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ABSTRACT 
This paper will document the development of the Combat Identification (CombatID) System.  The CombatID 

System was designed to create a platform agnostic payload that could be attached to any fielded Unmanned Ground 
Vehicle (UGV) to assist the Soldier in contingency basing operations.  This paper will describe the approach taken 
to develop the system and provide a detailed description of the system, including sample results for individual 
modules. This paper will also provide insight on the evaluation of CombatID system’s performance. 

 
INTRODUCTION 

The Combat Identification (CombatID) System was 
designed to create a platform agnostic payload that could be 
attached to any fielded Unmanned Ground Vehicle (UGV) 
to assist the Soldier in contingency basing operations.  First 
the robotic payload would need to meet the threshold 
requirement of reliable detection of Friendly Force and Foe 
personnel within a 60 meter radius, 180 degrees around the 
robot.  We developed, tested and demonstrated a fully 
integrated hardware and software solution running on two 
robot systems and three additional Friendly Force entities. 
The proposed solution is designed to run through multiple 
classes of robot systems starting from Small UGV’s through 
large tactical or combat vehicles.  

Figure 1 shows the system installed on a TALON robot. 
The main components are: (1) the sensor head; (2) the RF- 

 

 
Figure 1: CombatID system installed on a TALON robot. 
 

GPS unit and (3) on-board processing platform. The robot 
sensor system (1+2 in Figure 1) consists of a stereo camera, 
a MEMs IMU, a GPS receiver, an RF-ranging unit, and a 
dual-band mesh radio. All processing is done on-board on a 
small form-factor COTS computer (3) equipped with a low-
power GPU card. Each of the friendly (blue-force) soldiers 
is provided with an identical RF-GPS unit consisting of a 
lightweight GPS receiver, an RF-ranging unit and a dual-
band mesh radio. 

This paper will describe the approach taken to develop the 
system and provide a detailed description of the system, 
including sample results for individual modules. This paper 
will also provide insight on the evaluation of CombatID 
system’s performance. 

 
SYSTEM DESCRIPTION 

The system implements a layered approach to localization, 
detection, communication and classification. The navigation 
module on each robot fuses stereo-vision-based visual 
odometry with readings from the IMU and any available 
GPS readings to produce a robust localization solution and 
maintain it even in GPS-denied environments. To further 
improve robustness, multiple robots equipped with this 
system can use RF ranging to improve their relative 
positions. This step is accomplished with a distributed 
Kalman filter architecture. 

Once the robot's geo-location has been established, the 
friend-foe tracking module integrates this information, along 
with positions of other robots, video-based detections, and 
readings from sensors worn by blue-force soldiers to 
establish identities of the blue-force entities. The soldier-
worn RF-GPS units broadcast their positions and range 
information to the robots over an ad-hoc wireless mesh that 
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does not require any additional infrastructure.  The identities 
and locations received via radio are then correlated with the 
output of the person and vehicle detectors that operate on 
stereo images to identify the blue-force entities.  

The block diagram of the system is presented in Figure 2. 
The major subsystems are described in more detail in the 
following sections. 

 

 
Figure 2: Block diagram for CombatID system. 

 
Sensors 
The sensors used for the CombatID system (listed on the 

left side of Figure 2) are: stereo camera pair, IMU, GPS and 
Radio Frequency (RF) Ranging.  

The stereo camera pair provides range information over a 
wide Field Of View. We use two 5MegaPixel cameras with 
a baseline of 27.5cm. The vertical stereo arrangement 
enables longer baselines with a small footprint, which is 
important for small robots. One stereo head is equipped with 
fisheye lenses, which results in 180degrees coverage. For 
longer range detections, the second head is equipped with 
80degrees lenses. This enables reliable detections beyond 
60m in front of the camera. 

The IMU is rigidly mounted inside the stereo head 
enclosure and it is used in conjunction with the visual 
odometry module to compute the current pose of the camera. 

The GPS receiver and RF-ranging unit are mounted in a 
separate enclosure together with a dual-band mesh radio. 
The RF/GPS unit mounted on the robots is identical to the 
one carried by friendly soldiers. Each unit broadcasts over 
the ad-hoc mesh network its current position from GPS and 
the relative range to the other units obtained from the RF-
ranging radio. 

 
People and vehicle detection 
The detection of objects in the scene uses only the robot’s 

on-board video. This approach combines 3D shape cues 
based on stereo vision with appearance cues to classify both 
stationary and moving persons and vehicles. While 
pedestrian detection from video has been the focus of 

significant work in the computer vision literature,  most of 
the previous work addresses only the case where people are 
relatively close to the camera (less than 40m), with a person 
being at least 50 pixels tall in the image. We are addressing 
people detection at long ranges (60m and beyond) using a 
combination of high-resolution sensors and a novel 
appearance classification design. The approach is briefly 
described in the following subsections. For more details, 
please see Reference 3. 

The appearance classifier consists of a cascade of three 
convolutional neural networks. The first network is trained 
to classify pedestrians using both appearance and disparity 
information, without having to hand-design additional 
features to leverage stereo depth information. A second 
classifier is specifically designed for long-range detections 
in order to increase recall and decrease false positives. 
Finally, we cascade a third, lower-resolution classifier that is 
faster with the higher-resolution classifier in order to speed 
up classification.  

 
Stereo Detection 
The stereo camera pairs are calibrated to obtain both 

intrinsic and extrinsic parameters. The fisheye cameras were 
calibrated using the Matlab toolbox described in Reference 
1. The extrinsic parameters were estimated using 
synchronized images of a checkerboard pattern in both 
cameras and each fisheye image was then mapped onto a 
cylindrical image. The second (80 degrees) camera pair was 
calibrated using the Bouget Matlab calibration toolkit. 

We compute stereo disparity maps using a fast CUDA 
implementation described in Reference 2. The resulting 
disparity image is then used to find vertical structures in the 
scene that could potentially correspond to pedestrians or 
vehicles. The image is discretized into a fixed number of 
patches and we estimate the ground plane for each patch 
from the disparity information. Next, we create a mask of all 
disparity pixels that are above the estimated ground and use 
connected components to group these above-ground pixels 
together to provide a final estimate of all objects that are 
vertical. An Region Of Iinterest (ROI) in the image space is 
created from the bounding box of each component. 

 
Classification using Convolutional Networks 
The ROIs produced by the stereo detector are fed into 

classifiers that determine whether the ROI corresponds to a 
pedestrian or vehicle. Previous appearance-based pedestrian 
classifiers have achieved some success for cases where there 
are more than 50 pixels on a person, but they typically 
degrade heavily beyond this range (see Reference 4).  We 
work with smaller number of pixels per person, either from 
the fish-eye lenses or from the 80 degree lens at long ranges 
(pedestrians up to 100 m). Table 1 summarizes the statistics 
of the data set. 
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Attribute Fisheye 80 Degree 

Frames 24,572 14,533 
Detections 99,522 64,204 
Mean Height (pixels) 87.78 88.37 
% l.t. 50 pixels 32.1 35.6 
% l.t. 40 14.4 11.6 

Table 1: Pedestrian detection data set. 
 

For classification we use convolutional neural networks, a 
deep learning method that has achieved success for tasks 
such as object recognition, as mentioned in Reference 7. 
This approach supports the use of multiple modalities, in our 
case Electro-Optical (EO) images and stereo disparity 
images. 
The network architecture for the pedestrian classifier is 
shown in Figure 3 (top). It consists of a six layer hierarchy: 3 
convolutional layers, 2 pooling layers, and a fully connected 
layer that produces two numerical outputs representing 
scores for each class (pedestrian and non-pedestrian). The 
inputs are 80x40 normalized intensity image and the 
corresponding 80x40 normalized stereo disparity values. 
 

 
 

 
Figure 3: Top: Architecture for the dual-input 

Convolutional Neural Network used for pedestrian 
classification. Bottom: Results of the classification system 

on a per-image basis, on four subsets of the data. The fisheye 
(left) and 80 degree (right) demonstrate competitive results 

at long range. 
 

Figure 3 (bottom) shows classification results for four data 
sets using the fisheye camera (left) and latter three subsets 
for the 80 degree camera (right, note that the first subset was 

only collected using the fisheye camera). Overall, 
competitive detection rates at less than 1 false positive per 
frame can be obtained, especially when using the 80 degree 
stereo camera pair. 

 
For the vehicle classifier we used a second Convolutional 
Neural Network with a similar architecture to the pedestrian 
classifier. The network was trained with 580,000 labeled 
ROIs, both positive examples (containing vehicles) and 
negative examples (without vehicles). The training process 
optimizes the network parameters using stochastic gradient 
descent. 

 
Visual Odometry 
We formulated and implemented the fisheye camera model 

into our visual odometry module, described in Reference 5. 
The module tracks 2D features across video frames and 
estimates the 6 degree of freedom relative pose change from 
one frame to another. We did several long loop closure tests 
for this new fisheye visual odometry module. Table 2 shows 
the drift rate and loop closure errors using either fisheye 
visual odometry or Extended Kalman Filter fusing both IMU 
and fisheye visual odometry for several test runs, both 
indoor and outdoor. The drift rates for all experiments are all 
less than 1%.  

 

 
Table 2: Drift rate and loop closure error for visual 

odometry with and without IMU data. 
 
Position Filter 
Both the GPS positions and the relative range 

measurements from the RF-ranging radios are noisy. We 
designed an Extended Kalman Filter that combines the GPS 
and relative range measurements to provide more stable 
position estimates. We developed a new relative-polar 
formulation in EKF for our application (moving RF-ranging 
nodes, no odometry information). 

 
Figure 4 shows an example with three stationary GPS/RF-

ranging nodes. The left side displays the raw GPS output; 
note that the drift can be on the order of 10 meters. The right 
side shows the position filter output, which is much more 
stable. Figure 5 shows the estimated trajectories for a loop 
closure test. In this case we used the RF/GPS unit mounted 
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on the robot, and compared the raw GPS (yellow) with 
position filter output (green) and visual odometry (blue). The 
total distance traveled was 75m. 

 

 
Figure 4: GPS (left) output for three stationary nodes.  

Position filter (right) output for the same nodes. 
 

 

 
Figure 5: Loop closure test: Yellow – GPS, Green – GPR + 

RF; Blue – Visual Odometry. 
 

 Loop Closure Error (m) 
GPS 7.63 
GPS+RF 4.37 
Visodo 0.26 

Table 3: Loop closure error for localization modalities. 
 
Table 3 compares the loop closure error estimated by raw 

GPS, position filter, and visual odometry. The filter result is 
better than GPS only results, but not as good as the visual 

 
Friend/Foe Labeling 
The Friend/Foe Labeling module takes as inputs the 

RF/GPS position and people detections from stereo and 
produces a list of associations.   

The first step is to determine the camera orientation with 
respect to the GPS global frame of reference, to enable 
transforming the RF/GPS filter positions to the camera 
frame of reference. Each pair of human detection ROI and 
RF/GPS filter position provides a hypothesis for the rotation 
that brings the two frames into alignment. We select the 
hypothesis with the largest support (the rotation that 
produces the largest number of associations). In case when 
the robot is moving, the change of camera orientation is 
estimated by the Visual Odometry module and the initial 
camera orientation is updated accordingly. 

We then apply maximum bipartite matching to assign the 
Friend/Foe labels.  The objective is to find the maximum 
number of matches between the two parties (positions of 
video based detections and positions from the RF/GPS filter) 
that minimizes the sum of Mahalanobis distances.  We use 
the Kuhn-Munkres algorithm (see Reference 6), also known 
as the Hungarian algorithm.   

Figure 6 shows an association example.  The top image 
recorded from the camera and contains four people. The 
colored boxes indicate detections: the blue boxes are the 
Friends, and the red box is a foe.  The figure on the bottom 
shows people detection positions (red stars) on a map view 
and the RF/GPS filter outputs after transforming into the 
camera frame of reference (blue dots).  The ellipses indicate 
their uncertainties.  The blue lines show which pairs have 
been associated. 

 
 

 
Figure 6: Friend/Foe labeling. 
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Display 
The three different display types of the system (seen on the 

right of the system diagram in Figure 2) are shown in Figure 
3. The image display (top) shows the image from the 
forward-looking camera with the classified detections 
overlaid on the image. Blue boxes correspond to detections 
classified as Friend, red boxes indicate Foes. In the example 
shown in the figure there are four people in the image, at 
about 40m in front of the camera: two Friends on the left and 
two Foes on the right. 

 

 
Figure 7: Display types for CombatID system. 

 
The Map display (lower left in Figure 7) shows the 

location of the RF/GPS units carried by Friends on a grid 
(cell size is 10m in this example). Finally, the Detection 
display (lower right) shows the classified detections (blue 
triangles for Friends, red triangles for Foes) on a grid similar 
to the one in the Map display. The blue square on the bottom 
indicates the location of the robot which is the same as the 
location of the camera used for the image display. 

 
 

 
Figure 8: Sample screen captures for CombatID system. 

 
SYSTEM PERFORMANCE EVALUATION 

To demonstrate the systems functionality, the CombatID 
robots took a two phase approach.  (1) The systems went 

through a set of engineering evaluation and tests (EET) to 
determine baseline performance of the system.  (2) The 
systems where put into tactical scenarios in a relevant 
environment to determine the effectiveness of the system. 

 
 
Baseline Testing 
Baseline testing for the system was performed with 

combination of Friends, Foes and vehicles at varying 
distances.  The Friends (up to three) and Foes (up to six) 
were systematical tested in varying combinations moving in 
front of the robots at ranges from 10 to 100 meters.  The 
Friends/Foes varied in speed and motion from a slow crawl 
to a fast sprint.  Similar testing was then preformed with 
automobiles.  One to three vehicles varying from parked to 
moving at 25 mph at ranges from 10 to 100 meters.   

The EETs then became more complicated.  Introducing 
various sets of Friends, Foes and vehicles in random patterns 
to try and find the failure point of the system. Figure 8 
shows sample output from the baseline (top) and scenario 
(bottom) testing. In both cases, the personnel in the scene are 
detected and correctly classified (blue box for Friends, red 
box for Foes). 

 
Scenarios 
The experiment was conducted with three different 

scenarios which were parallel to the basics tactical 
operations used on some current Forward Operating Bases 
(FOB). The first Scenario was setup with friendly forces 
being dug into their fighting positions with two fixed 
Combat Identification robots monitoring the fields of fire. 
The concept was that the enemy could attack at any moment 
and the robots would have to identify if the personnel 
approaching the FOB were friendly forces or enemy forces 
before any friendly forces could engage the target. 

The second scenario was identical to the first scenario with 
the exception that one of the Combat Identification robots 
could move across the field of fires in order to establish a 
better line of sight to identify the targets as friendly or 
enemy threats.  In the third scenario, the friendly forces 
conducted patrols from the FOB to a local village; upon 
returning from the mission the two fixed Combat 
Identification robots would have to identify the objects as 
friendly before access would be allowed into the FOB. 
 
CONCLUSION 

Since the beginning of time, technology has played a 
critical role in the way battles are fought and won. Leaders 
are always looking for ways to increase their available 
resources by eliminating tasks that are conducted by humans 
and having robots complete though tasks. The Combat ID 
system is one of those technologies.  The system allows for a 
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boarder field of view/line of sight and object movement 
detection then one single person can accomplish. 

The CombatID program successfully showed that a 
unmanned robotic equipped with the CombatID payload 
could scan the same line of sight as a Solider. As Soldiers 
and commanders become more accustomed robots on the 
battlefield, the acceptance and utility of CombatID like 
capabilities will become combat multipliers for the 
operational commander. 
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