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Overview and background 

 
The aim of this research is the development of a unified theory of complex networks involving four 

essential aspects: the hard limits on what is achievable (constraints, misnamed ―laws‖), the organizing principles that 

succeed or fail in achieving them (architectures and protocols), the resulting high variability data and ―robust yet 
fragile‖ behavior observed in real systems (behavior, data), and the processes by which systems evolve (variation, 

selection, design).   

Hard limits on measurement, prediction, communication, computation, decision, and control, as well as the 

underlying physical energy and material conversion mechanism necessary to implement these abstract process are at 

the heart of modern mathematical theories of systems in engineering and science (often associated with names such 

as Shannon, Poincare, Turing, Gödel, Bode, Wiener, Heisenberg, Carnot,…).  They form the foundation for rich and 

deep subjects that are nevertheless now introduced at the undergraduate level.  Unfortunately, these subjects remain 

largely fragmented and incompatible, even as the tradeoffs between these limits are of growing importance in 

building integrated and sustainable systems.   An essential research direction then is an integrated theory based on 

optimization that deals systematically with uncertainty, robustness, and risk in complex systems. For a relatively 

nontechnical discussion of these issues, see [1] and references therein. 

Insights into universal laws, architecture, and organizational principles can be drawn from three converging 

and increasingly related research themes. First, the organizational principles of organisms and their evolution are 

becoming increasingly apparent as biologists articulate richly detailed explanations of biological complexity, 

robustness, and evolvability that point to universal principles and architectures.  Generally, organisms and their 

lineages are robust and evolvable in the face of even large changes in environment and system components, yet can 

simultaneously be extremely fragile to other small perturbations. Such universally ―robust yet fragile‖ (RYF) 

complexity is found wherever we look. The amazing evolution of microbes into humans (robustness of lineages on 
long timescales) is punctuated by mass extinctions (extreme fragility). Diabetes, obesity, cancer, and autoimmune 

diseases are side-effects of physiological control and compensatory mechanisms so robust as to normally go 

unnoticed.  This RYF feature of complex systems must be handled by any methodology that hopes to be scalable 

and evolvable, with systematic and formal verification approaches. 

Second, while the components differ and the system processes are far less integrated, advanced 

technology‘s complexity is now approaching biology‘s and there are striking convergences at the level of 

organization, architecture, and the role of layering, protocols, and feedback control in structuring complex 

multiscale modularity.  This complexity facilitates robustness and accelerates evolution, but enables catastrophes on 

a scale unimaginable without, and this ―robust yet fragile‖ (RYF) nature of complex networks is one of their most 

essential features. Network-centric technology can undoubtedly provide unprecedented levels of performance, 

efficiency, and robustness. The ultimate challenge will not be to make this apparent in demonstrations and typical 

scenarios, but to avoid the rare but catastrophic real-world failures that seem to inevitably accompany new levels of 

complexity.  

Finally, a new mathematical framework suggests that this apparent network-level evolutionary convergence 

within/between biology/technology is not accidental, but follows necessarily from their universal system 

requirements to be fast, efficient, adaptive, evolvable, and robust to perturbations in their environment and 

component parts ([1],[17]-[22]).  The universal hard limits on systems and their components have until recently been 
studied separately in fragmented domains of physics, chemistry, biology, communications, computation, and 

control, but a unified theory is emerging ([23]-[26]).  Determining what is essential about this convergence both 



 
Figure 1  Hard tradeoff between net fragility (RHS of eq (5)) 

and metabolic overhead due to enzyme complexity and 

amount. Enzyme amount affects the intermediate reaction 

rate k (x-axis), plotted against fragility (y-axis) for g=0 (red) 

and g=1 (blue). Either large k or large g is required to 

minimize fragility, but large k requires high metabolic 

overhead and large g requires high enzyme complexity. Even 

small g>0 enhances the tradeoffs, particularly at low k.  
 

within biology and with technology, and what is merely historical accident  requires a deeper understanding of 

architecture — the most universal, high-level, persistent elements of organization — and protocols. Protocols define 

how diverse modules interact, and architecture defines how sets of protocols are organized.   

This theory builds on and integrates decades of research in pure and applied mathematics with engineering, 

including robust control theory, dynamical systems, information theory, numerical analysis, operator theory, real 

algebraic geometry, computational complexity theory, duality and optimization, and semi-definite programming, 

motivating new interactions between these diverse areas. The results have diverse applications, including robustness 

analysis of various complex control systems in biology and technology, the performance of Internet protocols and 

their extensions to wireless and ad hoc networks, router topologies and web layout, to wildfire ecologies, to 
biological signal transduction, stress response, metabolic control, and disease dynamics. The work is creating new 

mathematics, algorithms, and widely used software infrastructure, is appearing in the highest-impact journals in 

diverse fields, and concretely demonstrating that this research can help both engineers and experimental biologists. 

Some of the most exciting results are just recently published or are under review and not yet published, so below we 

will sketch some of the underlying mathematical ideas and illustrate the key results with case studies from a variety 

of fields.  

The remainder of this report will focus 

on the following recent progress.   

 Generalizations of “layering as 

optimization” to a theory of architecture. 
Our research has led to new theories of the 

Internet and related networking technologies 

(e.g [2] ), and to new protocols that have 

been tested and deployed. We are expanding 

this framework to more explicitly treat 

dynamics ([3], [4]), and in the wireless 

domain both to the circuit and physical level 
([5]-[10]), and to cleaner integration of 

routing, scheduling, power control, and 

network coding ([11]-[16]). Our goal is 

developing a common analytical framework 

and language that handles and integrates 

computation, communication, and control in 

complex network or networked systems 

across all protocol layers from physical 

layer to application layer and to dynamics 

over the network. A crucial next step is 

further integration with the operating 

systems dimensions of networking, 

including naming and addressing [66]. 

 New hard limits trading off robustness and efficiency. Figure 1 illustrates a hard tradeoff between fragility of 

a metabolic system in terms of disturbance rejection, and the metabolic overhead of the network in terms of 

enzyme complexity and amount (from [24]).  This appears to be the first result of its type that establishes 

tradeoffs between robustness and efficiency that are both theoretically rigorous and relevant to practical 
systems. It also gives new insights into one of the longstanding mysteries in cell biology, the purpose, if any, of 

glycolytic oscillations.  We believe this new result is just the first in a rich set of biologically and 

technologically relevant hard limits.  The metabolic overhead dimension is based on standard biochemistry, but 

is largely phenomenological and not derived directly from first principles, unlike the robustness dimension.  

This and other efficiency tradeoffs has motivated the next issue: 

 A fully nonequilibrium theory of statistical mechanics and thermodynamics. We have proved abstract 

tradeoffs integrating communication and control theory [26], and more recently a control theoretic treatment of 

noise in nonequilibrium statistical mechanics [25].  This provides a theory of dissipative and active devices, the 

origin and nature of noise, and tradeoffs in measurement versus back action, that both integrates and generalizes 

standard treatments.  Not yet published, but sketched below, is a ―Heisenberg-like uncertainty principle‖ for 

conjugate variables that is purely classical and derivable from first principles.  This research direction aims to 

provide a physical basis for the noise sources in control and communications, and deepen our theories on 

tradeoffs between robustness and efficient use of resources. We expect it will lead to a fundamental rethinking 



of noise, fluctuation-dissipation, back action, and control in both classical statistical mechanics and ultimately 

in quantum mechanics. 

 Drag in turbulent shear flows and blunting of the turbulent profile is a ubiquitous source of inefficiency on 

even highly streamlined.  This has also been a long term mystery at the heart of complex systems, and one that 

we have largely resolved.  We will sketch the essential features of our new theory. 

 Physiological variability has been a persistent mystery at the heart of medicine from cardiology to intensive 

care.  While not a main focus of the proposed research here, our progress in this area illustrates the power and 

generality of our approach, and the appendix will sketch elements of our results.  We are pursuing funding 

elsewhere to continue this research. 
 

Summary of Accomplishments and Research Results 

 

From layering as optimization to a theory of architecture 
 

The seminal work of Kelly and Low have sparked remarkable progress in mathematical modeling and 
analysis of the Internet congestion control, as well as later extension as a general utility maximization framework for 

network protocol stack design [2]. However, most theory focuses on convergence to a static optimal operating point. 

The duality model of TCP only says the convergence to the equilibrium rates of TCP flows, but says nothing about 

the transient trajectory. The dynamic nature of information over the networks and the evolution of the network itself 

necessitate analysis of transients and development of time-critical decision rules. 

We are extending the static duality model to include transient dynamics using optimal control theory, 

where part of the system dynamics become a constraint on the state trajectory over time. We show that the 

controllers proposed by primal, dual and primal/dual algorithms all maximize some meaningful dynamical behaviors 

[3]. More precisely, there exist natural cost functionals whose minimization (maximization) leads to these celebrated 

controllers. This result opens the possibility of tackling network problems directly as optimal control problems, 

which not only take the dynamics into account, but which also allow to impose physical constraints. Other 

applications of dealing with cost functionals directly are in deducing the stability of the control system for free, 

gaining insight into how to perform joint routing and congestion control, etc. 

The most exciting opportunity for use of the methods in [3] and others described below, however, is in 

more ―clean slate‖ architectures, where control and dynamical systems theory could play an integral role at the 

outset, rather than patch a leaky architecture when problems (e.g. congestion collapse) arise. Thus we are rethinking 

the engineering network architectures (e.g. the TCP/IP protocol stack) that were the primary motivation for the 

development of the theory over the last decade.  We have already made preliminary progress in connecting our 
theoretical framework with various ―clean slate‖ efforts, such as Recursive InterNet Architecture (RINA, 

http://csr.bu.edu/rina/index.html), and the Publish-Subscribe Internet Research Paradigm (PSIRP, 

http://www.psirp.org/), and have begun new research on fundamentally redesigning network architectures. 

IP has a variety of well-known problems with security, mobility and multihoming, quality of service, router 

table size, streaming applications, and multicasting. While the technical details are complex, many symptoms are 

due to the simple fact that IP addresses name physical interfaces (ironically, a frozen accident of the Internet‘s 

evolution).  Hosts, routers, and servers have no names in IP, making multihoming and mobility difficult, while 

interfaces have both MAC and IP addresses.  Further aggravating this is that there is no relation between IP 

addresses even when they are attached to the same machine (a source of persistent confusion in using traceroute to 

study router topology [22]).  Exposing these physical addresses both globally and to higher layers is an obvious 

layer violation and a security, performance, and scalability nightmare. NAT (Network Address Translation) actually 

improves both security and scalability by creating private address spaces, but would be unnecessary in a properly 

layered architecture in which addresses, including physical nodes and interfaces, are local in scope and layer and 

properly virtualized outside.   

These observations are well-known and obvious, even trivial, but they are the mere tip of an IP iceberg that 

netcentric technologies are obliviously plowing into.  (To make matters worse, ―network science‖ with its focus on 

the most elementary applications of graph theory and statistical physics is even more oblivious.)  What is most 
interesting here is that the cell architecture solves a much harder problem than IP but has none of its weaknesses.  IP 

networks are almost completely free of autocatalytic feedback, simply import all of their components and energy, 

and until recently were largely unconcerned by either waste or consumption.  The cell is highly constrained and, by 



necessity, massively autocatalytic.  Yet it maintains very strict layering, with specific signaling and regulatory 

proteins and RNAs devoted to translating the needs of the upper layering into the addresses required to access the 

information encoded in the genome, and a few global carriers of energy, redox, and small conserved moieties.  This 

architecture has various scalability issues however, such as global diffusion and molecular recognition to do address 

resolution, and eukaryotes have more complex architectures that remain less completely understood, though the role 

of noncoding RNAs is clearly central and final receiving proper attention. At the other extreme, the human brain has 

a layered architecture that is very different from either the cell or Internet. We have already worked out qualitatively 

most of the many details contrasting the cell and IP-based architectures, and the next step is to formalize these 

observations, and connect them with our ongoing work in other projects on new Internet architectures and begin 
relating them to eukaryote cell and brain architectures.   

 

Large-scale integrated circuit and antenna design 
With ever-increasing demand for better performance of integrated circuits, rigorous theory-based optimal 

design has become more and more important, and our layering framework can be applied to this physical-layer 

problem as well. We have applied various ideas in the areas of passivity and convex optimization to guide the large 

scale linear circuit design, and showed that the problem can be cast as a decentralized control design problem for a 

given system [6]-[9]. As an important application of this work, the design of a secure, power-efficient,  beam-

steerable and on-chip transmission system for wireless networks is investigated. In particular, a passively 

controllable smart (PCS) antenna system is introduced, which can be programmed to generate different radiation 

patterns at the far field by adjusting its variable passive controller at every signal transmission. The PCS antenna is 

able to transmit data to a desired direction in such a way that no signal is sent in many undesired directions. Unlike 

the existing smart antennas whose programming leads to an NP-hard problem or are made of many active elements, 

the PCS antenna proposed in the present work has a low-complex programming capability and consists of only one 

active element. These two properties differentiate a PCS antenna from the existing smart antennas, and make it 

possible to implement a PCS antenna on a cheap, small-sized, low-power silicon chip. 

 
Game-theoretic approaches to network design 

Game theory has recently been applied to the analysis and design of communication networks, mainly to 

address self-interest and incentive issues. Most work assumes network agents (network components or users) are 

selfish and try to thwart selfish behaviors or induce cooperation using external mechanisms such as pricing. This 

economic perspective, we argue, is only one approach and by itself limits the application of a game-theoretic 

approach to network design. We can also take a complementary, engineering perspective to game-theoretic methods, 

motivated by the fact that in many network problems it is more reasonable to assume cooperative behavior. We 

envision a scenario where network agents are willing to cooperate but only have limited information about network 

states due to various practical constraints in real networks. In such a situation, the best an agent can do is to optimize 

some local or private objective and adjust its 

action based on limited information about the 

network state. We use a non-cooperative game to 

model such a situation, and let network agents 

behave ‗selfishly‘ according to the game that is 
designed to guide individual agents to seek an 

equilibrium achieving some performance 

objective. So, from the engineering perspective, 

the main focus is not on incentive issues but on 

the implementation in practical networks. This 

engineering perspective complements the 

economic perspective and enables more flexible 

and practical application of game-theoretic 

approach to engineering design. 

We have taken the engineering 

perspective and applied a game-theoretic 

approach to contention control, called random 

access game, which provides a unique 

perspective to understand existing contention 

based medium access control protocols and a 



general framework to guide the design of new ones to improve the system performance [11]-[14].  The medium 

access protocol can be interpreted as and designed according to a distributed strategy update algorithm achieving the 

equilibrium of random access game. The random access game is a rather general construction, as it can be reverse-

engineered from existing MAC protocols, forward-engineered from desired operating points, or designed based on 

heuristics [11][12]. Medium access methods derived from concrete random access game models achieve superior 

performance over the standard IEEE 802.11 DCF and can provide flexible service differentiations [12]. In the figure 

on the left we show the throughput comparison between our game-based medium access method, the standard IEEE 

802.11 DCF, and the optimal achievable throughput. We see that our game-based design can even achieve 

theoretically-optimal throughput which is robust to large numbers of users. 
A game-theoretic approach to distributed cooperative control has also recently received significant 

attention. This approach is to model the interactions of a multi-agent system as a non-cooperative game amongst the 

agents. The form of a distributed architecture provides advantages such as robustness to failures and environmental 

disturbances, reducing communication requirements, improving scalability, etc. Two main challenges of modeling a 

multi-agent system as a non-cooperative game are (i) designed local agent objective functions, which may be in 

conflict with one another and (ii) designing distributed learning dynamics so that the resulting global behavior is 

desirable with respect to the global objective. 

However, non-cooperative control has limitations with respect to engineering multi-agent systems. One 

problem that arises in many multi-agent settings is coupled constraints on the agents‘ actions. Examples of problems 

that possess such constraints are consensus, formation control, or power control. We illustrate that the framework of 

non-cooperative games is not suitable for imposing coupled constraints. With these limitations in mind, we 

introduce state-based games, one particular form of stochastic games, which generalize non-cooperative games to a 

Markov based setting. In these state-based games, we propose an approach for dealing with coupled constraints by 

introducing additional information (i.e. a state) into the game-theoretic interactions [55][56].  

 

Energy-aware network design 
The use of energy has become a primary concern in system design, and computer and communication 

systems must make a fundamental tradeoff between performance and energy usage.  The addition of energy to 

standard performance metrics such as delay, throughput and loss fundamentally changes the problem space of some 

of resource allocation designs. Not only are new mechanisms needed to optimize energy usage, existing algorithms 

and protocols must be re-examined as a formerly optimal algorithm may now perform poorly with respect to a new 

energy-aware metric. Energy management decisions must be decomposed and coordinated spatially as well as 

temporally, and yet global optimality must be achieved through local algorithms that are implementable in a 

distributed manner. 

We have studied the interaction of speed scaling, a widely-adopted power management technique, with 

load balancing, in order to provide insights into such issues as: i) How does the system perform under speed scaling 

in terms of traditional performance metrics as well as energy-aware metrics? ii) How to design energy-aware 

optimal load balancing and can we decouple the design of load balancing from that of speed scaling? iii) How does 

the sophistication of speed scaling impact the design and performance of load balancing? We characterize the 

equilibrium resulting from the load balancing and speed scaling interaction, and introduce two optimal load 

balancing designs, in terms of traditional performance metric and cost-aware (in particular, energy-aware) 

performance metric respectively. Especially, we characterize the load-balancing-speed-scaling equilibrium with 

respect to the optimal load balancing schemes in processor sharing systems, and propose distributed load balancing 

algorithms to achieve the corresponding equilibrium and optimum. We show that the degree of inefficiency at the 
equilibrium is mostly bounded by the heterogeneity of the system, but independent of the number of the servers. Our 

results suggest that, as in many applications a low-order polynomial provides a good approximation to power 

function, we can decouple the design of load balancing from speed scaling without incurring much inefficiency in 

delay. In terms of power-aware performance metric, our results suggest that, as long as the heterogeneity in the 

system is small, we can decouple the design of load balancing from speed scaling without incurring much efficiency 

loss; but when the heterogeneity in the system is large, we have to do energy-aware load balancing if the energy 

consumption is a main concern [64].  

 

Consensus in networked systems with limited channels 
During the past few decades, there has been a particular interest in the area of distributed computations, 

which aims to compute some quantity over a network of processors in a decentralized fashion. The distributed 

averaging problem, as a particular case, is concerned with computing the average of numbers owned by the agents 

of a group. This problem has been investigated through the notion of consensus in several papers, motivated by 



different applications such as flocking and synchronization of coupled oscillators arising in biophysics. We consider 

the consensus problem over a multi-agent network, in which the quantization effect appears due to the existence of 

digital communication channels between the agents. In this regard, a weighted connected graph is considered 

together with a set of scalars sitting on its vertices.  The weight of each edge represents the probability of 

establishing a communication between its corresponding vertices through the updating procedure. We propose a 

stochastic gossip algorithm and show that the quantized consensus is reached under this algorithm for a wide range 

of updating parameters and any arbitrary quantizer including uniform and logarithmic ones[50]- [52]. The 

convergence time of the gossip algorithm is also studied. The role of these methods of reaching consensus and the 

control theoretic approach to protocol design will be the next direction of research. 

 
Large-scale networked dynamical systems  

One challenging issue in networked systems is the design of distributed control algorithms for spatially 

distributed dynamical systems. Nader Motee, as a postdoc at Caltech, has focused on tools which are suitable for 

development of distributed controllers for spatially distributed systems with information constraints induced by the 

underlying graph of the system. He has studied the locality features of distributed optimal control and optimization 

problems by blending tools from operator and duality theories [40][41]. In particular, it has been shown that if the 

coupling strength between subsystems is spatially decaying, then the large-scale receding horizon control problems 

can be efficiently localized in the spatial domain with stability and performance guarantees. Furthermore, this 

framework allows developing a method for integration and interpolation of controllers that mediates the interaction 

among local controllers [41]. The intent of the controller interpolation method is to produce a spatially distributed 

controller for a stabilizable linear spatially-varying system. In future work, we plan to build on this and other 

methods of Motee and Jadbabaie, which complement the approaches above. 
Another issue in networked systems is the lack of a general methodology for inferring dynamical and 

functional behavior from the detailed network description. One of the central problems in the emerging field of 

systems biology is the analysis and functional classification of biochemical reaction networks. Such networks are 

increasingly being scrutinized and their individual components meticulously investigated in detail. Included in these 

large interconnected models are lists of parameter values (for component dimensions or characteristics) which are 

often merely known within some range or distribution. To understand how the efficiency of the entire system 

behaves depending on where this component parameter lies, one must perform exhaustive simulations within the 

parameter range. Since hundreds of parameters are often uncertain in this way, this task becomes extremely time 

intensive. We are exploring methodologies by which large interconnected biochemical reaction networks can be 

reduced to systems of much smaller state dimension that have similar functionality. The enabling ideas behind this 

methodology consist of understanding how dynamical systems that are designed for prescribed functions (such as 

logical or hybrid operations) can be implemented with dynamical networks constrained to have specific types of 

building blocks. This problem is referred to as functional model reduction to emphasize distinctions with traditional 

model reduction techniques. We propose a framework based on tools from differential ring theory and operator 

theory that is particularly tailored to the differential equations that result from biochemical kinetics [41][42]. This 

framework provides insights into uncovering and classification of function from the detailed description of 

biochemical reaction networks. It also proposes a new paradigm for model reduction based on network function.  

Our third focus is to study networked autonomous robotic systems. Situational awareness in adversarial 
environments requires efficient spatio-temporal monitoring of dynamic and resource-constrained environments. A 

network of autonomous robotic sensors can efficiently achieve the desired spatial coverage. However, limitations on 

energy resources, and the required time for sensing, communication and computation place a number of hard 

constraints for mission planning. In addition, the robots may operate in environments cluttered with possibly moving 

obstacles, and their objectives can change over time. Thus, careful coordination of their paths is required in order to 

maximize the amount of information collected, while respecting all the constraints. While the state-of-the-art in 

sensor network design shows the advantages of deploying hundreds of small wireless sensors (e.g., infra-red, 

magnetometers, microphones, ultrasonic, and acoustic), many significant conceptual and foundational issues, such 

as the limits of usability and robustness of such sensor networks in urban and rural applications, remain to be 

studied. Our future research objectives are to further develop theories that show how to integrate mobility, 

computation, communication and sensing in resource-constrained mobile sensor networks, and design 

methodologies for distributing the computation in such systems [43]-[46].  

 

Discrete abstractions of dynamical systems 



A typical question in the integration of control and computation in complex systems would be, given a 

continuous control system with only finite precision measurements of the inputs and outputs, is there a finite state 

system that has identical input-output behavior? The associated finite state system is called a discrete abstraction of 

the original continuous system. Discrete abstractions are often used for automated verification and synthesis with 

respect to higher level temporal logic specifications. While there is already a reasonable body of work on the 

existence of discrete abstractions for dynamical systems, many of the current results do not give much information 

on the structure of the resulting finite state system, or the computational complexity of finding it. In [57], we take a 

known abstraction technique for discrete-time linear systems with partitioned output spaces and explicitly work out 

the structure of the finite state system. Properties of the output space partition control the size of the resulting finite 
state system, as well the complexity of finding it. In particular, with arbitrary output space partitions, the finite state 

spaces could grow extremely fast (non-elementary) with the order of the linear system. With simple output space 

partitions, however, the state spaces cannot be too large, and the discrete abstractions can be found in polynomial 

time.  The next step in this research is to explore the implications of this result on the use of discrete abstractions in 

practical problems involving hybrid systems. 

 

Control over neuron-inspired communication channels 
The nervous system implements a networked control system in which the plants take the form of limbs, the 

controller is the brain, and neurons form the communication channels. Unlike standard networked control 

architectures, there is no periodic sampling, and the fundamental units of communication contain no numerical 

information. We proposed a novel communication channel, modeled after spiking neurons, in which the transmitter 

integrates an input signal and sends out a spike when the integral reaches a threshold value [54]. The receiver then 

filters the sequence of spikes to approximately reconstruct the input signal. It was shown that for appropriate choices 

of channel parameters, stable feedback control over these spiking channels is possible. Furthermore, good tracking 

performance can be achieved. The data rate of the channel increases linearly with the size of the inputs. Thus, when 

placed in a feedback loop, small loop gains imply a low data rate. Ongoing extensions of this work include 

analyzing a noisy version of the channel.  In future work, the interplay between these channels and the layered 
nature of the brain will be a particular focus. 

 

Hard tradeoffs on robust efficiency and glycolytic oscillations 
 

Both engineering and evolution are constrained by tradeoffs between efficiency and robustness, but theory 

that formalizes this fact is limited.  Using a simple two-state model of glycolysis, we explicitly derive hard tradeoffs 

between metabolic overhead, network fragility, and oscillations. These theoretical results are confirmed with single 

cell experiments (modeling and experiments funded elsewhere). Glycolytic oscillations are among the most studied 

dynamics in biology, yet whether the oscillations are beneficial or simply an evolutionary accident is 

unresolved. For our simple model, we prove a third alternative: Oscillations are the inevitable consequence of 
tradeoffs between metabolic overhead and robustness to disturbances, and the interplay of feedback control with the 

autocatalysis of network products necessary to power and catalyze intermediate reactions. Furthermore, the essential 

features of the hard tradeoff ―law‖ depend minimally on the details of this system, and generalize to the robust 

efficiency of any autocatalytic network, no matter how complex. The paper [24] explores robust efficiency via 

integration of concepts from biochemistry and control theory [35][70] using the familiar example of glycolytic 

oscillations and shows how hard limits can shed new insight on a well-understood problem. We believe the main 

result is extremely striking and important, and is not yet published, so we will sketch the main features. 

Glycolytic oscillation is a classic case study in dynamical systems, with a rich literature experimentally [71] 

and theoretically [72],[73]. Numerous models have been developed, from minimal models [75]-[76] to those with 

extensive mechanistic detail [74]. Glycolysis is arguably the most studied and most common control system, found 

in ~10
30

 cells from bacteria to human, and presumably has been under intense evolutionary pressure for robust 

efficiency. Thus new insights are hopefully less likely to be confounded by gaps in literature or evolutionary 

accidents, compared with more obscure biological circuitry. Nevertheless, the purpose of oscillations, if any, is still 

a mystery, but one we aim to resolve in a way compatible with existing literature. 

We develop the simplest possible model of glycolysis that illustrates the tradeoffs caused by autocatalysis. 

Other biologically motivated minimal models exist, but analysis of robustness and efficiency tradeoffs has not 

received much attention. Such analysis can provide a deeper understanding of the underlying basis of glycolytic 
oscillations. We highlight the tradeoff between steady state error and stability and its relation to the cell‘s metabolic 

overhead and pathway complexity. We then use elementary control theory to derive a more general tradeoff 



formulation involving fragility, efficiency, and complexity. These deep tradeoffs show that oscillations are an 

inevitable consequence of metabolic efficiency and the autocatalysis. The destabilizing effects of ―positive‖ 

autocatalytic feedback can be countered by negative feedback, but we show that there can be severe theoretical 

limits on the resulting performance and robustness. These results clarify the highly evolved nature of the yeast 

control network as an optimal balance of robustness, efficiency, and complexity, and are consistent with the 

fluctuating transient response we observe experimentally in single cells. 

 

Minimal Model of Glycolysis  
Glycolysis is a central energy producer in the cell, consuming glucose to generate Adenosine Triphosphate 

(ATP) used throughout the cell. Early experimental observations show that oscillations have a 90° phase difference 

between two synchronized pools of metabolites downstream and upstream of Phosphofructokinase (PFK) [77]. This 

suggests a two-state model incorporating the two Hopf modes and PFK might capture some aspects of system 

dynamics and indeed, such simplified models [75][76] reproduce the qualitative oscillatory behavior seen in 

extracts. We propose a minimal system with three reactions modeled using the power law formalism [78], for which 

we can identify specific mechanisms both necessary and sufficient for oscillations. (Michaelis-Menten forms 

complicate algebra but do not affect analysis and results, but are more familiar to biologists and the M-M form was 

used in [24].)  
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We assume total concentration of adenosine phosphates in the cell [Atot]=[ATP]+[ADP]+[AMP] remains 

constant and the activating effects of Adenosine Monophosphate (AMP)  on PFK can be modeled as ATP inhibition. 

ATP also inhibits PK activity. Although this seems largely ignored in most models (notable exceptions include [79]) 

we will emphasize its importance and model both allosteric inhibitions via exponents h and g. Since we will focus 

on linearizations we ignore the saturating effects of constant [ ]Atot . 

In the first reaction in (1), PFK consumes q molecules of y (ATP) with allosteric inhibition by ATP. We lump 

the intermediate metabolites into variable x. In the second reaction, Pyruvate Kinase (PK) produces q+1 molecules 

of y at rate k for a net (normalized) production of 1 unit, which is consumed by the rest of the cell. We model the 

feedback strengths on PFK and PK as h and g, respectively, and the cooperativity of the autocatalytic reaction is 

modeled by a. In glycolysis, 2 ATP molecules are consumed upstream and 4 produced downstream, which 

normalizes to q=1 (each y produces 2 downstream) with kinetic exponent a=1. Since oscillations are typically 
observed in anaerobic conditions, there is no aerobic ATP production.  

To highlight essential tradeoffs with the simplest possible analysis we normalize the concentration such that 

the unperturbed ( 0  ) steady states are 1y   and 1/x k . Basal rates of PFK and consumption are normalized 

to 1 with perturbation  . We focus initially on steady state error and instability using linearization, highlighting 

disturbance and control (the second and third term on the RHS, respectively): 
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The simplest robust performance requirement (motivated by the need to maintain high energy charge) is that y 

remains nearly constant despite fluctuating demand . This requires that the steady state error ratio  
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be small, or |h-a| large. /y  0 iff h∞, which tradeoffs with high complexity in the first enzyme, since large h 

requires either high cooperativity or very tight ATP-enzyme binding. The resulting complex enzymes are more 
costly for the cell to produce.  Stability of (1.2) requires h>a which is consistent with (1.3) but also upper bounds 

the feedback strength h, which constrains the minimum stable steady state error to 
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Equation (4) illustrates a simple and elegant tradeoff between complexity, fragility, and metabolic overhead.  

Low error requires large h, but to allow this to be stable, k and/or g must also be large. Large k requires either more 



 
Figure 2 The log sensitivity log|S(j)| without ATP feedback on PK 

(g=0) and the step response to change in demand . The integral of 

log|S(j)| is constrained by (5) and is the same for all h. Only the shape 
changes with increasing h. Higher h gives lower S(0) (better steady state 

error) with higher peak ( more oscillatory transient). At q=1, the system 

has sustained oscillations for large h. 

efficient or higher enzyme 

concentration and large g requires a 

more complex allosterically 

controlled PK enzyme; both would 

increase the cell‘s metabolic load. 

Thus low fragility directly trades off 

with complexity and metabolic 

overhead. All the tradeoffs between 

steady state error, complexity, and 
metabolic overhead achieve their 

hard limits when (4) is an equality, 

which is where (1) enters sustained 

oscillations (this boundary is called 

a supercritical Hopf bifurcation). 

Thus at least in this model, 

oscillations have no direct purpose 

but are side effects of hard tradeoffs 

crucial to the functioning of the cell. 

 
Hard limits on robust efficiency  

Thus far we described 

simple tradeoffs based on basic 

biochemical features of a minimal model. Our elementary analysis is consistent with existing literature yet clarifies 

in (4) how oscillations are the inevitable consequence of robust efficiency and tradeoffs between steady state error 

and stability. An important next step is to add mechanistic details including more intermediates, detailed enzyme 

kinetics, control of redox, enzyme levels, etc, and extend the analysis to study global nonlinear stability, stochastics, 

and worst-case disturbances. We have extensively explored such dimensions and the results are consistent though 

less accessible.  

A much more fundamental approach, however, is to rigorously prove that the tradeoffs in the simple model 

are truly unavoidable and independent of these neglected details; they depend only on very basic properties of 

autocatalytic and control feedbacks, and are neither artifacts of model simplifications nor ―frozen accidents‖ of 

evolution. This will also focus our attention on the transient response to disturbances, which is just as important 

since even temporary ATP depletion can induce cell death [80]. 

We reconsider the linearized model (2) and allow =(t) to be an arbitrary function of time. We use 

frequency-domain transforms for signals  ˆ ( ) sty s y t e dt




  and transfer function      ˆˆ /WS s y s s , where 

s j are Laplace and Fourier transform variables, respectively. We consider the general case where h is replaced 

by a controller H with arbitrarily complex internal dynamics, constrained only to stabilize (2).  Initially, H is 

assumed linear and time invariant and write H=H(s). Given (2)  and controller H, we can factor 

     WS s W s S s  where W is the uncontrolled (H=h=0) response from  to y. The sensitivity function S is the 

primary robustness measure for feedback control [35].  |S(j)| measures how much a disturbance is attenuated 

(|S(j)|<1) or amplified (|S(j)|>1) at frequency .  ( ) 1S s   when   0H s  .      WS s W s S s  is the weighted 

sensitivity, and the response of y to any disturbance can be treated with the appropriate weight W. As shown in [23], 

when q>0, S(s) has a zero where S(z)=1 at z=k/q.  When a>0, W(s) has an unstable pole (p>0) that is the positive real 

solution to   20 ( ( ))D s s k g q a g s ka        and where W(p)=∞ (and  S(p)=0)). Ideally, both WS and S 

should be low at all frequencies, but we can show that: 
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with finite z>0 and p>0 as defined above (this is a variant of Bode‘s Integral Formula[35]). This constraint is 

independent on the details of (t), appropriate error penalties in y(t) and other signals, and other sources of noise and 
uncertainty [70], and holds for any stabilizing controller H that is causal (H cannot depend on future values of y(t). 



 
Figure 3 The log sensitivity log|S(j)| and step response to change in 

demand  with additional feedback loop on PK (g=1). Compared to 

Figure 2, both the peaks in log|S(j)| and the integral are lower. Again, 
changing h only changes the shape but higher h is allowed without 

going unstable; h=4 does not drive the system into sustained oscillation 
as in the g=0 case in Figure 2. 
 

 

H=h depends only on current 

values), no matter how complex the 

implementation.  This ―water bed‖ 

effect implies that the net 

disturbance attenuation (ln|S(j)|<0) 
is at least equaled by the net 

amplification (ln|S(j)|>0).  (5) 

constrains  WS s  for any W since 

W factors out. When a>0, p>0 and 

otherwise (5) is just bounded by 0. 

Hence autocatalysis always causes 

positive z and p and the integral in 

(5) is bounded by ln
z p

z p




 . This 

constraint is much deeper than the 

steady state tradeoffs in the previous 

section. Like energy and materials, 

robustness can be gratuitously 

wasted when the inequality is large, 

is at best conserved, and must trade 

off with metabolic efficiency [25]. H=h achieve (5) with equality; greater controller complexity can fine tune the 

shape of  ln S j
 
but cannot reduce the integral. 

The low pass filter 
2 2

z

z 
 constrains the waterbed effect to below frequency =z. Small z produces a more 

severe limitation since any disturbance attenuation must be repaid with amplification within a more limited 

frequency range. Since z=k/q, high k and low q are desirable. Figure 2  illustrates how autocatalysis (q=1) and (5) 

impact dynamics. S(0) gives the steady state error while the peak in S(j)  corresponds to how ―ringy‖ the transient  

y(t) dynamics are at frequency . At h=2, S(0) is large, the peak S


is low, and y(t) has a large steady state error, 

which h=3 lowers but with more transient fluctuations. At h=4 the system oscillates at the frequency where 

S(j)∞. The tradeoff in (4) disappears and the bound in (5) 0 with no autocatalysis (q0). Zero steady state 

error with stability is then possible by taking h∞.   
 

Models and experiments revisited 
We argue that PK feedback plays an important role in stabilization. Increasing g decreases p (leaving z 

unchanged), decreasing ln
z p

z p




, uniformly improving constraint (5) and the stability bound in (4). If q=a=1, the 

system is stable for all k>0 iff 0<h-1<2g. Thus g>0 is necessary to simultaneously maintain acceptable steady state 

error S(0)=1/(h-1) and stability for all k>0.  Replacing g=0 (Figure 2) with g=1 (Figure 3) doesn‘t change S(0), but 

the peak and integral of  ln S j  are lower and ( )y t  is more damped. h=4 is unstable in Figure 2 but stable in 

Figure 3 

Much more significant is the effect g>0 has on the robustness vs. efficiency tradeoff involving k.  While a and 

q are essentially fixed by the network‘s autocatalytic structure, h and g can be tuned on evolutionary time scales.  

Thus 0<h-1<2g is biologically plausible and in fact consistent with most estimates, ensuring stability for all k>0. 

This allows individual cells to fine tune k>0 via the myriad mechanisms that control enzyme levels. Since z=k/q, 

increasing k improves both sides of (5) and uniformly improves robustness, at the expense of higher enzyme levels 

and thus higher metabolic overhead (Figure 1).  Stability for all k>0 also relates to robustness to noise in gene 

expression and enzyme levels, though quantifying this effect would require more detailed modeling which we intend 

to pursue. From an engineering perspective, this is a remarkably clever control architecture, and the presence of g>0 

suggests that at least in this case evolution favors higher complexity in exchange for this kind of flexibility and 

robustness. However, expanding our simplistic model mostly introduces other fragilities, so the possibility of single 



 
Figure 4  Single cell trace of NADH 

autofluorescence in previously-starved yeast 

cells made anaerobic using potassium cyanide 

(KCN). Dashed line indicates when the media 

is switched. A portion of the cells exhibited 

fluctuating transient before settling into a 
higher NADH level. The period of the 

fluctuation transient is in good agreement with 

the period of sustained oscillations in intact 

cells reported in [81]. 

cell oscillation cannot be ruled out theoretically or 

experimentally.  Explicitly modeling and understanding 

autocatalytic and control feedback of redox via NADH is 

the next most obvious source of further hard limits. 

The relationship between the above analysis and 

experiments is subtle, but consistent. From the hard 

constraints (4)-(5)we can easily identify worst case 

conditions. Small z=k/q increases overall fragility. This 

occurs at high autocatalytic stoichiometry q, most easily 
created by anaerobic condition since there is no ATP 

production from aerobic metabolism. But low intermediate 

reaction rate k has a similar effect, so our experiments also 

aim for conditions that might give low k, including growth 

in ethanol and amino acid starvation (experimental evidence 

shows decreased level of some glycolytic transcripts when 

S. cerevisiae is grown in ethanol [82], which could decrease 

k.) Cells were then shifted into anaerobic glucose 

metabolism. Our model does not predict sustained 

oscillations, but interesting transient dynamics are possible 

as is some cell to cell variability due to enzyme level 

variations [83]. Single cell NADH autofluorescence showed 

no sustained oscillations, but a portion of the cells exhibited 

fluctuating transients before settling into higher NADH 

level (Figure 4). The period is in good agreement with the 

36s period in cell suspensions [81].  

 
Implications of hard tradeoffs and glycolytic oscillations 

Our analysis illustrates the power of control theory to clarify biological phenomena, and biology to 

motivate new theoretical directions [84]. In this simple model of glycolysis, oscillation is neither directly purposeful 

nor an evolutionary accident but a necessary consequence of autocatalysis and hard tradeoffs between fragility, 

efficiency, and complexity. Nature has evolved a feedback structure that effectively manages these tradeoffs with 

flexibility to adapt to changes in supply and demand, at the cost of higher enzyme complexity. Consistent with 

engineering, complexity in biology is primarily driven by robustness, not minimal functionality [19].   

Our theory is consistent throughout in highlighting hard tradeoffs, but there are important differences in 

details. While (4) is phenomenological and specific to the model in (2), (5) is much deeper. It holds for arbitrary 

causal controllers no matter how complex, and applies to other systems. However, (5) still requires substantial 

phenomenology since the formulas for z and p depend on assumptions about autocatalysis (q and a) and enzyme 

efficiencies and levels (k). This motivates further unification of control theory with thermodynamics and statistical 

mechanics.  Recent progress is encouraging [25], and we will consider this direction next. It also motivates 

rethinking how biology overcomes the ―causality‖ limit with various mechanisms that exploit predictable 

environmental fluctuations (e.g. circadian rhythms) or provide remote sensing (e.g. vision, hearing), both of which 

can greatly mitigate hard limits such as (5) [26]. In the case of circadian rhythms, oscillation is not just a side effect 

but has the purpose of exploiting the cyclic environment. 
To make our ideas accessible, we used the simplest possible model that captures the real system‘s essential 

features yet facilitates theoretical analysis connecting network structure with functional tradeoffs.  We have 

extended these models in various ways, described in the appendix. While our minimal model has limited 

quantitative predictive power, it can still provide qualitative insights about experiments. Our approach restricts the 

controller implementation using ATP inhibition. Allowing for arbitrary control by any intermediate will change the 

network‘s feedback topology which, as in the case of PK inhibition, seems to be more effective at lifting stability 

and performance constraints at the cost of pathway and enzyme complexity. A few glycolytic enzymes are inhibited 

by their immediate products, again suggesting that nature favors higher complexity to gain robustness.  

 

  



Measurement Limitations and Statistical Mechanics  
 

To replace the phenomenology in enzyme amount and complexity in Figure 1 with first principles theory of 

efficiency, we need a rigorous treatment of enzymatically catalyzed reactions that are both allosterically controlled 

and far from thermodynamic equilibrium.  Similar challenges will arise in any theory connecting robustness with 
efficient use of energy and materials.  Unfortunately, standard methods in thermodynamics and statistical mechanics 

were never developed for such purposes and are clearly inadequate and incomplete, a situation we have begun to 

rectify. In [25] we take a control-theoretic approach to answering some standard questions in statistical mechanics, 

and use the results to derive limitations of classical measurements.  We will illustrate the results in [25] as applied to 

the simplest possible measurement problem and also extend them to some striking new limits.  Consider a simple 

abstract one state linear stochastic differential equation 
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 (6) 

Here the state v can be thought of as the velocity of a particle of mass m (or the voltage across a circuit with 

capacitance m and resistance R.)  The output y is assumed to be from a sensor of with friction R. A main result of 

[25] is that even highly idealized sensors must have a white sensor noise w with unit intensity as in (6), where k is 

Boltzmann‘s constant and T is the sensor temperature. There is also a corresponding stochastic back action as in (6). 

While this is consistent with standard phenomenological arguments, [25] provides new, rigorous, and elegant 

derivations. 

A central problem is the relation between systems which appear macroscopically dissipative, such as those 

having resistance and friction, but are microscopically lossless. We show in [25]  that a linear system is dissipative 
if, and only if, it can be approximated by a linear lossless system over arbitrarily long time intervals. Hence lossless 

systems are in this sense dense in dissipative systems, a particularly elegant resolution of the origin of dissipation. A 

linear active system must be approximated by a nonlinear lossless system that is charged with initial energy.  While 

the combination of nonlinearity and energy is often thought to cause unpredictable dynamics, even chaos, in this 

setting, nonlinearities are essential resources, like energy, in building nontrivial but organized systems [1].  These 

distinctions are central to our whole approach to complex networks.   

As a by-product of these results, we obtain mechanisms explaining the Onsager relations from time-

reversible lossless approximations, and the fluctuation-dissipation theorem from uncertainty in the initial state of the 

lossless system. The results are applied to measurement devices and are used to quantify limits on the so-called 

observer effect, also called back action, which is the impact the measurement device has on the observed system, as 

in (6). In particular, it is shown that deterministic back action can be compensated by using active elements, whereas 

stochastic back action is unavoidable and depends on the temperature of the measurement device. Hence the form of 

(6) above. Also, the measurement in (6) requires an active component to zero the deterministic back action of the 

sensor, which is assumed here to have an unlimited energy source ([25] also shows how limited energy to the sensor 

adds further to the hard limits described here).  

Now consider the problem finding an estimate  v̂ t of the state v(t) to minimize  
2

ˆ( ) ( )E v t v t ,  assuming 

no knowledge of the state at t=0, i.e. that 0(0)v v  is unknown and  
2

ˆ(0) (0)E v v   . This is a standard Kalman 

filtering problem that because of its special structure can be solved analytically, and the resulting optimal values 
have particularly simple formulas (with admittance Y=1/R) 
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 (7) 

This extremely simple result shows that there is a hard tradeoff between measurement error and back action that 
depends on T and m. Not surprisingly, all quantities are worsened by high sensor T, and the back action and product 

worsened by small mass m. The product is optimized at small time t and t/R trades off error with back action. The 

intuition behind (7) is also clear, in that measurement allows for rapid reduction in estimation error with diminishing 

returns over time, while the resulting back action causes the velocity to undergo a random walk that worsens over 



time. A natural strategy would be to make a near instantaneous measurement on a small interval  0, , using R to 

balance estimation error with back action, then disconnect the sensor and propagate the optimal estimate, which 

without measurement is constant, since    
ˆ

ˆ ˆ0
dv

v t v t
dt

      with     
2 2

ˆ
kRT

E v t v t t 


    .  Note 

that between measurements, there is no difference between ―plant‖ and filter dynamics, and that during a 

measurement the error  
2 1

ˆE v v
t

  undergoes a ―collapse.‖ Thus even in this purely classical setting, careful 

accounting for noise and back action using the results in [25] and standard methods of control theory prove some 

surprising consequences of a type usually associated exclusively with quantum mechanics.  The tradeoffs involving 

the sensor energy supply are equally interesting but the derivations more involved [25]. 

The well-known Heisenberg uncertainty principle in quantum mechanics does not involve plant versus 

filter states (physics makes no such distinction), but between position and momentum.  To explore analogous 

classical properties, assume the particle has position x with dynamics x v and hits a highly idealized detector at 

x=0 and t=0, with velocity and sensor dynamics as in (6).  Assume this position is known perfectly at t=0, but 

velocity is again unknown, and a measurement and optimal estimator is performed on a small interval  0, .  This 

too can be solved analytically, with velocity and error estimate as in (7) but with position errors  

  
 
 

   
 

 

2

2 2 2

2 2 2

4 1 4 12 2
ˆ ˆ ˆ 2

1 1

Yt Yt

Yt Yt

kT e kT ekT kT
E x x t E v v E x x kTR

Y YY e Y e

 

 

 
        

 
 (8) 

The ―uncertainty principles‖ in (7) and (8) show a tradeoff between error estimates for velocity (or momentum) and 

either velocity back action (7)  or position estimate (8).  As noted above, neither classical nor quantum physics 

makes a distinction between plant and filter states, whose dynamics are identical between measurements.  If 

measurements are assumed to be nearly instantaneous, their main effect is to ―collapse‖ the estimates of the 

measured variables, subject to the limits in (7) and (8).   

We believe the approach in [25] is just the beginning of a fully nonequilibruim theory of noise, fluctuation-

dissipation, back action, measurement, and control, and ultimately tradeoffs between robustness and efficiency.  We 

expect it will force a fundamental rethinking of these issues both in a classical setting but ultimately in quantum 

theory as well. What the hard limits in (5) above have in common with (7) and (8) is that feedback and dynamics are 

powerful tools (as are nonlinearities) but their implementation involves hard limits on achievable performance and 
robustness.  Since limits in both communications and control theory depend on abstract notions of sensor and 

channel noise, a natural next step is to use the methods in [25] to trace the implementation tradeoffs in both domains 

to physical mechanisms involving dissipative and active devices and their energy requirements.   

Perhaps more profoundly, existing theories of both quantum mechanics and classical statistical mechanics 

both lack a complete measurement theory of the type in [25], the essence of which involves simply assuming that 

the measurement devices must be implemented with the same physics as the ―plant‖.  A natural next step then is to 

generalize [25] to the problem of measurement of quantum phenomena but implemented physically with devices 

that must also obey quantum dynamics.  Mathematically, the aim is to replace the measurement axiom with a 

theorem.  Just as [25] is consistent with existing near-equilibrium theory, a rigorous theory of quantum measurement 

would not affect the predictions for standard experiments, but could have profound implications for engineered 

systems exploiting active devices and far-from-equilibrium behavior.  Thus a principle aim of our research is to 

connect these mathematical issues with more physically-based critiques of the conventional theory, such as [67], 

which has largely been ignored or dismissed both in engineering and physics. 

  



 
Figure 5 (a) 2D depiction of the flow configuration and the laminar and turbulent 

velocity profiles for plane Couette flow with a moving upper plate. (b) The results 

from the 2D/3C simulation capture the profile blunting. 
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Figure 6 Cartoon of streamwise elongated structures with surface plot of 

2D/3C simulation results 
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Turbulence is 

another of the persistent 

and unsolved problems 
in physics, but also 

essential to efficiency in 

engineered systems. 

There are many 

unresolved issues, 

however in wall 

bounded shear flow the 

shapes of the laminar 

and turbulent velocity 

profiles are well known.  

Those for plane Couette 

flow are depicted in 

Figure 5 (a).  However, 

the underlying 

mechanisms involved in 

creating the S shaped (blunted) turbulent profile remained unresolved.   Understanding this phenomenon may be the 

key to developing control strategies to prevent transition to turbulence in applications where the associated increases 
in drag cause undesirable effects.   

Linear models can generate flows dominated by the streamwise elongated structures that are prevalent and 

play an important role in fully developed turbulence.  However, a nonlinear model is required to capture the 

momentum transfer that produces a turbulent velocity profile.  Numerical and experimental observations of these 

streamwise and quasi-streamwise elongated structures motivate the study of a streamwise constant projection of the 

Navier Stokes equations.  The resulting two-dimensional, three-velocity-component (2D/3C) nonlinear model 

captures important nonlinear features of turbulence, while maintaining the linear mechanisms that have been shown 

to be necessary to maintain turbulence. 

In our work we attempt to rigorously connect the observed flow features to the creation of the turbulent 

mean velocity profile.  We show that in a robust control framework, the so-called 2D/3C model captures the 

blunting of the profile along with other salient features of fully developed turbulent plane Couette flow [31]. The 

robust control framework employs small amplitude Gaussian noise forcing to simulate the 2D/3C model's response 

in the presence of disturbances, uncertainty and modeling errors.  Figure 5(b) shows the mean velocity profile 

obtained from the simulation compared to experimentally verified direct numerical simulation (DNS) data.  The 

model captures the change in mean velocity profile from the nominal laminar to the characteristic ―S‖ shaped 

turbulent profile [29]. Comparison of the full velocity field with a spatial field of DNS demonstrates that the 

simulations also capture the salient features of fully developed turbulence [27], as seen in Figure 6.    

 The laminar flow solution is globally stable, which indicates that the flow state should always return to the 
streamlined laminar flow 

condition.  The fact that the 

2D/3C model is able to generate 

―turbulent-like‖ behavior under 

small-amplitude stochastic noise 

indicates that transition to 

turbulence in this model is likely 

a consequence of the laminar 

flow solution's lack of robustness 

(inability to maintain the 

maintain this flow condition) in 

the presence of disturbances and 

uncertainty [30].  In fact, large 

disturbance amplification is 

common in both this model and 



the linearized Navier Stokes equations.   

A steady-state (time-independent or static) version of the 2D/3C model is employed to isolate the 

mathematical mechanisms that are involved in generating an appropriately shaped turbulent velocity profile [28]. 

We use cross-stream components (i.e. those representing a cross-section of the three-dimensional flow) to create a 

model of structures consistent with the experimentally and numerically observed flow features.  This is used as input 

to develop a forced 2D/3C streamwise velocity equation, i.e. we study a model of the velocity component that 

describes the shape of the mean profile. The resulting steady-state solutions are shown to have the same qualitative 

features as both a spatial field of DNS data and the results of the full stochastic simulations. These results provide 

evidence that the nonlinear terms in the 2D/3C streamwise velocity equation are responsible for the momentum 
transfer associated with the change in profile from the nominal laminar to the turbulent state.  Analytical study of the 

equations confirms that the momentum transfer that produces the correct mean profile requires a nonlinear 

momentum equation for the streamwise velocity component.  Isolating these momentum transfer mechanisms 

represents an important step in the development of flow control strategies because delaying the onset of turbulence 

and turbulence suppression are common goals in flow control applications. 

Finally we attempt to make a connection to between the linear mechanisms involved in large disturbance 

amplification and the nonlinearity required for the blunting [28].  We find that the linear equations allow us to 

appropriately model the width (spanwise extent) of the streamwise coherent structures.  However, this comes at the 

expense of capturing the mean velocity profile.  There appears to be an important tradeoff between these two 

mechanisms. These types of tradeoffs are very common in engineering systems and understanding them provides 

important information in designing systems that are both safe and able to meet advanced performance requirements.  

Further understanding of this tradeoff may also provide important insight into the mechanisms associated with both 

transition and fully turbulent flow. 

 

  



Appendix (selected details and extensions) 
 

Glycolytic oscillations 
 

Model Extension and Topological Effects 
In [34], we show the effects of the pathway size, reversibility of intermediate reactions and consumption of 

intermediate metabolites on performance. In addition, we establish some necessary conditions on the existence of 

fixed points and their stability. We show that for the general model there exist lower and upper bounds on the 

feedback gain that guarantee stability for arbitrary pathway size as well as arbitrary values of both the (reversible) 

reaction rates and the intermediate consumption rates. These bounds are tight in the sense that for gains that lie 

outside the ranges established by these bounds, we can construct specific unstable pathways. 

For the general model we again show that increase in the intermediate reaction rates makes the pathway more 

stable, increases the magnitude of the RHP zero, and softens the hard limits on performance. Increased pathway size 

has the opposite effect. An increase in the size of the chain of enzymatically catalyzed intermediate reactions in the 

autocatalytic pathways causes two adverse effects on performance: tradeoffs on performance limits are exacerbated 
(as RHP zero becomes smaller) and the range of available stable gains is reduced, which makes the operating gains 

less robust and reduces the achievable performance objectives. 

Consumption of intermediates in autocatalytic metabolic pathways results in less resources available to 

convert to the product of the pathway, which effectively reduces the net product of the pathway. This effective 

reduction in net output production makes the pathway harder to control because it corresponds with the RHP zero 

getting smaller, and thus aggravating the tradeoffs on performance limits. Additionally, the pathways must enforce a 

positive return in energy investment, therefore the loss of the intermediates to the other pathways must be only a 

fraction of the available resources, otherwise excessive consumption of these intermediates causes the pathway to 

crash. On the other hand, the presence of reversible reactions makes autocatalytic pathways easier to control, as they 

function as ―release valves'' by making higher stable gains available, thus providing more robustness and better 

achievable performance objectives.  

 

Nonlinear Results 
This paper focuses entirely on linearizations but we have extended our model to a nonlinear model of 

arbitrary length. In [1] we discuss an approach based on system-theoretic measures, such as the extent of region of 

attraction (RoA) around the nominal operating points of the system, to prove robustness under initial conditions 

perturbations. We demonstrate the use of the approach on a specific class of autocatalytic pathway models that 
capture the core structure of the glycolysis pathway. 

In [32]we show that the size of the estimated (through a numerical optimization-based procedure) RoA 

around the nominal operating condition provides information about the robustness of the model to parameter 

perturbations. More specifically, numerical experiments demonstrate that systems that are robust with respect to 

perturbations in the parameter space have large, easily ―verifiable" (in terms of proof complexity) estimates of the 

RoA.  Additionally, for systems close to the stability boundary, small changes in the feedback strength lead to 

several different regimes in which ―simple" polynomial Lyapunov functions (i) certify large invariant subsets of the 

RoA; (ii) can only certify relatively smaller sets to be in the RoA; (iii) cannot certify (to the tolerances used in the 

numerical computations) any invariant subset of the RoA. This optimization-based procedure becomes 

computationally impractical as the pathway size increases. In order to extend the RoA analysis to larger pathways, 

we take a compositional approach which exploited a natural decomposition of the system, induced by the underlying 

biological structure. The pathways are decomposed into a feedback interconnection of two input-output subsystems, 

a small subsystem with complicating nonlinearities and a large subsystem with simple dynamics.  This 

decomposition simplifies the analysis by assembling RoA certificates based on the input-output properties of the 

subsystems. The simplest decomposition allows us to analytically construct, using storage functions and simple 

quadratic supply rates, block-diagonal Lyapunov functions for a large family of autocatalytic pathways.  We show 

that if a Lyapunov function of the specified block-diagonal form exists, then it can be constructed using this 
decomposition.  For analysis of a larger class of pathways, more general versions of the decomposition are required, 

allowing for the size of the subsystem with the complicating nonlinearity to increase.  This strategy leads to two 

conflicting trends: a larger family of pathway models becomes amenable to RoA analysis at the expense of 

computational complexity. 

 

  



Physiological Variability in Health and Disease 
 

For decades, research has shown that variability in a physiological signal (e.g. heart rate, respiration, blood 

pressure) is associated with the status of the cardiopulmonary  and autonomic nervous systems. A recent direction in 

our research is to apply rigorous system identification and control theoretic tools to the analysis and modeling of 
heart rate variability (HRV), including connecting data with mechanistic physiological models. We have used these 

tools to understand the responses of healthy, fit human subjects to exercise, both to drive tool development and 

establish a deeper understanding of mechanisms involved in healthy HRV. Our plan is to apply these system 

identification and control theoretic tools, along with insights on healthy HRV, to gain mechanistic insights into 

developing alert algorithms for patient monitoring and diagnosis. This is the most radical and potentially 

controversial dimension of our proposed work, but also has the highest potential clinical impact.  While we are 

primarily seeking funding for this from other sources, the results have potentially huge implications for DOD, and 

also illustrate the breadth of our tools, so we will briefly review some of the basic ideas in this research direction. 

The dominant theme in physiological signal variability analysis has been the use of the tools of time series 

statistics, chaotic dynamics, and statistical physics to assess the well-being of the cardiopulmonary system. 

However, this approach ignores the mechanisms causing the variability in a signal, while only examining the 

statistical behavior of a signal in isolation. This has the following weaknesses in terms of the properly engineered 

development of an effective clinical alert for control dysfunction: 1) It has generally ignored the important fact that 

the observed signal variability might be due to the influences of other signals.  Our current results successfully 

model the causal response of heart rate (HR) to watts and ventilation during exercise. This evidence supports the 

idea that physiological mechanisms can actually be discerned if we employ the correct mathematical tools and 

domain knowledge. 2) Statistical analysis alone can find the correlation but not the causality between signals. 
Correlation at best tells us how we might detect the occurrence of an impending ―crash‖ of a system. It does not 

report the development of abnormalities in the control system itself that might provide an adequate time window to 

prevent a crash of the system under control. 3) Statistical analysis does not naturally deal with homeostasis.  

Homeostasis is not the simple loss of signal variability but rather is the manifestation of working controls (heart rate, 

ventilation…etc), that act, sometimes aggressively, to minimize errors (blood pressure, pH, O2 saturation,…etc). 4) 

Statistical analysis requires the system to be stationary and fails to give proper interpretation in non-stationary 

(‗dynamic‘) conditions, which are universal in a real-world clinical environment. 5) Statistical analysis fails to 

accurately identify the physiological mechanism(s) underlying physiological signal variability.  A control theoretic 

framework can in principle solve all of the above problems but will require a substantial shift in thinking towards 

dynamics and homeostasis, the role of physiology, and mechanistic interpretation of signals.  

In our framework, we propose to combine a black-box model (system ID) with a mechanistic model in 

order to link signal variability and physiological mechanism.  This linkage may eventually provide clinicians with 

useful information for diagnosis, prognosis and treatment as follows: An initial model in healthy subjects will help 

us characterize the fundamental physiology.  To some extent, the differences between athletes and normal healthy 

people can be regarded as analogous to those between healthy people and those with cardiopulmonary malfunction.  

While it is very important to understand the control of physiological parameters, per se, to a clinician [68] the most 

exciting possibility raised by this kind of deeper understanding is detection of clinical problems at earlier stages 

than is now possible.  For example, while the raw simple monitored data may not clearly reflect a developing 
anomaly, control system analysis may do so.  This introduces an important new concept in pathophysiology: 

Detection of control system deterioration or dysfunction that precedes failure of the actual organ system.  Such 

detection may provide an upstream mechanism that allows for more proactive intervention and less subsequent 

downstream damage.  Even if this downstream damage is not completely preventable, monitoring systems 

incorporating this knowledge could provide alerts in a more remediable phase before irreversible structural damage 

is done to key components.  In addition, the control element analyses might be combined and placed in clinical 

context to formulate even more sensitive and accurate alerts. 

 

Heart Rate Variability 
Human heart rate signals exhibit a high degree of variability. Reductions in heart rate variability (HRV) are 

often associated with disease, and so an understanding of the underlying mechanisms is critical [86] [88].  It has 

been proposed that heart rate variability arises from stochastic, nonlinear, and possibly chaotic dynamics [88]- [92]. 

Results from mathematical tools such as time domain, fourier, wavelet and multifractal analysis as applied to 

isolated heart rate signals have been the basis for such insights [92] -[95]. These methods, however, have two 

shortcomings: nonstationarity in signals due to background influences are not naturally handled, and the 



physiological mechanisms underlying fluctuations in heart rate are not addressed. We have adopted two dynamical 

modeling approaches to overcome these shortcomings and explain the source of heart rate variability. We used 

'black-box' techniques [101] to directly model deterministic causal relationships between exogenous disturbances 

and heart rate signal, and we used ‗first-principles‘ models to quantify plausible physiological mechanisms that 

correspond to these relationships.  We find that slow time scale variation in heart rate during dynamic exercise can 

be captured by simple linear models governing heart rate response to dynamic workload. Fast time scale variation at 

fixed workloads can be captured by simple linear models governing heart rate response to ventilation. Moreover, 

these simple models allow us to characterize simple nonlinear (but not chaotic) dynamics exhibited in heart rate 

response to simultaneous excitation of ventilation and workload. 
 

Figure 7 shows three cycling experiments that strikingly illustrate HRV. (Qualitatively similar results hold for 

other fit, healthy subjects, but with significant quantitative variations both between subjects and over time.)  The 

HRV at low watts is dramatically higher on both slow and fast time scales.  Such HRV is widely believed to be a 

signature of health, and its loss a symptom of disease.  Thus at least superficially, the reduction in HRV with 

increasing watts levels in healthy athletes mirrors this well-known ―signature‖ change in HRV from health to 

disease, but in both cases detailed mechanisms underlying this change remain murky.  Also shown are the output 

h=HR of        1 ( )h t h t h t ah t bw t c       , a simple local linear model with w=watts input and 

constants (a, b, c) fitted to minimize the error between h(t) and HR data. No simple model with similar error exists 
that does not include watts inputs, so the large slow fluctuations are consistent with the obvious and well-understood 

need of cardiovascular control to meet changing watts demands.  A single global model for all watts levels would 

necessarily be nonlinear, since the parameter values (a, b, c)(-.1, .1, 7) @ 0w differ greatly from (-.02, .01, 1) @ 
100w.  This is further confirmed by simulating (in blue) HR with the model fitted for the middle exercise but with 

easy and hard exercise as inputs. (A single simple nonlinear model can indeed fit as well as the three separate linear 

models).  
 

  

 
 

Figure 7 Heart rate (red) response of one subject to three different watts (green) demands, approximately 
square waves of 0-50 w (lower), 100-150w (middle), 250-300w (upper). For each data set, a first order 

linear model was fit with watts input and HR output (black).  Breathing is natural (not shown). The blue line 

uses the model and parameters from the midlevel watt experiments for all experiments.  Note that mean HR 

goes up and variability goes down with increasing watts. 

 



To investigate mechanisms for both the linearized dynamics and their nonlinear changes with watt levels we 

consider a standard first-principles model of aerobic cardiovascular control [98][100][105] ,  with blood and oxygen 

circulation, peripheral vasodilatation and increased oxygen consumption induced by exercise, and the effect this and 

heart rate has on blood pressure and oxygen saturation. Assuming that systemic arterial O2 is controlled by 

ventilation allows removal of both from the model, yielding 
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 (9) 

[O2]t  is the tissue oxygen saturation. The p variables are pressures with subscripts a=arterial, v=venous, s=systemic, 

and p=pulmonary. At steady state we can solve for blood pressure and oxygen saturation as a function of heart rate 

and watts, (BP, ∆O2) = f (HR, W), where BP is the mean systemic arterial blood pressure and ∆O2 is [O2]a-[O2]t. 

The right mesh plot in Figure 8 is the image on the BP-∆O2 plane of the left HR-W mesh plot under the function f 

(HR, W). The solid curve shows idealized but typical steady state values of heart rate as a function of watts, and its 

effect on (BP, ∆O2).   

Of course, the implementation of the autonomic nervous system‘s control of heart rate serves as a 

proximate cause for decreasing HRV with increasing watts. It is known that HRV is directly correlated with 

parasympathetic tone and that parasympathetic stimulation is inhibited by sympathetic tone [106]- [109]. Thus, 

larger watt levels imply larger sympathetic tone which implies decreased HRV. Just as with glycolytic oscillations 

the ultimate cause, however, remains: why is the nervous system implemented this way? We aim to explain both 

Figure 7Figure 8 in terms of familiar physiological tradeoffs, roughly analogous to the tradeoffs that were explored 

in the context of glycolysis but involving different variables.  To start with, a hypothetical linear response (solid to 

dotted line) consistent with the low watts data can be explained in terms of purely metabolic tradeoffs and brain 

environment homeostasis.   With proper hydration, nutrition, and sleep, healthy subjects can maintain moderate 
watts levels almost indefinitely.  This requires relatively high HR to maintain high tissue O2 (low ∆O2) and 

maximize aerobic lipid metabolism, preserving precious carbohydrate energy sources, and this can be done with 

modest metabolic overhead for HR itself.   

 

 

 

 

 

 

 

  

 
 

 

Figure 8 Mean arterial blood pressure and tissue oxygen difference (BP, ∆O2) as a static function of heart rate 

and watts, shown with colored mesh. Solid black line is idealized but typical HR=h(w), dashed line is 
hypothetical but physiologically implausible  linear alternative that would lead to excessive HR and BP and 

even moderate exercise levels.  Our hypothesis is that this shift reflects a change in the objective of 

homeostatic control from purely metabolic to a balance with HR and BP.  See text for details. 

 



 

The actual nonlinear response in Figure 8 (solid line) reflects additional tradeoffs.  For typical maximum 

heart rates, the dashed line is not achievable for even modest watt increases.  In addition, at high watts and HR, 

blood pressure would be elevated to levels that are potentially damaging, while in fit athletes there is diminishing 

benefit of high tissue O2 (low ∆O2) because muscle mitochondria saturate.  All these factors can be quantitatively 

reflected in a static least squares optimal control model of u(∙) by assuming that penalties on BP and HR relative to 

∆O2 increase with watts, and simple computations do reproduce the typical steady state values as seen in Figure 8.  

More importantly, this easily extends to the dynamic case by using an optimal linear quadratic (LQ) state feedback 

controller [70] for linearizations of (9)  at 0 and 100 watts, with relatively higher weights on BP and HR for the 
latter.   Figure 9 compares HR and watts data versus (nonlinear) simulations of such controllers for two experiments.  

Thus the HR variability in Figure 7 (and BP in Figure 9) decreases with increasing watts because of straightforward  

and changing tradeoffs between metabolic overhead, ∆O2, HR, and BP, while their means increase. 

 

 

 

  

 
 

Figure 9 Optimal control model of heart rate (red) response of one subject to two different watts (green) 

demands, approximately square waves of 0-50 w (lower), 100-150w (upper)). For each data set, a first principle 

model is simulated with watts as input (green) and HR (black), blood pressure (purple) and tissue oxygen 

saturation (blue) as output. Breathing is natural (not shown). 

 



 

Figure 10 sheds light on the nature of the high frequency HRV with two experiments at constant watts of 0 and 50 

and a frequency sweep in breathing. For each level, HR variability is captured with a simple 2 state, 5 parameter 

linear model        1 1h t a h t b v t x t    ,      2 2x t a x t b v t c     where v is measured ventilation flow rate, x 

is an internal state, and parameters depend on watts.  Despite lower breath magnitude the HR response is larger and 

faster at 0w than 50w. This is consistent with the trends in the other Figures, and simple global nonlinear ―black 

box‖ models with both watts and breath inputs can equally fit all the data.  Thus in these controlled experiments, 

even large HRV and changes in HRV can be explained as causal dynamic response to changing loads and pulsatile 

breathing, not chaos, but that the dependence of HRV on watts level is intrinsically nonlinear. Of course, our goal is 

not model fitting but physiological mechanisms, and we have extensively explored approaches to this. The above 

―black box‖ models are invaluable however since they clarify what signals are necessary to complete a model.  

Figure 7 shows that large slow fluctuations need explicit models of watts forcing, as do  

Figure 10  and pulsatile breathing.  There is extensive literature on the former, making it an obvious 

starting point, and much less on the latter, which will be addressed next in our research. 
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Figure 10  Frequency sweep in ventilation flow rate (lower plot) with fixed demand of 0w (black) and 50w (blue). 

Subject varied breathing to follow a preprogrammed frequency sweep spanning the natural breath frequencies at 

these watt levels. Breath flow magnitude was larger at 50w and the subject was unable to breathe slowly enough to 

complete the entire frequency sweep. For each data set, a second order linear model was fit with flow rate input 

(lower plot) and HR output (upper, data in red). Simulations are in upper plot for 0w (black) and 50w (blue). 

 



 

 

   

Our initial approach has been to model the ―plumbing and chemistry‖ of gases and pressure in physiological 

compartments that are involved in delivering power while maintaining brain homeostasis for gases and pressures.  

Then like for glycolysis, the tradeoffs that any controller must face provides a simple, rigorous, and mechanistic 

explanation for longstanding mysteries in cellular and physiological dynamics, while opening up whole new 

research directions.  The more complex time series need black box models to clarify their causal relationships, and 

we have already found similar models for gases and BP signals, but both measurement and mechanism are more 
complex.  The HRV tradeoffs already involve more complex mechanisms in (9) than in (1), but both models need 

expansion to include control of redox (and CO2),  and the mechanistic effects of ―internal‖ noise due to stochastics 

at the molecular level or pulsatile breathing and beating.  The HRV tradeoffs use less sophisticated theory in Figure 

8 and Figure 9 than in Figure 1, so there are additional tradeoffs from (5) in HR and particular BP control. These 

would be depend on the mechanisms implementing neuro-endocrine control, which are least well understood, and 

this is a major focus of our future research.  Fortunately, the blend of black box, mechanististic, and optimal control 

models used here seems perfectly suited to this task as demonstrated for HRV.  Such ―grey box‖ modeling shows 

that high HRV at low watts results from an inevitable tradeoff between controlling gases and pressures to external 

watts demands versus response to ―internal‖ noise such as pulsatile breathing.   

 

Clinical implications 
We are pursuing causal and mechanistic modeling of healthy cardiopulmonary control with the ultimate 

aim of developing alert algorithms for patient monitoring and diagnosis based on control theory. The indicator of an 

onset can potentially link to a specific physiological cause of failure, which leads to clinical context for clinicians to 

intervene precisely and early before serious damage or death.  Monitoring has been a constant feature for 

anesthetized patients in the operating room as well as for patients in critical care units [68].  It is also utilized when 

cardiologists employ periods of continuous remote monitoring to evaluate patients for a variety of clinical 
conditions.  Clinicians are beginning to realize the value of continuous monitoring in a variety of new settings such 

as medical-surgical hospital units and for home health care. As monitoring does become more ubiquitous, as well as 

more essential to a variety of care processes, it makes sense to fully leverage, analyze and maximize the information 

provided rather than to simply provide raw data for the clinical eye ball analysis that (even early twentieth century 

medicine) could provide.  

The essence of traditional monitoring lies in the detection of simple anomalies such as a low blood pressure 

or a high heart rate.  These vital sign values are the proxies for the characterization of the global physiological state 

and have progressed very little in analytic state over the past century.  What we propose is an attempt to determine 

the biological factors that control the magnitude, directionality and dynamics of these values in a manner that will 

fundamentally alter the way clinicians view and use them.  This will involve the ultimate creation of monitoring 

systems that monitor the control elements as well as the controlled elements (the vital sign values).  This will 

provide clinicians with a wider window for timely interventions when dysfunction is still remediable and perhaps 

even more importantly, may provide fundamental new approaches to clinical diagnosis and therapeutics.  There is an 

enormous opportunity here to create a new clinical paradigm that leverages technology to optimize elements of 

information that we already possess but whose utility is not even close to being maximized. 

  



Selected Publications 
[1] D. Alderson, J. Doyle. Contrasting views of complexity and their implications for network-centric 

infrastructures. IEEE Trans Syst Man Cybern A: Systems And Humans 40(4):839-852 (2010). 

[2] M. Chiang, SH Low, AR Calderbank, JC Doyle, Layering As Optimization Decomposition, PROCEEDINGS OF 

THE IEEE, Volume: 95  Issue: 1  Jan 2007 

[3] J. Lavaei, J. C. Doyle and S. Low. Congestion Control Algorithms from Optimal Control Perspective, Proc IEEE 

Conference on Decision and Control, 2009. 

[4] J. Lavaei, JC Doyle, SH Low, Utility Functionals Associated With Available Congestion Control Algorithms, 

IEEE International Conference on Computer Communications (INFOCOM), San Diego, California, 2010 

[5] J. Lavaei, A Babakhani, A Hajimiri, J Doyle, Solving Large-Scale Hybrid Circuit-Antenna Problems,  To 

appear  in IEEE Transactions on Circuits and Systems I, 2010 

[6] A. Babakhani, J. Lavaei, J. C. Doyle and A. Hajimiri, Finding Globally Optimum Solutions in Antenna 
Optimization Problems, to appear, IEEE  International Symposium on Antennas and Propagation, 2010. 

[7] J. Lavaei, A. Babakhani, A. Hajimiri and J. C. Doyle. Programmable Antenna Design Using Convex 

Optimization, Proc 19th International Symposium on Mathematical Theory of Networks and Systems, 2010. 

[8] J. Lavaei, A. Babakhani, A. Hajimiri and J. C. Doyle. A Study of Near-Field Direct Antenna Modulation 

Systems Using Convex Optimization, Proc American Control Conference, 2010. 

[9] J. Lavaei, A. Babakhani, A. Hajimiri and J. C. Doyle. Solving Large-Scale Linear Circuit Problems via Convex 

Optimization, Proc IEEE Conference on Decision and Control, 2009. 

[10]  J. Lavaei, A. Babakhani, A. Hajimiri and J. C. Doyle "'Passively Controllable Smart Antennas,"  to appear in 

IEEE Global Communications Conference (GLOBECOM), Miami, Florida, 2010 

[11] L. Chen, T. Cui and S. H. Low. A Game-theoretic Framework for Medium Access Control. IEEE Journal of 

Selected Areas in Communications, 2008. 

[12] L. Chen, S. H. Low and J. C. Doyle. Random Access Game and Medium Access Control Design, IEEE/ACM 

Transactions on Networking, 2010. 

[13] L. Chen, S. H. Low and J. C. Doyle. Cross-Layer Design in Multihop Wireless Networks (Invited), to appear, 

Special Issue on Wireless for the Future Internet, Computer Networks Journal, 2010. 

[14] L. Chen, T. Ho, M. Chiang, S. H. Low, and J. C. Doyle. Congestion Control for Multicast Flows with Network 

Coding, under review for IEEE Transactions on Information Theory.  

[15] T. Cui, L. Chen and T. Ho. Energy Efficient Opportunistic Network Coding for Wireless Networks. Proc. IEEE 
INFOCOM, Phoenix, AZ, Apr 2008. 

[16] T. Cui, L. Chen and T. Ho, On Distributed Scheduling in Wireless Networks Exploiting Broadcast and Network 

Coding, IEEE Transactions on Communications, 2010. 

[17] J. Doyle, M. Csete. Rules of engagement. Nature 446(7138):860 (2007). 

[18] H. Kurata, H. El-Samad, R. Iwasaki, H. Ohtake, J. Doyle, et al. Module-based analysis of robustness tradeoffs 

in the heat shock response system. PLoS Comput Biol 2(7):e59 (2006). 

[19] M. Csete, J. Doyle. Reverse engineering of biological complexity. Science 295(5560):1664-1669 (2002). 

[20]  JC  Doyle, M. E. Csete, and L. Caporale, An engineering perspective: The implicit protocols, in The Implicit 

Genome, L. Caporale, Ed. London, U.K.: Oxford Univ. Press, 2007 

[21] JC. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,R. Tanaka, and W. Willinger, The ‗robust yet 

fragile‘ nature of the Internet, Proc. Nat. Acad. Sci. U.S.A., vol. 102, no. 41, pp. 14 497–14 502,Oct. 2005. 

[22] W. Willinger, D. L. Alderson, and J. C. Doyle, Mathematics and the Internet: A source of enormous confusion 

and great potential, Notices  AMS, vol. 56, no. 5, pp. 586–599, May 2009. 

[23] F. Chandra, G. Buzi, J. Doyle. Linear Control Analysis of the Autocatalytic Glycolysis System. Proc American 

Control Conf: 319-324 (2009). 

[24] F. Chandra, G. Buzi, J. Doyle. Glycolytic Oscillations and Limits on Robust Efficiency, Science, Vol 333, pp 

187-192 
[25] H. Sandberg, J. Delvenne, J. Doyle. On lossless approximations, the Fluctuation-Dissipation Theorem, and 

limitations of measurements. , IEEE Trans Auto Control, Feb 2011. 

[26] N. Martins, M. Dahleh, J. Doyle. Fundamental Limitations of Disturbance Attenuation in the Presence of Side 

Information. IEEE Trans Auto Control 52(1):56-66 (2007). 

[27] D. Gayme, B. McKeon, A. Papachristodoulou, and J.C. Doyle. 2D/3C model of large scale structures in 

turbulence in plane Couette flow, Proceedings of the 6
th

 International Symposium on Turbulence and Shear 

Flow Phenomenon, Seoul, Korea, June 2009. 

[28] Gayme DF, McKeon BJ, Papachristodoulou P, Bamieh B, Doyle JC (2010) A streamwise constant model of 

turbulence in plane Couette flow, J Fluid Mech, vol 665, pp 99-119 



[29] D. Gayme, B. McKeon, B. Bamieh, A. Papachristodoulou and J. C. Doyle.  Amplification and nonlinear 

mechanisms in plane Couette Flow, Physics of Fluids, in press (published online 17 June 2011).  

[30] D. Gayme, J. C. Doyle, A. Papachristodoulou, B. Bamieh and B. McKeon. Robustness and subcritical transition 

in wall-bounded shear flows, Under preparation. 

[31] D. Gayme, A robust control approach to understanding nonlinear mechanisms in shear flow turbulence, 2010, 

PhD thesis, Control and Dynamical Systems, Caltech, Pasadena, USA. 

[32] G. Buzi, U. Topcu, J. Doyle. Quantitative nonlinear analysis of autocatalytic pathways with applications to 

glycolysis. Proc American Control Conf: 3592–3597 (2010). 

[33] G. Buzi, U. Topcu, J. Doyle. Compositional Analysis of the Autocatalytic Networks in Biology. Proc American 
Control Conf (2010). 

[34] G. Buzi and J. Doyle. Topological Tradeoffs in Autocatalytic Metabolic Pathways. To appear in Proc 49th 

IEEE Conf Decision and Control (2010). 

[35] J. Doyle, B. Francis, A. Tannenbaum. Feedback Control Theory. Macmillan Press, New York, NY (1992). 

[36] F. A. Chandra, B. Genti and J. C. Doyle. Theoretical Performance Limit of the Autocatalytic Glycolysis 

System,  Proceedings of the 3
rd

 Q-bio Conference on Cellular Information, 2009. 

[37] G. Buzi, U. Topcu and J. C. Doyle. Analysis of autocatalytic networks in biology, submitted, Automatica, 2010. 

[38] N. Motee, F. Chandra, B. Bamieh, M. Khammash and J.C. Doyle. Performance limitations in autocatalytic 

networks in biology, To appear in Proc IEEE Conference on Decision and Control (2010). 

[39]  N. Motee and A. Jadbabaie, Distributed Multi-Parametric Quadratic Programming, IEEE Transactions on 

Automatic Control, Vol. 54 (10): 2279-2289, October 2009. 

[40] N. Motee and A. Jadbabaie. Approximation methods and spatial interpolation in distributed control systems, 

Proc American Control Conference, St. Louis, Pages: 860-866, June 2009.  

[41] N. Motee, B. Bamieh and M. Khammash, Stability analysis of a class of biological network models.  Proc 

American Control Conference, Pages: 5936-5941, June 2010.  

[42] N. Motee, B. Bamieh and M. Khammash. Model reduction of polynomial dynamical systems using differential 

algebra. To appear in Proc IEEE Conference on Decision and Control (2010). 
[43] N. Motee, A. Jadbabaie and G. Pappas. Path planning for multiple robots: an alternative duality approach, Proc 

American Control Conference, Baltimore, Pages: 1611-1616, June 2010. 

[44] N. Motee, A. Jadbabaie and G. Pappas. A duality approach to path planning for multiple robots, Proc of 

International Conference on Robotics and Automation, Pages: 935-940, May 2010. 

[45] N. Motee, A. Jadbabaie, and G. Pappas. A duality theory for path planning for multiple autonomous vehicles, 

submitted, IEEE Transactions on Robotics, 2010. 

[46] N. Motee, A. Ahmadzadeh, A. Jadbabaie and G. Pappas. Elastic Multi-Particle Systems for Multi-Vehicle Path 

Planning, submitted, IEEE Transactions on Automatic Control, 2010. 

[47] J. Lavaei, S. Sojoudi and R. M. Murray. Simple Delay-Based Implementation of Continuous-Time Controllers, 

Proc American Control Conference, 2010. 

[48]  J. Lavaei, S. Sojoudi and R. M. Murray. Synthesis of Embedded Control Systems with High Sampling 

Frequencies, submitted, IEEE Conference on Decision and Control, 2010. 

[49] J. Lavaei, S. Sojoudi and R. M. Murray. Delay-Based Controller Design for Continuous-Time and Hybrid 

Applications, under submission to IEEE Transactions on Automatic Control. 

[50] J. Lavaei and R. M. Murray. On Quantized Consensus by Means of Gossip Algorithm--Part I: Convergence 

Proof, Proc American Control Conference, 2009. 

[51] J. Lavaei and R. M. Murray. On Quantized Consensus by Means of Gossip Algorithm--Part II: Convergence 
Time. Proc American Control Conference, 2009. 

[52] J. Lavaei and R. M. Murray. Quantized Consensus via Adaptive Stochastic Gossip Algorithm, submitted, Proc 

IEEE Conference on Decision and Control, 2009. 

[53] J. Doyle, B. Recht, N. Li, J. Cruz, S. Sojoudi and S. Shien. Control Theoretic Perspective in Understanding 

Physiological Tradeoffs, in preparation, 2010. 

[54] A. Lamperski. A neuro-inspired method for data rate limited control, submitted, IEEE Conference on Decision 

and Control, 2010. 

[55] N. Li, J. R. Marden, and J. Shamma, Learning Approaches to the Witsenhausen Counterexample from a View 

of Potential Games, Proceedings of IEEE Conference on Decision and Control, 2009. 

[56] N. Li and J. R. Marden, Designing Games to handle Coupled Constraints, Proceedings of IEEE Conference on 

Decision and Control, 2010.  

[57] A. Lamperski, Representations and algorithms for finite-state bisimulations of linear discrete-time control 

systems, Proceedings of IEEE Conference on Decision and Control, 2009. 



[58] A. Lamperski and Aaron D. Ames. Local zeno stability theory, submitted, IEEE Transactions on Automatic 

Control, 2010. 

[59] A. Lamperski and A. D. Ames. On the existence of Zeno behavior in hybrid systems with non-isolated Zeno 

equilibra. Proceedings of IEEE Conference on Decision and Control, 2008. 

[60] A. Lamperski and A. D. Ames. Sufficient conditions for Zeno behavior in Lagrangian hybrid systems. In 

Hybrid Systems: Computation and Control, LNCS, 2008. 

[61] J. Lee, S. N. Sponberg, O. Y. Loh, A. Lamperski, R. J. Full, and N. J. Cowan. Templates and anchors for 

antenna-based wall following in cockroaches and robots. IEEE Transactions on Robotics (Special Issue on 

Bio-Robotics), 5(1):130–143, 2008. 
[62] T.  Wongpiromsarn, S. Mitra, R.  M. Murray, and A. Lamperski. Periodically controlled hybrid systems: 

Verifying a controller for an autonomous vehicle. In Hybrid Systems: Computation and Control, LNCS, 2009. 

[63] T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. Lamperski. Verification of periodically controlled hybrid 

systems: Application to an autonomous vehicle, to appear, ACM Transactions on Embedded Computing 

Systems, 2010. 

[64] L. Chen, N. Li, and S. H. Low. On the interaction between load balancing and speed scaling. Under review for 

The 31st International Conference on Distributed Computing Systems (ICDCS 2011). 

[65] JC Doyle, ME Csete (2011) Architecture, Constraints, and Behavior, P Natl Acad Sci USA, in press, available 

online 

 

Other references 
 

[66] J. Day, Patterns in Network Architecture: A Return to Fundamentals, Prentice Hall, 2008 

[67] C.A. Mead, Collective Electrodynamics: Quantum Foundations of Electromagnetism, MIT Press, 2000 

[68] David Stone, MD, private communication 

[69] M. J. Cohen, F. A. Chandra, M. T. Ganter, J. Pittet, J. C. Doyle, A. Arkin A and K. Brohi, The Coagulation 

Network: Topology, Biology, and Evolution, submitted, Critical Care Medicine. 
[70] K. Astrom, R. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University 

Press, Princeton, NJ (2008). 

[71] P. Richard. The rhythm of yeast. FEMS Microb Rev, vol. 27, pp. 547-557 (2003). 

[72] B. Teusink, B. Bakker, H. Westerhoff. Control of frequency and amplitudes is shared by all enzymes in three 

models for yeast glycolytic oscillations. Biochim. Biophys. Acta 1275(3):204-12 (1996). 

[73] M. Bier, B. Teusink, B. Kholodenko, H. Westerhoff. Control analysis of glycolytic oscillations. Biophys Chem 

62(1-3):15-24 (1996). 

[74] F. Hynne, S. Danø, P. Sørensen. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem 

94(1-2):121-63 (2001). 

[75] A. Goldbeter. Biochemical Oscillations and Cellular Rhythms. Cambridge University Press, Cambridge (1996). 

[76] E. Sel‘kov. Stabilization of energy charge, generation of oscillations and multiple steady states in energy 

metabolism as a result of purely stoichiometric regulation. Eur J Biochem 59:151-157 (1975). 

[77] A. Betz, B. Chance. Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic 

control. Arch Biochem Biophys 109(3):585-594 (1965). 

[78] M. Savageau, P. Coelho, R. Fasani, et al. Phenotypes and tolerances in the design space of biochemical 

systems. PNAS 106(16):6435-6440 (2009). 

[79] Y. Termonia, J. Ross. Oscillations and control features in glycolysis: Numerical analysis of a comprehensive 
model. PNAS 78(5):2952-2956 (1981). 

[80] B. Chernyak, O. Pletjushkina, D. Izyumov, et al. Bioenergetics and death. Biochemistry (Moscow) 70(2):240-

245 (2005). 

[81] A. Poulsen, M. Petersen, L. Olsen. Single cell studies and simulation of cell–cell interactions using oscillating 

glycolysis in yeast cells. Biophys Chem 125(2-3):275-280 (2007). 

[82] A. Ståhlberg, K. Elbing, J. Andrade-Garda, et al. Multiway real-time PCR gene expression profiling in yeast 

Saccarhomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli. BMC 

Genomics 9:170-185 (2008). 

[83] I. Lestas, G. Vinnicombe, J. Paulsson. Fundamental limits on the suppression of molecular fluctuations. Nature 

467(7312):174-178 (2010). 

[84] P. Iglesias, B. Ingalls. Control Theory and Systems Biology. The MIT Press, Cambridge, MA (2010). 

[85] E. Dessaud, V. Ribes, N. Balaskas, et al. Dynamic assignment and maintenance of positional identity in the 

ventral neural tube by the morphogen Sonic hedgehog. PLoS Biol 8(6):e1000382 (2010). 



[86] L. Glass. Synchronization and rhythmic processes in physiology. Nature 410:277-284 (2001). 

[87] L. Glass. Chaos and Heart Rate Variability. J. Cardiovasc. Electrophysiol. 10: 1358-1360 (1999). 

[88]  A. J. Camm, et al. Heart rate variability: standards of measurements, physiological interpretation, and clinical 

use. Circulation 93: 1043-1065 (1996). 

[89] C. Poon, N. Holstein-Rathlou, E. Agner. Lack of evidence for low-dimensional chaos in heart rate variability, J. 

Cardiovasc. Electrophysiol. 5: 591-601 (1994). 

[90] M. Costa, et al. No evidence of chaos in the heart rate variability of normal and cardiac transplant human 

subjects. J. Cardiovasc. Electrophysiol. 10: 1350-1357 (1999). 

[91] P. Ivanov, et al. Multifractality in human heartbeat dynamics. Nature 399: 461-465 (1999). 
[92] M. Costa, A. Goldberger, C. Peng. Multiscale Entropy Analysis of Complex Physiologic Time Series. Physical 

Review Letters. 89(6):068102(4) (2002). 

[93] D. Chialvo, R. Gilmour Jr, J. Jalife, Low dimensional chaos in cardiac tissue. Nature 345:653-657 (1990). 

[94] P. Ivanov, et al. Scaling behavior of heartbeat intervals obtained by wavelet-based time-series analysis. Nature 

383: 323-327 (1996). 

[95]  P. Ivanov, et al. Multifractality in human heartbeat dynamics. Nature 399: 461-465 (1999). 

[96] K. Wasserman, J. Hansen, D. Sue, W. Stringer, B. Whipp, Principle of exercise testing and interpretation 

(Fourth Edition). Lippincott Williams & Wilkins,  Philadelphia, PA, US (2005). 

[97] G. Brooks, T. Fahey, K. Baldwin, Exercise Physiology: Human Bioengergetics and Its Applications (Fourth 

Edition). Mc Graw Hill,US (2004) 

[98] F. Hoppensteadt, C. Peskin. Modeling and Simulation in Medicine and the Life Sciences (Second Edition). 

Texts in applied Mathematics 10, Springer, US (2002) 

[99]  J. Batzel, F. Kappel, D. Schneditz, H. Tran, Cardiovascular and Respiratory Systems: Modeling, analysis, and 

Control. SIAM series on Frontiers in Applied Mathematics, (2006). 

[100] F. Grodins, J. Buell, A. Bart, Mathematical Analysis and Digital Simulation of the Respiratory Control 

System, Rand Corp, Santa Mocia, CA, US (1967) 

[101] L. Ljung. System Identification: Theory for the User (Second Edition), PTR Prentice Hall, Upper Saddle 
River, NJ, US (1999). 

[102] Stringer, J. Hansen, K. Wasseman. Cardiac output estimated non-invasively from oxygen uptake during 

exercise. J Appl Physiol 82: 908-912 (1997). 

[103] L. Rowell. Human Cardiovascular Control, Oxford University Press, (1993).  

[104] J. Hirsch, B. Bishop, Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. 

J. Physiol. 241 (Heart Circ. Physiol. 10): 620-629 (1981). 

[105] Guyton, J. Hall. Guyton and Hall Textbook of Medical Physiology (11
th

 Edition), Elsevier Saunders, 

Philadelphia, PA, US (2011) 

[106] J. Taylor, C. Myers, J. Halliwill, H. Seidel, and D. Eckberg. Sympathetic restraint of respiratory sinus 

arrhythmia: implications for vagal-cardiac tone assessment in humans. Am J Physiol Heart Circ Physiol 

280(6): H2804 - H2814 (2001). 

[107]   K. Brack, J. Coote and A. Ng, Interaction between direct sympathetic and vagus nerve stimulation on heart 

rate in the isolated rabbit heart. Exp Physiol 89: 128–139 (2004).  

[108] H. Chiu, T.  Kao. A mathematical model for autonomic control of heart rate variation. IEEE Eng Med Biol 20: 

69–76 (2001). 

[109]  J. Elghozi, C. Julien. Sympathetic control of short-term heart rate variability and its pharmacological 

modulation. Fundam Clin Pharmacol 21:337–347 (2007).  


	FA9550-08-1-0043  298.pdf
	FA9550-08-1-0043.pdf



