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Abstract

In this paper we discuss the existence and stability of heteroclinic cycles in coupled systems and show how they

can be exploited to design and fabricate a new generation of highly-sensitive, low-powered, sensor devices. More

specifically, we present theoretical and experimental proof of concept that coupling-induced oscillations located near

the bifurcation point of a heteroclinic cycle can significantly enhance the sensitivity of an array of magnetic sensors.

In particular, we consider arrays made up of fluxgate magnetometers inductively coupled through electronic circuits.
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1. Introduction

Loosely speaking, a heteroclinic cycle is a collection of solution trajectories that connects sequences of equilibria,

periodic solutions or chaotic invariant sets via saddle-sink connections. For a more precise description of heteroclinic

cycles and their stability, see Melbourne et al. [1], Krupa and Melbourne [2], the monograph by Field [3], and the

survey article by Krupa [4, 5]. Such behavior is unusual in a general dynamical system. It is, however, a generic feature

of dynamical systems that possess symmetry. Indeed, the presence of symmetry can lead to invariant subspaces under

which a sequence of saddle-sink connections can be established, resulting in cycling behavior. As time evolves, a

typical trajectory would stay for increasingly longer period of time near each solution (which could be either an

equilibrium, a periodic orbit or a chaotic invariant set) before it makes a rapid excursion to the next solution. Since

saddle-sink connections are robust, these cycles-called heteroclinic cycles-are robust under perturbations that preserve

the symmetry of the system.

In this paper we discuss the existence and stability of heteroclinic cycles in coupled systems and show how they

can be exploited to design and fabricate a new generation of highly-sensitive, self-powered, sensor devices. More

specifically, we present theoretical and experimental proof of concept that coupling-induced oscillations located near

the bifurcation point of a heteroclinic cycle can significantly enhance the sensitivity of an array of magnetic sensors.

In particular, we consider arrays made up of fluxgate magnetometers inductively coupled through electronic circuits.
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Figure 1: Pattern inside lattice of subgroups that suggests the existence of heteroclinic cycles.

At the center of this discovery is the phenomenon of coupling-induced oscillations, in which the topology of

connections, i.e., which sensors are coupled with each other, and the nonlinearities of materials can be exploited to

produce self-oscillations that limit in a heteroclinic cycle. This phenomenon is dictated by symmetry conditions alone.

In other words, the ideas and methods are device-independent: similar principles can be readily applied to enhance

the performance of a wide variety of sensor devices so long as the symmetry conditions are satisfied.

2. Finding Heteroclinic Cycles

For systems whose symmetries are described by the continuous group O(2), i.e. the group of rotations and re-

flections on the plane, Armbruster et al. [6] show that heteroclinic cycles between steady-states can occur stably,

and Melbourne et al. [1] provide a method for finding cycles that involve steady-states as well as periodic solutions.

Let Γ ⊂ O(N) be a Lie subgroup (where O(N) denotes the orthogonal group of order N) and let g : RN → RN be

Γ-equivariant, that is,

g(γX) = γg(X),

for all γ ∈ Γ. Consider the system
dX
dt
= g(X).

Note that N = kn in an n-cell system with k state variables in each cell. Equivariance of g implies that whenever

X(t) is a solution, so is γX(t). Using fixed-point subspaces, Melbourne et al. [1] suggest a method for constructing

heteroclinic cycles connecting equilibria. Suppose that Σ ⊂ Γ is a subgroup. Then the fixed-point subspace

Fix(Σ) = {X ∈ RN : σX = X ∀σ ∈ Σ}
is a flow invariant subspace. The idea is to find a sequence of maximal subgroups Σ j ⊂ Γ such that dim Fix(Σ j) = 1

and submaximal subgroups T j ⊂ Σ j ∩ Σ j+1 such that dim Fix(T j) = 2, as is shown schematically in Figure 1. In

addition, the equilibrium in Fix(Σ j) must be a saddle in Fix(T j) whereas the equlibrium in Fix(Σ j+1) must be a sink in

Fix(T j).

Such configurations of subgroups have the possibility of leading to heteroclinic cycles if saddle-sink connections

between equilibria in Fix(Σ j) and Fix(Σ j+1) exist in Fix(T j). It should be emphasized that more complicated hetero-

clinic cycles can exist. Generally, all that is needed to be known is that the equilibria in Fix(Σ j) is a saddle and the

equlibria in Fix(Σ j+1) is a sink in the fixed-point subspace Fix(T j) (see Krupa and Melbourne [2]) though the connec-

tions can not, in general, be proved. Since saddle-sink connections are robust in a plane, these heteroclinic cycles are

stable to perturbations of g so long as Γ-equivariance is preserved by the perturbation. For a detailed discussion of

asymptotic stability and nearly asymptotic stability of heteroclinic cycles, which are also very important topics, see

Krupa and Melbourne [2].

Near points of Hopf bifurcation, this method for constructing heteroclinic connections can be generalized to

include time periodic solutions as well as equilibria. Melbourne, Chossat, and Golubitsky [1] do this by augmenting

the symmetry group of the differential equations with S1 — the symmetry group of Poincare-Birkhoff normal form at

points of Hopf bifurcation—and using phase-amplitude equations in the analysis. In these cases the heteroclinic cycle

exists only in the normal form equations since some of the invariant fixed-point subspaces disappear when symmetry

is broken. However, when that cycle is asymptotically stable, then the cycling like behavior remains even when

the equations are not in normal form. In later work, Buono, Golubitsky, and Palacios [7] proved the existence of

heteroclinic cycles involving steady-state and time periodic solutions in differential equations with Dn symmetry.
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Figure 2: Heteroclinic cycle found between three equilibrium points of the Guckenheimer and Holmes system. (a) Saddle-sink connections in

phase-space, (b) Time series evolution of a typical nearby trajectory. Parameters are: μ = 1.0, a = 1.0, b = 0.55, c = 1.5.

3. The Guckenheimer-Holmes Cycle

Figure 2 illustrates a cycle involving three steady-states of a system of ODE’s proposed by Guckenheimer and

Holmes [8]. Observe that as time evolves a nearby trajectory stays longer on each equilibrium. The group Γ 	 Z3
2 ⊗ Z3

in this example has 24 elements and is generated by the following symmetries

(x, y, z) �→ (±x,±y,±z)

(x, y, z) �→ (y, z, x)

Note that, in fact, this is a homoclinic cycle since the three equilibria are on the group orbit given by the cyclic

generator of order 3. The actual system of ODE’s can be written in the following form

ẋ1 = μx1 − (ax2
1 + bx2

2 + cx2
3)x1

ẋ2 = μx2 − (ax2
2 + bx2

3 + cx2
1)x2

ẋ3 = μx3 − (ax2
3
+ bx2

1
+ cx2

2
)x3.

In related work that describes cycling chaos, Dellnitz et al. [9] point out that the Guckenheimer-Holmes system

can be interpreted as a coupled cell system (with three cells) in which the internal dynamics of each cell is governed

by a pitchfork bifurcation of the form

ẋi = μxi − ax3
i ,

where i = 1, 2, 3 is the cell number. As μ varies from negative to positive thropugh zero, a bifurcation from the trivial

equlibrium xi = 0 to nontrivial equilibria xi = ±√μ occurs.

Guckenheimer and Holmes [8] show that when the strength of the remaining terms in the system of ODE’s (which

can be interpreted as coupling terms) is large, an asymptotically stable hetroclinic cycle connecting these bifurcated

equilibria exists. The connection between the equilibria in cell one to the equilibria in cell two occurs through a saddle-

sink connection in the x1x2−plane (which is forced by the internal symmetry of the cells to be an invariant plane for the

dynamics). As Dellnitz et al. [9] further indicate, the global permutation symmetry of the three-cell system guarantees

connections in both the x2x3–plane and the x3x1–plane, leading to a heteroclinic connection between three equilibrium

solutions.
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4. A Cycle in A Coupled-Core Fluxgate Magnetometer

4.1. Modeling

In its most basic form, a fluxgate magnetometer consists of two detection coils wound around a ferromagnetic

core (usually a single core) in opposite directions to one another [10, 11]. A conventional fluxgate magnetometer, can

be treated as a nonlinear dynamical system of the form:

ẋ = −x + tanh(c(x + A sinωt + ε)), (1)

where x represents the magnetization state of the core, c is a temperature related parameter, A is the amplitude of the

biasing signal with frequency ω and ε is the external magnetic field to be detected. In the absence of a biasing signal,

i.e., A = 0, and without external signal, i.e., ε = 0, the system dynamics will quickly settle into one of two equilibrium

points of (1). For a sufficiently large biasing signal, however, the system may be induced to oscillate. A Coupled-Core

Fluxgate Magnetometer (CCFM) is then constructed by unidirectionally coupling N (odd) wound ferromagnetic cores

with cyclic boundary conditions [12], thereby leading to the dynamics,

ẋi = −xi + tanh(c(xi + λxi+1 + ε)), i = 1, . . . ,N mod N, (2)

where xi(t) represents the (suitably normalized) magnetic flux at the output (i.e. in the secondary coil) of unit i, and

ε 
 U0 is an external dc “target” magnetic flux, U0 being the energy barrier height (absent the coupling) for each of

the elements (assumed identical for theoretical purposes), the parameter λ represents the strength of coupling between

xi and xi+1.

A bifurcation analysis [13, 12] reveals that the system (2) displays oscillatory behavior with the following features:

(A) The oscillations commence when the coupling coefficient exceeds a threshold value

λc = −ε − xin f + c−1 tanh−1 xin f , (3)

with xin f =
√

(c − 1)/c. Note that in our convention, λ < 0 (negative feedback) so that oscillations occur for |λ| > |λc|.
The oscillations are non-sinusoidal, with a frequency that increases as the coupling strength decreases away from λc.

For λ > λc, however, the system quickly settles into one of its steady states, regardless of the initial conditions. The

same result ensues if N is even, or if the coupling is bidirectional. For values of λ slightly less than λc, there is a small

interval λHB ≤ λ ≤ λc where global oscillations and synchronous equilibria of the form (x1, . . . , xN) = (x̄, . . . , x̄) can

coexist.

The bifurcation diagram for the N = 3 case is shown in Fig. 3. It was generated with the aid of the continu-

ation package AUTO [14]. Filled-in circles represent stable oscillations, they emerge via an infinite-period global
bifurcation that coincides with the creation of a heteroclinic cycle that connects multiple saddle-point equilibria.

At birth the oscillations are fully grown due to the global nature of the bifurcation. As λ approaches λc (from

the left), so that the strength of the negative feedback is reduced, the oscillation period lengthens and finally becomes

infinite at λ = λc, when the heteroclinic cycle appears. Empty circles describe unstable oscillations, they all appear

via local Hopf bifurcations (labeled HB), so their amplitude increases as a square-root law of the distance from the

bifurcation point. Solid (dotted) lines depict stable (unstable) equilibrium points. In particular, the equilibrium points

that appear at the pitchfork bifurcation point, labeled B, are all synchronous, i.e., of the form (x1, x2, x3) = (x̄, x̄, x̄).

A close-up view of the interval of bistability of large amplitude oscillations and stable synchronous equilibria is also

included. The four branches of unstable equilibria that appear via saddle-node bifurcations (labeled LP) correspond to

nonsynchronous equilibria. Collectively, there are fifteen equilibrium points: three synchronous equilibria, including

the trivial solution, and twelve nonsynchronous equilibrium points.

(B). The individual oscillations (in each elemental response) are separated in phase by 2π/N, and have period

Ti =
Nπ√cxin f

(
1√
λc − λ

+
1√

λc − λ + 2ε

)
, (4)

which shows a characteristic dependence on the inverse square root of the bifurcation “distance” λc − λ, as well as the

target signal ε. These oscillations can be experimentally produced at frequencies ranging from a few Hz to high kHz.
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Figure 3: (Left) Bifurcation diagram for a system of three identical bistable elements coupled unidirectionally and without delay. Solid (dotted)

lines indicate stable (unstable) equilibrium points. Filled-in (empty) circles represent stable (unstable) periodic oscillations. (Insert) Close-up view

of the region of bistability between large-amplitude oscillations and synchronous equilibria. (Right) Family of limit cycles oscillations in phase

space. Bold curve corresponds to oscillations very close to the onset of the heteroclinic connection.

(C) The summed output oscillates at period T+ = Ti/N and its amplitude (as well as that of each elemental oscillation)

is always supra threshold, i.e., the emergent oscillations are strong enough to drive the core between its saturation

states, eliminating the need to apply an additional bias signal for this purpose, as is done in single-core magnetometers.

Increasing N changes the frequency of the individual elemental oscillations, but the frequency of the summed response

is seen to be independent of N.

(D) To measure an external signal we rely on a readout mechanism: the Residence Times Detection (RTD), which is

based on a threshold crossing strategy of measuring the symmetry-breaking effect of an external signal. Thus under

the presence of a target dc signal, the residence times are no longer equal so that either their difference or ratio can

be used to quantify the signal. This mechanism is much more sensitive than standard techniques based on the Power

Spectra Decomposition because the long-period of oscillations that are characteristic of limit cycles near the onset of

a heteroclinic connection renders their wave form highly sensitive to symmetry breaking effects. Then RTD can be

computed as Δt ≈ π
(
1/
√
λc − λ − 1/

√
λc − λ + 2ε

)
/
√cxin f , which vanishes (as expected) for ε = 0, and can be used

as a quantifier of the target signal, analogous to the time-domain operation of the single fluxgate.

(E) The system responsivity, defined via the derivative ∂Δt/∂ε, is found to increase dramatically as one approaches

the critical point in the oscillatory regime; this suggests that careful tuning of the coupling parameter so that the

oscillations have very low frequency, could offer significant benefits for the detection of very small target signals. For

small target signals, one may do a small-ε expansion to yield Δt ≈ πε(λc0 − λ)−3/2/
√cxin f , where λc0 now represents

the critical coupling, absent the target signal. For a fixed ε, one observes, immediately, that the responsivity ∂Δt/∂ε
increases as one approaches the critical point (through adjusting the coupling parameter λ). The instrument thus yields

its optimal performance in the very low frequency regime, close to the oscillation threshold; it is worth noting that the

experimental system can be made to oscillate at very low frequencies (around 65hz), far lower than the bias frequency

for conventional fluxgates. The coupled system can be “tuned” to this regime by adjusting the coupling coefficient λ.

4.2. Design and Fabrication

Figure 4 shows an actual realization of a CCFM with three fluxgate magnetometers coupled uni-directionally. The

PCB (printed circuit board) technology based cores are made of Cobalt-based Metglas 2714A material, and each is

sandwiched between two sheets of PCB material. The sides of the PCB sheets that face away from the core material

are printed with copper wirings to form the windings for the driving and sensing coils. Solder is used to fuse the

two sheets together to complete the circuit for the windings. The cores are then coupled through electronic circuits

where the (voltage) readout of one fluxgate signal (i.e., the derivative signal of the flux detected by the sensing coil)

is amplified by a voltage amplifier with a very high impedance, which also trims out any dc signal in the output.
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Figure 4: Prototype design of a coupled core fluxgate magnetometer with three fluxgates.

Following this, the signal is passed through a leaky integrator to convert the derivative signal seen by the sensing coil

back to the “flux” form so that the experimental system closely conforms to the model (2).

Typically, the integrator output contains a dc component that must be removed before the signal is passed to the

other fluxgates. This is accomplished by employing a Sallen-Key second-order high pass filter immediately after the

integrator. The signal then passes through an amplifier to achieve adequate gain to drive the adjacent fluxgate. After

this, the signal passes through a voltage-to-current converter (V-I converter) in its final step to drive the primary coil

of the adjacent fluxgate. The setup repeats for the remaining two fluxgates and all values of the coupling circuit

parameters are closely matched from one set to the other.

The oscillations observed from this setup are quite striking, see Fig. 5. The system readily oscillates in a travelling

pattern. Like the model, the system favors this pattern no matter how many times it is restarted. The frequency of

oscillations is about 33.5 Hz. Each wave is phase shifted by exactly 2π
3

as predicted by the model. Comparison of the

oscillations from the experiment to the numerical results shows good agreement. In addition, since we do not know

the value of c and the time constant τ in the actual device (we set τ = 1 in the model), we cannot correctly compare the

time scales in the model and the experimental observations. The amplitudes of the oscillations in the experiment are

also arbitrary compared to the model because the recorded voltages depend on the gains set in the coupling circuit. On

the other hand, the magnetic flux in the model saturates between ±1, but in the fluxgate devices, this quantity cannot

be measured directly.

Figure 5: Comparison of voltage oscillations obtained near the onset of a heteroclinic connection in (left) computer simulations of a CCFM

modeled by Eq. (2) show good agreement with (right) experimental voltage measurements of prototype of a CCFM device tuned up to operate near

the heteroclinic cycle.
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5. Conclusions

Heteroclinic connections in phase space are rather rare features of dynamical systems because they require solution

trajectories to make complex excursions among many different solutions sets, i.e., steady-states, periodic solutions,

and even chaotic sets. They are, however, ubiquitous in dynamical systems that posses symmetry. Indeed, symmetry

facilitates the creation of invariant regions through which solution trajectories can make repeated excursions in a more

natural way. Over the past ten years we have conducted various analytical, computational, and experimental works

to investigate the fundamental idea that coupling-induced oscillations that emerge through heteroclinic connections

can be exploited to develop a new generation of highly-sensitive, low powered, dynamic sensors. In this work we use

the fluxgate magnetometer, which is essentially a coil sensor with a ferromagnetic core, as case study to illustrate the

basic ideas and methods to enhance sensor performance. The individual fluxgates are coupled uni-directionally via

magnetic flux. This type of coupling configuration favors, for certain coupling strengths, the existence of structurally

stable heteroclinic cycles that involve saddle-sink connections between multiple equilibrium points. More importantly,

the cycles are accompanied by a branch of globally stable limit cycle oscillations. At birth, these oscillations are fully

grown with a large amplitude, which distinguishes them from the slowly growing oscillations that emerge via Hopf

bifurcations. This is a critical feature to enhance performance because the large period, large amplitude, oscillations

that typically occur near the onset of a heteroclinic connection render the collective oscillations highly sensitive to

symmetry-breaking effects caused by external signals. An experimental prototype of a CCFM device yields voltage

oscillations that are in very good agreement with computer simulations of the model equations. More importantly, the

sensitivity of device is significantly stronger than that of a single unit, as expected.
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