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Robot navigation emulating human performance 
 

Introduction 
 
The basic idea underlying our new approach for recovering natural 3D scenes makes use 
of mechanisms employed by human beings to recover 3D shapes from 2D images (Li et 
al., 2009; Pizlo, 2008; Sawada & Pizlo, 2008; Li, 2009; Sawada, 2010; Pizlo et al., 2010). 
The novel, critical aspect of our approach is that a priori constraints are at least as 
important in 3D vision as visual data. This approach is different from all other, more 
conventional approaches in which the reconstruction of 3D shapes and 3D scenes is a 
hierarchical process based on a number of independent visual modules responsible for 
acquiring and combining pieces of visual information, called “depth cues”, e.g., texture, 
shading, motion, disparity, and vergence. Our novel approach, described with David 
Marr’s (1982) widely-known terminology, bypasses a viewer-centered representation by 
recovering geometrical properties of objects and their environment in an object-centered 
representation. Our approach is preferable to the conventional approach for two different, 
but related reasons. First, it is known that despite the fact that the human beings’ 
perception of 3D distances and 3D sizes is usually not veridical, the human being’s 
perception of 3D shapes is always veridical.1

 

 Second, several very effective a priori 
constraints for the perception of 3D shape are known, but no effective constraints are 
known for the perception of the 3D distances between pairs of 3D points. An additional 
advantage inheres in starting to recover 3D scenes with 3D shapes. Starting with 3D 
shapes allows the observer to “see” the “invisible” back parts of opaque objects. 
Paraphrasing Bartlett (1932) to put our novel approach into a broad historical perspective, 
we can say that using 3D shapes to construct 3D scenes allows an observer to actually “go 
beyond the information given”. The special role and significance of shape in visual 
perception was appreciated and highlighted by the Gestalt Psychologists almost a 100 
years ago, but the mathematical and computational tools necessary to formulate their ideas 
and to make use of them in computational models did not become available until recently. 
This report reviews several of these tools and illustrates how they can be applied to the 
recovery of a natural 3D scene, like the scene shown in Figure 1.  

We started working on this project because we believe that, at present, the best way to test 
any theory in vision is to implement a computational model of the underlying perceptual 
mechanisms and to show that it can be used effectively by an autonomous robotic system. 
This kind of robotic system acquires visual information, and then plans and executes 
actions without any intervention by the designer of the system. We have succeeded in 
developing a computational model that does this. It recovers a 3D object from one of its 
2D images and then uses these mechanisms to recover naturalistic 3D scenes. These 

                                                 
1By “”veridical” we mean that the percept of the shape of an object agrees with its shape in the real world. 
Note that we are ignoring laboratory experiments that were designed specifically to demonstrate the failure 
of shape veridicality by using degenerate shapes and/or degenerate viewing directions. 
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scenes permit the robot to perform complex navigations without any aid from a human 
being, the kind of activity previously only performed by an alert, human being. 

 

 
 
Figure 1. Five man-made 3D objects within a natural scene (the room used for robot 
navigation). A camera mounted on the top of this robot provides the visual information 
used to guide its navigations. An inclinometer, mounted on top of the camera, provides 
the robot with the information it uses about the direction of gravity. 
 
Note that ours is not the approach most often used by others working in vision today. 
Vision researchers, more often than not, simply state what they call a “theory” in plain 
English and go on to describe some qualitative aspects of what they believe to be a 
potential perceptual mechanism. Even when a contemporary vision researcher has actually 
used a mathematical or computational model, more often than not, it was tested with 
synthetic images or only with a few hand-picked real images. Such tentative and partial 
approaches to providing an explanation of a limited visual process was justifiable some 
years ago but we believe that we have reached the point at which vision researchers 
should be much more ambitious. A nearly complete, working theory of at least some 
particularly significant aspect of visual processing should be provided now that this is no 
longer beyond reach. Meeting such expectations can be best served by verifying that any 
current theory meets at least two criteria, namely, that: (i) it is relatively complete, and (ii) 
it has no implicit or unjustified explicit assumptions. The best way to do this is to build a 
machine that can actually see as we do, a more complex act than is commonly assumed. 

 
Traditionally, the visual and the motor systems have been treated as separate, independent 
modules that could be and were studied separately. But the fact that they are not nearly 
independent and that they can, and should be, studied as they work together, rather than 
separately, was emphasized by Dewey (1896) more than 100 years ago. He emphasized 
that perception is not, and should not be treated as, a passive process. Perception is only 
one part of a closed, continuously active “reflex arc”, actually more like a circle or a loop, 
called the “perception-action cycle”, in which perception and motor action follow one 
another and interact continuously in everyday life. This observation is not only very old, it 
was picked up, promulgated, mulled over and elaborated by many others since it was 
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proposed, most notably by Hebb (1949) and by Gibson (1966), who attempted to include 
this interaction in their “verbal models” of what is now often referred to as “ecologically-
valid vision”. Note that the integration of vision and action, originally proposed by 
Dewey, who credits William James (1890) for pointing him in this direction, makes a lot 
of sense, despite its neglect in most contemporary work, for at least two reasons. First, an 
observer must actively seek information about the environment by using more than one 
viewing direction. The observer must do this to determine whether his initial viewing 
direction provided all of the information required to perceive the scene veridically. 
Second, the observer needs veridical information about the environment because it is 
essential for the efficient planning and successful execution of the specific behavioral acts 
that will achieve the desired goals. The reader will surely agree that the best, perhaps even 
the only, way to study such complex, but very natural, interactive processing is to develop 
a model that sees and acts, as the human being does, and furthermore, that this model 
should be realized in the form of a mobile robot now that they are available “off-the-
shelf.” Note that this approach is not novel. It was first proposed long before its 
implementation was viewed as either possible or imminent. It goes back at least to 
Richard Feynman, who is reported as having said “what I cannot create I don’t 
understand” and/or was proposed at the early stages of cognitive science by Miller, 
Galanter & Pribram (1960) who said that “The creation of a model is proof of the clarity 
of the vision. If you understand how a thing works well enough to build your own, then 
your understanding must be nearly perfect (p. 46).” So, all we are really saying here, is 
that it is time to put these words into practice.  

 
This final report begins with a description of why, as well as how, a camera should be 
calibrated when it is used for “machine vision”. This is followed by a description of the 
most important features of our 3D shape recovery model. These features will be presented 
with special emphasis on the nature and role of our model’s a priori constraints. Next, 
problems inherent in the recovery of the shape of a 3D scene are stated and possible 
methods of solving these problems are described. The solutions call attention to the 
importance of non-visual, as well as to visual, a priori constraints. Note that by 
recovering the shape of a 3D scene, we mean recovering the geometry of the 3D scene up 
to one unknown parameter, namely, the overall scale of the scene and the objects within 
it. The scale can be based on the estimation of a single distance in a 3D scene. The height 
of the observer, a human or a robot, can serve as a particularly useful single distance for a 
potential navigator. Finally, having explained what it takes to recover 3D shapes and then 
to use this information to recover a 3D scene, we will describe the first step in visual 
processing, which is usually referred to as Figure-Ground Organization (FGO), the 
terminology favored by the Gestalt psychologists a century ago. Discussing FGO, the very 
first stage of visual processing last, will allow us to actually specify what the output of the 
first stage of visual processing should be like. Prior to our new approach to the recovery 
of 3D shapes and 3D scenes, there was not even a good definition of what Figure-Ground 
Organization was, much less of what Figure-Ground Organization should accomplish or 
how this could be done. 
 
In our approach, FGO refers to (i) finding the 2D region and its occluding contour for 
each object in the 2D image, as well as to (ii) finding the 3D region and its bounding box 
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in the 3D scene “out there”, where the object resides. Once this is done, the internal 
contours required for 3D shape recovery are extracted and the 2D information about the 
3D symmetry of the shape and the planarity of its contours are determined and included in 
the description of the “figure” by labeling its contours. It is clear that in our approach, 
FGO refers both to properties of the 2D image and to properties of the 3D shape. This 
differs from the conventional view of FGO that limits FGO to 2D features. Note that our 
claim that FGO includes 3D, as well as 2D features, was suggested by the Gestalt 
Psychologists when they emphasized that the organized figure is always perceived in front 
of its background, which is perceived as lying behind as well as around the figure.  
 

1.  Calibration of the camera 
 

The order of the next sections does not reflect the order of the computations by the visual 
system or the order of importance of our computations. The order simply reflects what 
we believe to be the best and simplest way of explaining what we did and why we did it. 
Why it is important to calibrate your camera if you want to use it in research on visual 
perception will be explained below. We start with the definition of a “camera matrix”. 
Most of the equations presented in this paper use this matrix. The process of estimating a 
camera’s matrix is called “camera calibration”. A camera matrix is a 3 by 4 matrix that 
defines the geometric properties of a camera, like its focal length, principal point, etc. 
These properties characterize the perspective projection from a 3D scene to a 2D image. 
Why is the camera matrix important? Consider a psychophysical experiment on the 
perception of objects from perspective images, such as photographs. The geometrical 
properties of these photographs must be known if the experimenter wants to show 
photographs of the objects to his subject. Specifically, the subject’s eye (more precisely, 
the center of the perspective projection of the eye, called its “nodal point”) must be placed 
at the center of the perspective projection for any given picture. This must be done if you 
want the retinal image in the subject’s eye produced by the perspective photograph of the 
3D object to be a perspective image of the 3D object. This is how the first demonstration 
of the rules of perspective projection was done almost 600 years ago by Brunelleschi (see 
Kubovy, 1986). This method is still used by modern students of vision to set up their 
experiments, e.g., Attneave & Frost (1969). If the eye is placed at any other point than at 
the center of the perspective projection, the retinal image produced by a perspective 
photograph of a 3D object will not be a valid perspective image of this object. Instead, it 
will be an image of a 3D projective transformation of the object because a perspective 
picture of a perspective picture is not, itself, a perspective picture (Pizlo, 2008). Failing to 
use a perspective projection will almost always lead to a non-veridical percept of the 3D 
object (see Pirenne, 1970; Kubovy, 1986; for examples of such distortions). The bottom 
line is that when 2D perspective images are used for making 3D inferences, the 
parameters of the camera that took the images must be known. 

 
Now that you appreciate why a camera matrix is important, we will describe it in detail. 
Consider the relation between a 3D point V* in front of a camera and expressed by 
homogeneous coordinates (VX

*,VY
*,VZ

*,VW
*)T  and its 2D camera image v* also expressed 

by homogenous coordinates (vx
*,vy

*,vw
*)T. Equation (1) represents the perspective 

transformation from V* to v*: 
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Matrix K is called the “intrinsic matrix”. It defines the camera’s intrinsic properties, such 
as its focal length. Matrix Q is called the “extrinsic matrix”. It represents the 
transformation from the world coordinate system to the camera coordinate system. This 
transformation consists of a 3D translation (-C3x1) followed by a 3D rotation (R3x3). The 
geometric details of R and C are described in the following paragraphs. The product of the 
intrinsic matrix (K) and the extrinsic matrix (Q) is called the “camera matrix” (P)  
 

KQP =                                                                (2) 
 

In equation (1), the 3D point and its image are expressed by homogeneous coordinates 
because they allow expressing a non-linear perspective projection by using matrix 
notation. The transformation between the Euclidean coordinates and the homogenous 
coordinates for a 3D point (VX, VY, VZ)T and a 2D point (vx, vy)T is expressed as follows: 

 
( ) ( ) **** / W

T
ZYX

T
ZYX VVVVVVV =                                      (3a) 

( ) ( ) *** / w
T

yx
T

yx vvvvv =                                                  (3b) 
 

assuming that VW
* and vw

* are not equal to zero.2

 

 The equations (3a) and (3b) imply that 
the homogenous coordinates of a point are not unique. For example, (1, 2, 3, 1)T and (2, 4, 
6, 2)T represent the same 3D point. In practical applications, VW

* can usually be set to 1. 
This way, 3D homogenous coordinates are trivially obtained from 3D Euclidean 
coordinates (and vice versa). The representation of a 3D plane in homogenous coordinates 
is the same as that of a 3D point: both are four-element vectors. For example, if π* is a 3D 
plane, then all points V* on π* satisfy π*TV*=0. Similarly, in a 2D image, the representation 
of points and lines in homogenous coordinates are the same, and they are three-element 
vectors.  

In this report, some equations use both homogenous and Euclidean coordinates. To avoid 
confusion, symbols with asterisks represent the homogenous coordinates of geometric 
primitives, like points, lines, or planes. The symbols without asterisks represent the 
Euclidean coordinates.  The individual parameters in the camera matrix are described next.  

 

                                                 
2 In homogenous coordinates, if the last value of a vector is equal to zero, the vector represents a point at 
infinity. 
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Consider the parameters in the intrinsic camera matrix (K). (µ0, ν0)T is the principal point 
of a camera, the point of intersection of the camera image plane with a line emanating 
from the center of a perspective projection that is orthogonal to this plane (see Figure 3). 
The principal point is close to the center of the camera image, but it is never exactly at the 
center, due to technical limitations inhering in the design of the camera. Why are there 
such limitations? Consider the fact that when the physical size of a camera’s image, 
containing 2000 by 3000 pixels, is less than one centimeter, the displacement of the center 
of the camera lens by as little as one millimeter translates into a displacement of the 
principal point by more than 100 pixels. This makes it almost impossible to mount the 
lens exactly in front of the center of the camera’s image. The green dot in Figure 4 
represents the center of the picture and the white dot represents the principal point of the 
camera that was used to make most of the examples included in this paper. In our setup, 
this point is displaced from the center of the image by about 0.6 degree. This amount of 
error in estimating image points would have dramatic implications for binocular 
(stereoscopic) analysis of the 3D space. In the human eye, the principal point corresponds 
to a region of best vision near the center of the retina, called the “fovea”. The fovea is 
well-defined both anatomically and perceptually. Anatomically, the flat floor of the fovea 
is a disc with a diameter of about 1.5 degrees. It contains only receptors, called “cones”. 
Perceptually, the fovea serves as the center of the visual field. It is the region in which 
detail vision is most acute. When an observer orients his eye to look directly at a feature 
in order to examine its details, the eye’s orientation will cause the feature’s retinal image 
to fall at the center of the fovea, where it is said to be “fixated”. An observer can maintain 
fixation of an attended object with high precision: the standard deviation of eye position 
during maintained fixation is only 3 or 4 minutes of arc (Steinman, 1965). This is 
equivalent to only two pixels in a camera whose field of view is 60 degrees and whose 
image is an array of 2000 by 3000 pixels.  

 
The next intrinsic camera parameter considered is called its “focal distance”. The focal 
distance is the distance between the center of a perspective projection and the camera 
image (Figure 3b). In the intrinsic camera matrix, the focal distance is defined in terms of 
the number of pixels along the X axis (αx) and Y axis (αy) in the camera coordinate 
system. In other words, both the interval of length αx pixels along the X axis and the 
interval of length αy pixels along the Y axis are equal to the focal length. In modern 
cameras, the difference between αx and αy is very small, so we can assume that they are 
equal. In the human eye, the focal distance is about 2cm, which is the approximate 
diameter of the human eyeball. The third intrinsic parameter of a camera is called the 
“skew” (s) which specifies how much a pixel is biased from a perfect rectangle. For most 
modern cameras, the skew parameter is zero.  

 
There is one more intrinsic camera parameter. It measures what is called its “radial 
distortion”. This parameter is not expressed in Equation 1 because the radial distortion 
cannot be represented as a linear transformation. In an image with radial distortion, the 
straight lines at the periphery tend to be curved (see Figure 2). Radial distortion is obvious 
with cameras that have a large field of view (e.g., 60 deg) or a small focal length.  
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Figure 2. (a) Radial distortion of a wide angle camera. (b) the image from (a) after 
calibration. 

 
Now consider the extrinsic matrix Q. It defines the transformation between the world 
coordinate system and the camera coordinate system. The specification of the world 
coordinate system depends on the application. For example, if the task is to recover a 3D 
scene in a room, it is natural to use one of the corners of the room as the origin and the 
three edges of the room emanating from this corner as the X, Y and Z axes. The camera 
coordinate system does not actually depend on the application. It is a fixed characteristic 
of the camera. This coordinate system is defined as follows: the origin is the center of 
perspective projection of the camera. The XY-plane is parallel to the camera image plane. 
The X axis coincides with the X axis of the camera image. The Z axis represents the depth 
direction (see Figure 3a). The vector C in Q is the projection center expressed in the world 
coordinates. R3X3, a rotation matrix, represents the orientation of the camera coordinate 
system. Specifically, the three row vectors in R correspond to the directions of the X, Y 
and Z axes of the camera coordinate system expressed in the world coordinate system. 

 
 

      
                        (a)                                                                 (b) 
 
Figure 3. (a) The camera’s coordinate system. (b) Schematic illustration of a camera. C 
represents the projection center. p is the principal point. The line pC is orthogonal to the 
image plane π. f represents the camera’s focal length. 

 
It follows that the camera matrix not only includes a camera’s properties, but also its 
orientation and position in an environment (see Faugeras, 2001, and Hartley & Zisserman, 
2003, for more details of the camera matrix). The process of estimating camera 
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parameters is called “camera calibration”. A camera is calibrated by acquiring multiple 
images of a reference scene, whose geometry is known. Once the 3D coordinates of the 
scene and the 2D coordinates in its image are known, one can solve for the camera’s 
unknown intrinsic and extrinsic parameters. Open access software for calibrating a 
camera, can be found at (e.g., OpenCV: 
http://opencv.willowgarage.com/wiki/FullOpenCVWiki).  
 

 2. Recovery of a 3D shape and a 3D scene 
 
The camera matrix defines a camera’s geometry – it specifies how to project a 3D point 
onto a 2D image plane. Given a 3D point, its image is uniquely determined. Therefore, 
generating a 2D image from a 3D scene is an easy “forward problem” (Poggio et al., 
1985; Pizlo, 2001). However, the “inverse problem”, recovering a 3D scene from its 2D 
image, is difficult because the solution is not unique, i.e., for any given 2D image point, 
there are infinitely many 3D points that can produce the same 2D image point. Inverse 
problems are almost always difficult because they are “ill-posed” and “ill-conditioned”. In 
plain English, inverse problems are “insoluble”. The only way to solve an inverse problem 
is to impose a priori constraints on the family of possible interpretations, and then 
combine these constraints with the available data to find the most reasonable solution. 
Ideally, it will be the correct, veridical, interpretation of the conditions in the physical 
world.  

 
The symmetry of the 3D shape is a strong a priori constraint. Given a 2D perspective 
image of a symmetrical 3D shape, its symmetrical 3D interpretation is unique except for 
the size and position. The following equations show how to use the camera matrix (P) to 
recover a pair of 3D symmetric points (X1 and X2) from their 2D image (x1 and x2) if the 
vanishing point v for the line connecting X1 and X2 is given. 3

 
 

The camera matrix P is a 3 by 4 matrix. It can be decomposed and expressed as follows 
 

( )433 pMP X=                                                      (4) 
 

M is a 3 by 3 matrix that consists of the first three column vectors of P and it is equal to 
the product of the intrinsic matrix (K) and the rotation matrix (R). p4 is the fourth column 
vector of P. Let x1 and x2 be expressed by the Euclidean coordinates and x1

* and x2
* be 

their homogenous coordinates with the third element equal to 1. Then the set of all 3D 
points whose image is x1 (or x2) can be expressed as follows (eq. 6.14 in Hartley & 
Zisserman, 2003): 
 

)( 4
*1 pxkMX iii −= −         2,1=i                                (5) 

 

                                                 
3 The vanishing point in the image is the intersection of the lines connecting the images of pairs of 3D 
symmetrical points. In 3D space, all of these lines are parallel to one another. In a perspective image, they 
all intersect at the vanishing point. 
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ki are free parameters. For the solutions X1 and X2 to be symmetrical, k1 and k2 must 
satisfy the following equation (refer to Appendix A for the derivation). 
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            (6) 

 
For the recovered pairs of symmetrical 3D points, the normal of the symmetry plane is 
determined by the vanishing point v, and is equal to *1vM − . The position of the symmetry 
plane is determined by the parameter d. d is a free parameter and it can be any real 
number, which determines the size (or position) of a recovered 3D object. Figure 6a 
shows five objects recovered from the same 2D camera image. Their symmetry planes 
have the same orientation, but different positions. The recovered object is small when it is 
close to the camera (the cyan box in Figure 6a). The recovered object is large when it is 
far from the camera.  

 
Although equation (6) looks complex, it can be simplified in applications after making 
some assumptions about the camera’s parameters. For example, if the skew s is equal to 0, 
αx and αy are identical, and the origin of an image coincides with the principal point, then 
K is a diagonal matrix (K = diag(αx, αx,1)). Furthermore, if the world coordinate system 
coincides with the camera coordinate system, then R is an identity matrix and p4 is a zero 
vector. It follows that M = K. 
 

 
Figure 4. The red line above the picture of a 3D scene shows the horizon in this scene.  
The red dot below the picture shows the vanishing point corresponding to the 3D vertical 
lines. The principal point is marked by a white dot near the center of the image. The 
geometrical center of the image is marked by the green dot. 
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Equation 6 suggests that in order to recover a symmetrical 3D shape, the visual system 
needs to: (1) know where the vanishing point is and (2) establish which points in a 2D 
image, are the images of pairs of 3D symmetrical points. In order to accomplish these two 
things, two additional a priori constraints will be required, namely, the direction of 
gravity and a line representing the horizon.4

 
   

Computation of the vanishing point and identification of symmetric pairs 
 
Gravity is the most critical constraint operating in our environment. Gravity is not only 
responsible for stability in our environment, it is also most likely to be responsible for the 
symmetry of almost all animals’ bodies. If the ground plane is horizontal, it is orthogonal 
to the direction of gravity. An animal’s body will be stable if its body is symmetrical with 
respect to the plane parallel to the direction of gravity. A symmetrical animal will not fall 
on its side when it stands. It follows that given a symmetrical 3D shape standing on a 
horizontal ground, the line segments connecting the symmetrical points are parallel and 
orthogonal to gravity. For all parallel lines that are orthogonal to gravity, their vanishing 
points fall on a horizon. If the ground plane is not horizontal, the symmetry line segments 
of symmetrical objects standing on the ground are parallel to the ground but not 
orthogonal to the direction of gravity. The corresponding vanishing line is then 
determined by the actual ground plane, not by the plane orthogonal to the direction of 
gravity.  
 
Assume that the normal of the ground floor is Nh in the world coordinate system, then the 
horizon (i.e., the vanishing line corresponding to the horizontal ground plane) is expressed 
as follows (Result 8.16 in Hartley & Zisserman, 2003): 

 

h
T

h NMl −=*                                                      (7) 
 

For a calibrated camera, the horizon is known before the image is taken, which means that 
this information is truly a priori.  Once the horizon is known, we can search for the 
vanishing point, which is the intersection of the 2D symmetry line segments of a given 
object. Since the vanishing point must be on the horizon, the search is determined by only 
one free parameter. Without the horizon, there are two unknown parameters specifying 
the position of the vanishing point, and the point cannot be estimated reliably 
(specifically, its distance from the object’s image in the 2D camera image). The horizon 
provides a very strong constraint for this less reliable parameter. Equation (7) shows that 
the horizon is equal to the product of the direction of gravity and the inverse of transposed 
M. Because M (the product of the intrinsic matrix K and the rotation matrix R) is unrelated 
to the position of the camera (C), the translation of the camera in 3D space leaves the 
horizon and all vanishing points in the image invariant. These invariant features are likely 
to be useful in robot navigation. 

                                                 
4 The horizon is a vanishing line on the image plane, which is a perspective projection of the line at infinity 
on any plane parallel to the horizontal ground plane.  
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The vanishing point on the horizon is obtained by computing the intersection between the 
symmetry lines (the green lines in Figure 5b) and the horizon (the blue line). The green 
lines (contours in the image) are not always perfectly straight. Therefore, the first step in 
computing the vanishing point is to approximate (by using least squares) the symmetry 
lines with straight lines.  

 
Let xi

* represent the 2D points on a symmetry line. Let ( )Tkkx xxxA **
2

*
13 ...= . Then 

the approximating line *l is parallel to the eigenvector of (ATA)3x3 whose corresponding 
eigenvalue is the smallest5

*
1l

. Once each symmetry line is approximated by a straight line, 
we can estimate the vanishing point for these symmetry lines. Suppose for one object, 

, *
2l …, *

nl  are the n symmetry lines. Because of noise, the intersections of symmetry 
lines with the horizon are not identical. Therefore, we estimate the vanishing point as the 
point that has the least square distance to all symmetry lines.  
 

          
                 (a)                                            (b)                                                  (c) 
 
Figure 5. (a) The symmetry plane of a 3D object resting on the ground is vertical. (b) 
Symmetry lines segments are indicated by green. (c) Pairs of symmetrical contours are 
marked by blue. 
 
 
Let the horizon ( )whyhxhh llll )()()( **** = , then ( )0)()( ***

xhyhh llm −=  represents 

the direction of the *
hl . Suppose *

0v is one point on the horizon such that 0)( **
0 =h

T lv , 
then the vanishing point is estimated as: 

  
**

0
*

humvv +=                                                       (8) 
 

                                                 
5 The singular value decomposition (SVD) method can be used to find eigenvectors. The matrix A can be 
decomposed and expressed as TUSVA = where U and V are orthonormal matrices. S is a diagonal matrix 
and its values are sorted in a descending order. The direction of the approximating line is represented by the 
last column vector of V. 
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where **

*
0

*

)(
)(

h
TT

h

TT
h

BmBm
BvBmu −=  and ( )TklllB **

2
*

1 ...= . The derivation is given in 

Appendix B. 
 
Once the vanishing point is estimated, the pairs of points in the 2D image, which are 
images of symmetrical points of an object can be established as intersections of pairs of 
corresponding contours and the lines emanating from the vanishing point (see Figure 
5c).The 3D symmetrical shape can then be recovered by recovering all pairs of 
symmetrical points according to equation (5).   
 
Recovery of the hidden part 
 
We just showed how to recover pairs of symmetrical 3D points by using equation 5. Note, 
however, that in order to recover a 3D point, both the image of this point and of its 
symmetrical counterpart had to be known. In other words, the symmetrical pairs in a 2D 
image must be visible. For example, the back, the seat and the front legs of the chair in 
Figure 5b can be recovered on the basis of the symmetry constraint because their 
corresponding symmetrical contours are visible. However, the two rear legs cannot be 
recovered by using symmetry alone because one of the legs is hidden. In this case, we 
begin by using the planarity constraint to recover the point of the chair that is visible. The 
contours representing the right side of the chair shown in Figure 5b are coplanar 
(approximately) and we can estimate the plane containing these contours from the points 
and contours that were recovered by using equation 5 (they could be recovered because 
both symmetrical pairs were visible). Once this is done, the intersection of this plane and 
the plane defined by the image of the visible right rear leg and the projection center of the 
camera, is a 3D line containing the recovered right rear leg. Its invisible, symmetrical 
counterpart is obtained by reflecting the recovered right rear leg with respect to the 
symmetry plane (see Li, Pizlo & Steinman 2009 for details).  
 
Recovering the shape and scale of a natural 3D scene 
 
We pointed out (above) that for the recovered 3D shapes, their sizes and their positions 
are undetermined, but “placing” them on the ground will make it possible to uniquely 
determine the relative positions, sizes and pair-wise distances among all of the 3D objects. 
When the shape of a 3D object is recovered, the object can either be small and close to the 
camera, or large and far from the camera (see Figure 6a). Once the height of a camera 
above the floor is known, there is only one size and only one corresponding distance at 
which a given object will be resting on the floor. For smaller distances, a recovered object 
would be floating in the air, and for larger distances, the object will be below the floor. 
Thus, regardless of the number of objects in the scene, their sizes, positions and distances 
are determined by only one parameter, namely the height of the camera. Ambiguity only 
remains for objects whose relative position with respect to the floor is unknown: this 
occurs whenever the bottom part of an object is occluded. Whenever this happens,  the 
size and distance of the object will be uncertain. But, because real objects cannot occupy 
the same physical space, this uncertainty can be reduced by using information obtained 
from nearby objects. Figure 6b shows the recovered 3D scene for the picture in Figure 4. 
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The online demo at http://web.ics.purdue.edu/~li135/SceneRecover.html shows an 
animation of this recovery. The widths and heights of the children’s chairs were about 30 
cm. The accuracy of our size and distance recovery can be evaluated by comparing their 
distances and sizes to the 20 cm. wide unit-square scale shown on the floor. The position 
and the orientation of the robot’s camera used to make this image are indicated by the 
cyan box. These results show that our algorithm not only recovered the size and distance 
of the 3D objects accurately, it recovered the entire objects, including their invisible back 
contours! 

     
                         (a)                                                                   (b) 
 

Figure 6. (a) Recovering the size and position of a 3D object. The small green cube 
represents the 3D position of the robot’s camera. (b) The image of a recovered 3D scene 
(for on-line demo go to: http://web.ics.purdue.edu/~li135/SceneRecover.html 
 
 
The methods described in this section are illustrated by providing the reader with an on 
line Matlab program and data (http://web.ics.purdue.edu/~li135/JMP2011/JMPDemo.rar). 
The image shown in Figure 4 is the image used for the 3D recovery. The 2D contours 
extracted from this image is the input data. The Matlab program will perform the 3D 
recovery of the contours as described in this section. The reader is encouraged to use the 
program to recover the 3D scene represented in Figure 4, and also to use this program 
with their own images after their camera has been calibrated (see above).  
 

3.  Figure-Ground Organization (FGO) 
 

In the Introduction, we enumerated the tasks that had to be accomplished when we want 
to recover a 3D scene. One of these tasks, isolating objects from their background, was 
called the Figure-Ground Organization (FGO) problem. The fundamental importance of 
this problem was pointed out by the Gestalt Psychologists almost 100 years ago, but they 
made very little progress in developing it primarily because they lacked the mathematical 
and computational tools to do so. Following the Cognitive Revolution, such tools became 
available: computers were built, Information Theory was formulated, and Cybernetics was 
established as an interdisciplinary specialty to integrate engineering, biology and 
psychology. Unfortunately, the progress made in the development of applied mathematics, 
computer science and electrical engineering did not include any important advances in our 
understanding of the most important basic problem in vision,  viz., the FGO problem that 
our machine had to solve. This absence of significant progress with the FGO problem 
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allowed the vision community to stop worrying about how important it was and, in time, 
they even began to denigrate this as well as many other contributions of the Gestalt 
Psychologists to visual perception. The few who did try to work on it tried to formulate 
theories and models of FGO without clarifying the ill-defined concepts used by Gestalt 
Psychologists before the Cognitive Revolution. This led to a lot of confusion in the 
machine vision community on one side and in the human vision community, on the other. 
This confusion would (and should) have been avoided if “visionists” on both sides had 
remembered the question that actually underlay the FGO problem, namely, how does the 
human observer see real 3D objects in natural 3D scenes veridically on the basis of the 
information provided by 2D real retinal images. Human beings, as well as other animals, 
obviously do. How do they do it? Ignoring, or downplaying the importance of studying 
real viewing conditions inevitably changed the nature of the problem. Confining efforts to 
the study of 2D stimuli should not, and did not, lead anywhere. 

 
Finding objects in the 2D image and in the 3D scene 
 
We begin by considering how the traditional approach tries to distinguish objects from 
their backgrounds. This approach uses information only present in a pair of 2D images 
with slightly different views of the scene. The pair can be obtained either by using two 
eyes (“binocular disparity”) or by using successive images from a single eye (“motion 
parallax”). Julesz (1971) provided strong support for the functional advantages inherent in 
having more than one view of a scene by showing that binocular disparity and motion 
parallax are critical in breaking camouflage. His most compelling support for this claim 
was obtained when he showed that perceptions of 3D spatial relations can be produced 
with “random-dot-stereograms”. Such stereograms contain no useful monocular 
information about the objects that are actually present in the visual field.  

 
Figure 7 illustrates what can be accomplished by using two different images. The camera 
mounted on our robot acquired a pair of stereoscopic images that it used to detect and 
locate the 3D objects represented in its pair of 2D images (see Figure 1). The robot started 
the process by using binocular disparity to compute a 3D map. This was done by using an 
off-the-shelf algorithm for solving the stereo-correspondence problem (Wong, Vassiliadis 
& Cotofana, 2002). Two computational steps were then used by the robot to construct a 
top view of the 3D scene, specifically, the 3D points cloud was computed from stereo 
disparity by using the triangulation method, and the floor was approximated by finding a 
3D plane which contained the maximal number of points. Note that this step was also 
used to calibrate our robot’s camera, namely, we computed the orientation of the robot’s 
camera and its position relative to the floor (see the parameters of the extrinsic matrix). 
The detection of the floor is an important step because:  
 

(1) one can remove the points close to the floor and beneath it once we know where 
it is; 

(2) one can project the remaining 3D points onto the floor to generate a top view 
image. The white dots in Figure 7b show the top view image after the floor 
points were removed. This made the layout of the objects in the scene very clear.  
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We then identified the number of objects, their positions and their orientations by fitting 
rectangles within the top view image. The 3D distances, sizes and aspect ratios may not 
be very accurate in this top view, but all 8 objects present in this scene were detected and 
located relative to each other quite well. This is evident in the 2D image of Fig. 7b. It is 
clear that even at this early stage of analysis, the robot has obtained considerable 
information about this 3D scene. The top view clearly has sufficient information for the 
robot to plan navigations among all of these 8 objects. The top view of the furniture 
arrangement shown in Fig. 7b also makes it clear that the critical first step of FGO has 
been solved for this rather complex furniture arrangement. The computation of the top 
view and its use in solving the FGO problem makes intuitive sense because a top view of 
objects in most natural scenes is not likely to have one object occluding another. 
Furniture stacked in a storeroom might be a relatively common exception. Occlusions are 
common in the original view shown in Figure 7a because far objects are likely to be 
occluded by near objects but this does not present a problem when the top view is used. 
Using a scene-centered, rather than a viewer-centered, representation early in processing 
proved to be essential for solving the FGO problem.  
 

     
                 (a)                                            (b)                                       (c) 
Figure 7. (a) A 2D image of a 3D scene containing children’s furniture. (b) A top view of 
the 3D scene in (a) showing the 8 objects that were “seen” by the robot (the robot 
analyzed the 3D scene within a 3m viewing distance). The green rectangles represent 
individual objects, their sizes, aspect ratios and orientations. Note that even the occluded 
chair in the back of the scene was detected. The top view was produced from a pair of 
images acquired by the robot’s stereoscopic camera. (c) The detected regions for 
individual objects in the 2D image. 
 
If you want to do more than navigate in this environment, it probably will become useful 
to recover the actual 3D shapes of each of the 8 objects. Their 3D shapes will be the best 
way to identify them because their shapes will let you know their purpose, sitting on some 
and eating off others. Doing this requires obtaining 2D information about the edges 
representing each 3D shape. Detecting meaningful edges in a single 2D image is difficult 
because there are always many spurious edges in the image caused by texture and 
shading. The problem can be solved if the region in the image representing each 
individual object can be specified. Figure 7c illustrates how our model solved this 
problem. The model estimates the height of each object from the distribution of the 3D 
points that projected to a given rectangle in Figure 7b. This operation produced a 3D 
“bounding box” for each object. This 3D box is then projected to the original 2D image. 
This produces a convex region containing the image of the object. So, our method, as 
described in this section, can actually be used to produce both 3D and 2D FGO: it can also 
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be used to determine the spatial location of each of the objects on the floor as well as in 
the 2D image. Note that the 2-Dimensional FGO is based on a 3-Dimensional FGO. The 
3D FGO is easier to perform so it is not surprising that it is best done before the 2D FGO. 
The 2D FGO is also critical, however, because it provides a means to transition from both 
the texture and surface information that were used to produce the depth map to the 
contours that are essential for recovering individual 3D shapes.   
 

4.  Extracting relevant edges 
 
Now that we know that the recovery of 3D shapes depends entirely on contours, and that 
texture and surfaces play no role, we can ask how we can extract relevant (hence 
meaningful) contours of objects within a given scene? We need to know which contours 
belong to which object. Furthermore, we need to know how to organize the 2D contours 
in the retinal image so that this organization conveys sufficient information about the 3D 
shapes “out there” to permit an observer (human or robot) to function effectively in its 
environment. Considerable progress has been made in this direction recently. It is 
described in this and the next section. 
  

                        
(a)                                                        (b)                                                        (c) 

 

      
(d)                                                 (e) 

 
Figure 8. (a) An input image. (b) Its binary edge image. (c) These edges grouped to edge 
fragments. (d) Occluding contours of a foreground object incorrectly merged with the 
background objects. (e) Contours of a single object selected in the image when the FGO 
problem has been solved correctly. 

 
The problem of extracting relevant (hence meaningful) edges in a 2D image that contains 
unfamiliar objects has traditionally been deemed to be an insoluble problem; a problem so 
difficult that many students of human and computer vision assume that a solution is 
actually impossible. The main difficulty traditionally seen arises from the fact that any 
edge-detection algorithm will detect at least 10 times as many edges as it should detect 
and will also miss some very important edges. These irrelevant (meaningless) edges are 
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produced in the image by such things as texture, occlusions, shadows and by specular 
reflections.   
 
In computer vision, where most of the work has been done so far, the process of 
extracting relevant edges is called “contour grouping”. It begins by taking  a color or a 
gray-level image (Fig. 8a) and reducing it to a binary image composed of edge pixels (Fig. 
8b). The edge pixels are then grouped to form curves called “edge fragments”. Different 
edge fragments are shown in different colors in Fig. 8c. This is a greedy, low-level 
process. It uses only very simple processes such as proximity and good continuation and it 
uses them at the pixel level. Some other simple rules are often applied to eliminate edge 
fragments, e.g.,. the  removal of too short or wiggly fragments. These processes, however, 
are not likely to extract the true contours of 3D objects. An example of this kind of failure 
is shown in Figure 8d where contours of two different objects have been merged into a 
single contour. If such mistakes are not corrected, it will be impossible to perform a 
meaningful recovery of the 3D shape. The only algorithms developed to date that can 
produce correct results require familiarity with the 3D shape and its 2D images before the 
recovery can actually be made (Ferrari et al., 2006; Latecki et al., 2008; Yang & Latecki, 
2010; Srinivasan et al.,  2010; Toshev et al., 2010; Ma & Latecki, 2011; Andriluka et al., 
2008; Lin et al., 2009). These algorithms assume that the observer saw multiple views of 
each object and stored them in memory. These stored views are then used to match the 
edges in the retinal or camera image. Clearly, this multiple-view theory is not only very 
cumbersome; it is actually implausible because the contours of the 2D image change in 
unpredictable ways whenever the viewing direction changes. To actually use this 
approach, one would need a very large number of 2D models for each 3D object. 
Considering that there is a huge number of possible objects in our environment, a large 
number of possible positions, as well as the large range of sizes of the objects in the 2D 
image, the matching problem inherent in this kind of algorithm leads to a combinatorial 
explosion.  
 
We already knew that this problem can be solved easily without familiarity by human 
beings who see unfamiliar shapes veridically. Our robot can do it without familiarity, too. 
Furthermore, it can do it easily once the specific 2D region that contains the image of a 
specific 3D object has been determined (see Fig. 7c). With this known, the algorithm 
focuses its analysis on the small set of edge fragments that are located within this region. 
Concentrating the analysis on a meaningful, predefined 2D region substantially improves 
the likelihood of extracting the relevant set of contours because contours belonging to the 
background have been eliminated from consideration (see Figure 8e).  
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Fig. 9. (a) Detected objects. (b) Their 3D bounding boxes. (c) The recovered 3D 

shapes and locations. 
 

Once the relevant 2D contours have been extracted for each of the 3D objects, two types 
of 3D representations can be produced, namely, a coarse representation of the 3D shape in 
the form of a rectangular bounding box (Figure 9b), and a more precise (finer) 
representation in the form of the 3D contours that represent each 3D shape (Figure 9c). 
How are the two representations computed? Consider the bounding box first. It can be 
computed by using three vanishing points (see Figure 10). One vanishing point is the 
intersection of symmetry lines (see Figure 5). The second vanishing point is the 
intersection of the lines in the 2D image that are projections of the vertical lines in the 3D 
scene. Note that in the presence of gravity, very many natural objects, such as cats, dogs, 
birds, and human beings, as well as furniture have appendages with multiple vertical 
edges we call their “legs”. Adjusting the orientation of these appendages permits them to 
maintain their balance when they stand or walk on tilted surfaces. This second vanishing 
point (which will be called here the “vertical vanishing point”) can be determined solely 
on the basis of information about the direction of gravity, information that is readily 
available to living creatures (see Figure 4). The vertical vanishing point is calculated as 
follows: Assume that the direction of gravity is Ng, then in the image the vanishing point 
for those 3D vertical lines can be expressed as:   

 
  gMNv g =*                                                              (9) 
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Equation (9) suggests that the vanishing point, like a horizon is determined by the 
camera’s intrinsic properties and the camera’s orientation. Finally, note that for many 
objects, such as furniture, there is a third vanishing point that represents the edges 
orthogonal to the other two types of edges in 3D (Figure 10). All three of these vanishing 
points form right angles with the vertex at the center of the perspective projection of the 
camera. This fact is equivalent to the following equation characterizing image properties 
(eq. 8.7 in Hartley & Zisserman, 2003): 
 

  0*1* =−−
j

TT
i vKKv      ji ≠                                       (10) 

 
The equation (just above) implies that if we know any two vanishing points, we can 
compute the third. In the case of animal bodies, which are not rectangular like chairs, the 
third vanishing point is also meaningful: it represents the direction in which the animal is 
facing. This means that a 3D rectangular bounding box computed on the basis of these 3 
vanishing points is at least an adequate, albeit coarse representation for most objects, 
animate and inanimate.  

 
 
Figure 10. A perspective projection of a box. VP1, VP2 and VP3 represent the vanishing 
points for the three groups of mutually orthogonal line segments of the box.  
 
 
Note that these 3D bounding boxes provide a type of information that is analogous to the 
way the boxes were estimated when we solved binocular FGO problem (see Figure 7b). 
The difference is that the boxes in Figure 7b were estimated on the basis of texture 
information, whereas the boxes in Figure 9b were estimated on the basis of contour 
information. One might consider the fact that these two different analyses led to the same 
result an instantiation of the action of Grossberg’s feature and boundary contour systems 
(Grossberg & Mingolla, 1985). There is an important difference, namely, our analyses are 
taking place at the stage of the 3D representation, the stage at which the 3D objects 
actually reside.  
 
A precise (fine) representation of the 3D shape can be produced by performing the 3D 
shape recovery on the basis of the object’s symmetry (see Figure 9c). This recovery is 
done by using the algorithm described in Section 2. The only operation that remains to be 
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done is the detection of the 3D mirror symmetry in the 2D asymmetrical image. This 
operation is explained in Section 5. 
 

5.  Establishing the 3D symmetry correspondence of contours 
  
A 2D image of a 3D mirror-symmetrical object is itself symmetrical but only for a narrow 
range of 3D viewing directions, so the question arises as to how a 3D symmetry can be 
detected in a 2D asymmetrical image. This problem is not trivial because pairs of 
unrelated 2D curves always have a 3D symmetrical interpretation (Sawada et al., 2011). 
In other words, without additional constraints, 3D symmetry is accidental. This fact is 
illustrated in http://www1.psych.purdue.edu/~zpizlo/sym2011/DemoFiles/Demo8.html 
where two different symmetrical interpretations of a 2D curve are given. One of these 
interpretations is natural in the sense that it agrees with the percept of an observer 
produced by a stationary 2D curve. The other interpretation is surprising. The difference 
between these two interpretations is that the natural interpretation consists of two planar 
curves. The fact that the human visual system uses a planarity constraint has been known 
at least since Leclerc & Fischler (1992) and Sinha & Adelson (1992) published their 
models, but it was less clear why a planarity constraint is actually used. Planar contours 
are quite common in man-made objects, but they are much less common in biological 
organisms. We believe that the human visual system uses the planarity of contours 
constraint because this constraint eliminates spurious symmetrical 3D interpretations 
rather than because planar contours are common. It is important to point out that the use 
of the planarity constraint does not imply that the 3D interpretations have planar contours; 
it only implies that the interpretations have contours that are biased towards planarity. 
This means that the torsion of 3D curves is kept to a minimum. It turns out that 
minimizing torsion eliminates 3D interpretations that correspond to degenerate views, 
views that preclude the veridical perception of 3D objects (Sawada et al., 2011). 
 
If two 3D curves are planar and mirror symmetrical, their 2D images are related by a 2D 
affine transformation in the case of an orthographic image and by a 2D projective 
transformation in the case of a perspective image. The fact that a 3D symmetry can be 
detected in a 2D asymmetrical image through an application of a 2D transformation and 
its invariants simplifies the problem substantially. Under such conditions, 3D symmetry 
becomes non-accidental in the sense that a 2D image of a 3D asymmetrical shape is 
unlikely to have 3D symmetrical interpretations.  
 
The task of detecting 3D symmetry in a 2D image is always simplified if higher order 
features, such as corners, intersections, complex curves and closed contours are detected 
first. Two pairs of feature points in a 2D image correspond to two pairs of mirror 
symmetrical points in a 3D interpretation only if the line segments connecting the 2D 
corresponding points are parallel in an orthographic image and if they intersect at a 
vanishing point in a perspective image. Recall from the section on 3D scene recovery that 
vanishing points and lines can be estimated directly from vestibular cues provided by 
gravity. The pictures at http://web.ics.purdue.edu/~li135/SymDetect.html show the result 
of establishing 3D symmetry correspondence for a few objects shown in 2D perspective 
images. In this example, our model checked whether any two junctions in the 2D images 
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satisfy the following two constraints: (1) the line connecting the junctions passes through 
one vanishing point and (2) the difference between two junction angles is equal to the sum 
of the angles formed by the two junctions with the other two vanishing points (see Figure 
11b). These are the necessary conditions for a 3D symmetric interpretation in the case 
where the pair of symmetric curves are on parallel planes (like in the case of two sides of 
a chair shown in Figure 11a). The symmetrical pairs of curves are drawn in the same 
color. Once the contours have been organized, it is relatively easy to recover the 3D scene 
including the 3D shapes contained within it. 
 

 

      
                  (a)                                           (b)                                      (c) 

Figure 11. (a) Extracted curves for the image of a chair. Curves corresponding to the same 
vanishing points are drawn in the same color. (b) Two necessary conditions that are used 
to check whether the two edges of a junction are the potential symmetrical edges of 
another junction. (c) Detected symmetrical curves for the image in (a). Symmetrical 
curves are drawn in the same color.  
 

6. Recovery of the top view of a 3D scene by human subjects. 
 
The model results described in Section 3 imply that our model recovers a 3D scene very 
well. There is no sign of systematic errors and the random errors were not large. Is 
subjects’ performance similar? We asked three subjects to draw the top views of 3D 
scenes and we compared the drawings to the ground truth provided by the PhaseSpace 
camera system (Appendix C). Below, we present the main aspects of the experimental 
method and of the results. 
 
Methods 
 
Subjects 
Three subjects (TK, YS, and XZ) participated in the experiment. All observers had 
corrected-to-normal vision. TK was the author and XZ was a naïve subject. 
 
Stimuli 
The experiment was performed in a room (7.92 m × 8.53 m) illuminated by fluorescent 
lights on its ceiling. The walls were white with doors on two opposite sides. The floor was 
covered with blue, textureless carpet. An experimenter placed four or five pieces of 
children’s furniture such as chairs, tables, bookshelves and garbage bins. They were 
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placed before each trial to form a scene without any occlusion from the point of view of 
the subject. An example of a typical scene used is shown in Figure 12.  
 

 
Figure 11. A typical scene used in Experiment 1 

 
The positions of objects were measured by PhaseSpace motion capture system (see 

Figure 13). The system is equipped with 16 pairs of cameras, each pair having two 
orthogonally oriented one-dimensional cameras. This system computes the 3D positions 
of multiple unique LEDs in a scene. The accuracy is better than 2 cm (see Appendix C for 
calibration details). In this experiment, one LED was put in the center of each object. 

 
Figure 12. PhaseSpace motion capture system 

 
Procedure 

Each subject was tested in 40 trials (20 trials with binocular viewing and 20 trials with 
monocular viewing). The subject stood in a designated position viewing the scene. The 
subject reconstructed the scene on the tablet computer by dragging and dropping the 
ready-made icons (Figure 14). On the computer screen, there were icons which 
represented the shape and the relative size of each piece of furniture. The name tag was 
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placed on the bottom right corner of the icon. The subject was asked to drag and drop the 
icons with a pen to reconstruct the layout of the scene from a top view. The subject was 
instructed to use the sizes of the icons when deciding about the inter-object distances on 
the computer screen. The subject could rotate the icons to represent the orientation of 
objects.  

 

   
Figure 13. Interface on the tablet computer screen 

 
Exposure duration was unlimited; the subject could look at the scene until he or she 

finished drawing the top view on the computer. After each trial, the experimenter put an 
LED on each object and recorded the LED positions by the PhaseSpace system. It took 
about 12 to 15 minutes to complete one trial. In half of the trials to the subject viewed the 
scene with two eyes. In the remaining half, the viewing was monocular (the left eye of the 
subject was occluded).  
 
Results and Discussion 
To evaluate how well the subject reconstructed the scene, the pairwise distances among 
all objects and the subject were computed. If there were n objects, (n+1)*n/2 pairwise 
distances were computed. The actual Euclidean distances among the centers of the objects 
were obtained by the PhaseSpace system which detects the positions of LEDs attached to 
the centers of the objects. The subject’s reconstructed distances were obtained from the 
drawing on the tablet computer. The subject was instructed to scale the distances on the 
monitor by referring to the sizes of icons which represent the sizes of the physical objects. 
The mean squared error (MSE) for pairwise distances was estimated to evaluate the 
accuracy. The mean squared error is defined as follows: 
 

                                                                                            (11) 
 
where d' is a reconstructed distance and d is an actual distance. The MSE is equal to the 
sum of the variance of normalized distances (d′/d) and the squared Bias: 
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                                              MSE = VAR(d'/d) + Bias2                                        (12) 

 

where Bias =  . Taking the square root of MSE and VAR yields the root-mean-
square (RMS) error and standard deviation (STD) which have the unit of % of actual 
distance: 
                                                                                                               (13) 
                                                                                                                (14) 
 
Table 1 shows these errors calculated for each subject.  
 
Table 1. Monocular and binocular errors of Subject’s Reconstruction in Experiment 1 
Subject Viewing condition RMS(%) STD(d'/d) (%) Bias(%) 
TK Monocular 

0 0257 
 

20.20 19.70 4.64 
TK Binocular 13.79 12.65 -5.56 
YS Monocular 

 
21.99 15.96 15.17 

YS Binocular 20.71 15.27 14.03 
 

XZ Monocular 
 

27.16 21.80 16.26 
XZ Binocular 24.72 21.13 12.88 

 
The RMSs of these pairwise distances ranged from 13% to 27%. It can be seen that the 
Bias was quite large in the case of YS and XZ. They systematically overestimated 
distances. The TK’s Bias, computed from all 20 monocular and all 20 binocular trials was 
close to zero. But this does not necessarily mean that his Bias was close to zero in 
individual trials. The analysis of the nature of Bias is important because it may shed light 
on the question as to whether the source of Bias is related to perception or response bias. 
The subjects were asked to scale the distances on the monitor by using the sizes of icons 
representing the objects as reference. Note, however, that the inter-object distances were 
an order of magnitude larger than the objects themselves. This is very similar to the 
conventional size constancy task, which is known to lead to large variability (Brunswik, 
1944). It is possible that after the subject set the first distance, he used this distance as a 
reference to decide about the remaining distances. This way the subject would avoid 
comparing distances and sizes of very different magnitudes. If subject used this approach 
in reconstructing the scene, then all distances within a given trial would share the same 
systematic error. This, in turn, implies large random fluctuation of Bias across trials. 
Figure 15 shows histograms of the intra-trial Bias for monocular and binocular viewing.  
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Figure 14. Histogram of the intra-trial Bias of three subjects (TK, YS and XZ) in monocular and binocular 

viewing
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The intra-trial Bias varied from -0.1 to 0.5. This variability of Bias contributed to large 
values of MSE and VAR. Note that the fact that the Bias is similar in monocular and 
binocular viewing suggests that it is caused by response bias, rather than by perceptual 
distortions.  
 
Next, we evaluated the source of Bias. If Bias is caused by the difficulty in scaling the 
distances in each trial (as suggested above), then Bias would go away after the 
reconstructed space is scaled in each trial. But it is also possible that Bias is caused by 
distortions of the visual space, such as affine or projective. The presence of such 
distortions will be verified by applying transformations to the reconstructed top views and 
verifying whether the distances among transformed positions of objects are closer to the 
true distances. We begin with size scaling and rotation of the reconstructed map. 
Specifically, the best rotation and size scaling in the least squares sense was applied 
independently to individual trials. Rotation is needed because there is no reason to assume 
that the orientation on the computer screen was identical to the orientation in the room. In 
other words, the subject did not try to match directions of the walls in the room with 
directions of the frame of the computer monitor. The center of the scaling and rotation 
was placed at the subject’s position. Size scaling removed the intra-trial Bias discussed in 
the previous paragraph. This is illustrated in Figure 16, which shows histogram of intra-
trial Bias after size scaling. Specifically, the variance of the intra-trial Bias decreased by a 
factor of  X, Y and Z for TK, YS and XZ, respectively. 
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Figure 15. Histogram of the intra-trial Bias of three subjects (TK, YS and XZ) in monocular and binocular 

viewing after size scaling 
 
In addition to this Euclidean transformation, the affine and projective transformations 
were also applied to the reconstructed positions to all trials. If the affine or projective 
mapping represents perceptual bias, then affine or projective transformation will reduce 
the errors substantially. All transformations were optimal in the least square sense. Table 
2 shows all the transformations that were used. Note that the translation is not explicitly 
shown in Table 2. Translation was performed as the first step, by assuming that the 
physical position of the subject coincided with the position of the icon representing the 
subject on the computer screen.  
 
Table 2. Transformations applied to the reconstructed positions 

Transformation Equation 

Euclidean transformation  
 

Affine transformation 
(with two parameters) 
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Affine transformation 
(with four parameters) 

 
 

Projective transformation 
(with two parameters) 

 

 
 
Projective transformation with 2 parameters was applied to the data after the affine 
transformation with 2 parameters to simplify the analysis. Projective transformation after 
affine transformation with 4 parameters was also applied and showed similar results. The 
effect of the individual transformations was evaluated by computing standard deviation of 
the normalized distance across 20 trials. The random errors, as measured by standard 
deviation of the normalized distance, show no systematic difference between monocular 
and binocular viewing. In particular, for TK and XZ, binocular viewing led to better 
performance, while the opposite was true for YS. As we can see, errors decreased 
substantially when rotation and scaling were applied. In fact, scaling was the main source 
of error because rotation does not affect the pairwise distances. Further transformations 
such as affine and projective did not affect errors much. This implies that the human 
visual space is likely to be Euclidean, rather than affine or projective, as prior research 
suggested. This way, we confirmed that the 3D vision of our machine is similar to the 3D 
vision of our subjects. 
 
So, how do we explain the fact that human subjects perceive the layout on the floor so 
well? There is no systematic error, and the random variability is quite small. The 
explanation turns out quite simple, computationally, once we recognize the operation of 
several effective a priori constraints: (i) gravity, (ii) horizontal floor on which all objects 
reside, and (iii) known height of subject. 
 
(i) It is known that humans are able to judge the direction of gravity with threshold less 
than 1 deg (Garten ,1920, Neal, 1926, Skavenski, et. al. 1979).  
(ii) The fact that all objects reside on the common horizontal floor allows one to 
reconstruct the positions of all objects even using information provided by one eye, only.  
(iii) In order to solve the triangle (Figure 17), the subject has to know his own height. This 
will allow the subject to reconstruct the layout of the scene, depths of all objects, and all 
pairwise distances without using any depth cues. Recall that using depth cues leads to 
large distortions of the visual space. When effective a priori constraints are substituted 
for depth cues, the visual space becomes Euclidean.  
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Figure 17. Assume that the standard deviation of judging the angles α and β relative to 
gravity is 1 deg. α represents the angle between the eye and the direction of gravity, and β 
represents the angle between the subject’s vertical body and the horizontal floor. Assume 
that these two judgments are independent.  For the viewing distance of 2m (like in the 
Experiment), the predicted standard deviation of distance judgment is 5%, which is close 
to what we measured.  
 
 
Summary and Conclusion 
 
We developed a set of computational tools (models) that allow a robot to “see” a natural 
3D scene and to “understand” it in the sense that it can recover the 3D shapes, sizes and 
locations of the objects in the scene as well as the free spaces among them. The Figure-
Ground Organization and 3D shape recovery tools built into our robot permits it to 
perform both of these complicated tasks on its own. Despite considerable progress, there 
is still a lot of work to be done. By far, the most important unfinished business is to 
implement the algorithms in such a way that the model does its visual processing in ”real 
time” as defined by the temporal processing characteristics of the human and other 
biological systems. Once these computations are performed in real time, the next step will 
be to implement computational models of motion perception. This will allow the robot to 
deal with dynamic environments as well as we do. Last, but by no means the least task 
facing us, the models currently used for extracting all relevant contours of 3D shapes 
should be elaborated so that the robot can extract 3D shapes and scenes with the high 
degree of precision characteristic of the human visual system. Note that all of these 
unfinished projects are actually elaborations of the 3D shape and scene recovery models 
that we have in hand now. In other words, all of the major steps required for 3D shape and 
scene recovery have been accomplished and they can be performed autonomously by a 
robot at this time. The remaining steps (described just above) are designed to enhance its 
performance, bringing it in line with the performance of human beings. Once they are 
accomplished, our robot will not only be able to act autonomously; it will also be able to 
navigate within natural scenes as well as a human being can navigate under similar 
conditions. There is even good reason to believe that the FGO and 3D shape-recovery 
tools that we have seen work so well for our robot are actually rather similar to those used 
by human beings performing similar tasks. We feel entitled to make this claim because 
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when we tested these tools in human psychophysical experiments, the human and the 
model’s performances were very similar (Kwon et a., 2011; Li et al., 2011). Even if we 
ignore this psychophysical support, the mere fact that the robot can actually “see” a 3D 
scene veridically and plan its actions effectively within it, provides evidence for our belief 
that the robot’s tools are at least biologically-plausible even if they ultimately prove to be 
different from those actually used in the human visual system. It is important in 
evaluating these provocative claims to keep in mind that no other existing machine vision 
system has even come close to approximating the performance of the human being in 
even very simple visual environments. Our machine vision system approximates human 
performance very well in relatively complex, naturalistic environments. Discovering that 
a system like ours can do this provided us with some new insights into how a visual 
system like ours accomplishes what it does so well. Finally, explaining how the human 
visual system works has been only one of the goals of our work. 
 
It has not gone unnoticed that robots, equipped with the novel kind of computational 
visual system described in this report, will be able to deliver food and supplies in hospitals 
and trim grass on lawns at least as well as conventional contemporary robots can perform 
such tasks, but conventional robots, unlike ours, accomplish these tasks by using tools that 
do not resemble those used by humans beings. Our robot’s tools do and this fundamental 
difference opens up the possibility of having a machine emulate a wide range of human 
activities within quite complex natural environments. This becomes possible because our 
machine and human beings perform effective navigations without measuring absolute 
distances. Both navigate by constructing a limited number of accurate representations of 
3D shapes. All other contemporary robots base their navigations on making many iterative 
measurements of absolute distances. The simple visual/gravitational method used by our 
machine for FGO, 3D shape and 3D scene recovery probably works so well because it 
emulates the method that human beings, and many other successful animals, honed during 
the millennia required for their evolution. 
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Appendix A: The recovery of a pair of symmetrical points 
 
Suppose x is a point in a 2D image and it is expressed by Euclidean coordinates. Its 
corresponding homogenous coordinates can be written as 

( )TTxx 1* =                                                           (A1) 
Suppose M is a 3x3 matrix that consists of the first three column vectors of a camera 
matrix and p4 is the fourth column vector of the camera matrix. Then all 3D points whose 
image is x is expressed as follows (Hartley & Zisserman, 2003)  

)( 4
*1 pkxMX −= −                                                     (A2) 

in which k is a free parameter. Note that X is a vector with the Euclidean coordinates of a 
3D point.  Suppose X1 and X2 are a pair of symmetric 3D points, their images are x1 and 
x2. Then from Equation A2, we obtain 

)( 4
*1 pxkMX
iii −= −      2,1=i                                         (A3) 

Therefore, to recover the 3D point X1 and X2 from their images x1 and x2, we need to 
compute k1 and k2 in Equation A3. Suppose the direction of the line X1X2 is V, then V and 
v* must satisfy the following equation 

*1vMV −=                                                           (A4) 
Note that V represents not only the direction of X1X2, but also the normal of symmetry 
plane. Therefore the symmetry plane for X1 and X2 can be expressed as  

( )TT dV=π                                                       (A5) 
where d indicates the position of the symmetry plane.  
X1 and X2 are symmetric with respect to the symmetry plane π if and only if the following 
two conditions are satisfied 

(1) the line X1X2 is perpendicular to the symmetry plane π; 
(2) the midpoint of X1 and X2 is on the symmetry plane π. 

From condition (1), we can derive 
VkXX v=− 21                                                     (A6) 

Combining equation A6 with equations A3 and A4, we obtain 
*1

4
*
22

1
4
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11

1 )()( vMkpxkMpxkM v
−−− =−−−                       (A7) 

Left multiplying by M both sides of the equation A2, we obtain 
**

22
*
11 vkxkxk v=−                                                 (A8) 

Replacing the homogenous coordinates for x1, x2 and v in equation A8 with their 
Euclidean coordinates, we obtain  
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It follows  
21 kkkv −=                                                        (A10) 

Replacing kv in equation A9 with the expression in equation A10, we obtain 
)()( 2211 vxkvxk −=−                                             (A11) 

Equation A11 implies two facts  
(a) x1, x2 and v are collinear. Thus, equation A11 is redundant. 
(b) the ratio between k1 and k2 is proportional to the ratio of the vectors x2v and x1v.   
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Because x1 and x2 must be on the same side of v, equation A11 can be written as  
vxkvxk −=− 2211                                                 (A12) 

where |x1-v| and |x2-v| represent the distance from x1 and x2 to v. Equation A12 suggests 
that the ratio of k1 and k2 is proportional to the ratio of distance from two symmetric 
points to the vanishing point.  
 
From condition 2, we can derive 

0
2

21 =+
+ dVXX                                                   (A13) 

Combining equation A13 with equations A3 and A4, we obtain  
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Combining equations A12 and A14, we obtain 
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Appendix B: Estimating the vanishing point on a horizon from a set of symmetry lines 
 

Let the horizon be expressed as  
( )Twyx llll =*                                                     (B1) 

then ( )Txy llv 0*
0 −=  and ( )Tyw llv −= 0*

1
6

0*
0

* =vl T

 are two points on the horizon 

because  and 0*
1

* =vl T . Specifically v0
* is a point at infinity on the horizon. Then 

all points on l* can be expressed as  
*
1

*
0

* vvv λ+=                                                          (B2) 
Let l1

*,  l2
*, …, lk

* represents the k symmetric lines. Ideally, if all symmetric lines intersect 
with the horizon at point v*, then the following equations will be satisfied 

0** =vl T
i      ki ,...,2,1=                                              (B3) 

Let ( )TT
k

TT lllB **
2

*
1 ...= , then equation B3 is expressed as  

1
* 0kxBv


=                                                          (B4) 

Combining equations B2 and B4, we obtain 
*
0

*
1 BvBv −=λ                                                     (B5) 

Therefore, the problem of estimating the vanishing point on the horizon is changed to 
finding the optimum value of λ that satisfies equation B5 in the least square sense. It 
follows  
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1
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6 If ly is 0, then v0

* and v1
* represent the same point. For this case, we can set ( )Txw llv 0*

1 −= . If both 
lx  and ly are 0, then l* represents the line at infinity and it is the vanishing lines for the planes that are 

parallel to the image plane. For this case, we can set ( )Tv 001*
0 = and ( )Tv 010*

1 = . 
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Appendix C. Calibration of PhaseSpace System 
 
The PhaseSpace motion and position capture system was calibrated with regard to the 
physical space. What is “calibration”? It is a process matching the coordinate of the 
system with that of the physical space. The coordinate in the physical space was defined 
by drawing a rectangular grid with 1m steps on the floor. Then, the positions of the 
vertices of the grid were measured by PhaseSpace system and the transformation between 
the two coordinate systems was derived. 
The positions on the grid of 5 m by 5 m square on the floor were measured by PhaseSpace 
system and the accuracy of the measurements was evaluated in the following way. 
 
Drawing the grid on the floor 
The grid was drawn in the following steps: first, a 5 m by 5 m square was drawn on the 
floor and the square was divided with 1 m steps.  

 
Figure C6. Map of the room to indicate the position of grids, cameras and surrounding objects. Some 

important points are labeled with numbers in parenthesis. 
 
 After that, the strings were placed on the floor to connect the four corners of the 5 m by 5 
m square. Lasers were used to make sure that the strings are straight in the right direction. 
The strings were fixed by duck tapes next to the points. Then the 5 m lines were divided 
into 5 intervals of 1 meter steps by tape measure. Checking the accuracy of intersection, 
the strings were placed to make 25 of 1 m by 1 m squares. All intersection points were 
marked with triangular shape tape. The 5 m by 5 m square with 1 m step strings were 
placed on the floor of the room. 
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Figure C7. The grids of 1 m steps on the floor were drawn with strings. Two diagonals were also drawn to use 

it as a hypotenuse of two triangles. 
 
Comparing the coordinate systems of the physical space and the PhaseSpace system 
 
Recording the 3D positions of 1 m step grids 
The positions of the points in the physical coordinate system were measured using the 
PhaseSpace system. The positions of the measured points were at the vertices of the grid 
on the floor and 60 cm above the vertices of the grid. The positions were recorded by the 
system 300 times for 10 seconds (30Hz). The positions of all vertices of the grid were 
measured with PhaseSpace system. At first, LEDs were placed on every point on the floor 
level and recorded for about 10 seconds. After that, an LED was attached to the 60 cm 
height bar. By putting the bar on each point on the floor, the positions of intersection 
points at 60 cm height level were measured for about 10 seconds, too. The system 
recorded the positions 30 times a second. 
 
Finding stable and reliable points 
Although most recorded data were stable across the recorded time, there was some 
fluctuation across the recorded time. The graphs in Figure 3 show that the ranges of 
measurement in one position for 10 seconds. The ranges were computed by subtracting 
the minimum measurement from the maximum measurement. As shown in the graphs in 
Figure 3, the measurements around the centers were stable. However, the measurements 
around the edges of the square were unstable showing bigger ranges up to 32 mm. 
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Figure C8. The ranges of measurements in one position across the 5 m by 5 m square for 10 seconds. 

Most unstable points were located in row 1 or column 1 which were farthest from the 
center of a circle of cameras. Note that these points could be observed only by the 
cameras which are placed on the opposite side of the circle and are far from the points. 
The cameras above the points could not see the points because of the limited viewing 
angle of the cameras, which are oriented to the center of the circle. Hence, small sampling 



37 
 

error in the computation causes the bigger error. If those points were removed, the errors 
should have decreased close to zero. Actually, after excluding the data of row 1 and 
column 1, the maximum ranges were within 2.3 mm. 
 
Finding the transformation between physical space and measured space 
Now, the measurements on each point across time were averaged to represent a single 3D 
coordinate for each point. The best 3D transformation between the two coordinate systems 
of the physical space and the PhaseSpace system was derived by minimizing the 
Euclidean distance between the physical positions and the output of the PhaseSpace 
system. Here, the least square method was used. The 3D transformation includes 
translation in x, y and z axis direction, rotation around x, y, and z axis, and homogeneous 
size scaling. In total, there were 7 free parameters. The maximum error of the Euclidean 
distance between physical grid and transformed grid turned out to be 19.9 mm. 
The errors of the x-, y- and z-coordinates were plotted in Figure 4. The errors were 
computed by subtracting the physical position form the measured position after the 
transformation. Below are the graphs of X, Y, and Z axis errors. 
 
After these calibration procedures, the PhaseSpace system could detect the 3D position 
within the maximum error of 2 cm. 
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Figure C9. The errors of the x-, y- and z-coordinates at both floor level in the left column and 60 cm level 

after transformation 
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