
Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

10-03-2012 Final March 2009 - December 2011

Robotic navigation emulating human performance: research plan.

FA9550-09-1-0207

Zygmunt Pizlo, Longin Jan Latecki

Purdue University, West Lafayette, IN
Temple University, Philadelphia, OA

AFOSR, 875 N. Randolph Street, Arlington VA USAF; AFOSR

AFRL-OSR-VA-TR-2012-0724

Public Available Unlimited

We formulated a set of computational tools (models) that allow a robot to “see” a natural 3D scene and to “understand” it in the
sense that it can recover the 3D shapes, sizes and locations of the objects in the scene as well as the free spaces among them. The
Figure-Ground Organization and 3D shape recovery tools built into our robot permits it to perform both of these complicated tasks
on its own. In other words, all of the major steps required for 3D shape and scene recovery have been accomplished and they can be
performed autonomously by a robot at this time. The remaining steps are designed to enhance its performance, bringing it in line
with the performance of human beings. Once they are accomplished, our robot will not only be able to act autonomously; it will also
be able to navigate within natural scenes as well as a human being can navigate under similar conditions. There is even good reason
to believe that the FGO and 3D shape-recovery tools that you have seen work so well for our robot are actually rather similar to
those used by human beings performing similar tasks. We tested these tools in human psychophysical experiments and showed that
the human and the model’s performances were very similar. Even if we ignore this psychophysical support, the mere fact that the
robot can actually “see” a 3D scene veridically and plan its actions effectively within it, provides evidence for our belief that the
robot’s tools are at least biologically-plausible even if they ultimately prove to be different from those actually used in the human
visual system. It is important in evaluating these provocative claims to keep in mind that no other existing machine vision system
has even come close to approximating the performance of the human being in even very simple visual environments. Our machine
vision system approximates human performance very well in relatively complex, naturalistic environments. Discovering that a
system like ours can do this provided us with some new insights into how a visual system like ours accomplishes what it does so
well. Finally, explaining how the human visual system works has been only one of the goals of our work.

Zygmunt Pizlo

317 796 5225

Reset

1

Robot navigation emulating human performance

Introduction

The basic idea underlying our new approach for recovering natural 3D scenes makes use
of mechanisms employed by human beings to recover 3D shapes from 2D images (Li et
al., 2009; Pizlo, 2008; Sawada & Pizlo, 2008; Li, 2009; Sawada, 2010; Pizlo et al., 2010).
The novel, critical aspect of our approach is that a priori constraints are at least as
important in 3D vision as visual data. This approach is different from all other, more
conventional approaches in which the reconstruction of 3D shapes and 3D scenes is a
hierarchical process based on a number of independent visual modules responsible for
acquiring and combining pieces of visual information, called “depth cues”, e.g., texture,
shading, motion, disparity, and vergence. Our novel approach, described with David
Marr’s (1982) widely-known terminology, bypasses a viewer-centered representation by
recovering geometrical properties of objects and their environment in an object-centered
representation. Our approach is preferable to the conventional approach for two different,
but related reasons. First, it is known that despite the fact that the human beings’
perception of 3D distances and 3D sizes is usually not veridical, the human being’s
perception of 3D shapes is always veridical.1

 Second, several very effective a priori
constraints for the perception of 3D shape are known, but no effective constraints are
known for the perception of the 3D distances between pairs of 3D points. An additional
advantage inheres in starting to recover 3D scenes with 3D shapes. Starting with 3D
shapes allows the observer to “see” the “invisible” back parts of opaque objects.
Paraphrasing Bartlett (1932) to put our novel approach into a broad historical perspective,
we can say that using 3D shapes to construct 3D scenes allows an observer to actually “go
beyond the information given”. The special role and significance of shape in visual
perception was appreciated and highlighted by the Gestalt Psychologists almost a 100
years ago, but the mathematical and computational tools necessary to formulate their ideas
and to make use of them in computational models did not become available until recently.
This report reviews several of these tools and illustrates how they can be applied to the
recovery of a natural 3D scene, like the scene shown in Figure 1.

We started working on this project because we believe that, at present, the best way to test
any theory in vision is to implement a computational model of the underlying perceptual
mechanisms and to show that it can be used effectively by an autonomous robotic system.
This kind of robotic system acquires visual information, and then plans and executes
actions without any intervention by the designer of the system. We have succeeded in
developing a computational model that does this. It recovers a 3D object from one of its
2D images and then uses these mechanisms to recover naturalistic 3D scenes. These

1By “”veridical” we mean that the percept of the shape of an object agrees with its shape in the real world.
Note that we are ignoring laboratory experiments that were designed specifically to demonstrate the failure
of shape veridicality by using degenerate shapes and/or degenerate viewing directions.

2

scenes permit the robot to perform complex navigations without any aid from a human
being, the kind of activity previously only performed by an alert, human being.

Figure 1. Five man-made 3D objects within a natural scene (the room used for robot
navigation). A camera mounted on the top of this robot provides the visual information
used to guide its navigations. An inclinometer, mounted on top of the camera, provides
the robot with the information it uses about the direction of gravity.

Note that ours is not the approach most often used by others working in vision today.
Vision researchers, more often than not, simply state what they call a “theory” in plain
English and go on to describe some qualitative aspects of what they believe to be a
potential perceptual mechanism. Even when a contemporary vision researcher has actually
used a mathematical or computational model, more often than not, it was tested with
synthetic images or only with a few hand-picked real images. Such tentative and partial
approaches to providing an explanation of a limited visual process was justifiable some
years ago but we believe that we have reached the point at which vision researchers
should be much more ambitious. A nearly complete, working theory of at least some
particularly significant aspect of visual processing should be provided now that this is no
longer beyond reach. Meeting such expectations can be best served by verifying that any
current theory meets at least two criteria, namely, that: (i) it is relatively complete, and (ii)
it has no implicit or unjustified explicit assumptions. The best way to do this is to build a
machine that can actually see as we do, a more complex act than is commonly assumed.

Traditionally, the visual and the motor systems have been treated as separate, independent
modules that could be and were studied separately. But the fact that they are not nearly
independent and that they can, and should be, studied as they work together, rather than
separately, was emphasized by Dewey (1896) more than 100 years ago. He emphasized
that perception is not, and should not be treated as, a passive process. Perception is only
one part of a closed, continuously active “reflex arc”, actually more like a circle or a loop,
called the “perception-action cycle”, in which perception and motor action follow one
another and interact continuously in everyday life. This observation is not only very old, it
was picked up, promulgated, mulled over and elaborated by many others since it was

3

proposed, most notably by Hebb (1949) and by Gibson (1966), who attempted to include
this interaction in their “verbal models” of what is now often referred to as “ecologically-
valid vision”. Note that the integration of vision and action, originally proposed by
Dewey, who credits William James (1890) for pointing him in this direction, makes a lot
of sense, despite its neglect in most contemporary work, for at least two reasons. First, an
observer must actively seek information about the environment by using more than one
viewing direction. The observer must do this to determine whether his initial viewing
direction provided all of the information required to perceive the scene veridically.
Second, the observer needs veridical information about the environment because it is
essential for the efficient planning and successful execution of the specific behavioral acts
that will achieve the desired goals. The reader will surely agree that the best, perhaps even
the only, way to study such complex, but very natural, interactive processing is to develop
a model that sees and acts, as the human being does, and furthermore, that this model
should be realized in the form of a mobile robot now that they are available “off-the-
shelf.” Note that this approach is not novel. It was first proposed long before its
implementation was viewed as either possible or imminent. It goes back at least to
Richard Feynman, who is reported as having said “what I cannot create I don’t
understand” and/or was proposed at the early stages of cognitive science by Miller,
Galanter & Pribram (1960) who said that “The creation of a model is proof of the clarity
of the vision. If you understand how a thing works well enough to build your own, then
your understanding must be nearly perfect (p. 46).” So, all we are really saying here, is
that it is time to put these words into practice.

This final report begins with a description of why, as well as how, a camera should be
calibrated when it is used for “machine vision”. This is followed by a description of the
most important features of our 3D shape recovery model. These features will be presented
with special emphasis on the nature and role of our model’s a priori constraints. Next,
problems inherent in the recovery of the shape of a 3D scene are stated and possible
methods of solving these problems are described. The solutions call attention to the
importance of non-visual, as well as to visual, a priori constraints. Note that by
recovering the shape of a 3D scene, we mean recovering the geometry of the 3D scene up
to one unknown parameter, namely, the overall scale of the scene and the objects within
it. The scale can be based on the estimation of a single distance in a 3D scene. The height
of the observer, a human or a robot, can serve as a particularly useful single distance for a
potential navigator. Finally, having explained what it takes to recover 3D shapes and then
to use this information to recover a 3D scene, we will describe the first step in visual
processing, which is usually referred to as Figure-Ground Organization (FGO), the
terminology favored by the Gestalt psychologists a century ago. Discussing FGO, the very
first stage of visual processing last, will allow us to actually specify what the output of the
first stage of visual processing should be like. Prior to our new approach to the recovery
of 3D shapes and 3D scenes, there was not even a good definition of what Figure-Ground
Organization was, much less of what Figure-Ground Organization should accomplish or
how this could be done.

In our approach, FGO refers to (i) finding the 2D region and its occluding contour for
each object in the 2D image, as well as to (ii) finding the 3D region and its bounding box

4

in the 3D scene “out there”, where the object resides. Once this is done, the internal
contours required for 3D shape recovery are extracted and the 2D information about the
3D symmetry of the shape and the planarity of its contours are determined and included in
the description of the “figure” by labeling its contours. It is clear that in our approach,
FGO refers both to properties of the 2D image and to properties of the 3D shape. This
differs from the conventional view of FGO that limits FGO to 2D features. Note that our
claim that FGO includes 3D, as well as 2D features, was suggested by the Gestalt
Psychologists when they emphasized that the organized figure is always perceived in front
of its background, which is perceived as lying behind as well as around the figure.

1. Calibration of the camera

The order of the next sections does not reflect the order of the computations by the visual
system or the order of importance of our computations. The order simply reflects what
we believe to be the best and simplest way of explaining what we did and why we did it.
Why it is important to calibrate your camera if you want to use it in research on visual
perception will be explained below. We start with the definition of a “camera matrix”.
Most of the equations presented in this paper use this matrix. The process of estimating a
camera’s matrix is called “camera calibration”. A camera matrix is a 3 by 4 matrix that
defines the geometric properties of a camera, like its focal length, principal point, etc.
These properties characterize the perspective projection from a 3D scene to a 2D image.
Why is the camera matrix important? Consider a psychophysical experiment on the
perception of objects from perspective images, such as photographs. The geometrical
properties of these photographs must be known if the experimenter wants to show
photographs of the objects to his subject. Specifically, the subject’s eye (more precisely,
the center of the perspective projection of the eye, called its “nodal point”) must be placed
at the center of the perspective projection for any given picture. This must be done if you
want the retinal image in the subject’s eye produced by the perspective photograph of the
3D object to be a perspective image of the 3D object. This is how the first demonstration
of the rules of perspective projection was done almost 600 years ago by Brunelleschi (see
Kubovy, 1986). This method is still used by modern students of vision to set up their
experiments, e.g., Attneave & Frost (1969). If the eye is placed at any other point than at
the center of the perspective projection, the retinal image produced by a perspective
photograph of a 3D object will not be a valid perspective image of this object. Instead, it
will be an image of a 3D projective transformation of the object because a perspective
picture of a perspective picture is not, itself, a perspective picture (Pizlo, 2008). Failing to
use a perspective projection will almost always lead to a non-veridical percept of the 3D
object (see Pirenne, 1970; Kubovy, 1986; for examples of such distortions). The bottom
line is that when 2D perspective images are used for making 3D inferences, the
parameters of the camera that took the images must be known.

Now that you appreciate why a camera matrix is important, we will describe it in detail.
Consider the relation between a 3D point V* in front of a camera and expressed by
homogeneous coordinates (VX

*,VY
*,VZ

*,VW
)T and its 2D camera image v also expressed

by homogenous coordinates (vx
*,vy

*,vw
*)T. Equation (1) represents the perspective

transformation from V* to v*:

5

** KQVv = (1)

Where
















=

100
0 0

0

v
us

K y

x

α
α

 and ()133333 xxx CRRQ −=

Matrix K is called the “intrinsic matrix”. It defines the camera’s intrinsic properties, such
as its focal length. Matrix Q is called the “extrinsic matrix”. It represents the
transformation from the world coordinate system to the camera coordinate system. This
transformation consists of a 3D translation (-C3x1) followed by a 3D rotation (R3x3). The
geometric details of R and C are described in the following paragraphs. The product of the
intrinsic matrix (K) and the extrinsic matrix (Q) is called the “camera matrix” (P)

KQP = (2)

In equation (1), the 3D point and its image are expressed by homogeneous coordinates
because they allow expressing a non-linear perspective projection by using matrix
notation. The transformation between the Euclidean coordinates and the homogenous
coordinates for a 3D point (VX, VY, VZ)T and a 2D point (vx, vy)T is expressed as follows:

() () **** / W

T
ZYX

T
ZYX VVVVVVV = (3a)

() () *** / w
T

yx
T

yx vvvvv = (3b)

assuming that VW
* and vw

* are not equal to zero.2

 The equations (3a) and (3b) imply that
the homogenous coordinates of a point are not unique. For example, (1, 2, 3, 1)T and (2, 4,
6, 2)T represent the same 3D point. In practical applications, VW

* can usually be set to 1.
This way, 3D homogenous coordinates are trivially obtained from 3D Euclidean
coordinates (and vice versa). The representation of a 3D plane in homogenous coordinates
is the same as that of a 3D point: both are four-element vectors. For example, if π* is a 3D
plane, then all points V* on π* satisfy π*TV*=0. Similarly, in a 2D image, the representation
of points and lines in homogenous coordinates are the same, and they are three-element
vectors.

In this report, some equations use both homogenous and Euclidean coordinates. To avoid
confusion, symbols with asterisks represent the homogenous coordinates of geometric
primitives, like points, lines, or planes. The symbols without asterisks represent the
Euclidean coordinates. The individual parameters in the camera matrix are described next.

2 In homogenous coordinates, if the last value of a vector is equal to zero, the vector represents a point at
infinity.

6

Consider the parameters in the intrinsic camera matrix (K). (µ0, ν0)T is the principal point
of a camera, the point of intersection of the camera image plane with a line emanating
from the center of a perspective projection that is orthogonal to this plane (see Figure 3).
The principal point is close to the center of the camera image, but it is never exactly at the
center, due to technical limitations inhering in the design of the camera. Why are there
such limitations? Consider the fact that when the physical size of a camera’s image,
containing 2000 by 3000 pixels, is less than one centimeter, the displacement of the center
of the camera lens by as little as one millimeter translates into a displacement of the
principal point by more than 100 pixels. This makes it almost impossible to mount the
lens exactly in front of the center of the camera’s image. The green dot in Figure 4
represents the center of the picture and the white dot represents the principal point of the
camera that was used to make most of the examples included in this paper. In our setup,
this point is displaced from the center of the image by about 0.6 degree. This amount of
error in estimating image points would have dramatic implications for binocular
(stereoscopic) analysis of the 3D space. In the human eye, the principal point corresponds
to a region of best vision near the center of the retina, called the “fovea”. The fovea is
well-defined both anatomically and perceptually. Anatomically, the flat floor of the fovea
is a disc with a diameter of about 1.5 degrees. It contains only receptors, called “cones”.
Perceptually, the fovea serves as the center of the visual field. It is the region in which
detail vision is most acute. When an observer orients his eye to look directly at a feature
in order to examine its details, the eye’s orientation will cause the feature’s retinal image
to fall at the center of the fovea, where it is said to be “fixated”. An observer can maintain
fixation of an attended object with high precision: the standard deviation of eye position
during maintained fixation is only 3 or 4 minutes of arc (Steinman, 1965). This is
equivalent to only two pixels in a camera whose field of view is 60 degrees and whose
image is an array of 2000 by 3000 pixels.

The next intrinsic camera parameter considered is called its “focal distance”. The focal
distance is the distance between the center of a perspective projection and the camera
image (Figure 3b). In the intrinsic camera matrix, the focal distance is defined in terms of
the number of pixels along the X axis (αx) and Y axis (αy) in the camera coordinate
system. In other words, both the interval of length αx pixels along the X axis and the
interval of length αy pixels along the Y axis are equal to the focal length. In modern
cameras, the difference between αx and αy is very small, so we can assume that they are
equal. In the human eye, the focal distance is about 2cm, which is the approximate
diameter of the human eyeball. The third intrinsic parameter of a camera is called the
“skew” (s) which specifies how much a pixel is biased from a perfect rectangle. For most
modern cameras, the skew parameter is zero.

There is one more intrinsic camera parameter. It measures what is called its “radial
distortion”. This parameter is not expressed in Equation 1 because the radial distortion
cannot be represented as a linear transformation. In an image with radial distortion, the
straight lines at the periphery tend to be curved (see Figure 2). Radial distortion is obvious
with cameras that have a large field of view (e.g., 60 deg) or a small focal length.

7

Figure 2. (a) Radial distortion of a wide angle camera. (b) the image from (a) after
calibration.

Now consider the extrinsic matrix Q. It defines the transformation between the world
coordinate system and the camera coordinate system. The specification of the world
coordinate system depends on the application. For example, if the task is to recover a 3D
scene in a room, it is natural to use one of the corners of the room as the origin and the
three edges of the room emanating from this corner as the X, Y and Z axes. The camera
coordinate system does not actually depend on the application. It is a fixed characteristic
of the camera. This coordinate system is defined as follows: the origin is the center of
perspective projection of the camera. The XY-plane is parallel to the camera image plane.
The X axis coincides with the X axis of the camera image. The Z axis represents the depth
direction (see Figure 3a). The vector C in Q is the projection center expressed in the world
coordinates. R3X3, a rotation matrix, represents the orientation of the camera coordinate
system. Specifically, the three row vectors in R correspond to the directions of the X, Y
and Z axes of the camera coordinate system expressed in the world coordinate system.

 (a) (b)

Figure 3. (a) The camera’s coordinate system. (b) Schematic illustration of a camera. C
represents the projection center. p is the principal point. The line pC is orthogonal to the
image plane π. f represents the camera’s focal length.

It follows that the camera matrix not only includes a camera’s properties, but also its
orientation and position in an environment (see Faugeras, 2001, and Hartley & Zisserman,
2003, for more details of the camera matrix). The process of estimating camera

8

parameters is called “camera calibration”. A camera is calibrated by acquiring multiple
images of a reference scene, whose geometry is known. Once the 3D coordinates of the
scene and the 2D coordinates in its image are known, one can solve for the camera’s
unknown intrinsic and extrinsic parameters. Open access software for calibrating a
camera, can be found at (e.g., OpenCV:
http://opencv.willowgarage.com/wiki/FullOpenCVWiki).

 2. Recovery of a 3D shape and a 3D scene

The camera matrix defines a camera’s geometry – it specifies how to project a 3D point
onto a 2D image plane. Given a 3D point, its image is uniquely determined. Therefore,
generating a 2D image from a 3D scene is an easy “forward problem” (Poggio et al.,
1985; Pizlo, 2001). However, the “inverse problem”, recovering a 3D scene from its 2D
image, is difficult because the solution is not unique, i.e., for any given 2D image point,
there are infinitely many 3D points that can produce the same 2D image point. Inverse
problems are almost always difficult because they are “ill-posed” and “ill-conditioned”. In
plain English, inverse problems are “insoluble”. The only way to solve an inverse problem
is to impose a priori constraints on the family of possible interpretations, and then
combine these constraints with the available data to find the most reasonable solution.
Ideally, it will be the correct, veridical, interpretation of the conditions in the physical
world.

The symmetry of the 3D shape is a strong a priori constraint. Given a 2D perspective
image of a symmetrical 3D shape, its symmetrical 3D interpretation is unique except for
the size and position. The following equations show how to use the camera matrix (P) to
recover a pair of 3D symmetric points (X1 and X2) from their 2D image (x1 and x2) if the
vanishing point v for the line connecting X1 and X2 is given. 3

The camera matrix P is a 3 by 4 matrix. It can be decomposed and expressed as follows

()433 pMP X= (4)

M is a 3 by 3 matrix that consists of the first three column vectors of P and it is equal to
the product of the intrinsic matrix (K) and the rotation matrix (R). p4 is the fourth column
vector of P. Let x1 and x2 be expressed by the Euclidean coordinates and x1

* and x2
* be

their homogenous coordinates with the third element equal to 1. Then the set of all 3D
points whose image is x1 (or x2) can be expressed as follows (eq. 6.14 in Hartley &
Zisserman, 2003):

)(4
*1 pxkMX iii −= − 2,1=i (5)

3 The vanishing point in the image is the intersection of the lines connecting the images of pairs of 3D
symmetrical points. In 3D space, all of these lines are parallel to one another. In a perspective image, they
all intersect at the vanishing point.

9

ki are free parameters. For the solutions X1 and X2 to be symmetrical, k1 and k2 must
satisfy the following equation (refer to Appendix A for the derivation).










 −=


















−−−

−−−−−−

0
22 4

1*

2

1

21

*
2

1**
1

1* dpMMv
k
k

vxvx
xMMvxMMv TTTTTT

 (6)

For the recovered pairs of symmetrical 3D points, the normal of the symmetry plane is
determined by the vanishing point v, and is equal to *1vM − . The position of the symmetry
plane is determined by the parameter d. d is a free parameter and it can be any real
number, which determines the size (or position) of a recovered 3D object. Figure 6a
shows five objects recovered from the same 2D camera image. Their symmetry planes
have the same orientation, but different positions. The recovered object is small when it is
close to the camera (the cyan box in Figure 6a). The recovered object is large when it is
far from the camera.

Although equation (6) looks complex, it can be simplified in applications after making
some assumptions about the camera’s parameters. For example, if the skew s is equal to 0,
αx and αy are identical, and the origin of an image coincides with the principal point, then
K is a diagonal matrix (K = diag(αx, αx,1)). Furthermore, if the world coordinate system
coincides with the camera coordinate system, then R is an identity matrix and p4 is a zero
vector. It follows that M = K.

Figure 4. The red line above the picture of a 3D scene shows the horizon in this scene.
The red dot below the picture shows the vanishing point corresponding to the 3D vertical
lines. The principal point is marked by a white dot near the center of the image. The
geometrical center of the image is marked by the green dot.

10

Equation 6 suggests that in order to recover a symmetrical 3D shape, the visual system
needs to: (1) know where the vanishing point is and (2) establish which points in a 2D
image, are the images of pairs of 3D symmetrical points. In order to accomplish these two
things, two additional a priori constraints will be required, namely, the direction of
gravity and a line representing the horizon.4

Computation of the vanishing point and identification of symmetric pairs

Gravity is the most critical constraint operating in our environment. Gravity is not only
responsible for stability in our environment, it is also most likely to be responsible for the
symmetry of almost all animals’ bodies. If the ground plane is horizontal, it is orthogonal
to the direction of gravity. An animal’s body will be stable if its body is symmetrical with
respect to the plane parallel to the direction of gravity. A symmetrical animal will not fall
on its side when it stands. It follows that given a symmetrical 3D shape standing on a
horizontal ground, the line segments connecting the symmetrical points are parallel and
orthogonal to gravity. For all parallel lines that are orthogonal to gravity, their vanishing
points fall on a horizon. If the ground plane is not horizontal, the symmetry line segments
of symmetrical objects standing on the ground are parallel to the ground but not
orthogonal to the direction of gravity. The corresponding vanishing line is then
determined by the actual ground plane, not by the plane orthogonal to the direction of
gravity.

Assume that the normal of the ground floor is Nh in the world coordinate system, then the
horizon (i.e., the vanishing line corresponding to the horizontal ground plane) is expressed
as follows (Result 8.16 in Hartley & Zisserman, 2003):

h
T

h NMl −=* (7)

For a calibrated camera, the horizon is known before the image is taken, which means that
this information is truly a priori. Once the horizon is known, we can search for the
vanishing point, which is the intersection of the 2D symmetry line segments of a given
object. Since the vanishing point must be on the horizon, the search is determined by only
one free parameter. Without the horizon, there are two unknown parameters specifying
the position of the vanishing point, and the point cannot be estimated reliably
(specifically, its distance from the object’s image in the 2D camera image). The horizon
provides a very strong constraint for this less reliable parameter. Equation (7) shows that
the horizon is equal to the product of the direction of gravity and the inverse of transposed
M. Because M (the product of the intrinsic matrix K and the rotation matrix R) is unrelated
to the position of the camera (C), the translation of the camera in 3D space leaves the
horizon and all vanishing points in the image invariant. These invariant features are likely
to be useful in robot navigation.

4 The horizon is a vanishing line on the image plane, which is a perspective projection of the line at infinity
on any plane parallel to the horizontal ground plane.

11

The vanishing point on the horizon is obtained by computing the intersection between the
symmetry lines (the green lines in Figure 5b) and the horizon (the blue line). The green
lines (contours in the image) are not always perfectly straight. Therefore, the first step in
computing the vanishing point is to approximate (by using least squares) the symmetry
lines with straight lines.

Let xi

* represent the 2D points on a symmetry line. Let ()Tkkx xxxA **
2

*
13 ...= . Then

the approximating line *l is parallel to the eigenvector of (ATA)3x3 whose corresponding
eigenvalue is the smallest5

*
1l

. Once each symmetry line is approximated by a straight line,
we can estimate the vanishing point for these symmetry lines. Suppose for one object,

, *
2l …, *

nl are the n symmetry lines. Because of noise, the intersections of symmetry
lines with the horizon are not identical. Therefore, we estimate the vanishing point as the
point that has the least square distance to all symmetry lines.

 (a) (b) (c)

Figure 5. (a) The symmetry plane of a 3D object resting on the ground is vertical. (b)
Symmetry lines segments are indicated by green. (c) Pairs of symmetrical contours are
marked by blue.

Let the horizon ()whyhxhh llll)()()(**** = , then ()0)()(***

xhyhh llm −= represents

the direction of the *
hl . Suppose *

0v is one point on the horizon such that 0)(**
0 =h

T lv ,
then the vanishing point is estimated as:

**

0
*

humvv += (8)

5 The singular value decomposition (SVD) method can be used to find eigenvectors. The matrix A can be
decomposed and expressed as TUSVA = where U and V are orthonormal matrices. S is a diagonal matrix
and its values are sorted in a descending order. The direction of the approximating line is represented by the
last column vector of V.

12

where **

*
0

*

)(
)(

h
TT

h

TT
h

BmBm
BvBmu −= and ()TklllB **

2
*

1 ...= . The derivation is given in

Appendix B.

Once the vanishing point is estimated, the pairs of points in the 2D image, which are
images of symmetrical points of an object can be established as intersections of pairs of
corresponding contours and the lines emanating from the vanishing point (see Figure
5c).The 3D symmetrical shape can then be recovered by recovering all pairs of
symmetrical points according to equation (5).

Recovery of the hidden part

We just showed how to recover pairs of symmetrical 3D points by using equation 5. Note,
however, that in order to recover a 3D point, both the image of this point and of its
symmetrical counterpart had to be known. In other words, the symmetrical pairs in a 2D
image must be visible. For example, the back, the seat and the front legs of the chair in
Figure 5b can be recovered on the basis of the symmetry constraint because their
corresponding symmetrical contours are visible. However, the two rear legs cannot be
recovered by using symmetry alone because one of the legs is hidden. In this case, we
begin by using the planarity constraint to recover the point of the chair that is visible. The
contours representing the right side of the chair shown in Figure 5b are coplanar
(approximately) and we can estimate the plane containing these contours from the points
and contours that were recovered by using equation 5 (they could be recovered because
both symmetrical pairs were visible). Once this is done, the intersection of this plane and
the plane defined by the image of the visible right rear leg and the projection center of the
camera, is a 3D line containing the recovered right rear leg. Its invisible, symmetrical
counterpart is obtained by reflecting the recovered right rear leg with respect to the
symmetry plane (see Li, Pizlo & Steinman 2009 for details).

Recovering the shape and scale of a natural 3D scene

We pointed out (above) that for the recovered 3D shapes, their sizes and their positions
are undetermined, but “placing” them on the ground will make it possible to uniquely
determine the relative positions, sizes and pair-wise distances among all of the 3D objects.
When the shape of a 3D object is recovered, the object can either be small and close to the
camera, or large and far from the camera (see Figure 6a). Once the height of a camera
above the floor is known, there is only one size and only one corresponding distance at
which a given object will be resting on the floor. For smaller distances, a recovered object
would be floating in the air, and for larger distances, the object will be below the floor.
Thus, regardless of the number of objects in the scene, their sizes, positions and distances
are determined by only one parameter, namely the height of the camera. Ambiguity only
remains for objects whose relative position with respect to the floor is unknown: this
occurs whenever the bottom part of an object is occluded. Whenever this happens, the
size and distance of the object will be uncertain. But, because real objects cannot occupy
the same physical space, this uncertainty can be reduced by using information obtained
from nearby objects. Figure 6b shows the recovered 3D scene for the picture in Figure 4.

13

The online demo at http://web.ics.purdue.edu/~li135/SceneRecover.html shows an
animation of this recovery. The widths and heights of the children’s chairs were about 30
cm. The accuracy of our size and distance recovery can be evaluated by comparing their
distances and sizes to the 20 cm. wide unit-square scale shown on the floor. The position
and the orientation of the robot’s camera used to make this image are indicated by the
cyan box. These results show that our algorithm not only recovered the size and distance
of the 3D objects accurately, it recovered the entire objects, including their invisible back
contours!

 (a) (b)

Figure 6. (a) Recovering the size and position of a 3D object. The small green cube
represents the 3D position of the robot’s camera. (b) The image of a recovered 3D scene
(for on-line demo go to: http://web.ics.purdue.edu/~li135/SceneRecover.html

The methods described in this section are illustrated by providing the reader with an on
line Matlab program and data (http://web.ics.purdue.edu/~li135/JMP2011/JMPDemo.rar).
The image shown in Figure 4 is the image used for the 3D recovery. The 2D contours
extracted from this image is the input data. The Matlab program will perform the 3D
recovery of the contours as described in this section. The reader is encouraged to use the
program to recover the 3D scene represented in Figure 4, and also to use this program
with their own images after their camera has been calibrated (see above).

3. Figure-Ground Organization (FGO)

In the Introduction, we enumerated the tasks that had to be accomplished when we want
to recover a 3D scene. One of these tasks, isolating objects from their background, was
called the Figure-Ground Organization (FGO) problem. The fundamental importance of
this problem was pointed out by the Gestalt Psychologists almost 100 years ago, but they
made very little progress in developing it primarily because they lacked the mathematical
and computational tools to do so. Following the Cognitive Revolution, such tools became
available: computers were built, Information Theory was formulated, and Cybernetics was
established as an interdisciplinary specialty to integrate engineering, biology and
psychology. Unfortunately, the progress made in the development of applied mathematics,
computer science and electrical engineering did not include any important advances in our
understanding of the most important basic problem in vision, viz., the FGO problem that
our machine had to solve. This absence of significant progress with the FGO problem

14

allowed the vision community to stop worrying about how important it was and, in time,
they even began to denigrate this as well as many other contributions of the Gestalt
Psychologists to visual perception. The few who did try to work on it tried to formulate
theories and models of FGO without clarifying the ill-defined concepts used by Gestalt
Psychologists before the Cognitive Revolution. This led to a lot of confusion in the
machine vision community on one side and in the human vision community, on the other.
This confusion would (and should) have been avoided if “visionists” on both sides had
remembered the question that actually underlay the FGO problem, namely, how does the
human observer see real 3D objects in natural 3D scenes veridically on the basis of the
information provided by 2D real retinal images. Human beings, as well as other animals,
obviously do. How do they do it? Ignoring, or downplaying the importance of studying
real viewing conditions inevitably changed the nature of the problem. Confining efforts to
the study of 2D stimuli should not, and did not, lead anywhere.

Finding objects in the 2D image and in the 3D scene

We begin by considering how the traditional approach tries to distinguish objects from
their backgrounds. This approach uses information only present in a pair of 2D images
with slightly different views of the scene. The pair can be obtained either by using two
eyes (“binocular disparity”) or by using successive images from a single eye (“motion
parallax”). Julesz (1971) provided strong support for the functional advantages inherent in
having more than one view of a scene by showing that binocular disparity and motion
parallax are critical in breaking camouflage. His most compelling support for this claim
was obtained when he showed that perceptions of 3D spatial relations can be produced
with “random-dot-stereograms”. Such stereograms contain no useful monocular
information about the objects that are actually present in the visual field.

Figure 7 illustrates what can be accomplished by using two different images. The camera
mounted on our robot acquired a pair of stereoscopic images that it used to detect and
locate the 3D objects represented in its pair of 2D images (see Figure 1). The robot started
the process by using binocular disparity to compute a 3D map. This was done by using an
off-the-shelf algorithm for solving the stereo-correspondence problem (Wong, Vassiliadis
& Cotofana, 2002). Two computational steps were then used by the robot to construct a
top view of the 3D scene, specifically, the 3D points cloud was computed from stereo
disparity by using the triangulation method, and the floor was approximated by finding a
3D plane which contained the maximal number of points. Note that this step was also
used to calibrate our robot’s camera, namely, we computed the orientation of the robot’s
camera and its position relative to the floor (see the parameters of the extrinsic matrix).
The detection of the floor is an important step because:

(1) one can remove the points close to the floor and beneath it once we know where
it is;

(2) one can project the remaining 3D points onto the floor to generate a top view
image. The white dots in Figure 7b show the top view image after the floor
points were removed. This made the layout of the objects in the scene very clear.

15

We then identified the number of objects, their positions and their orientations by fitting
rectangles within the top view image. The 3D distances, sizes and aspect ratios may not
be very accurate in this top view, but all 8 objects present in this scene were detected and
located relative to each other quite well. This is evident in the 2D image of Fig. 7b. It is
clear that even at this early stage of analysis, the robot has obtained considerable
information about this 3D scene. The top view clearly has sufficient information for the
robot to plan navigations among all of these 8 objects. The top view of the furniture
arrangement shown in Fig. 7b also makes it clear that the critical first step of FGO has
been solved for this rather complex furniture arrangement. The computation of the top
view and its use in solving the FGO problem makes intuitive sense because a top view of
objects in most natural scenes is not likely to have one object occluding another.
Furniture stacked in a storeroom might be a relatively common exception. Occlusions are
common in the original view shown in Figure 7a because far objects are likely to be
occluded by near objects but this does not present a problem when the top view is used.
Using a scene-centered, rather than a viewer-centered, representation early in processing
proved to be essential for solving the FGO problem.

 (a) (b) (c)
Figure 7. (a) A 2D image of a 3D scene containing children’s furniture. (b) A top view of
the 3D scene in (a) showing the 8 objects that were “seen” by the robot (the robot
analyzed the 3D scene within a 3m viewing distance). The green rectangles represent
individual objects, their sizes, aspect ratios and orientations. Note that even the occluded
chair in the back of the scene was detected. The top view was produced from a pair of
images acquired by the robot’s stereoscopic camera. (c) The detected regions for
individual objects in the 2D image.

If you want to do more than navigate in this environment, it probably will become useful
to recover the actual 3D shapes of each of the 8 objects. Their 3D shapes will be the best
way to identify them because their shapes will let you know their purpose, sitting on some
and eating off others. Doing this requires obtaining 2D information about the edges
representing each 3D shape. Detecting meaningful edges in a single 2D image is difficult
because there are always many spurious edges in the image caused by texture and
shading. The problem can be solved if the region in the image representing each
individual object can be specified. Figure 7c illustrates how our model solved this
problem. The model estimates the height of each object from the distribution of the 3D
points that projected to a given rectangle in Figure 7b. This operation produced a 3D
“bounding box” for each object. This 3D box is then projected to the original 2D image.
This produces a convex region containing the image of the object. So, our method, as
described in this section, can actually be used to produce both 3D and 2D FGO: it can also

16

be used to determine the spatial location of each of the objects on the floor as well as in
the 2D image. Note that the 2-Dimensional FGO is based on a 3-Dimensional FGO. The
3D FGO is easier to perform so it is not surprising that it is best done before the 2D FGO.
The 2D FGO is also critical, however, because it provides a means to transition from both
the texture and surface information that were used to produce the depth map to the
contours that are essential for recovering individual 3D shapes.

4. Extracting relevant edges

Now that we know that the recovery of 3D shapes depends entirely on contours, and that
texture and surfaces play no role, we can ask how we can extract relevant (hence
meaningful) contours of objects within a given scene? We need to know which contours
belong to which object. Furthermore, we need to know how to organize the 2D contours
in the retinal image so that this organization conveys sufficient information about the 3D
shapes “out there” to permit an observer (human or robot) to function effectively in its
environment. Considerable progress has been made in this direction recently. It is
described in this and the next section.

(a) (b) (c)

(d) (e)

Figure 8. (a) An input image. (b) Its binary edge image. (c) These edges grouped to edge
fragments. (d) Occluding contours of a foreground object incorrectly merged with the
background objects. (e) Contours of a single object selected in the image when the FGO
problem has been solved correctly.

The problem of extracting relevant (hence meaningful) edges in a 2D image that contains
unfamiliar objects has traditionally been deemed to be an insoluble problem; a problem so
difficult that many students of human and computer vision assume that a solution is
actually impossible. The main difficulty traditionally seen arises from the fact that any
edge-detection algorithm will detect at least 10 times as many edges as it should detect
and will also miss some very important edges. These irrelevant (meaningless) edges are

17

produced in the image by such things as texture, occlusions, shadows and by specular
reflections.

In computer vision, where most of the work has been done so far, the process of
extracting relevant edges is called “contour grouping”. It begins by taking a color or a
gray-level image (Fig. 8a) and reducing it to a binary image composed of edge pixels (Fig.
8b). The edge pixels are then grouped to form curves called “edge fragments”. Different
edge fragments are shown in different colors in Fig. 8c. This is a greedy, low-level
process. It uses only very simple processes such as proximity and good continuation and it
uses them at the pixel level. Some other simple rules are often applied to eliminate edge
fragments, e.g.,. the removal of too short or wiggly fragments. These processes, however,
are not likely to extract the true contours of 3D objects. An example of this kind of failure
is shown in Figure 8d where contours of two different objects have been merged into a
single contour. If such mistakes are not corrected, it will be impossible to perform a
meaningful recovery of the 3D shape. The only algorithms developed to date that can
produce correct results require familiarity with the 3D shape and its 2D images before the
recovery can actually be made (Ferrari et al., 2006; Latecki et al., 2008; Yang & Latecki,
2010; Srinivasan et al., 2010; Toshev et al., 2010; Ma & Latecki, 2011; Andriluka et al.,
2008; Lin et al., 2009). These algorithms assume that the observer saw multiple views of
each object and stored them in memory. These stored views are then used to match the
edges in the retinal or camera image. Clearly, this multiple-view theory is not only very
cumbersome; it is actually implausible because the contours of the 2D image change in
unpredictable ways whenever the viewing direction changes. To actually use this
approach, one would need a very large number of 2D models for each 3D object.
Considering that there is a huge number of possible objects in our environment, a large
number of possible positions, as well as the large range of sizes of the objects in the 2D
image, the matching problem inherent in this kind of algorithm leads to a combinatorial
explosion.

We already knew that this problem can be solved easily without familiarity by human
beings who see unfamiliar shapes veridically. Our robot can do it without familiarity, too.
Furthermore, it can do it easily once the specific 2D region that contains the image of a
specific 3D object has been determined (see Fig. 7c). With this known, the algorithm
focuses its analysis on the small set of edge fragments that are located within this region.
Concentrating the analysis on a meaningful, predefined 2D region substantially improves
the likelihood of extracting the relevant set of contours because contours belonging to the
background have been eliminated from consideration (see Figure 8e).

18

Fig. 9. (a) Detected objects. (b) Their 3D bounding boxes. (c) The recovered 3D

shapes and locations.

Once the relevant 2D contours have been extracted for each of the 3D objects, two types
of 3D representations can be produced, namely, a coarse representation of the 3D shape in
the form of a rectangular bounding box (Figure 9b), and a more precise (finer)
representation in the form of the 3D contours that represent each 3D shape (Figure 9c).
How are the two representations computed? Consider the bounding box first. It can be
computed by using three vanishing points (see Figure 10). One vanishing point is the
intersection of symmetry lines (see Figure 5). The second vanishing point is the
intersection of the lines in the 2D image that are projections of the vertical lines in the 3D
scene. Note that in the presence of gravity, very many natural objects, such as cats, dogs,
birds, and human beings, as well as furniture have appendages with multiple vertical
edges we call their “legs”. Adjusting the orientation of these appendages permits them to
maintain their balance when they stand or walk on tilted surfaces. This second vanishing
point (which will be called here the “vertical vanishing point”) can be determined solely
on the basis of information about the direction of gravity, information that is readily
available to living creatures (see Figure 4). The vertical vanishing point is calculated as
follows: Assume that the direction of gravity is Ng, then in the image the vanishing point
for those 3D vertical lines can be expressed as:

 gMNv g =* (9)

19

Equation (9) suggests that the vanishing point, like a horizon is determined by the
camera’s intrinsic properties and the camera’s orientation. Finally, note that for many
objects, such as furniture, there is a third vanishing point that represents the edges
orthogonal to the other two types of edges in 3D (Figure 10). All three of these vanishing
points form right angles with the vertex at the center of the perspective projection of the
camera. This fact is equivalent to the following equation characterizing image properties
(eq. 8.7 in Hartley & Zisserman, 2003):

 0*1* =−−
j

TT
i vKKv ji ≠ (10)

The equation (just above) implies that if we know any two vanishing points, we can
compute the third. In the case of animal bodies, which are not rectangular like chairs, the
third vanishing point is also meaningful: it represents the direction in which the animal is
facing. This means that a 3D rectangular bounding box computed on the basis of these 3
vanishing points is at least an adequate, albeit coarse representation for most objects,
animate and inanimate.

Figure 10. A perspective projection of a box. VP1, VP2 and VP3 represent the vanishing
points for the three groups of mutually orthogonal line segments of the box.

Note that these 3D bounding boxes provide a type of information that is analogous to the
way the boxes were estimated when we solved binocular FGO problem (see Figure 7b).
The difference is that the boxes in Figure 7b were estimated on the basis of texture
information, whereas the boxes in Figure 9b were estimated on the basis of contour
information. One might consider the fact that these two different analyses led to the same
result an instantiation of the action of Grossberg’s feature and boundary contour systems
(Grossberg & Mingolla, 1985). There is an important difference, namely, our analyses are
taking place at the stage of the 3D representation, the stage at which the 3D objects
actually reside.

A precise (fine) representation of the 3D shape can be produced by performing the 3D
shape recovery on the basis of the object’s symmetry (see Figure 9c). This recovery is
done by using the algorithm described in Section 2. The only operation that remains to be

20

done is the detection of the 3D mirror symmetry in the 2D asymmetrical image. This
operation is explained in Section 5.

5. Establishing the 3D symmetry correspondence of contours

A 2D image of a 3D mirror-symmetrical object is itself symmetrical but only for a narrow
range of 3D viewing directions, so the question arises as to how a 3D symmetry can be
detected in a 2D asymmetrical image. This problem is not trivial because pairs of
unrelated 2D curves always have a 3D symmetrical interpretation (Sawada et al., 2011).
In other words, without additional constraints, 3D symmetry is accidental. This fact is
illustrated in http://www1.psych.purdue.edu/~zpizlo/sym2011/DemoFiles/Demo8.html
where two different symmetrical interpretations of a 2D curve are given. One of these
interpretations is natural in the sense that it agrees with the percept of an observer
produced by a stationary 2D curve. The other interpretation is surprising. The difference
between these two interpretations is that the natural interpretation consists of two planar
curves. The fact that the human visual system uses a planarity constraint has been known
at least since Leclerc & Fischler (1992) and Sinha & Adelson (1992) published their
models, but it was less clear why a planarity constraint is actually used. Planar contours
are quite common in man-made objects, but they are much less common in biological
organisms. We believe that the human visual system uses the planarity of contours
constraint because this constraint eliminates spurious symmetrical 3D interpretations
rather than because planar contours are common. It is important to point out that the use
of the planarity constraint does not imply that the 3D interpretations have planar contours;
it only implies that the interpretations have contours that are biased towards planarity.
This means that the torsion of 3D curves is kept to a minimum. It turns out that
minimizing torsion eliminates 3D interpretations that correspond to degenerate views,
views that preclude the veridical perception of 3D objects (Sawada et al., 2011).

If two 3D curves are planar and mirror symmetrical, their 2D images are related by a 2D
affine transformation in the case of an orthographic image and by a 2D projective
transformation in the case of a perspective image. The fact that a 3D symmetry can be
detected in a 2D asymmetrical image through an application of a 2D transformation and
its invariants simplifies the problem substantially. Under such conditions, 3D symmetry
becomes non-accidental in the sense that a 2D image of a 3D asymmetrical shape is
unlikely to have 3D symmetrical interpretations.

The task of detecting 3D symmetry in a 2D image is always simplified if higher order
features, such as corners, intersections, complex curves and closed contours are detected
first. Two pairs of feature points in a 2D image correspond to two pairs of mirror
symmetrical points in a 3D interpretation only if the line segments connecting the 2D
corresponding points are parallel in an orthographic image and if they intersect at a
vanishing point in a perspective image. Recall from the section on 3D scene recovery that
vanishing points and lines can be estimated directly from vestibular cues provided by
gravity. The pictures at http://web.ics.purdue.edu/~li135/SymDetect.html show the result
of establishing 3D symmetry correspondence for a few objects shown in 2D perspective
images. In this example, our model checked whether any two junctions in the 2D images

21

satisfy the following two constraints: (1) the line connecting the junctions passes through
one vanishing point and (2) the difference between two junction angles is equal to the sum
of the angles formed by the two junctions with the other two vanishing points (see Figure
11b). These are the necessary conditions for a 3D symmetric interpretation in the case
where the pair of symmetric curves are on parallel planes (like in the case of two sides of
a chair shown in Figure 11a). The symmetrical pairs of curves are drawn in the same
color. Once the contours have been organized, it is relatively easy to recover the 3D scene
including the 3D shapes contained within it.

 (a) (b) (c)

Figure 11. (a) Extracted curves for the image of a chair. Curves corresponding to the same
vanishing points are drawn in the same color. (b) Two necessary conditions that are used
to check whether the two edges of a junction are the potential symmetrical edges of
another junction. (c) Detected symmetrical curves for the image in (a). Symmetrical
curves are drawn in the same color.

6. Recovery of the top view of a 3D scene by human subjects.

The model results described in Section 3 imply that our model recovers a 3D scene very
well. There is no sign of systematic errors and the random errors were not large. Is
subjects’ performance similar? We asked three subjects to draw the top views of 3D
scenes and we compared the drawings to the ground truth provided by the PhaseSpace
camera system (Appendix C). Below, we present the main aspects of the experimental
method and of the results.

Methods

Subjects
Three subjects (TK, YS, and XZ) participated in the experiment. All observers had
corrected-to-normal vision. TK was the author and XZ was a naïve subject.

Stimuli
The experiment was performed in a room (7.92 m × 8.53 m) illuminated by fluorescent
lights on its ceiling. The walls were white with doors on two opposite sides. The floor was
covered with blue, textureless carpet. An experimenter placed four or five pieces of
children’s furniture such as chairs, tables, bookshelves and garbage bins. They were

22

placed before each trial to form a scene without any occlusion from the point of view of
the subject. An example of a typical scene used is shown in Figure 12.

Figure 11. A typical scene used in Experiment 1

The positions of objects were measured by PhaseSpace motion capture system (see

Figure 13). The system is equipped with 16 pairs of cameras, each pair having two
orthogonally oriented one-dimensional cameras. This system computes the 3D positions
of multiple unique LEDs in a scene. The accuracy is better than 2 cm (see Appendix C for
calibration details). In this experiment, one LED was put in the center of each object.

Figure 12. PhaseSpace motion capture system

Procedure

Each subject was tested in 40 trials (20 trials with binocular viewing and 20 trials with
monocular viewing). The subject stood in a designated position viewing the scene. The
subject reconstructed the scene on the tablet computer by dragging and dropping the
ready-made icons (Figure 14). On the computer screen, there were icons which
represented the shape and the relative size of each piece of furniture. The name tag was

23

placed on the bottom right corner of the icon. The subject was asked to drag and drop the
icons with a pen to reconstruct the layout of the scene from a top view. The subject was
instructed to use the sizes of the icons when deciding about the inter-object distances on
the computer screen. The subject could rotate the icons to represent the orientation of
objects.

Figure 13. Interface on the tablet computer screen

Exposure duration was unlimited; the subject could look at the scene until he or she

finished drawing the top view on the computer. After each trial, the experimenter put an
LED on each object and recorded the LED positions by the PhaseSpace system. It took
about 12 to 15 minutes to complete one trial. In half of the trials to the subject viewed the
scene with two eyes. In the remaining half, the viewing was monocular (the left eye of the
subject was occluded).

Results and Discussion
To evaluate how well the subject reconstructed the scene, the pairwise distances among
all objects and the subject were computed. If there were n objects, (n+1)*n/2 pairwise
distances were computed. The actual Euclidean distances among the centers of the objects
were obtained by the PhaseSpace system which detects the positions of LEDs attached to
the centers of the objects. The subject’s reconstructed distances were obtained from the
drawing on the tablet computer. The subject was instructed to scale the distances on the
monitor by referring to the sizes of icons which represent the sizes of the physical objects.
The mean squared error (MSE) for pairwise distances was estimated to evaluate the
accuracy. The mean squared error is defined as follows:

 (11)

where d' is a reconstructed distance and d is an actual distance. The MSE is equal to the
sum of the variance of normalized distances (d′/d) and the squared Bias:

24

 MSE = VAR(d'/d) + Bias2 (12)

where Bias = . Taking the square root of MSE and VAR yields the root-mean-
square (RMS) error and standard deviation (STD) which have the unit of % of actual
distance:
 (13)
 (14)

Table 1 shows these errors calculated for each subject.

Table 1. Monocular and binocular errors of Subject’s Reconstruction in Experiment 1
Subject Viewing condition RMS(%) STD(d'/d) (%) Bias(%)
TK Monocular

0 0257

20.20 19.70 4.64
TK Binocular 13.79 12.65 -5.56
YS Monocular

21.99 15.96 15.17

YS Binocular 20.71 15.27 14.03

XZ Monocular

27.16 21.80 16.26
XZ Binocular 24.72 21.13 12.88

The RMSs of these pairwise distances ranged from 13% to 27%. It can be seen that the
Bias was quite large in the case of YS and XZ. They systematically overestimated
distances. The TK’s Bias, computed from all 20 monocular and all 20 binocular trials was
close to zero. But this does not necessarily mean that his Bias was close to zero in
individual trials. The analysis of the nature of Bias is important because it may shed light
on the question as to whether the source of Bias is related to perception or response bias.
The subjects were asked to scale the distances on the monitor by using the sizes of icons
representing the objects as reference. Note, however, that the inter-object distances were
an order of magnitude larger than the objects themselves. This is very similar to the
conventional size constancy task, which is known to lead to large variability (Brunswik,
1944). It is possible that after the subject set the first distance, he used this distance as a
reference to decide about the remaining distances. This way the subject would avoid
comparing distances and sizes of very different magnitudes. If subject used this approach
in reconstructing the scene, then all distances within a given trial would share the same
systematic error. This, in turn, implies large random fluctuation of Bias across trials.
Figure 15 shows histograms of the intra-trial Bias for monocular and binocular viewing.

25

Figure 14. Histogram of the intra-trial Bias of three subjects (TK, YS and XZ) in monocular and binocular

viewing

26

The intra-trial Bias varied from -0.1 to 0.5. This variability of Bias contributed to large
values of MSE and VAR. Note that the fact that the Bias is similar in monocular and
binocular viewing suggests that it is caused by response bias, rather than by perceptual
distortions.

Next, we evaluated the source of Bias. If Bias is caused by the difficulty in scaling the
distances in each trial (as suggested above), then Bias would go away after the
reconstructed space is scaled in each trial. But it is also possible that Bias is caused by
distortions of the visual space, such as affine or projective. The presence of such
distortions will be verified by applying transformations to the reconstructed top views and
verifying whether the distances among transformed positions of objects are closer to the
true distances. We begin with size scaling and rotation of the reconstructed map.
Specifically, the best rotation and size scaling in the least squares sense was applied
independently to individual trials. Rotation is needed because there is no reason to assume
that the orientation on the computer screen was identical to the orientation in the room. In
other words, the subject did not try to match directions of the walls in the room with
directions of the frame of the computer monitor. The center of the scaling and rotation
was placed at the subject’s position. Size scaling removed the intra-trial Bias discussed in
the previous paragraph. This is illustrated in Figure 16, which shows histogram of intra-
trial Bias after size scaling. Specifically, the variance of the intra-trial Bias decreased by a
factor of X, Y and Z for TK, YS and XZ, respectively.

27

Figure 15. Histogram of the intra-trial Bias of three subjects (TK, YS and XZ) in monocular and binocular

viewing after size scaling

In addition to this Euclidean transformation, the affine and projective transformations
were also applied to the reconstructed positions to all trials. If the affine or projective
mapping represents perceptual bias, then affine or projective transformation will reduce
the errors substantially. All transformations were optimal in the least square sense. Table
2 shows all the transformations that were used. Note that the translation is not explicitly
shown in Table 2. Translation was performed as the first step, by assuming that the
physical position of the subject coincided with the position of the icon representing the
subject on the computer screen.

Table 2. Transformations applied to the reconstructed positions

Transformation Equation

Euclidean transformation

Affine transformation
(with two parameters)

28

Affine transformation
(with four parameters)

Projective transformation
(with two parameters)

Projective transformation with 2 parameters was applied to the data after the affine
transformation with 2 parameters to simplify the analysis. Projective transformation after
affine transformation with 4 parameters was also applied and showed similar results. The
effect of the individual transformations was evaluated by computing standard deviation of
the normalized distance across 20 trials. The random errors, as measured by standard
deviation of the normalized distance, show no systematic difference between monocular
and binocular viewing. In particular, for TK and XZ, binocular viewing led to better
performance, while the opposite was true for YS. As we can see, errors decreased
substantially when rotation and scaling were applied. In fact, scaling was the main source
of error because rotation does not affect the pairwise distances. Further transformations
such as affine and projective did not affect errors much. This implies that the human
visual space is likely to be Euclidean, rather than affine or projective, as prior research
suggested. This way, we confirmed that the 3D vision of our machine is similar to the 3D
vision of our subjects.

So, how do we explain the fact that human subjects perceive the layout on the floor so
well? There is no systematic error, and the random variability is quite small. The
explanation turns out quite simple, computationally, once we recognize the operation of
several effective a priori constraints: (i) gravity, (ii) horizontal floor on which all objects
reside, and (iii) known height of subject.

(i) It is known that humans are able to judge the direction of gravity with threshold less
than 1 deg (Garten ,1920, Neal, 1926, Skavenski, et. al. 1979).
(ii) The fact that all objects reside on the common horizontal floor allows one to
reconstruct the positions of all objects even using information provided by one eye, only.
(iii) In order to solve the triangle (Figure 17), the subject has to know his own height. This
will allow the subject to reconstruct the layout of the scene, depths of all objects, and all
pairwise distances without using any depth cues. Recall that using depth cues leads to
large distortions of the visual space. When effective a priori constraints are substituted
for depth cues, the visual space becomes Euclidean.

29

Figure 17. Assume that the standard deviation of judging the angles α and β relative to
gravity is 1 deg. α represents the angle between the eye and the direction of gravity, and β
represents the angle between the subject’s vertical body and the horizontal floor. Assume
that these two judgments are independent. For the viewing distance of 2m (like in the
Experiment), the predicted standard deviation of distance judgment is 5%, which is close
to what we measured.

Summary and Conclusion

We developed a set of computational tools (models) that allow a robot to “see” a natural
3D scene and to “understand” it in the sense that it can recover the 3D shapes, sizes and
locations of the objects in the scene as well as the free spaces among them. The Figure-
Ground Organization and 3D shape recovery tools built into our robot permits it to
perform both of these complicated tasks on its own. Despite considerable progress, there
is still a lot of work to be done. By far, the most important unfinished business is to
implement the algorithms in such a way that the model does its visual processing in ”real
time” as defined by the temporal processing characteristics of the human and other
biological systems. Once these computations are performed in real time, the next step will
be to implement computational models of motion perception. This will allow the robot to
deal with dynamic environments as well as we do. Last, but by no means the least task
facing us, the models currently used for extracting all relevant contours of 3D shapes
should be elaborated so that the robot can extract 3D shapes and scenes with the high
degree of precision characteristic of the human visual system. Note that all of these
unfinished projects are actually elaborations of the 3D shape and scene recovery models
that we have in hand now. In other words, all of the major steps required for 3D shape and
scene recovery have been accomplished and they can be performed autonomously by a
robot at this time. The remaining steps (described just above) are designed to enhance its
performance, bringing it in line with the performance of human beings. Once they are
accomplished, our robot will not only be able to act autonomously; it will also be able to
navigate within natural scenes as well as a human being can navigate under similar
conditions. There is even good reason to believe that the FGO and 3D shape-recovery
tools that we have seen work so well for our robot are actually rather similar to those used
by human beings performing similar tasks. We feel entitled to make this claim because

30

when we tested these tools in human psychophysical experiments, the human and the
model’s performances were very similar (Kwon et a., 2011; Li et al., 2011). Even if we
ignore this psychophysical support, the mere fact that the robot can actually “see” a 3D
scene veridically and plan its actions effectively within it, provides evidence for our belief
that the robot’s tools are at least biologically-plausible even if they ultimately prove to be
different from those actually used in the human visual system. It is important in
evaluating these provocative claims to keep in mind that no other existing machine vision
system has even come close to approximating the performance of the human being in
even very simple visual environments. Our machine vision system approximates human
performance very well in relatively complex, naturalistic environments. Discovering that
a system like ours can do this provided us with some new insights into how a visual
system like ours accomplishes what it does so well. Finally, explaining how the human
visual system works has been only one of the goals of our work.

It has not gone unnoticed that robots, equipped with the novel kind of computational
visual system described in this report, will be able to deliver food and supplies in hospitals
and trim grass on lawns at least as well as conventional contemporary robots can perform
such tasks, but conventional robots, unlike ours, accomplish these tasks by using tools that
do not resemble those used by humans beings. Our robot’s tools do and this fundamental
difference opens up the possibility of having a machine emulate a wide range of human
activities within quite complex natural environments. This becomes possible because our
machine and human beings perform effective navigations without measuring absolute
distances. Both navigate by constructing a limited number of accurate representations of
3D shapes. All other contemporary robots base their navigations on making many iterative
measurements of absolute distances. The simple visual/gravitational method used by our
machine for FGO, 3D shape and 3D scene recovery probably works so well because it
emulates the method that human beings, and many other successful animals, honed during
the millennia required for their evolution.

31

Appendix A: The recovery of a pair of symmetrical points

Suppose x is a point in a 2D image and it is expressed by Euclidean coordinates. Its
corresponding homogenous coordinates can be written as

()TTxx 1* = (A1)
Suppose M is a 3x3 matrix that consists of the first three column vectors of a camera
matrix and p4 is the fourth column vector of the camera matrix. Then all 3D points whose
image is x is expressed as follows (Hartley & Zisserman, 2003)

)(4
*1 pkxMX −= − (A2)

in which k is a free parameter. Note that X is a vector with the Euclidean coordinates of a
3D point. Suppose X1 and X2 are a pair of symmetric 3D points, their images are x1 and
x2. Then from Equation A2, we obtain

)(4
*1 pxkMX
iii −= − 2,1=i (A3)

Therefore, to recover the 3D point X1 and X2 from their images x1 and x2, we need to
compute k1 and k2 in Equation A3. Suppose the direction of the line X1X2 is V, then V and
v* must satisfy the following equation

*1vMV −= (A4)
Note that V represents not only the direction of X1X2, but also the normal of symmetry
plane. Therefore the symmetry plane for X1 and X2 can be expressed as

()TT dV=π (A5)
where d indicates the position of the symmetry plane.
X1 and X2 are symmetric with respect to the symmetry plane π if and only if the following
two conditions are satisfied

(1) the line X1X2 is perpendicular to the symmetry plane π;
(2) the midpoint of X1 and X2 is on the symmetry plane π.

From condition (1), we can derive
VkXX v=− 21 (A6)

Combining equation A6 with equations A3 and A4, we obtain
*1

4
*
22

1
4

*
11

1)()(vMkpxkMpxkM v
−−− =−−− (A7)

Left multiplying by M both sides of the equation A2, we obtain
**

22
*
11 vkxkxk v=− (A8)

Replacing the homogenous coordinates for x1, x2 and v in equation A8 with their
Euclidean coordinates, we obtain









=








−







111

2
2

1
1

v
k

x
k

x
k v (A9)

It follows
21 kkkv −= (A10)

Replacing kv in equation A9 with the expression in equation A10, we obtain
)()(2211 vxkvxk −=− (A11)

Equation A11 implies two facts
(a) x1, x2 and v are collinear. Thus, equation A11 is redundant.
(b) the ratio between k1 and k2 is proportional to the ratio of the vectors x2v and x1v.

32

Because x1 and x2 must be on the same side of v, equation A11 can be written as
vxkvxk −=− 2211 (A12)

where |x1-v| and |x2-v| represent the distance from x1 and x2 to v. Equation A12 suggests
that the ratio of k1 and k2 is proportional to the ratio of distance from two symmetric
points to the vanishing point.

From condition 2, we can derive

0
2

21 =+
+ dVXX (A13)

Combining equation A13 with equations A3 and A4, we obtain

 () dpMMv
k
k

xMMvxMMv TTTTTT 22 4
1*

2

1*
2

1**
1

1* −=






 −−−−−− (A14)

Combining equations A12 and A14, we obtain








 −
=



















−−−

−−−−−−

12

4
1*

2

1

21

*
2

1**
1

1*

0
22

x

TTTTTT dpMMv
k
k

vxvx
xMMvxMMv

 (A15)

33

Appendix B: Estimating the vanishing point on a horizon from a set of symmetry lines

Let the horizon be expressed as
()Twyx llll =* (B1)

then ()Txy llv 0*
0 −= and ()Tyw llv −= 0*

1
6

0*
0

* =vl T

 are two points on the horizon

because and 0*
1

* =vl T . Specifically v0
* is a point at infinity on the horizon. Then

all points on l* can be expressed as
*
1

*
0

* vvv λ+= (B2)
Let l1

*, l2
*, …, lk

* represents the k symmetric lines. Ideally, if all symmetric lines intersect
with the horizon at point v*, then the following equations will be satisfied

0** =vl T
i ki ,...,2,1= (B3)

Let ()TT
k

TT lllB **
2

*
1 ...= , then equation B3 is expressed as

1
* 0kxBv


= (B4)

Combining equations B2 and B4, we obtain
*
0

*
1 BvBv −=λ (B5)

Therefore, the problem of estimating the vanishing point on the horizon is changed to
finding the optimum value of λ that satisfies equation B5 in the least square sense. It
follows

)()())()((*
0

*
1

1*
1

*
1 BvBvBvBv TT −= −λ (B6)

or

*
1

*
1

*
0

*
1

BvBv
BvBv

TT

TT

−=λ (B7)

6 If ly is 0, then v0

* and v1
* represent the same point. For this case, we can set ()Txw llv 0*

1 −= . If both
lx and ly are 0, then l* represents the line at infinity and it is the vanishing lines for the planes that are

parallel to the image plane. For this case, we can set ()Tv 001*
0 = and ()Tv 010*

1 = .

34

Appendix C. Calibration of PhaseSpace System

The PhaseSpace motion and position capture system was calibrated with regard to the
physical space. What is “calibration”? It is a process matching the coordinate of the
system with that of the physical space. The coordinate in the physical space was defined
by drawing a rectangular grid with 1m steps on the floor. Then, the positions of the
vertices of the grid were measured by PhaseSpace system and the transformation between
the two coordinate systems was derived.
The positions on the grid of 5 m by 5 m square on the floor were measured by PhaseSpace
system and the accuracy of the measurements was evaluated in the following way.

Drawing the grid on the floor
The grid was drawn in the following steps: first, a 5 m by 5 m square was drawn on the
floor and the square was divided with 1 m steps.

Figure C6. Map of the room to indicate the position of grids, cameras and surrounding objects. Some

important points are labeled with numbers in parenthesis.

 After that, the strings were placed on the floor to connect the four corners of the 5 m by 5
m square. Lasers were used to make sure that the strings are straight in the right direction.
The strings were fixed by duck tapes next to the points. Then the 5 m lines were divided
into 5 intervals of 1 meter steps by tape measure. Checking the accuracy of intersection,
the strings were placed to make 25 of 1 m by 1 m squares. All intersection points were
marked with triangular shape tape. The 5 m by 5 m square with 1 m step strings were
placed on the floor of the room.

35

Figure C7. The grids of 1 m steps on the floor were drawn with strings. Two diagonals were also drawn to use

it as a hypotenuse of two triangles.

Comparing the coordinate systems of the physical space and the PhaseSpace system

Recording the 3D positions of 1 m step grids
The positions of the points in the physical coordinate system were measured using the
PhaseSpace system. The positions of the measured points were at the vertices of the grid
on the floor and 60 cm above the vertices of the grid. The positions were recorded by the
system 300 times for 10 seconds (30Hz). The positions of all vertices of the grid were
measured with PhaseSpace system. At first, LEDs were placed on every point on the floor
level and recorded for about 10 seconds. After that, an LED was attached to the 60 cm
height bar. By putting the bar on each point on the floor, the positions of intersection
points at 60 cm height level were measured for about 10 seconds, too. The system
recorded the positions 30 times a second.

Finding stable and reliable points
Although most recorded data were stable across the recorded time, there was some
fluctuation across the recorded time. The graphs in Figure 3 show that the ranges of
measurement in one position for 10 seconds. The ranges were computed by subtracting
the minimum measurement from the maximum measurement. As shown in the graphs in
Figure 3, the measurements around the centers were stable. However, the measurements
around the edges of the square were unstable showing bigger ranges up to 32 mm.

36

Figure C8. The ranges of measurements in one position across the 5 m by 5 m square for 10 seconds.

Most unstable points were located in row 1 or column 1 which were farthest from the
center of a circle of cameras. Note that these points could be observed only by the
cameras which are placed on the opposite side of the circle and are far from the points.
The cameras above the points could not see the points because of the limited viewing
angle of the cameras, which are oriented to the center of the circle. Hence, small sampling

37

error in the computation causes the bigger error. If those points were removed, the errors
should have decreased close to zero. Actually, after excluding the data of row 1 and
column 1, the maximum ranges were within 2.3 mm.

Finding the transformation between physical space and measured space
Now, the measurements on each point across time were averaged to represent a single 3D
coordinate for each point. The best 3D transformation between the two coordinate systems
of the physical space and the PhaseSpace system was derived by minimizing the
Euclidean distance between the physical positions and the output of the PhaseSpace
system. Here, the least square method was used. The 3D transformation includes
translation in x, y and z axis direction, rotation around x, y, and z axis, and homogeneous
size scaling. In total, there were 7 free parameters. The maximum error of the Euclidean
distance between physical grid and transformed grid turned out to be 19.9 mm.
The errors of the x-, y- and z-coordinates were plotted in Figure 4. The errors were
computed by subtracting the physical position form the measured position after the
transformation. Below are the graphs of X, Y, and Z axis errors.

After these calibration procedures, the PhaseSpace system could detect the 3D position
within the maximum error of 2 cm.

38

Figure C9. The errors of the x-, y- and z-coordinates at both floor level in the left column and 60 cm level

after transformation

39

References

Andriluka, M., Roth, S., and Schiele, B. (2008) People-tracking-by-detection and people-
 detection-by-tracking. CVPR 2008.
Attneave, F. & Frost, R. (1969) The determination of perceived tridimensional orientation

by minimum criteria. Perception & Psychophysics, 6, 391-396.
Bartlett, F. (1932) Remembering. Cambridge: Cambridge University Press.
Dewey, J. (1896) The reflex arc concept in psychology. Psychological Review, 3, 357-

370.
Faugeras, O. (2001) Three-dimensional computer vision – a geometric viewpoint.

Cambridge, MA: MIT Press.
Ferrari, V., Tuytelaars, T., and Gool, L. V. (2006) Object detection with contour segment
 networks. ECCV, 2006.
Gibson, J. J. (1966) The senses considered as perceptual systems. Boston: Houghton

Mifflin.
Grossberg, S. & Mingolla, E. (1985). Neural dynamics of form perception: Boundary

completion, illusory figures, and neon color spreading. Psychological Review, 92,
173-211.

Hartley, R. & Zisserman, A. (2003) Multiple view geometry in computer vision.
Cambridge: Cambridge.

Hebb, D. O. (1949) The organization of behavior. New York: Wiley.
Kubovy, M. (1986) The Psychology of Perspective and Renaissance Art. Cambridge:

Cambridge University Press, 1986.
James, W. (1890) The principles of psychology. New York: Dover.
Julesz, B. (1971) Foundations of cyclopean perception. Chicago: University of Chicago

Press.
Kwon, T., Shi, Y., Li, Y., Sawada, T. & Pizlo, Z. (2011) Natural and virtual scenes:

human recovery of the shape of a 3D scene. Journal of Vision, 11(11): 72 (VSS
Abstract).

Latecki, L.J., Lu, C., Sobel, M. & Bai, X. (2008) Multiscale Random Fields with
Application to Contour Grouping. Neural Information Processing Systems Conf.
(NIPS), 2008.

Leclerc, Y. G. & Fischler, M. A. (1992) An optimization-based approach to the
interpretation of single line drawings as 3D wire frames. International Journal of
Computer vision, 9, 113-136.

Li, Y. (2009). Perception of Parallelepipeds: Perkins’ Law. Perception, 38, 1767-1781.
Li, Y. & Pizlo, Z. (2011) Depth cues vs. simplicity principle in 3D shape perception.

Topics in Cognitive Science 3, 667-685.
Li, Y., Pizlo, Z., & Steinman, M. R. (2009). A computational model that recovers the 3D

shape of an object from a single 2D retinal representation. Vision Research, 49, 979-
991.

Li, Y., Sawada, T., Shi, Y., Kwon, T. & Pizlo, Z. (2011) A Bayesian model of binocular
perception of 3D mirror symmetrical polyhedral. Journal of Vision, 11(4):11 1-20.

Lin, Z., Hua, G., and Davis, L. S. (2009) Multiple instance feature for robust part-based
object detection. CVPR 2009.

40

Ma, T. & Latecki, L.J. (2011) From Partial Shape Matching through Local Deformation to
Robust Global Shape Similarity for Object Detection. IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), June 2011.

Marr, D. (1982) Vision. San Francisco: W.H. Freeman.
Miller, G. A., Galanter, E. & Pribram, K. H. (1960) Plans and the structure of behavior.

New York: Holt.
Pirenne, M. H. (1970) Optics painting & photography. London: Cambridge.
Pizlo, Z. (2001) Perception viewed as an inverse problem. Vision Research, 41, 3145-

3161.
Pizlo, Z. (2008). 3D shape: Its unique place in visual perception. Cambridge, MA: MIT

Press.
Pizlo, Z., Sawada, T., Li, Y., Kropatsch, G. W & Steinman, M. R. (2010). New approach

to the perception of 3D shape based on veridicality, complexity, symmetry and
volume. Vision Research, 50, 1-11.

Poggio, T., Torre, V. & Koch, C. (1985) Computational vision and regularization theory.
 Nature, 317, 314-319.
Sawada, T. (2010) Visual detection of symmetry in 3D shapes. Journal of Vision, 10(6):4,

1-22
Sawada, T. & Pizlo, Z. (2008) Detection of skewed symmetry. Journal of Vision, 8(5):14,

1-18.
Sawada, T., Li, Y. & Pizlo, Z. (2011) Any pair of 2D curves is consistent with a 3D

symmetric interpretation. Symmetry 3, 365-388.
Sawada T., Li Y. & Pizlo Z. (2011) Symmetry, shape, surfaces, and objects. In C. W.

Tyler (Ed.), Computer Vision: From Surfaces to 3D Objects (pp. 113-124). Boca
Raton, FL: Chapman Hall/CRC.

Sinha, P. & Adelson, E. H. (1992) Recovery of 3-D shape from 2-D wireframe drawings.
Investigative Ophthalmology & Visual Sciences, 33 (Suppl.), 825.

Srinivasan, P., Zhu, Q. & Shi, J. (2010) Many-to-one contour matching for describing and
discriminating object shape. CVPR, 2010.

Steinman, R. M. (1965) Effect of target size, luminance and color on monocular fixation.
Journal of the Optical Society of America, 55,1158-1165.

Toshev, A., Taskar, B. & Daniilidis, K. (2010) Object detection via boundary structure
segmentation. In IEEE Comp. Vision Pattern Recognition (CVPR).

Troscianko, T., Benton, C.P., Lovell, P.G., Tolhurst, D.J. & Pizlo, Z. (2009) Camouflage
and visual perception. Philosophical Transactions of the Royal Society B 364, 449-
461.

Troscianko, T., Benton, C.P., Lovell P.G., Tolhurst, D.J. & Pizlo, Z. (2011) Camouflage
and visual perception. In: M. Stevens & S. Merilaita (Eds.), Animal Camouflage:
Mechanisms and Function, Cambridge University Press (pp. 118-144).

Wong , S., Vassiliadis, S., & Cotofana, S. D.. (2002) A sum of absolute differences
implementation in hardware. Proceeding of the 28th Euromicro Conference, pp 183–
188.

Yang, X. & Latecki, L.J. (2010) Weakly Supervised Shape Based Object Detection with
Particle Filter. European Conference on Computer Vision (ECCV).

41

Other relevant papers

Xingwei Yang, Hairong Liu, and Longin Jan Latecki, Contour-Based Object Detection as
Dominant Set Computation. Pattern Recognition (PR), to appear.

Tianyang Ma and Longin Jan Latecki. Maximum Weight Cliques with Mutex Constraints
for Video Object Segmentation. IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), June 2011.

Xinggang Wang, Xiang Bai, Tianyang Ma, Wenyu Liu and Longin Jan Latecki. Fan
Shape Model for Object Detection. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), June 2011.

Xinggang Wang, Xiang Bai, Xingwei Yang, Wenyu Liu, and Longin Jan Latecki.
Maximal Cliques that Satisfy Hard Constraints with Application to Deformable Object
Model Learning. Neural Information Processing Systems Conf. (NIPS), Barcelona,
December 2011.

Tianyang Ma and Longin Jan Latecki. From Partial Shape Matching through Local
Deformation to Robust Global Shape Similarity for Object Detection. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Colorado Springs, June 2011.

Xinggang Wang, Xiang Bai, Wenyu Liu, and Longin Jan Latecki. Feature Context for
Image Classification and Object Detection, IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), Colorado Springs, June 2011.

Wei Shen, Xiang Bai, Rong Hu, Hongyuan Wang, and Longin Jan Latecki. Skeleton
Growing and Pruning with Bending Potential Ratio. Pattern Recognition (PR), 44, pp.
196-209, 2011.

Hairong Liu, Longin Jan Latecki, Shuicheng Yan. Robust Clustering as Ensemble of
Affinity Relations, Neural Information Processing Systems Conf. (NIPS), Vancouver,
December 2010.

Xingwei Yang and Longin Jan Latecki. Weakly Supervised Shape Based Object
Detection with Particle Filter. European Conference on Computer Vision (ECCV),
September 2010.

Tianyang Ma, Xingwei Yang, and Longin Jan Latecki. Boosting Chamfer Matching by
Learning Chamfer Distance Normalization. European Conference on Computer Vision
(ECCV), September 2010.

Haibin Ling, Xingwei Yang, and Longin Jan Latecki. Balancing Deformability and
Discriminability for Shape Matching. European Conference on Computer Vision (ECCV),
September 2010.

Hairong Liu, Wenyu Liu, Login Jan Latecki. Convex Shape Decomposition. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), San Francisco, June 2010.

ChengEn Lu, Nagesh Adluru, Haibin Ling, Guangxi Zhu, Longin Jan Latecki. Contour
Based Object Detection Using Part-Bundles. Computer Vision and Image Understanding
(CVIU), Vol. 114, No. 7, pp. 827-834, July 2010.

42

Longin Jan Latecki, Marc Sobel, and Rolf Lakaemper. Piecewise Linear Models with
Guaranteed Closeness to the Data. IEEE Trans. Pattern Analysis and Machine
Intelligence (PAMI), Vol. 31, No. 8, pp. 1525-1531, 2009.

Nagesh Adluru and Longin Jan Latecki. Contour Grouping Based on Contour-Skeleton
Duality. International Journal of Computer Vision (IJCV) 83, pp. 12-29, 2009.

ChengEn Lu, Longin Jan Latecki, Nagesh Adluru, Xingwei Yang, and Haibin Ling.
Shape Guided Contour Grouping with Particle Filters. 12th IEEE Int. Conf. on Computer
Vision (ICCV), Kyoto, Japan, Sep./Oct. 2009.

Xiang Bai, Xinggang Wang, Longin Jan Latecki, Wenyu Liu, and Zhuowen Tu. Active
Skeleton for Non-rigid Object Detection. 12th IEEE Int. Conf. on Computer Vision
(ICCV), Kyoto, Japan, Sep./Oct. 2009.

X. Bai, X. Yang, L. J. Latecki, Z. Tu, and W. Liu. Shape Band: A Deformable Object
Detection Approach. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
June 2009.

	FA9550-09-1-0207 - SF298
	FA9550-09-1-0207 - finalreport

