and jRðLÞ> ¼ ðjH >�ijV>Þ= ffiffiffi

2
p

. These
576 input-output configurations represent an overcomplete
set which allows the best possible estimate of the quantum
process, denoted �576 [5].
The compressed quantum process tomography (CQPT)

estimate of the 16� 16 process matrix, �m, is obtained by
solving (2) with y ¼ Cselp and � ¼ CselG where p is the
vector of 576 experimental probabilities corresponding to
each of the 576 configurations, G is the 576� 256 matrix
obtained from all the configurations with the basis set f��g,
and Csel is the m� 576 matrix corresponding to taking a
selection of m � 576 of all possible configurations. The
basis set is obtained from the singular-value decomposition
of the ideal CZ gate: the process matrix in this basis is
maximally sparse with a single nonzero (1, 1) element. The
measurement error bound " in (2) is chosen to be just
slightly larger than

ffiffiffiffi
m

p
�, where� is the minimum feasible

root-mean-square level obtained from (2) using all con-
figurations, i.e., with Csel ¼ I576. We quantify decoherence
using the process purity, P ¼ Trð�2

m=d
2Þ, which varies

from 0 for a completely decohering channel, to 1
for a unitary process: in our experiment we used six
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decoherence levels (see [19] for details), giving purities
of f0:62; 0:74; 0:77; 0:79; 0:86; 0:91g � 0:01.

Figure 2 shows, for the lowest decoherence level,
the process fidelities [5] versus the number of randomly
selected configurations, m. Each process matrix, f�mg,
is obtained by solving (2). We use the fidelity bet-
ween (i) the compressive measurement and the ideal,
F ðUcz; �mÞ; and (ii) the compressed and optimal measure-
ments, F ð�576; �mÞ. Note that as m increases the fidelity
with the ideal converges to the value of 0.89 obtained
from �576; likewise, the fidelity with the full estimate
converges to unity. Similar plots exist for every level of
decoherence, with fidelities reduced accordingly.

We have so far used random selections of probabilities
from the full data set, which allows us a comprehensive
test of CQPT. Experiments, however, do not yield

probabilities but physical quantities, e.g., count rates. To
date, algorithms for more efficient state [16] or process
tomography have assumed probabilities as a starting point.
Since normalization is an issue to some extent in all
physical architectures, it will be necessary to investigate
the robustness and scalability of algorithms for real-world
experiments.
For our photonic two-qubit gate, which is lossy and

intrinsically probabilistic, the probabilities were obtained
by normalizing counts using a full basis set of observables
extracted from all measurements, I576. Having sufficient
configurations to allow for normalization necessarily im-
poses limits on CQPT efficiency: for low m, we are re-
stricted in how random our selections can be. (Details and
some permissible configurations in [19]). As an example,
Fig. 3 shows process matrices reconstructed via CQPT
from just one of these configurations compared to the
respective full data estimates. We used 32 combinations
of the 16 inputs fjHi; jVi; jDi; jRig�2 and 2 observables
fjRijIi; jIijRig, where I is the identity. The agreement is
excellent as one can see from the fidelities and the correct
reproduction of imaginary elements—which are ideally
zero. Another striking feature is that we obtain highly
faithful reconstructions of a nonlocal process using only
local measurements [2].
A further crucial test is whether CQPT enables us to

locate errors and implement necessary corrections: a com-
mon example is identifying local rotations that move the
process closer to the ideal. By optimizing F ðUcz; �32Þ,
we calculated local corrections to �32; applying them to
the full estimate �576, F ðUcz; �576Þ improved, on average,
over all decoherence levels, by 4.1%. This is very close to
the average 4.9% improvement obtained by calculating
and applying local corrections directly to �576. Even a
low-configuration CQPT estimate of a noisy process there-
fore enables improvements.
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FIG. 2 (color online). Process fidelities vs number of input-
output configurations, for each compressive QPT estimate, �m,
in the gate basis of the ideal CZ gate for the lowest measured
noise level, P ¼ 0:91. The dashed line shows the fidelity of the
full estimate F ðUcz; �576Þ ¼ 0:89 (black diamond). Error bars
are obtained by solving (2) for 50 different random combinations
of m inputs and observables.

FIG. 3 (color online). Real and imaginary process matrix elements in the Pauli basis for the CQPT estimate �32, 32 configurations
(left) vs full data estimate �576, 576 configurations (right) for (a) a low noise, two-photon experiment, P ¼ 0:91, and (b) a high-noise,
four-photon experiment, P ¼ 0:62. The CQPT reconstructions have fidelities, F ð�576; �32Þ, of 95% and 85%, respectively. The CQPT
estimation accuracy is excellent for low noise, and reliable even for high noise, see [19] for more details.
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That high-fidelity estimates are obtained byCQPT can be
understood from the error bound (4) which shows that the
CQPT estimate tends towards the best s-sparse approxima-
tion of the true process, �576. Figure 4 shows the process
matrix elements, sorted by relative magnitude, for low- and
high-noise levels, in two basis sets. The s-sparse approxi-
mation levels indicated in (4) are reached where the matrix
elements drop below the error threshold (0.01–0.02). For the
corresponding m, we can therefore expect a successful,
high-fidelity, CQPT reconstruction. In the CZ basis, the
plots show that for low noise, s 2 ½20; 30�, which correlates
well with the fidelities in Fig. 2; for high noise s 2 ½40; 60�.
Although the process matrix is still somewhat sparse in the
Pauli basis (Fig. 3). Figure 4(b) indicates that �100 con-
figurations are needed to obtain an estimate of comparable
quality. Furthermore, the sorted magnitude values in the CZ

basis decay exponentially, which is sufficient to declare
the process matrix s compressible, see, e.g., [21,22]. In-
triguingly, this exponential decay is a signature of model-
based compressive sensing where the scaling goes from
m ¼ Oðs logðd=sÞÞ tom ¼ OðsÞ [22]. This demands further
investigation, since it appears that QPT fits this framework,
particularly when the process matrix is expanded in the
ideal basis corresponding to the unitary design goal.

Our experimental results are supported numerically
by simulations of a 2-qubit process as well as simulation
studies for 3- and 4-qubit systems which show the same
type of compressibility, see [19]. Applying CQPT to larger
systems will require careful attention to classical postpro-
cessing which—as in QPT—scales exponentially. The
standard software we used here (see [19]), can easily
handle 2- and 3-qubit CQPT systems. For larger systems,
more specialized software can increase speed by orders of
magnitude, see, e.g., [21].

A number of research directions arise from this work:
incorporating knowledge of model structure properties;
tightening the bounds on scaling laws; understanding

how near-sparsity s and rank r vary with system dimen-
sion, d; pursuing highly efficient convex-computational
algorithms; and selection of optimal configurations.
Compressive tomography techniques can also be applied
to quantum metrology and Hamiltonian parameter estima-
tion: for example, estimating selective properties of
biological or chemical interest in molecular systems and
nanostructures with typically sparse Hamiltonians [23].
We thank J. Romberg and S. Jafarpour for discussions.
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FIG. 4 (color online). Absolute values of the 256 process
matrix elements of �576 for our lowest and highest noise level,
sorted by relative magnitude [with respect to the (1, 1) element]
in the CZ basis (top) and the Pauli basis (bottom). The error
threshold, which indicates the required number of configura-
tions, is shown in grey.
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APPENDIX A: NORMS

Definitions of the norms used throughout the paper. For a
vector x ∈ Cn,

‖x‖`2 =
√
x†x =

√∑n
i=1 |xi|2

‖x‖`1 =
∑n
i=1 |xi|.

(A1)

For a matrix A ∈ Cm×n with rank(A) = r ≤ min{m,n}
and singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0,

Induced `2 norm ‖A‖2 = sup‖x‖`2=1 ‖Ax‖`2 = σ1

Frobenius norm ‖A‖fro =
√

Tr(A†A) =
√∑r

i=1 σ
2
i

Nuclear norm ‖A‖? = Tr(
√
A†A) =

∑r
i=1 σi

(A2)
In the main theorem of CQPT we evaluate the dis-

tance between the vectorized form of two process matrices,
‖~χ2 − ~χ1‖`1 . It is interesting to see what is the relation be-
tween this distance and a more natural measure of distance
between two maps. A commonly used definition of distance
between two quantum maps S2 and S1 is ||S2 − S1|| =
d supA,B |tr[AS2(B)−AS1(B)]| for all matrices A and B
such that ‖A‖fro = ‖B‖fro = 1. This can be equiva-
lently expressed as d supA,B |tr[(τ2 − τ1)A⊗B]| where τα
(α = 1, 2) is the Jamiolkowski state equivalence of Sα defined
as 1

d

∑
i,j |i〉〈j|⊗Sα(|i〉〈j|). The distance ||S2−S1|| is upper

bounded by d||τ2−τ1||∗ [4]. Using the orthonormality proper-
ties of the basis Γα one can show ||τ2−τ1||fro = ||χ2−χ1||fro.
Finally we can use ||A||∗ ≤

√
r||A||fro (r is the rank of matrix

A) to find ‖~χ2 − ~χ1‖`1 ≥
1√
rd
||S2 − S1||.

APPENDIX B: RESTRICTED ISOMETRY PROPERTY
FROM A CONCENTRATION INEQUALITY

A common approach to establish the restricted isometry
property (RIP), Eqn.(3) in the paper, for a matrix A ∈ Cm×n

with m < n is by introducing randomness in the elements
of this matrix. This approach benefits from measure concen-
tration properties of random matrices. For QPT for the mea-
surment matrix Φ ∈ Cm×d4 in Eqn.(2) of the paper, we show
how to achieve this with random preparation of the intial states
and a random selection of the measurement operators. The
proof is based on the results in [5] which show that if Φ is a
random matrix which satisfies the concentration property,

Pr
{
| ‖Φx‖2`2 − ‖x‖

2
`2
| ≥ δs ‖x‖2`2

}
≤ 2e−2mC3(δs), (B1)

for all x ∈ Cd4 , where δs ∈ (0, 1) and C3(δs) only depends
on δs, then Φ satisfies the RIP,

(1− δs) ‖xs‖2`2 ≤ ‖Φxs‖
2
`2
≤ (1 + δs) ‖xs‖2`2 (B2)

for all s-sparse xs ∈ Cd4 . This version of RIP is equivalent
to Eqn.(3) in the paper.

In classical signal processing, each element of the Φ ma-
trix can be independently selected from a random distribution
such as Gaussian or Bernoulli. For QPT there is no freedom
for random independent selection of every element of the Φ
matrix. However, as described in the paper, the rows of Φ
can be independently and randomly selected. To see this, re-
call that for each experimental configuration we can initial-
ize the system randomly in a state ρ ∈ {ρi ∈ Cd×d}ki=1

and then measure an observable M randomly chosen from
{Mj ∈ Cd×d}`j=1. The corresponding matrix Φ then has
m = k` independent random rows {φ†i ∈ C1×N}mi=1 with
correlated elements of each row since they are functions of
the same M and ρ. Observe, however, that although Φ is a
random matrix, because it is constructed from quantum states
and observables of a finite dimensional system, it is bounded.
As a consequence, ∀x ∈ Cd4 , we get,

(w`/m) ‖x‖2`2 ≤ x†(φiφ
†
i )x ≤ (wu/m) ‖x‖2`2

` ‖x‖2`2 ≤ E ‖Ax‖2`2 ≤ u ‖x‖2`2
(B3)

where E denotes expectation with respect to Φ and
wu, w`, u, ` are constants. Next we apply,

Hoeffding’s concentration inequality Let v1, ..., vm be
independent bounded random variables such that vi falls in
the interval [ai, bi] with probability one. Then for S =

∑
i vi

and any t > 0 we have,

Pr {S −E(S) ≥ t} ≤ e−2t2/
∑
i(bi−ai)

2

Pr {S −E(S) ≤ −t} ≤ e−2t2/
∑
i(bi−ai)

2 (B4)

In our problem vi = |φ†ix|2 and S = ‖Φx‖2`2 . From the above
inequalities and the relations in (B3) we find ∀t+, t− > 0 and
∀x,

Pr
{
S − u ‖x‖2`2 ≥ t+

}
≤ Pr {S −E(S) ≥ t+}
≤ e−2t2+/(wu−w`)

2

Pr
{
S − l ‖x‖2`2 ≤ −t−

}
≤ Pr {S −E(S) ≤ −t−}
≤ e−2t2−/(wu−w`)

2

(B5)



2

The choice of t+ = (δs + 1 − u) ‖x‖2`2 and t− = (` − 1 +
δs) ‖x‖2`2 in the above inequalities yields

Pr
{
| ‖Φx‖2`2 − ‖x‖

2
lm2
| ≥ δs ‖x‖2`2

}
≤ 2e−2m(δs+ε)

2/(wu−w`)2

(B6)
with ε = min{1 − u, ` − 1}. We also need t+ and t− to be
positive that imposes the condition 1− δs < ` ≤ u < 1 + δs.
Since the obervable M can be scaled by any real factor, a
sufficient condition is u/` < (1 + δs)/(1− δs).

Next we reproduce the connection between the measure
concentration (B6) and restricted isometry as demonstrated in
[5]: Let Xs be a set of vectors with cardinality s: #(Xs) = s.
We choose a set Y ⊂ Xs such that ‖y‖`2 = 1 for all y ∈ Y ,
we have miny∈Y ‖x− y‖`2 ≤ δs/4 for all x ∈ Xs. The car-
dinality of such a set Y can always be chosen to be smaller
than (12/δs)s [6]. There from (B6) we find

Pr
{
| ‖Φy‖2`2 − 1| ≥ δs/2

}
≤ 2(12/δs)se

−2m(δs/2+ε)2

(wu−w`)2

or equivalently 1 − δs/2 ≤ ‖Φy‖2`2 ≤ 1 + δs/2 holds with
probability exceeding

P = 1− 2(12/δs)s exp(−2m(δs/2 + ε)2/(wu − w`)2).

Define z to be the smallest number such that ‖Φx′‖`2 ≤ 1 + z

for all x′ with ‖x′‖`2 = 1. For a vector y ∈ Y we have,

‖Φx′‖`2 ≤ ‖Φy‖`2 + ‖Φ(x′ − y)‖`2 ≤ 1 +
δs
2

+ (1 + z)
δs
4

from which it follows that z < δs, for any 0 < δs < 1.
In a similar fashion we can prove 1 − δs ≤ ‖Φx′‖`2 . This
completes the proof that RIP (B2) holds with probability ex-
ceeding P for all x ∈ Xs. The number of sets Xs with
#Xs = s is

(
N
s

)
≤ (eN/s)s. Therefore RIP fails to be sat-

isfied with probability 2 exp(−2m(δs/2 + ε)2/(wu−w`)2 +
s[log(eN/s) + log(12/δs)]). For a sufficiently small constant
C0, if C0s ≤ m/log(N/s), we can find a constant 0 < C3

such that the probability of a failure of RIP becomes smaller
than exp(−C3m) provided that C3 ≤ 2m(δs/2 + ε)2/(wu −
w`)2−s[log(eN/s)+ log(12/δs)]. This guaranteed exponen-
tially small chance of RIP failure is the key to the logarithmic
scaling of the resources in CQPT. If RIP is satisfied the l1
norm minimization algorithm works to find a sparse solution.
Here we proved that by increasing the number of configura-
tions m would exponentially decrease the chance of RIP fail-
ure. This completes the connection between the concentration
measure (B6) and the restricted isometry property.

APPENDIX C: PERFORMANCE OF THE ALGORITHM

In Ref. [2], the accuracy of the `1-norm minimization problem
is given by (C2). The parameters C1 and C2 are explicitly
given in terms of the isometry constant δs:

C1 =
2 + (2

√
2− 2)δs

1− (
√

2 + 1)δs
, C2 =

4
√

1 + δs

1− (
√

2 + 1)δs
(C1)

To present all the distances based on l1-norm we can use
||y||l1 ≤ ||y||l2 ≤

√
D||y||l1 , for a D-dimensional vector y

and obtain the algorithm performance as

‖~χ? − ~χ0‖`1 ≤
C1d

2

√
s
‖~χ0(s)− ~χ0‖`1 + d2C2ε (C2)

However the performance inequality presented in the paper
has a tighter bound.

APPENDIX D: SPARSITY ASSUMPTION CERTIFICATION

A test to certify the sparsity assumption can be concluded
from (C2) and the probability of RIP being satisfied exceed-
ing 1 − e−mC3(δs) for m configurations. Suppose an esti-
mate χm is obtained for m configurations. If the measure
‖χm+1 − χm‖`1 , which quantifies an incremental improve-
ment in the estimated process matrix, converges toward zero
for a polynomially large m, the sparsity assumption is certi-
fied.

APPENDIX E: NORMALIZATION AND PRECISION ISSUES

In the formulation of CQPT a random selection of the expec-
tation values yMi,ρi are not available in our experiment. Due
to photon loss the detector counts are not conclusive, hence, a
complete set of counts corresponding to a complete set of ob-
servables is required to produce meaningful expectation val-
ues yMi,ρi . A solution to this problem is to limit the measure-
ments to few-body observables. For k-body measurements
a total number of 2k complementary observables need to be
measured. Since m, the number of measurements, is expo-
nentially small we can choose k limited to few-body opera-
tors, k = kmax, and even single-body as we did in the exper-
iment. For a fully random selection of observables, the total
number of measurements m will be increased by a constant
factor 2kmax. Still this number is exponentially small. This re-
dundancy, however, can be avoided by using the outcomes of
all 2k observables. This selection scheme is not fully random,
rather it is a deterministic-random way of choosing observ-
ables.

As discussed in the paper, random selections of probabili-
ties from the full data set, although exhibiting results which
are entirely consistent with compressive sensing theory, are
inconsistent with how data is actually collected in this kind
of standard photonic experiment. In practice we are limited
to measure few-body observables. For low m, the configura-
tions must allow for normalisation, i.e. we are restricted in
how random our low-number selections can be. A selection
of some of these permissible configurations are shown in Ta-
ble I. Here we see some of the remarkable results promised by
the theory of compressed sensing, e.g., a 98% fidelity from 32
configurations and a 94% fidelity from only 18 configurations.

Another issue to consider is experimental precision. The
expectation values of k-body observables of random states re-
duce for a larger k. This implies the need for a larger number
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Inputs Observables m F(χ576, χm) F(UCZ , χm)

HVDR×2 HVDARL×2 576 1 0.88
HVDR×2 {RI,IR} 32 0.98 0.89

{DI,ID} 0.97 0.87
HVDR×2 RL×2 64 0.95 0.86

DAxDA 0.95 0.86
VDR×2 {RI,IR} 18 0.94 0.86

{DI,ID} 0.93 0.88
VDR×2 RL×2 36 0.94 0.87

DA×2 0.94 0.84

TABLE I: Fidelity assessment of some selected configurations that
are available in our experiment.

of statistical samples. Fortunately, this issue is not a problem
for our scheme since we can take k as small as we want, as
discussed above.

APPENDIX F: CLASSICAL POSTPROCESSING

The estimation results computed from the experimental data
were all obtained by solving equation 2 in the main text by
using “off-the-shelf” MATLAB based software. Specifically,
we used YALMIP to call the convex solver SDPT3 [7, 8]. On a
standard desktop it takes about 2 sec of CPU-time to solve (2)
for the full 576 configuration set. This software can handle 3-
qubit systems but it is more advisable to migrate to more spe-
cialized software where orders of magnitude speed increases
are possible, e.g., [3].

APPENDIX G: EXPERIMENTAL DETAILS

The quantum gate used in the experiment is a photonic
controlled-phase gate, Fig. 1 [9]. It is based on a single par-
tially polarising beam splitter (PPBS), having different reflec-
tivity, ηV = 1

3 , ηH=0, for the horizontal and the vertical polar-
isation of input photons. Due to two-photon interference, the
input state |V V 〉 undergoes a π phase shift |V V 〉→ −|V V 〉
whenever the two photons leave the PPBS through different
output ports. Correct operation of the gate is signalled by a
coincidence detection in these output modes; the gate is thus
probabilistic, with a success probability of 1/9.

The gate acts on photonic qubits created via spontaneous
parametric downconversion (SPDC). Downconversion is in-
trinsically a random process: consequently the created states
contain small amounts of higher-order emission—e.g. |22〉
as well as the desired |11〉—which appear as decoherence in
a quantum process [10, 11]. The ratio of higher order terms
to the desired photon pair number increases with the pair cre-
ation probability, which in turn is proportional to the pump
laser power. Once can therefore—to some extent—control the
decoherence in a process via the laser power.

In order to cover a comprehensive range of decoherence, we
performed six experiments with 2-photon states directly cre-
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FIG. 1: Detailed representation of the CZ-gate in dual rail encoding.
Each qubit is represented by two paths, one for each logical basis
state, |0〉 = |H〉 and |1〉 = |V 〉 [9].

0.6 0.65 0.7 0.75 0.8 0.85 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

 Purity (χ576)

Fi
de

lit
y

FIG. 2: Fidelities vs. purities for m = 32 corresponding to the
configurations in Table I.

ated via a single SPDC emission, and one experiment with
4-photon states created in two independent SPDC sources,
where one photon of each SPDC process was used as a trigger.
The latter experiment is more representative of large-scale
systems, where independent photon sources will be required.
It has significantly reduced count rates, and reduced two-
photon interference between photons in the quantum gate due
to both the pump-induced decoherence and group-velocity
mismatch [11], reflected in the low purity of the process in
this case of 0.62.

Typical count rates for 2-photon experiments are 2000 co-
incident counts per second, full QPT, building up reasonable
statistics, takes about 2.5 hours; in contrast, 4-photon experi-
ments have much lower rates, 1 four-fold coincidence per sec-
ond, and take 2 days. The 32-configuration CQPT reduces
tomography times to 8 minutes and 2.6 hours respectively: a
clear advantage.

Fig. 2 shows the effect of varying laser pump power on
CQPT estimation accuracy for one of the single-observable
configurations from Table I. Specifically for the 32 configura-
tions arising from all combinations of the 16 inputs HVDRx-
HVDR and 2 outcomes {RI,IR}. As pump power increases,
the process purity, as measured by Tr(χ2

576)/16 decreases;
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effectively the signal to noise ratio deteriorates. As might be
expected, the worst-case fidelity decreases with process pu-
rity. The estimated channel fidelity is however remarkably
robust, staying very close to the actual channel fidelity.

APPENDIX H: SIMULATION RESULTS

QPT is performed by solving Eqn. (2) in the paper with
noise-free experiments (ε = 0) for a system designed to be
a 2-qubit quantum Fourier transform (QFT) with unitary rep-
resentation Uqft ∈ C4×4, which interacts with an unknown
environment via the total constant (time-independent) Hamil-
tonian, H=Ie ⊗ Hqft+γH̃ with H̃ randomly selected and
normalized to ‖H̃‖=1; γ is thus the interaction magnitude.
The simulated system χsim ∈ C16×16 is extracted via the
partial trace over the environment for γ ∈ {0.5, 1.0, 1.25}.
Each of these induces a fidelity with respect to the ideal uni-
tary, F(Uqft, χsim) ∈ {0.70, 0.80, 0.95} The estimates from
Eqn. (2) in the paper are obtained in the singular value de-
composition (SVD)-basis [Γα in Eqn.(1) of the paper of the
ideal QFT. The process matrix of the ideal unitary in this ba-
sis is maximally sparse with the single non-zero 1,1-element
equal to n = 4 [1]. The environmental interactions make the
process matrix nearly sparse, i.e., compressible.

To form the measurement matrix Φ ∈ Cm×256, we ran-
domly generated 4 and 16 input pairs |ψ1〉 ⊗ |ψ2〉 and 2, 4,
and 6 random selections from the single-body Pauli observ-
ables {IX, IY, IZ,XI, Y I, ZI}. This gives 6 configurations
with m ∈ {8, 16, 24, 32, 64, 96}, for which u/` ≈ 1.3 ensur-
ing δ ≈ 0.13. Fig. 3 shows the fidelities F(χm, χsim) of the
reconstructed estimates χm and the simulated process matri-
ces χsim for all 18 combinations of m and interaction magni-
tudes γ.

These results arise from the relative sparsity of the process
matrix in the SVD-basis of the ideal QFT. Fig. 4 shows 3D bar
plots of the real and imaginary elements of the true and esti-
mated process matrices for m = 64, F(Uqft, χsim) = 0.70,
and F(χ64, χsim) = 0.93. In the SVD-basis (row 2), the true
process matrix exhibits the expected large 1,1-element with
the remaining elements much smaller by comparison. The es-
timated channel fidelity is 0.71.

In Fig. 3, F(χm, χsim) (white bars) trends to increase with
m, more so for F = 0.7 than for F = 0.95, and rises a bit
sharply at different m values. Just as for the experimental
results, this can be connected to the actual sparsity of the sim-
ulated process matrices. Figure 5, just like Fig.4 in the main
text, shows the absolute sorted process matrix elements rela-
tive to the 1,1-element. Where each plot crosses the threshold
of 0.02, we see that the number of elements above this value
increases with decreasing decoherence γ. If these are taken
as the s-sparse approximation levels indicated in the theory,
Eqn. (4) in the paper, then (approximately) s ∈ {30, 50, 100}
correspond to F(Uqft, χsim) ∈ {0.95, 0.80.0.70}. This corre-
lates well with how F(χm, χsim) varies with resources m.
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FIG. 3: Fidelities vs. configurations for each process matrix estimate
χm from Eqn. (2) in the paper in the SVD basis of the ideal QFT uni-
tary. Black bars: simulated compared to ideal process F(Uqft, χsim).
Gray bars: estimate compared to ideal F(Uqft, χm). White bars:
estimate compared to simulated process F(χm, χsim).
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FIG. 4: Real and imaginary χ elements for m=64, F(Uqft, χsim) =
0.71, γ=1.25. Row 1: True process matrix in the natural ba-
sis. Row 2: True process matrix in SVD-basis of ideal unitary.
Row 3: Estimated process matrix projected to the natural basis ,
F(Uqft, χm) = 0.71.
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FIG. 5: Absolute values of the 256 process matrix elements of
χtrue

svd ∈ C16×16 sorted by relative magnitude (with respect to the
11-element) for F(Uqft,Strue) ∈ {0.95, 0.80, 0.70}.
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FIG. 6: Absolute values of the process matrix elements sorted by
relative magnitude (with respect to the 11-element) all in the ideal
SVD basis (in this case for an identity operator on the system) for
three cases: blue χsim ∈ C16×16 with F(I4, χsim) = 0.84; red
χsim ∈ C64×64 with F(I8, χsim) = 0.83; green χsim ∈ C256×256

with F(I16, χsim) = 0.85;

APPENDIX I: BEYOND 2-QUBITS

Standard QPT scales exponentially, thus for 3 and 4 qubits
the number of required experimental configurations is, respec-
tively 4,032 and 65,280. As we have shown theoretically, ex-
perimentaly, and lastly via the previous simulations, CQPT
shows quite a different scaling. Fig. 6 shows the absolute
values, sorted by relative magnitude, of the process matrices
arising from a random selection of a perturbed system near
identity, i.e., a quantum memory, corresponding to similar fi-
delities. The process matrices elements are shown in a ba-
sis corresponding to the ideal identity. Again taking 0.01 as
a threshold we see that for 2-qubits we get m ≈ 30 which
is similar to our experimental results and those supported by
the plots in Figures 4 in the main text and here in 5. Fig. 6
predicts for 3-qubits m ≈ 100, and for 4-qubits m ≈ 300.
These simulation results show first that the process matrices
are compressible, and in addition are consistent with the ex-
perimental results in Fig. 4 in the main text. To actually per-
form the estimaton, that is solve Eqn. (2) in the paper, as pre-
viously mentioned, requires specialized compressed sensing
algorithms optimized for speed and efficiency, e.g., [3].
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Abstract

We develop an efficient and robust approach for quantum measurement of nearly-sparse
many-body quantum Hamiltonians based on the method of compressive sensing. This
work demonstrates that with only O(s log(d)) experimental configurations, consisting of
random local preparations and measurements, one can estimate the Hamiltonian of a d-
dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis.
The classical post-processing is a convex optimization problem on the total Hilbert space
which is generally not scalable. We numerically simulate the performance of this algo-
rithm for three- and four-body interactions in spin-coupled quantum dots and atoms in
optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine
structure and unknown system-bath interactions.
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We develop an efficient and robust approach to Hamiltonian identification for multipartite quantum systems
based on the method of compressed sensing. This work demonstrates that with onlyO(s log(d)) experimental
configurations, consisting of random local preparations and measurements, one can estimate the Hamiltonian
of ad-dimensional system, provided that the Hamiltonian is nearly s-sparse in a known basis. We numerically
simulate the performance of this algorithm for three- and four-body interactions in spin-coupled quantum dots
and atoms in optical lattices. Furthermore, we apply the algorithm to characterize Hamiltonian fine structure
and unknown system-bath interactions.

PACS numbers:

I. INTRODUCTION

The dynamical behavior of multipartite quantum systems is
governed by the interactions amongst the constituent particles.
Although, the physical or engineering considerations may
specify some generic properties about the nature of quantum
dynamics, the specific form and the strength of multi-particle
interactions are typically unknown. Additionally, quantum
systems usually have an unspecified interaction with their
surrounding environment. In principle, one can characterize
quantum dynamical systems via “quantum process tomogra-
phy” (QPT) [1–8]. However, the relationship between rele-
vant physical properties of a system to the information gath-
ered via QPT is typically unknown. Alternatively, knowledge
about the nature of inter- and intra- many-body interactions
within the system and/or its environment can be constructed
by identifying a set of (physical or effective) Hamiltonianpa-
rameters generating the dynamics [9–18]. Currently, a scal-
able approach for efficient estimation of a full set of Hamilto-
nian parameters does not exist.

The dynamics of a quantum system can be estimated by
observing the evolution of some suitable test states. This can
be achieved by a complete set of experimental configurations
consisting of appropriate input states and observables mea-
sured at given time intervals. Knowledge about the dynam-
ics may then be reconstructed via inversion of the laboratory
data by fitting a set of dynamical variables to the desired accu-
racy. Estimating Hamiltonian parameters from such a proce-
dure faces three major problems: (1) The number of required
physical resources grows exponentially with the degrees of
freedom of the system [1–8]. (2) There are inevitable statis-
tical errors associated with the inversion of experimentaldata
[1–8]. (3) The inversion generally involves solving a set of
nonlinear and non-convex equations, since the propagator is
a nonlinear function of Hamiltonian parameters [9–18]. The
first two problems are always present with any form of quan-
tum tomography, but the last problem is specific to the task
of Hamiltonian identification as we wish to reconstruct the
generators of the dynamics. Many quantum systems involve
two-body local interactions, so the goal is often to estimate
sparse Hamiltonians with effectively a polynomial number of

unknown parameters. Unfortunately, quantum state and pro-
cess tomography cannot readily exploit this potentially useful
feature.

The highly nonlinear feature in the required inversion of
laboratory data was studied in Ref.[9] in which closed-loop
learning control strategies were used for the Hamiltonian
identification. In that approach one estimates the unknown
Hamiltonian parameters by tailoring shaped laser pulses to
enhance the quality of the inversion. Identification of time-
independent (or piece-wise constant) Hamiltonians have been
studied for single-qubit and two-qubit cases [13, 14] to verify
the performance of quantum gates. Estimation of these Hamil-
tonians is typically achieved via monitoring the expectation
values of some observable, e.g. concurrence, which are time
periodic functions. Through Fourier transform of this signal
the identification task is reduced to finding the relative loca-
tion of the peaks and heights of the Fourier spectrum [13, 14].
Bayesian analysis is another method proposed for robust es-
timation of a two-qubit Hamiltonian [15]. The difficulty with
these methods is then scalability with the size of the system.
A symmetrization method for efficient estimation of the mag-
nitude of effective two-body error generators in a quantum
computer was studied in [16] by monitoring quantum gate av-
erage fidelity decay. Recently, it was demonstrated that direct
or selective QPT schemes could be used for efficient identifi-
cation of short-time behavior of sparse Hamiltonians [17] as-
suming controllable two-body quantum correlations with aux-
iliary systems and the exact knowledge of the sparsity pattern.
Another scheme for the determination of the coupling param-
eters in a chain of interacting spins with restricted controlla-
bility was introduced in Ref. [18].

In this work, inspired by recent advances in classical signal
processing known ascompressed sensing[19], we use random
local input states and measurement observables for efficient
Hamiltonian identification. We show how the difficulties with
the nonlinearity of the equations can be avoided by either a
short time or a perturbative treatment of the dynamics. We
demonstrate that randomization of the measurement observ-
ables enables compressing the extracted Hamiltonian infor-
mation into a exponentially smaller set of outcomes. This is
accomplished by a generalization of compressed sensing to



2

utilize random matrices with correlated elements. This ap-
proach is applicable for Hamiltonians that are nearly sparse
in a known basis with an arbitrary unknown sparsity pattern
of parameters. The laboratory data can then be inverted by
solving a convex optimization problem. This algorithm is
highly tolerant to noise and experimental imperfections. The
power of this procedure is illustrated by simulating three-and
four-body Hamiltonians for neutral atoms in an optical lattice
and spin-coupled quantum dot systems, respectively. Further-
more, we directly apply the algorithm to estimate Hamiltonian
fine structure and characterize unknown system-bath interac-
tions for open quantum systems.

II. QUANTUM DYNAMICAL EQUATIONS

The time evolution of a quantum system in a pure state
is governed by the Shrödinger equation,d |ψ(t)〉 /dt =
−iH |ψ(t)〉. The solution of this equation for a time-
independent Hamiltonian can be simply expressed as|ψ(t)〉 =
exp(−itH) |ψ(0)〉. In principle, the Hamiltonian of the sys-
temH can be estimated by preparing an appropriate set of test
states{|ψk〉} and measuring the expectation value of a set of
observables{Mj} after the system has evolved for a certain
period of time. The expectation value of these observables can
be expressed as

pjk = 〈Mj〉ψk
= 〈ψk| eitHMje

−itH |ψk〉 (1)

Equation (1) implies that the experimental outcomes{pjk}
are nonlinear functions of the Hamiltonian parameters. To
avoid the difficulties of solving a set of coupled nonlinear
equations we consider the short time behavior of the system.
Monitoring the short time dynamics of the system is valid
when the relevant time scales of the system evolution sat-
isfy t ≪ K−1 where, for positive operator-valued measure
(POVM) operators{Mj}, the constantK equals2||H ||spec.
The general expression ofK is given in appendix B, also see
appendix A for definition of the norms. This yields the lin-
earized form of the Eq. (1)

pjk = 〈ψk|Mj |ψk〉+ it 〈ψk| [H,Mj] |ψk〉+O(K2t2) (2)

The linear approximation contains enough information to
fully identify the Hamiltonian and the higher order terms do
not provide additional information. The short-time approxi-
mation implies prior knowledge about the system dynamical
time-scale or the order of magnitude of||H ||spec. This prior
knowledge can be available from generic physical and engi-
neering considerations. For example, in solid-state quantum
devices the time-scale of single qubit rotations is typically on
the order of 1-10 ns. The switching time for exchange inter-
actions varies among different solid-state systems from 1ps to
100ps, (for more details see appendix B.)

We expand the Hamiltonian in an orthonormal basis{Γα},
where Tr(Γ†

αΓβ) = dδα,β : H =
∑

α hαΓα . Hered is the di-
mension of the Hilbert space. In this representation the Hamil-
tonian parameters are the coefficientshα. The expanded form

of the above affine equation (2) is

p̄jk = it
∑

α

〈ψk| [Γα,Mj ] |ψk〉hα (3)

Here we introduce the experimental outcomes asp̄jk = pjk −
〈ψk|Mj |ψk〉, since〈ψk|Mj |ψk〉 is a priori known. The re-
lation (3) corresponds to a single experimental configuration
(Mj,|ψk〉). For ad-dimensional system, the total number of
Hamiltonian parametershα is d2. Thus, one requires the same
number of experimental outcomes,pjk that leads tod2 lin-
early independent equations. For a system ofn qubits, this
number grows exponentially withn as d = 22n. In order
to devise an efficient measurement strategy we will focus on
physically motivatednearly sparseHamiltonians.

A HamiltonianH is considered to bes-sparse if it only con-
tainss non-zero parameters{hα}. More generally, a Hamilto-
nianH is termed nearlys-sparse, for a thresholdη, if at mosts
coefficientshα (H =

∑
hαΓα) have magnitude greater than

ηhmax wherehmax = max(hα). By definition, the sparsity
is basis dependent. However, for local interactions, the basis
in which the Hamiltonian is sparse is typically known from
physical or engineering considerations.

III. COMPRESSED HAMILTONIAN ESTIMATION

Our algorithm is based on general methods of so-called
compressed sensing that recently have been developed in sig-
nal processing theory [19]. Compressed sensing allows for
condensing signals and images into a significantly smaller
amount of data, and recovery of the signal becomes possi-
ble from far fewer measurements than required by traditional
methods.

Compressed sensing has two main steps: encoding and de-
coding. The information contained in the signal is mapped
into a set of laboratory data with an exponentially smaller rep-
resentation. This compression can be achieved by randomiza-
tion of data acquisition. The actual signal can be recovered
via an efficient algorithm based on convex optimization meth-
ods. Compressed sensing has been applied to certain quantum
tomography tasks. Standard compressed sensing has been di-
rectly used for efficient pseudothermal ghost imaging [20, 21].
Recently, a quadratic reduction in the total number of mea-
surements for quantum tomography of a low rank density ma-
trix has been demonstrated using a compressed sensing ap-
proach [22].

Here, we first describe how the Hamiltonian information is
compressed into the experimental data. The output of a single
measurement is related to the unknown signal (Hamiltonian
parameters) through the relation (3). Suppose we trym dif-
ferent experimental configurations (i.e.,m different pairs of
(Mj , |ψk〉)). This yields a set of linear equations

−→
p′ = Φ

−→
h (4)

where Φ is a m × d2 matrix with elementsΦjk,α =
it/

√
m 〈ψk| [Γα,Mj ] |ψk〉 (A factor 1/

√
m is included for

simplifying the proofs, appendix C). In generalm has to be
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greater than or equal tod2 in order to solve Eq. (4). A Hamil-
tonian estimation attempt withm < d2 seems impossible as
we face an underdetermined system of linear equations with
an infinite number of solutions. However, any twos-sparse
Hamiltoniansh1 andh2 still can be distinguished via a prop-
erly designed experimental setting, if the measurement matrix
Φ preserves the distance betweenh1 andh2 to a good approx-
imation:

(1−δs)||h2−h1||2l2 ≤ ||Φ(h2−h1)||2l2 ≤ (1+δs)||h2−h1||2l2
(5)

for a constantδs ∈ (0, 1). A smallerδs ensures higher distin-
guishability ofs-sparse Hamiltonians. The inequality relation
(5) is termed arestricted isometry property(RIP) of the matrix
Φ [23]. We now discuss how to construct a mapΦ satisfying
this inequality, and how small the value ofm can be made.

The RIP (5) for a matrixΦ can be established by employ-
ing the measure concentration properties of random matrices.
In each experiment the test state and the measurement ob-
servable can be drawn randomly from a set of configurations
{Mj, |ψk〉} realizable in the laboratory. The independent se-
lection of |ψk〉 andMj leads to a matrixΦ with independent
rows but correlated elementsΦjk,α in each row. Thus the stan-
dard results from compressed sensing theory are not applica-
ble here (appendix C).

In contrast, here we derive a concentration inequality for a
matrix with independent rows and correlated columns as the
backbone for the RIP of our quantum problem in appendix C.
Using Hoeffding’s inequality, we show that for any Hamilto-
nianh and a random matrixΦ with column only correlations,
the random variable||Φh||2 is concentrated around||h||2 with
a high probability, i.e.∀ 0 < δ < 1

Prob.{|||Φh||2l2 − ||h||2l2 | ≥ δ||h||2l2} ≤ 2e−mc0(δ+c1)
2

(6)

for some constantsc0 andc1.
Using the above inequality, now we can show how an ex-

ponential reduction in the minimum number of the required
configurations can be achieved for Hamiltonian estimation.
The inequality (6) is defined for anyh while the inequal-
ity in the definition of RIP, Eq.(5), is for anys-sparseh.
As shown in Ref. [24], there is an inherent connection
between these two inequalities. It is proved that any ma-
trix Φ satisfying (6) has RIP with probability greater than
1 − 2 exp(−mc0(δ s

2
+ c1)

2 + s[log(d4/s) + log(12e/δ s

2
)]).

In addition, wheneverm ≥ c2s log(d
4/s), for a sufficiently

large constantc2 one can find a constantc3 ≥ 0 such that the
likelihood of the RIP to be satisfied converges exponentially
fast to unity as1− 2 exp(−c3m).

The set of experimental configurations defined by Eq (4),
and the concentration properties given by Eq (5) and (6) can
be understood as encoding the information of a sparse Hamil-
tonian into a space with a lower dimension. Next we need
to provide an efficient method for decoding in order to re-
cover the original Hamiltonian. The decoder is simply the
minimizer of thel1 norm of the signalh. Implementing this
decoder is a special convex optimization problem, which can
be solved via fast classical algorithms, yet not stricktly scal-
able. Furthermore, the encoding/decoding scheme is robustto

noisy data as||p′ − Φh||l2 ≤ ǫ whereǫ is the noise threshold.
Note thatǫ includes the error of linearization (see Eq.(2)) that
is O(

√
mKt2). Denoteh0 as the true representation of the

Hamiltonian. For a thresholdη, h0(s) is an approximation to
h0 obtained by selecting thes elements ofh0 as those that are
larger thanηhmax and setting the remaining elements to zero.
Now we state our main result:

IV. ALGORITHM EFFICIENCY

If the measurement matrixΦ ∈ Cm×d4 is drawn randomly
from a probability distribution that satisfies the concentration
inequality in (5) withδs <

√
2− 1, then there exist constants

c2, c3, d1, d2 > 0 such that the solutionh⋆ to the convex opti-
mization problem,

minimize||h||l1
subject to||p′ − Φh||l2 ≤ ǫ, (7)

satisfies,

||h⋆ − h0||l2 ≤ d1√
s
||h0(s)− h0||l1 + d2ǫ (8)

with probability≥ 1− 2e−mc3 provided that,

m ≥ c2s log(d
4/s), (9)

where the performance of al1 minimizer, Eq. (8), and the
necessary boundδs <

√
2 − 1 are derived by Candés in Ref.

[25].
As an example, for a system consisting ofn interacting

qubits, the exponential number of parameters describing the
dynamics,22n, can be estimated with a linearly growing num-
ber of experimentsm ≥ c2s(8 log(2)n − log(s)). The sec-
ond term,d2ǫ, indicates that the algorithmic performance is
bounded by the experimental uncertainties. Consequently,for
fully sparse Hamiltonians andǫ = 0 the exact identification
of an unknown Hamiltonian is achievable. The properties of
the ensemble from which the states and measurement observ-
ables are chosen would determine the parameterδs and con-
sequently the performance of the algorithm. The linear inde-
pendency of theΦ matrix rows for a random set of local state
preparations and observables can be guaranteed by a polyno-
mial level of computational overhead before conducting the
experiments.

A certification for the nearly sparsity assumption can be ob-
tained from Eqs.(8) and (9) as follows: Supposeh⋆m is the al-
gorithm’s outcome form configurations. The nearly sparsity
assumption is certified on the fly during the experiment, if the
estimation improvement||h⋆m+1 − h⋆m|| converges to zero for
a polynomially large total number of configurations.

V. PHYSICALLY NEARLY SPARSE HAMILTONIAN

Although physical systems at the fundamental level involve
local two-body interactions, many-body Hamiltonians often
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describe quantum dynamics in a particular representation or
in well defined approximate limits. The strength of the non-
local k-body terms typically is much smaller than the two-
body terms with strengthJ and decreases with the numberk.
For a fixed sparsity thresholdη, kη is defined as the largest
numberk for which k-body terms have strength larger than
ηJ . Then the number of the elements of as-sparse approxi-
mation of an-body Hamiltonian grows linearly asO(ng(kη)),
where theg(kη) is determined by the geometry of the system.

A general class of many-body interactions arises when
we change the basis for a bosonic or ferminoic system ex-
pressed by a (typically local) second-quantized Hamiltonian
to a Pauli basis, e.g., via a Jordan-Wigner transformation.
For fermionic systems the interactions are imposed physically
from Coulomb’s force and Pauli exclusion principle. The
second-quantized Hamiltonian for these systems can be gen-
erally written as:

Ĥ =
∑

p,q

bpqâ
+
p âq +

∑

p,q,r,s

bpqrsâ
+
p â

+
q ârâs, (10)

where the annihilation and creation operators (âj andâ+j re-
spectively) satisfy the fermionic anti-commutation relations:
{âi, â+j } = δij and{âi, âj} = 0 [26]. For example, in chem-
ical systems the coefficientshpq andhpqrs can be evaluated
using the Hartree-Fock procedure forN single-electron ba-
sis functions. The Jordan-Wigner transformation can then be
used to map the fermionic creation and annihilation operators
into a representation in terms of Pauli matricesσ̂x, σ̂y, σ̂z .
This allows for a convenient implementation on a quantum
computer, as was demonstrated recently for the efficient sim-
ulation of chemical energy of molecular systems [27]. An im-
portant example of a Coulomb based Hamiltonian is the spin-
coupled interactions in quantum dots which has the following
Pauli representation:

H =
∑

i,j,k,···

bi,j,k,···σ
i
A ⊗ σjB ⊗ σkC · · · , (11)

whereA,B,C, · · · indicate the location of the quantum dots,
, σis are Pauli operators, andbi,j,k,··· generally represents a
many-body spin interacting term. In practice, these Hamil-
tonians are highly sparse or almost sparse due to symmetry
considerations associated with total angular momentum [28].
For example the Hamiltonian for the case of four quantum
dots (A,B,C,D) takes the general form [28]:

Hexchange = J
∑

A≤i<j≤D

σi.σj + J ′[(σA.σB)(σC .σD)

+ (σA.σC)(σB .σD) + (σA.σD)(σB .σC)], (12)

Another class of effective many-body interactions often
emerge in a perturbative and/or short time expansion of dy-
namics, such as effective three-body interactions between
atoms in optical lattices [29] that we study in this work.

Next, we simulate the performance of our algorithm for es-
timation of such sparse many-body Hamiltonians in optical
lattices [29] and quantum dots [28].

A. Three-body interactions in optical lattices

An optical lattice is a periodic potential formed from in-
terference of counterpropagating laser beams where neutral
atoms are typically cooled and trapped one per site. Consider
four sites in two adjacent building blocks of a triangular op-
tical lattice filled by two species of atoms [29]. The interac-
tion between atoms is facilitated by the tunneling rateJ be-
tween neighboring sites and collisional couplingsU when two
or more atoms occupy the same site. For each site an effective
spin is defined by the presence of one type of atom as the up-
state↑ and the presence of the other type as the down-state↓.
Three-body interactions between atoms in a triangular optical
lattice can be significant. The effective Hamiltonian for this
system is studied in Ref. [29]. The on-site collisional interac-
tionU , and tunneling ratesJ = J↑ = 2J↓ are taken to be the
same in all sites, alsoU = U↑↑ = U↓↓ = 2.12U↑↓ = 10kHz.
The effective Hamiltonian of the 4-spin system is

Hopt−latt =
∑

j,α=x,y,z

bα1σ
α
j σ

α
j+1 + bα2σ

α
j σ

α
j+1σ

α
j+2 (13)

where {bα1 , bα2 } are functions of{J, U} and their explicit
forms are given in appendix D. The ratioη = |J/U | quan-
tifies the sparsity level. For a fixed value ofU , a smallerJ
leads to weaker three-body interactions and therefore a higher
level of sparsity. As expected, this enhances the algorithm
performance.

We assume that the system can be initialized in a ran-
dom product state|ψk〉 =

∣
∣ψ1
k

〉
⊗ ... ⊗

∣
∣ψ4
k

〉
, where

∣
∣ψik

〉

are drawn from the Fubini-Study metric induced distribution.
The required observables for the algorithm are uniformly se-
lected from single qubit Pauli operators{σxi , σyi , σzi }. This
choice of states and observables allows forδs ≈ 0.37 <√
2 − 1. Let us denote the extracted Hamiltonian and the

true Hamiltonian byH∗ andHtrue, respectively. Here, the
performance of the algorithm is defined by the relative error
1− ||H∗ −Htrue||fro/||Htrue||fro. The results for different
number of configurations are depicted in Fig. (1), for various
values ofJ . As evident in Fig.(1), performance accuracy of
above94% can be obtained with only 80 settings significantly
smaller than approximately6×104 configurations required in
QPT.

The robustness of this scheme was also investigated for
10% random error in simulated experimental data leading to
about a 5% reduction in the overall performance.

B. Four-body interactions in quantum dots

Another important class of effective many-body Hamilto-
nians can be obtained for electrons in quantum dots coupled
through an isotropic (Heisenberg) or anisotropic exchangein-
teraction. For example the Hamiltonian for the case of four
quantum dots (A,B,C,D) takes the general form Eq. (12).
The first term in the summation is a two-body Heisenberg ex-
change interaction and the last three terms are four-body spin
interactions. In certain regimes, the ratio|J ′/J | can reach up
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FIG. 1: The Hamiltonian estimation average performance is illus-
trated for a system of four adjacent sites in an optical lattice for dif-
ferent tunneling rates,J , and collisional couplingU = 10kHz. The
error bars demonstrate the standard deviation of the performance due
to the random and independent selection ofm configurations (shown
only for J = 5kHz). Performance accuracy of above90% with
only 60 settings is achievable forJ = 1kHz, which is significantly
smaller than about6 × 104 required experimental configurations in
QPT.

to 16%. The amplitude ofη = |J ′/J | determines the sparsity
level of the Hamiltonian.

Here we use an efficient modification of signal recovery
referred as ”reweightedl1-minimization” which is described
in appendix E. The performance of this algorithm is demon-
strated in Fig. (2) that shows a significant reduction of the
required number of settings in contrast to the standard QPT.
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FIG. 2: Estimation of the exchange interaction Hamiltonianfor four
electrons in quantum dots. The average performance of the proce-
dure is illustrated for different values of|J ′/J | with 50 iterations of
the l1-reweighted minimization. The standard deviations are shown
only for |J ′/J | = 0.1 It is demonstrated that only60 different con-
figurations are sufficient for estimating the unknown Hamiltonian
with an accuracy above95% for |J ′/J | = 0.05, instead of about
6× 104 required settings via QPT.

VI. V. CHARACTERIZATION OF HAMILTONIAN FINE
STRUCTURES AND SYSTEM-BATH INTERACTIONS

A. Hamiltonian fine estimation

In many systems a primary model of the interactions is
often known through physical and/or engineering consider-
ations. Starting with such an initial model we seek to im-
prove our knowledge about the Hamiltonian by random mea-
surements. Let’s assume the initial guess about the Hamil-
tonianH0 is close to the true formHtrue that is ||∆ =
Htrue −H0|| ≪ ||Htrue||. Therefore for a perturbative treat-
ment we demandt||∆|| ≪ 1, which is a much weaker require-
ment compared tot||Htrue|| ≪ 1. We can approximate Eq.
(1) in the paper to find

pjk ≈ 〈ψk|M0
j |ψk〉

+ i 〈ψk| [
∫ t

0

eisH0∆e−isH0ds,M0
j ] |ψk〉 , (14)

whereM0
j = eitH0Mje

−itH0 [31]. This equation is linear
in ∆, consequently, in a similar fashion as above, the com-
pressed sensing analysis can be applied for efficient estima-
tion of the fine structure of Hamiltonians.

B. Characterizing system-bath interactions

The identification of a decoherence process is a vital task
for quantum engineering. In contrast to the usual approach of
describing dynamics of an open quantum system by a Kraus
map or a reduce master equation, here we use a microscopic
Hamiltonian picture to efficiently estimate the system-bath
coupling terms generating the overall decoherence process.
However since we consider a full dynamics of the system and
bath, this method can be applied to a finite size environment
such as a spin bath, or a surrogate Hamiltonian modeling of a
infinite bath. In the latter case a harmonic bath of oscillators
is approximated by a finite spin bath [32].

Consider an open quantum system with a total Hamiltonian:

H = HS ⊗ IB + IS ⊗HB +HSB (15)

and

HSB =
∑

p,q

λp,qSp ⊗Bq (16)

whereHS (HB) denotes the system (bath) free Hamilto-
nian andHSB is the system-bath interaction with coupling
strengths{λp,q}, and a complete operator basis of the system
and bath being{Sp} and{Bq}, respectively.

We develop a formalism to estimateλp,q parameters in the
weak system-bath coupling regime and with the sparsity as-
sumption that a few number ofλp,q have a significant value.

The Liouvilian dynamical equation is

d

dt
ρSB(t) = (L0 +

∑

pq

λpqLpq)[ρSB(t)] (17)
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whereL0[.] = −i[HS ⊗ IB + IS ⊗ HB, .] andLpq[.] =
−i[Sp⊗Bq, .]. In the regime of weak coupling to a finite bath,
||HSB|| ≪ min{||HS ||, ||HB||}, the Liouvillan equation (17)
can be solved perturbatively if timet satisfiest||HSB|| ≪ 1.
For an initial system density stateρk, using the matrix identity
given in Ref. [31] we find the measurement outcomes as

pjk ≈ tr(ρkMj) (18)

+
∑

pq

λpqtr([

∫ t

0

dse(t−s)L0LpqesL0 [ρk],Mj ])

whereMj is a system only observable. This affine function
between the outcomespjk and coupling parameters{λpq}
is similar to Eq.(2) in the paper for Hamiltonian estimation.
Consequently, the compressed sensing algorithm can be em-
ployed for computing{λpq}s.

VII. OUTLOOK

We have introduced an efficient and robust experimental
procedure for the identification of nearly sparse Hamiltoni-
ans using only separable (local) random state preparationsand
measurements. There are a number of future directions and
open problems associated with this work. It is not known
how the performance of the algorithm depends on the distribu-
tion of the ensemble from which the states and measurement
observables are drawn. Also, a general closed-loop learn-
ing approach for updating the knowledge of sparsity basis of
an arbitrary Hamiltonian is an interesting open problem that
will be of importance for generic compressed system identi-
fication. The presented method for Hamiltonian estimation
is promising for drastic reduction in the number of experi-
mental configurations. However the classical resources for
post-processing is not scalable. A fully scalable Hamiltonian
estimation method might be achievable via a hybrid of com-
pressed sensing and DMRG (Density-Matrix Renormalization
Group) methods [33]. A compressed tomography method can
also be developed for nearly sparse quantum processes [34].
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Appendix A: vectors and operator norm

In this paper we use the following different norms:
For a vectorx,

||x||l2 =
√
x†x, ||x||l1 =

∑

i

|xi|. (A1)

For a matrixA,

||A||spec =
√

λmax(A†A) (A2)

whereλmax means largest eigenvalue.

||A||fro =
√

trace(A†A) (A3)

Appendix B: Analysis of the short time approximation

The short time monitoring of the system’s dynamics re-
quires a prior knowledge of the dynamical time scales. In
the solid-state quantum devices, in particular in the context
of quantum control and quantum information-processing, the
time-scale of single qubit rotations is typically on the order
of 1-10 ns. The switching time for exchange interactions
varies among different solid-state systems. For superconduct-
ing phase qubit the duration of a swap gate is about 10 ns [35].
For electron-spin qubits in quantum dots and in donor atoms
(Heisenberg models) [36–38], and also for quantum dots in
cavities (anisotropic exchange interactions) [39] the coupling
time is between 10-100ps, while for exciton-coupled quan-
tum dots (XY model) and Forster energy transfer in multichro-
mophoric complexes the relevant time scale is in the order of
1ps. Next we rigorously derive bound on the evolution timet
that guarantees the validity of the short time approximation.

For an input state|ψk〉, the expectation value of an observ-
ableMj is

pjk = 〈ψk(t)|Mj |ψk(t)〉 = 〈ψk| eiHtMje
−iHt |ψk〉 (B1)

Considering the expansion of the propagatore−iHt = I −
itH − 1

2 t
2H2 + ..., we find

pjk = 〈ψk|Mj |ψk〉+ it 〈ψk| [H,Mj] |ψk〉

− t2

2
〈ψk| [H, [H,Mj ]] |ψk〉+ ... (B2)

Therefore, for the linearization assumption, it is sufficient
to have for thel’th term

tlmin
j

〈ψk|
l times

︷ ︸︸ ︷

[H, [H, [...,Mj]]] |ψk〉 ≤

tlmin
j

||[H, [H, [...,Mj ]]]||spec ≪ 1, ∀l. (B3)

A tighter bound can be found for operators{Mj} from a
POVM as

||[H, [H, [...,Mj ]]]||spec ≤ 2l||H ||lspec (B4)

To derive this we use

||[A,B]||spec ≤ ||AB||spec+||BA||spec ≤ 2||A||spec||B||spec
(B5)

and||A||2spec = ||AA†||spec.
This gives a single bound sufficient for linearization:t ≪

1
2 ||H ||−1

spec.
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Appendix C: RIP from a concentration inequality

In this work, we generalize the standard compressed sens-
ing algorithm such that the necessity for independent random-
ness in all elements of the measurement matrix,φ, can be
avoided. A common approach to establish RIP ([24]) for a
matrixΦ is by introducing randomness in the elements of this
matrix. This approach benefits from measure concentration
properties of random matrices. In classical signal processing
each elementΦjk,α can be independently selected from a ran-
dom distribution such as Gaussian or Bernoulli. Whereas in
the Hamiltonian estimation formulation (Eq. (4) in the paper)
there is no freedom for independent selection of theΦ matrix
elements.

Here we prove the concentration inequality that we em-
ployed for establishing the restricted isometry property.

ThoughΦ is a random matrix, because it is constructed
from quantum states and observables of a finite dimensional
system, it is bounded. Thus we are able to applyHoeffd-
ing’s concentration inequality:If v1, ..., vm are independent
bounded random variables such that Prob.{vi ∈ [ai, bi]} = 1,
then forS =

∑

i vi,

Prob.{S −E(S) ≥ t} ≤ e−2t2/
∑

i
(bi−ai)

2

Prob.{S −E(S) ≤ −t} ≤ e−2t2/
∑

i
(bi−ai)

2

(C1)

for any t > 0. (HereE denotes the expectation value.) Set
vi = |φ†ix|2 for a rowφi. Then withS =

∑

i vi = ||Φx||2l2 ,
we get∀x,

vi = x†(φiφ
†
i )x ∈ (1/m)[wl, wu]||x||2l2

E(S) = E||Φx||2l2 ∈ [f, g]||x||2l2 (C2)

for constantswl, wu, f, g. Note thatf andg are the min and
max singular values ofE(Φ†Φ). From (C2) we find∀t+, t− >
0 and∀x,

Prob.{S − g||x||2l2 ≥ t+} ≤ Prob.{S −E(S) ≥ t+}
Prob.{S − f ||x||2l2 ≤ −t−} ≤ Prob.{S −E(S) ≤ −t−}

These together with (C1) and (C2), and the choice oft+ =
(δ + 1− g)||x||2l2 andt− = (f − 1 + δ)||x||2l2 yields

Prob.{||Φx||2l2 − ||x||2l2 | ≥ δ||x||2l2} ≤ 2e
−2m(δ+ǫ)2

(wu−wl)
2 (C3)

with ǫ = min{1 − g, f − 1}. To ensure thatt+, t− > 0,
we need1 − δ < f ≤ g < 1 + δ. Since the observable

M can be scaled by any real number, a sufficient condition is
g/f < (1 + δ)/(1− δ). For the simulations in this paper, this
ratio becomes2.176.

Appendix D: 4-sites optical lattice Hamiltonian

Let us consider four sites in two adjacent building blocks
of a triangular optical lattice filled by two species of atoms, ↑
and↓. Atoms interact by tunneling between neighboring sites,
J↑ andJ↓, and through collisional couplings in the same site,
U . The Hamiltonian for such system can be written as [29]:

Hopt−latt =
∑

j

(0.03
J↑2 + J↓2

U
− 0.27

J↑3 + J↓3

U2
)σzj σ

z
j+1

−(
2.1(J↑ + J↓)J↑J↓

U2
+
J↑J↓

U
)(σxj σ

x
j+1 + σyj σ

y
j+1)

+
∑

j

0.14
J↑3 − J↓3

U2
σzj σ

z
j+1σ

z
j+2

−0.6
J↑J↓(J↑ − J↓)

U2
(σxj σ

z
j+1σ

x
j+2 + σyj σ

z
j+1σ

y
j+2),

(D1)

whereσx,y,zj are Pauli operators.

Appendix E: Reweightedl1-minimization

In order to simulate our alogrithm performance for estimat-
ing the above Hamiltonian we use an iterative algorithm that
outperforms the standardl1 norm minimization [30]. This
procedure entails initializing a weight matrixW = Id2 and
a weight factorσ > 0, and repeating the following steps until
convergence is reached:

1. Solve forh, minimize||Wh||l1
subject to||p′ − Φh||l2 ≤ ǫ.

2. Update weights

W = diag(1/(|h1|+ σ), ..., 1/(|hd2 |+ σ)). (E1)

whereh = vec(hi) is the Hamiltonian vectorized form.Φ is
the measurement matrix andp′ is the experimental data with
a noise thresholdǫ.
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