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Vibration Mitigation: Classification

 Damping Materials
* Damping Devices
* |solation methods
e (stiffness controlled)

Here we focus on issues related to material
properties, and some sense of multifunctionality
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Issues Remaining in Current State of
the Art

 Damping materials typically have
— Strong temperature dependence
— Strong frequency dependence

— Damping is often an add on solution rather than
built in, increasing volume and mass

— Modeling friction is a continued problem
introducing nonlinearity even for small deflections

 Models of damping are difficult because of
lack of first principles

10* Papers onin 2012 alone
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Why so many papers?

 Mass and stiffness, or density and elastic
modulus can be measured statically

 Damping is a dynamic quantity and can only be
measured by examining a dynamic response

* In many cases, intrinsic damping is small, making
it even more difficult to measure

* There is no first principle, such as Hooke’s law
that stands up to experimental validation, from
which to model damping (deformation and rate
dependent)
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Review of Some Basic Concepts
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The Problem between Structural
Models and Material Modeling

e Structural models look like this

pA dx*dt " pAot

* Which emits many modes of vibration

* Experimental coupon measurements give loss
factors for each mode and a modulus,

interpreted as modal damping ratios and
frequencies: Cn, w,
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Measured at coupon level Determined analytically

\EI /

[)’ agrees with expermental data

/

Measured from structural response

20 o, = ﬂ +— , however:

Estimates of the coefficients C; and C, based on modes are not consistent
Yet, if we estimate these

1-2 0.0724 0.7092 x10° . . . .

13 0.2402 0.2699 damping coefficients using
1-4 0.6053 0.0873 structural measurements

1-5 0.6157 0.0856 Iv. instead of

1-6 13901 0.0323 only, instead ot coupon

1-7 1.6867 0.0221 measurements, we can

1-8 1.8039 0.0199 id if . | f
10 17561 0.0205 identify consistent values o

C, and C, across different
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This situation gets worse if we use a
hysteretic model

Constitutive Model de(T)

dt

dt =

o(t)=E¢e(t)+ jg(t —7)

Structural Model

J° J°
pAw w(x, 1)+ Ey

{Elwxx (x,t)— J gw_(x,t+s)ds |=0

Experimental Model
E'=E[l+n(w)/]

E” loss modulus

= E’ storage modulus
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Overview of Characterization
of Damping Properties

m Different approaches for different frequency ranges
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ref. Ward, Mechanical Propertis of Solid Polimers, Figure 6.1

» Stress relaxation/creep

— large or small deformations measured over time
 Nonresonant testing

— displacement due to known force measured directly
* Resonant testing

— modulus backed out from frequency and damping of a simple structure
(cantilever beam)
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Complex Stiffness Model for Viscoelastic
Behavior

x(t)

mpl ff k(w)= ( )
— F(t ti -
(t) complex stittness X ()

For a viscoelastic behavior the complex modulus becomes:

k(w)= E(®) = E'(0)+ E"(0)i = E'(0)[1+1(0)i]

E” loss modulus
tand = — =
E’ storage modulus
Forming the basis of measurement schemes:

unknown
stiffness

’\/\/\

storage modulus loss modulus
E”(w) //\
Frequency(w) Frequency(w)
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Temperature and Frequency
Dependence of a Typical Commercial
Damping Material
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The Major Issues

* A need for material systems and structures with uniform
damping properties at harsh and extreme conditions

 Predictive macro scale models for such materials

* Predictive models of damping properties the span a range
of frequencies and temperatures
* A need for multifunctional damping materials that:
— Can be used to predict damage
— Can heal themselves
— That can respond to the environment
* Test apparatus capable of measuring damping at extremes

— Frequency and temperature limit current abilities to measure
properties

— Coupon testing versus structure testing is an issue
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Some Random Examples and Ideas Follow

* Infusion of nano particles to tailor damping
properties

 Combining SMA with High Temperature
materials

* Vascular Damping
— Fluid induced damping
— Particle induced damping

 Multifunctional approaches
— Integrated with active components and sensing
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Effects of Adding Viscoelastic Particles
To an Epoxy Matrix

1.5 :

Epoxy Matrix
30% PC
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70% PC Fuzzy fiber coated with CNT
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Sample composite analysis

Fuzzy fiber (Glass fiber with CNT on surface)-Epoxy composite e

Interphase

Assumptions Fiber
* Unidirectional fibers

* Fiber diameter: 7 p

* Interphase thickness: 5 pu

* Interpolating the relaxation functions of the fiber and matrix to
obtain that of the interphase layer.

Relaxation modulus and relaxation spectrum of the interphase layer obtained by interpolation
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Axial Young’s Modulus (E,,)

freq (Hz)

14000

12000|. | ----- 0.3 vi [————

1000 T

8000 -

E' (MPa)

6000 freeerereereseresessasnnaree ™ . -
4000

2000

r r

10° 10° 10° 10
freq (Hz)

AEROSPACE ENGINEERING

UNIVERSITY of MICHIGAN B COLLEGE of ENGINEERING

K' (MPa)

In Plain Bulk Modulus (K,;)

freq (Hz)

6000

5000 |-

4000 |-

3000 |-

2000 |-

1000 -

freq (Hz)

16



Combining SMA with Max Phase

materials to produce hybrid composites
(TAM MURI/AFOSR, Stargel PM, Lagoudus, PI)

Oxide ceramic (TBC) {
Functionally graded
ceramic (MAX)/SMA
composite (GCMeC)

High temperature sensor
Fuzzy fiber sensor

Polymer matrix
composite (PMC)

Produces unique damping and temperature properties

AEROSPACE ENGINEERING *Graded Ceramic Metal Composite
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A metric proposed by Rod Lakes

* From the material measurement point of view
the |E*n>0.6GPa

for good damping properties
* Here E* is the complex modulus

* For most materials this is only true for a
narrow range of temperature near the glass
transition temperature

* He uses the concept of “negative stiffness” to
try and solve this problem
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An Idea: Vascular Damping

e Starting with the
Vascular work of White
and Sottas, add either:
1. Fluid flow to control
damping
— ‘ 2. Orin closed cells

with particles to
form particle
dampers
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Particle Damping

* Advantages Example multiple particle behavior for
— Broad useful temperature ranges increasing mass
— Not mode/frequency specific 4
— Non-outgassing %
N
«  Variety of loss methods 2
— Impact (particle-particle & 2
particle/cavity) ‘S
— Friction (particle-particle & =
particle/cavity) a
2
lade Cavity
A= dded mass
(grams)
@70 5 O I Decreasin
%i.o..(."..‘"'" ‘?.'g. § H
¢ s _.Q'.l.eo,-:ggg § Amplitude
oW - @e’ §
;\.\Qg‘(\{\“\.\{{\{{‘g\%ﬁg\‘\{\\'\\\\\\\\m\\@ * Caveats
A<_| Section A-A — Empirical based design
B - Amplitude dependent behavior
Impact Dominated - Behavior is also dependent on cavity orientation to local

]

Ringdown Example quasi-static acceleration field
- Multiple other parameters can influence damping
performance
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Electronic Damping: Multifunctional Composites

z LI=25mm L3=110mm L4=735mm

L2=94.6mm
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A. Flexible Solar Panel [ B.QPI6N (Harvester, Sensor)
C. Thinergy Thin Film Battery D. Printable Circuit Board (PCB)
[ ] E.Fiberglass Substrate I F. MFC(Actuator)

[ ]| G.Foam, Fiberglass Composite

H. Epoxy DP 460, Kapton

Self + Self Controllable
Charging Sensing Damping
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Measurement Issues

* Damping requires a dynamic load

* Usually done on coupon size materials using a
frequency sweep, but the models needed are
structural

* Measurements are at steady state, but
transients are often of interest and the loss
factor (measured) is twice the damping ratio
ONLY AT RESONANCE
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Measurement and Modeling Issues

are Intertwined

* |In order to use material properties effectively
they must be fit well into structural mechanics
models

* DMA etc. measure properties in limited
frequency and temperature ranges and use sine

sweeps

 The values are suspect when placed into FEM
codes.

e Structural codes are clumsy with hysteresis and
nonlinearity
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Is there merit in using Macro ldeas at

the Material level?

 Many devices are successful at the macro

level:

— Vi
— Vi

oration absorbers

oration isolators

— Active control
— Magnetic (eddy current) dampers
— MR dampers

e Can these concepts be down scaled to a
multifunctional material concept?
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Is there Merit in Multi scale modeling
of damping?
* Only a few papers attempted this (Liu, Wang
and Bakis, 2010 for CNT nano ropes)

e Still focused on using the loss factor concept
under cyclic loading

e But does have a connection between nano
scale and structural scale, a first
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Why Should the Air Force Be Interested?

* Bladed disks in low and high temperature stages
of jet engines are in need of damping to prevent
high cycle fatigue
— High damping at high temperatures would provide a

major breakthrough in blisk designed jet engines

* Precision maneuvering of flexible space craft
requires damping to control transients

— Low temperature damping in space craft (e.g. optical
payloads)

— Damping needed to mitigate shock and vibroacoustic
response in lift off
* Aeroelastic stability and sonic fatigue in aircraft
AEROSPACE ENGINEERING
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More Potential AF Applications

* Prevention of store induced flutter
— Current mounts are limited in frequency range
— Reconfiguration requires new flutter tests

— A broad band damping material for mounts could
solve this problem

* General fatigue of AF structures would be
enhanced by higher damped structures
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Summary: 3 Main Issues

1. Damping materials are temperature and
frequency dependent

2. Damping falls off in extreme environments

3. There is a miss match damping as seen/
measured by material engineers and
structural engineers

Can multifunctional approaches solve these problems?
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