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Abstract We proposed a novel approach which employs random sampling to generate an ac-
curate non-uniform mesh for numerically solving Partial Differential Equation Boundary Value
Problems (PDE-BVP’s). From a uniform probability distribution U over a 1D domain, we con-
sidered M discretizations of size N where M� N. The statistical moments of the solutions to a
given BVP on each of the M ultra-sparse meshes provide insight into identifying highly accurate
non-uniform meshes. We used the pointwise mean and variance of the coarse-grid solutions to
construct a mapping Q(x) from uniformly to non-uniformly spaced mesh-points. The error con-
vergence properties of the approximate solution to the PDE-BVP on the non-uniform mesh are
superior to a uniform mesh for a certain class of BVP’s. In particular, the method works well
for BVP’s with locally non-smooth solutions. We fully developed a framework for studying the
sampled sparse-mesh solutions and provided numerical evidence for the utility of this approach as
applied to a set of example BVP’s.

Summary Over the duration of this grant, while developing our SMRT methodology for solving
BVP-PDEs, the core of our research efforts have include the following: substantial refinement
to our algorithm, extension of the algorithm to higher dimensions, and establishing the theoretical
well-posedness of our approach [3,4]. All of these topics are linked by a desire to efficiently exploit
the high paralellizability of our approach and future implementation on massively parallel multi-
core technologies. Lastly, we have also been invited to contribute a review article on computing
on GPU’s to SIAM Review [5]. The focus of this effort is one type of computation which is
substantially accelerated on GPU’s.

We now give a brief summary of our progress.

Scandalously Paralellizable Mesh Generation The PI and his collaborator are developing an
SMRT framework to generate non-uniform meshes for solving PDE’s [3,4,5]. These discretizations
can offer superior solution accuracy and convergence properties to that of uniform spacing. We
offer a brief overview of our proposed algorithm as well as the establishment of a preliminary
theoretical framework [3]. Also, in [4] we extended resutls in [2] to the identification of Q using
an optimization technique using results from probability theory. However, we discovered that the
approximation technique described below was substantially more efficient.

We consider a monotonically non-decreasing function Q : Ī→ Ī which is absolutely continuous
on a finite number of compact subsets of Ī and restricted at the endpoints to Q(0) = 0, Q(1) = 1.
The purpose of the function Q is to map the uniformly spaced mesh to a non-uniformly spaced
one. The goal is to develop a strategy for identifying a Q such that, e.g., the approximate solution
to the Poisson problem

u′′(Q(x)) = f (Q(x)) s.t. u(Q(0)) = A ; u(Q(1)) = B ,
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has convergence properties (in n) superior to a uniform spacing.The core of our approach is to
identify Q via a sparse stochastic approximation. We repeatedly sample from a distribution P and
then use pointwise statistical moments of the coarse solutions to generate the desired non-uniform
mesh function Q. Naturally, different classes of problems call for different strategies for generating
Q. Our results, however, suggest that a more generalizable strategy may exist. Before presenting
our conclusions, we briefly establish some notation.

Let p be a function taking a point ξ ∈ Ī and a random vector of length n, and mapping them to
a single random variable

p(ξ,X(n)(P)) ≡ EK

[{
U(X(n)(P))

}
K=k

∣∣X(k) = ξ

]
. (1)

The function U takes a discretization of the domain and solves the BVP. The operator EK denotes
expectation with respect to a uniform distribution on {1, . . . ,n} where the distribution of the index
random variable K and {·}K denotes the Kth element of a vector. We note that this function returns
a random variable for each ξ. Let the pointwise mean of p be defined for ξ ∈ Ī as

µ(ξ)≡ EP

[
EK

[{
U(X(n)(P))

}
K=k

∣∣X(k) = ξ

]]
. (2)

The pointwise variance of p is defined for ξ ∈ Ī as

v(ξ)≡ VP

[
EK

[{
U(X(n)(P))

}
K=k

∣∣X(k) = ξ

]]
, (3)

where VP denotes variance with respect to P, EK denotes expectation with respect to U{1, . . . ,n},
the distribution of the index random variable K, and {·}K denotes the Kth element of a vector.

Answers to the critical questions for this approach are depicted below

For each candidate Q, how many sample sparse grids need to be generated? The relation-
ship between the mesh size n and the number of samples m is non-trivial. and Figure 1 illustrates
this by depicting the error in v̄ (relative to v̄ computed with m = 3000 sampled from a uniform
distribution on Ī) for a range of n and m values. For a given n, though, we do note that the error
in the v̄ computation is decreasing. In Figure 2 we depict the number of samples of vector size n
which are needed to ensure three digits of accuracy in estimating the variance. Since the number
was consistently below 1000 over a range of n, we let m = 15000 in all subsequent simulations
(unless otherwise specified).

In what way do the random solutions converge to the actual solution? For a conventional
finite difference discretization, we would consider the error E in the solution∥∥E(Q,x0

n)
∥∥ =

∥∥u(Q(x0
n))−U(Q(x0

n))
∥∥

=
∥∥∥A−1

Q(x0
n)

(
AQ(x0

n)
u(Q(x0

n))− fQ(x0
n)

)∥∥∥
≤

∥∥∥A−1
Q(x0

n)

∥∥∥∥∥∥τQ(x0
n)

∥∥∥ ,
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Figure 1: log10 of the error in the computation of v̄ (sampling from a uniform distribution on Ī) as
a function of m and n. Note the general downward trend along both the m and n axes.
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Figure 2: For each n, the vertical axis reflects the number of samples needed to compute the
variance with 3 digits of accuracy relative to v̄ (sampling from uniform distribution on Ī) with
m = 3000.
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which is bounded above by the spectral radius of the inverse of the finite difference operator A−1
Q(x0

n)

and a truncation error τQ(x0
n)

. For the non-uniform three-point-stencil approximating the second
derivative, the truncation error is O(maxk |hk|). For our development, we consider a probabilistic
version of this error, with the following conditions.

CONDITION C1. For a given P, the spectrum of A−1
X(n)(P)

is bounded in [0,1].
CONDITION C2. For a given P, the truncation error induced by a finite difference approxima-

tion to the second derivative is first order in the largest step-size h.
THEOREM 1. Under Condition C1 and C2, the expected error converges pointwise to zero.
See [3] for support of these conditions as well as a proof of the theorem.

How should Q be constructed? The function Q is created using the statistical moments of
the sampled sparse-mesh solutions and based on results in [1]. For the problems with second
derivatives we define Q as

Q(x) =
[

q1(·)
q1(1)

]−1

(x) ,

where
q1(x) =

ˆ x

0

√∣∣µ′(ξ;U(X(n)(P))
∣∣dξ ,

and the superscript−1 is an inverse function operator. Essentially, this definition will pile up points
in regions with a steep solution in an effort to provide higher order accuracy for the nonuniform
second derivative discretization.

For the problem with a second power of the first derivative, we define Q as

Q(x) =
[

q2(·)
q2(1)

]−1

(x) ,

where
q2(x) =

ˆ x

0
µ′′(ξ;U(X(n)(P))

2 v(ξ;U(X(n)(P))
3dξ ,

and v is defined above. Evidence for improvement in error convergence is depicted in Figures 3-4
.

We hypothesize that the reason q1(x) works well is that the µ′ may converge faster than µ. We
also hypothesize that the function q2(x) works well because the second derivative (when cast as
the local curvature) is inversely proportional to the local variance of a random variable (a result
which is well known in the semi-parametric nonlinear regression literature). Essentially, while the
µ′′ may not converge quickly, the product µ′′v does. We also found that multiplication by an extra v
dramatically improves the computed Q, though an explanation is not immediately clear. A deeper
understanding of the spectrum of AX(n)(P) and how it depends upon the choice of P will be essential
to explaining the efficiency of q2(x). We plan to explore both of these issues in a future paper [4].

Acknowledgment/Disclaimer This work was sponsored (in part) by the Air Force Office of
Scientific Research, USAF, under grant/contract number FA9550-09-1-0403. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily
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Figure 3: Error convergence for uniformly and non-uniformly spaced points for the steady-state
Hamilton-Jacobi BVP.

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Mesh Size N

L
2
E
rr
or

Error Convergence

Q
Q0

Qα

Figure 4: Error convergence of the different mesh mappings for the singular BVP.
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