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Abstract 

The choice of spatial resolution for experimentally-collected 3D microstructural 

data is often governed by general rules of thumb.  For example, serial section experiments 

often strive to collect at least ten sections through the average feature-of-interest. 

However, the desire to collect high resolution data in 3D is greatly tempered by the 

exponential growth in collection times and data storage requirements.  This paper 

explores the use of systematic down-sampling of synthetically-generated grain 

microstructures to examine the effect of resolution on the calculated distributions of 

microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, 

and 3. 
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Introduction 

Three dimensional (3D) microstructure characterization techniques are required to 

measure many important microstructural characteristics including true size and shape, the 

number of features per volume, and feature connectivity [1]. Although the need for 3D 

characterization for ‗complete‘ microstructural analysis is well known, it is only within the past 

decade that desktop computing resources—such as processor speed, memory, graphics cards, 

64-bit operating systems—have advanced to the point where materials scientists and engineers 

are able to readily work with the enormous data sets born of 3D characterization experiments.  

These aforementioned advancements in computing technology have also helped galvanize 

activity in the materials community to promote and adopt Integrated Computational Materials 

Engineering (ICME) initiatives [2-4].   

A foundational experimental technology for ICME-related research is the ability to 

quantify the internal material state at any point during the manufacturing or utilization of 

engineering materials, in order to verify and validate the output of modeling and simulation 

tools that examine such processes.  This analysis ideally includes statistically-significant data 

on key microstructural features such as grains, precipitates, second phases, voids, and defects.  

Known capability gaps for this technology area include two topics related to 3D microstructure 

characterization; machines to rapidly collect 3D data across the range of lengths scales that are 
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known to affect material properties [5], and computational methods to streamline the process of 

data reduction, analysis, and further re-use of data by other modeling and simulation tools.  

With the advent of new state-of-the-art 3D characterization systems that are addressing the 

need for rapid data collection, it is important to examine and investigate the sources of error 

associated with these characterization processes, in order to bound the uncertainty in 

quantitative measurements derived from such experiments. 

In particular, there is little information in the materials characterization literature to 

guide the selection of sampling resolution for data collection in 3D.  Prior guidance is 

particularly important for destructive experiments such as serial sectioning, where the sample 

volume is incrementally and irreversibly consumed during the experiment.  In the serial 

sectioning literature, it is generally espoused that one would like a minimum of ten sections 

through a microstructural feature to accurately describe its size and shape, but this guidance is 

simply a rule-of-thumb and is wholly insufficient for quantitative microstructural analysis.  

Experimentalists can always strive to refine the spatial frequency of data collection, but this 

becomes problematic for 3D data when the collection times and storage requirements grow 

exponentially, often leading to considerable inefficiencies due to conservative oversampling. 

This paper examines one aspect of modeling uncertainty with regards to 3D data 

collection, which is the effect that isotropic decrements in spatial resolution have on the 

accuracy of microstructural distributions that are derived from a reference data volume.  

Specifically, this work reports the quantitative change in the full distribution for the following 

morphological microstructure parameters: grain size in equivalent sphere diameter (ESD), grain 

shape as described by the two ellipsoid ratios b/a and c/a, the third moment invariant Ω3 [6], 

and the number of contiguous neighbors.  This analysis is performed for two log-normal grain 

size distributions that have been synthetically-generated and virtually down-sampled, as 

described in the following section. 

Methodology 

The synthetic structure generation and subsequent data analysis for this study were 

performed using a state-of-the-art 3D materials analysis software DREAM.3D, or Digital 

Representation Environment for Analyzing Microstructure in 3D (dream3d.bluequartz.net).  

The 3D synthetic reference volumes were created using processes that are briefly described 

here; detailed reviews on synthetic microstructural generation methods have been reported 

previously [7].   

The first step in the synthetic microstructure generation process is to define the grain 

size distribution and grain shape distribution for the desired volume.  Two log-normal reference 

volumes were created, where each microstructural volume was composed of roughly equiaxed 

grains.  One of the distributions was nearly uniform, which is termed ‗slightly log-normal‘ (µ = 

1.0, σ = 0.1) while the other distribution had a much heavier tail (µ = 1.0, σ = 0.5), in order to 

examine the effect that the grain size distribution on these uncertainty measurements of 

sampling frequency.  After defining both size and ellipsoid aspect-ratio distributions (here the 

aspect ratio is defined to be unity for all grain sizes), a list of grains were generated to fill the 

reference volume via random sampling of these distributions.  Voxelized grains were packed 

into the reference volume using a process termed grain seeding, which iteratively places the 

grains into the reference volume while optimizing a number of local descriptors and global 
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microstructural distributions (e.g., grain overlap, number of neighbors, orientation and 

misorientation distribution functions, etc…).  After initial placement, a simulated annealing 

process was used to eliminate unassigned voxels within the reference volume.  The two 

synthetic reference volumes are shown in Figure 1.  Note that the reference volumes contain 

approximately 3000 grains, and a resolution of approximately 30 voxels spanning the mean 

grain size. 

To quantify the effect of data resolution on the resultant microstructure parameter 

distributions, the two reference volumes were down-sampled using the following procedure.  A 

new voxel volume was created using MATLAB at the desired down-sampling resolution.  

Grain IDs were assigned to voxels in the new volume by determining the reference volume 

voxel that coincided with the centroid location for each down-sampled voxel.  Successively 

coarser re-samplings of the reference synthetic microstructure volume were produced in this 

manner (i.e., the reference volume was always used to assign the Grain ID), and the result of 

the down-sampling process is shown in Fig. 2.   

The morphological characterization parameter distributions examined in this study 

include grain size (ESD), grain shape (b/a, c/a, Ω3), and number of neighbors.  The ESD is 

computed using the following relation, where Nv is the number of voxels that comprise the 

grain, V is the voxel volume: 

       
 

  
     

 

 
         (1) 

Feature shape is described using moment invariants, or combinations of second order 

moments that are invariant with respect to affine and/or similarity transformations [6].  The 

length/width ellipsoid ratios b/a and c/a are essentially the first two moment invariants [7]. The 

third moment invariant, denoted by Ω3, is used to further describe grain shape and is calculated 

using the following equation [6]: 
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where pqr represents the second order moments in Eq. 3 (moment order is equal to the sum of 
p, q and r).  The third moment invariant Ω3 can be used to differentiate shapes with the same 

aspect ratio, and shapes become qualitatively ‗less complex‘ and more ellipsoidal-like with 

increasing values of Ω3, up to the limiting case of Ω3 = 2193.245 that corresponds to spheres 

and ellipsoids [6].   

The nearest neighbor distribution describes the number of grains that share at least one 

voxel face with a reference grain. Note that voxels which only share a common edge or corner 

are not considered as neighbor grains in this analysis. 
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The metric used to compare the change in the parameter distributions from reference 

volumes to those obtained via virtual down-sampling is the Bhattacharyya Coefficient (BC), 

which for discrete distributions is the following: 

 BC = 


n

i

ii SR
1

        (4) 

Ri and Si correspond to the data percentage in bin i for the discrete distributions R and S.  The 

BC is used to measure the geometric similarity between two distinct statistical distributions 

(models), and is bounded between 0 and 1, where a value of 1 implies that two models are 

identically distributed [8].  For this work, microstructure parameter data was binned into 

histograms after being computed from down-sampled and reference volumes. Therefore, the 

computation of the BC was done discretely using a direct comparison of histograms over the 

entire domain of possible parameter values [9]. 

Results and Discussion 

A plot of the statistical analysis of the down-sampled volumes from the slightly log-

normal grain size distribution is shown in Fig. 3.  At 20 voxels spanning the mean grain size, 

the BC for all measured feature distributions are nearly equal to 1, which indicates that there is 

very little difference in the measured distributions.  The shape parameter Ω3 is the most 

sensitive to resolution changes and requires significantly more sections through each feature to 

retain a high BC.  This sensitivity is highlighted by the decrease in the BC from 0.99 at 20 

voxels spanning the mean grain size to a BC of 0.90 at 10 voxels.  Importantly, the grain size, 

ellipsoid ratios b/a and c/a, and nearest neighbor distributions continue to match the reference 

volume distribuitons (BC > 0.98) with progressively-coarser down-sampling to as low as 5 

voxels spanning the mean grain size.  This resolution is considerably less than the traditional 

rule-of-thumb of 10 sections through the average feature.  However, for sampling resolutions 

below 5, all of the feature distributions begin to deviate rapidly from the reference distribution, 

as the shape & volume for the smallest grains in the distribution are becoming strongly altered 

by the relative coarseness of the voxel array. 

A plot of the statistical analysis of the down-sampled volumes from the heavy-tailed 

grain size distribution is shown in Fig. 4.  The global trends in the data are similar to the 

slightly log-normal distribution: Ω3 is the most sensitive to changes in sampling resolution (BC 

= 0.97 at 20 voxels spanning mean grain size), and save for this parameter, all other 

distributions had BC values greater than 0.97 at 5 voxels spanning the mean grain size.  Note 

that the heavy-tailed volume contains comparatively more small grains relative to the slightly 

log-normal volume.  As a result, the microstructural distributions calculated from the heavy-

tailed volume are affected first by changes in resolution, given that the smallest grains will be 

most altered by sampling resolution changes (this holds only for resolutions > 3 voxels per 

mean grain size). 

This study highlights the intrinsic effect of sampling resolution on the accuracy of 

microstructural distributions derived from 3D data.  The virtual down-sampling experiments 

show that the probability distributions for grain size, number of neighbors, and ellipsoid ratio 

can be collected at relatively coarse resolutions with little alteration.  Conversely, selected 
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shape descriptors such as Ω3 require high spatial resolution data.  Although the methodology 

outlined herein has only been used to quantify one source of uncertainty, this method can be 

extended to examine many other sources data uncertainty, and will likely be especially 

effective with regards to improved analysis of destructive experimental methods like serial 

sectioning.  For example, this approach could be used to optimize the selection of anisotropic 

sampling resolution (e.g., higher in-plane resolution relative to the sectioning depth), or 

examine the impact of variability within the serial sectioning process (planarity, parallelism, 

uniformity).  While these concepts are not explored here and are left to future work, these types 

of studies should improve both data quality and experimental efficiencies. 
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Figure 1: 3D renderings of the two synthetically-generated reference volumes.  Panel A shows 

the slightly log-normal grain size distribution, while Panel B shows the heavier-tail grain size 

distribution.  Grain coloring corresponds to unique grain IDs. 
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Figure 2: Images of successively down-sampled volumes for the heavy-tailed distribution.  

Spatial resolution is listed at the upper-left corner of each sub-image, which is defined as 

number of voxels that span the mean ESD. 
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Figure 1: Plot of the Bhattacharyya Coefficient relative to the number of voxels that span the 

mean grain size for the slightly log-normal grain size distribution. 
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Figure 4: Plot of the Bhattacharyya Coefficient relative to the number of voxels that span the 

mean ESD for the heavier-tailed log-normal grain size distribution. 
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