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ABSTRACT 
This paper deals with model validation of dynamic systems (with vehicle systems being of 

particular interest) that have multiple time-dependent output. First, we review several validation 
methodologies that have been reported in the literature: graphical comparison, feature-based 
techniques, PDF/CDF based techniques, Bayesian posterior estimation, classical hypothesis 
testing and Bayesian hypothesis testing. We discuss their advantages and disadvantages in terms 
of several attributes: applicability to different types of models, need for assumptions, 
computational cost, subjectivity, propensity to type-I or II errors, and others. We then proceed 
with the most important attribute: can the validation method provide a quantitative measure of the 
goodness of the model? We conclude that Bayesian-based model validation frameworks answer 
this question positively. A bootstrap method is presented that obviates the need to assume a 
statistical distribution model.  The features of the Bayesian validation framework are illustrated 
using a thermal benchmark problem developed by Sandia National Laboratories and a battery 
model developed in the Automotive Research Center, a US Army Center of Excellence for 
modeling and simulation of ground vehicle systems. 

 
 

1. INTRODUCTION 
 Modeling and simulation are indispensable tools in 

engineering design and development, in general, and vehicle 
systems, in particular. However, the efficacy of this 
computer-aided engineering paradigm depends largely on 
the validity of the utilized models. Verification, validation 
and accreditation (VV&A) deal with various aspects of this 
challenging issue. In brief, verification asks the question of 
whether the mathematical model is being solved correctly; 
validation concerns the question of whether a model 
(assuming that it is being solved correctly) is an adequate 
representation of the “real” physical system at hand; 
accreditation provides certification for a model to be 
exercised within a well-defined scope.  

In this paper, we consider the challenge of model 
validation. Typically, model validation entails the 
comparison of numerical predictions (CAE data) to 
experimental data (test data). Clearly, validation is a highly 
contextual process; e.g., a low-fidelity model may be 

adequate for a specific application, while even a high-
fidelity model may fail to capture nuances of natural 
phenomena. In addition, the decision of whether a model is 
“good enough” is almost always subjective as it is based on 
human perceptions and knowledge that may be incomplete. 
Moreover, the nature of the system being modeled and the 
type of model output considered can vary significantly. In 
this regard, there does not seem to be a “silver bullet” 
approach to model validation.  

This paper deals with model validation of dynamic 
systems (with vehicle systems being of particular interest) 
that have multiple time-dependent output. The remainder of 
this section provides a listing of attributes that are desirable 
for validation methodologies, followed by our classification 
of existing validation methodologies, along with their brief 
descriptions.  
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1.1 Attributes of Validation Techniques 
Validation techniques may be applied across a wide range 

of engineering systems. We identify the following attributes 
that should be considered when assessing the utility of any 
validation technique: 

Applicable to scalar data: the suitability of a validation 
technique to be applied for comparing scalars. A scalar is a 
single numerical quantity observed/calculated in one or 
multiple repeated experiments/computations. 

Applicable to vector data: the suitability of a validation 
technique to be applied for comparing vectors. A vector is a 
finite collection of scalars. 

Applicable to scalar time series: the suitability of a 
validation technique to be applied for comparing scalar time 
series, comprising a sequence of scalars recorded at 
successive time points. Unlike scalar and vector data, time 
series data often have serial dependence, in which there is 
statistical dependence between a value observed at time 
point ti and the value observed at another time point tj.  

Applicable to vector time series: the suitability of a 
validation technique to be applied for comparing vector time 
series which are a sequence of vectors recorded at successive 
time points. Vector time series can be considered as a 
collection of multiple scalar time series; consequently, they 
too often have serial dependence.  

Consider multivariate correlation: the ability of a 
validation technique to use the correlation information of 
multivariate data. Although a validation technique suitable 
only for univariate data could be applied to each response of 
the multivariate data, the validation results for each response 
might be in conflict. 

Include objective criteria: the status of a validation 
technique to have objective criteria to accept/reject a model. 
An objective criterion is developed based on mathematical 
or statistical reasoning. 

Quantify model confidence: the ability of a validation 
technique to provide a quantitative assessment of the validity 
of the model in terms of model confidence. For example, in 
hypothesis testing, the null hypothesis is set up to support 
the fact that the computer model is accurate. Model 
confidence is the probability of this null hypothesis being 
true. 

Incorporate SME opinions: the ability of a validation 
technique to utilize information provided by Subject Matter 
Experts (SME) in the process of validating a computer 
model. 

Normality assumption independence: the independence of 
a validation technique on the use of normality assumption 
for the distribution of either test data or CAE data. More 
generally, it is desirable that a validation technique does not 
require any particular distribution model. 

Insensitivity to type-I error: the insensitivity of validation 
results to the type-I error level specified for classical 

hypothesis testing validation techniques. Type-I error level, 
or the rate of type-I error, is the probability of rejecting the 
null hypothesis when it is true. It is known that specifying 
the type-I error at different values can lead to different 
validation results (i.e. from accept to reject the model) [1]. 

Low computation cost: the time needed to execute the 
validation technique.  

Sample size independence: the insensitivity of the 
validation results to the selection of sample size. Sample size 
is the number of observations in a sample which is a subset 
of the population. Validation results should be similar if data 
of different sample sizes are used. 

 
1.2 Categorization of Validation Techniques 
 

 
 

 
Graphical comparison: validation techniques that generate 

validation results from the plot of test data and CAE data. 
An intuitive approach is to plot experimental measurements 
and simulation outputs on the same graph. One decides 
whether or not to accept the model by inspecting the 
difference between the two data. No quantitative measure of 
the difference between the two quantities compared is 
involved. In [2] the authors superimposed the computer-
simulated deformation curve onto the experimental curve 
image taken by a high speed camera, qualitatively compared 
the shape of the curves and stated that the two curves have 
good correspondence. In [3] the authors plotted the test data 
as x-coordinates, and CAE data as y-coordinates. If the two 
data agree with each other, the collection of all the data 
points plotted should form a line of a unit slope (base line). 
Error bounds are formed by drawing two lines parallel to the 
base line. If two computer models are compared using this 
plot, one model would be preferred if considerably fewer 
points are outside the error bounds. Similar examples of 
graphical techniques can be found in [4, 5]. Graphical 
comparison may be subjected to reader misinterpretation 
because of unknown underlying data structure [6], and can 
be biased and subjective [7]. 

Figure 1: Categorization of validation techniques 
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The application of graphical comparison is limited to 
scalar and univariate time series as it cannot handle the 
correlation structure, although it can be applied to each 
response of multivariate data. Graphical comparison lacks 
objective rejection criteria as it is often based on subjective 
judgment (past experience, SME opinions, etc). 
Additionally, it does not quantify the model. SME opinions 
can be coupled with graphical comparison. For example, the 
acceptance region on the graph can be set up based on inputs 
from SME's. There are neither issues associated to type-I 
error nor to sample size since graphical comparison is not 
based on hypothesis testing. Computational cost is minimal. 
Graphical comparison is best used as a supplementary tool 
together with other validation techniques. 

Feature-based techniques: validation techniques that draw 
validation conclusion based on the difference between 
features, e.g., magnitude, shape and phase of a scalar time 
series. Several magnitude-only error metrics such as mean 
absolute error (MAE) and the root mean square error 
(RMSE) are discussed in [6].  

The Sprague and Geers metric (SG) [8], Knowles and 
Geer's metric (KG) [9] and Russell’s metric (R) [10] are 
similar metrics that address the assessment of magnitude and 
phase error simultaneously. The EARTH metric [11] 
evaluates three features: phase, magnitude and topology, 
where topology is the shape or slope of a scalar time series. 
Discrepancy in phase (both global and local timing error) is 
removed by shifting the time history before analyzing the 
magnitude and topology errors. Local timing error is taken 
care of by the use of dynamic time warping (DTW). Unlike 
KG, SG and R metrics, there is no comprehensive form of 
the EARTH metric (i.e. a single number that summarizes all 
the validation results for different features). When 
evaluations from subject matter experts (SME) are available, 
a regression is performed to generate comparable ratings. 

Feature-based techniques do not require a distribution 
assumption. Their application is limited to scalar and scalar 
time series as they cannot handle the correlation structure of 
a vector or vector time series. This limitation can be 
removed by the use of dimensionality and correlation 
reduction techniques. Feature-based techniques lack 
objective rejection criteria. Model confidence is not 
quantified. SME opinions can be incorporated (see [11] for 
an example of building regression-based validation models 
using SME opinions). There are neither issues associated to 
type-I error nor to sample size since feature-based 
techniques are not based on hypothesis testing. 
Computational cost is low.  

PDF/CDF-based techniques: validation techniques that 
draw validation conclusions based on the distance between 
the probability density function/cumulative density function 
of test data and CAE data. Non-deterministic test data and 
CAE data are considered as random variables. In [12] the 

authors examined whether or not the deterministic scalar test 
data are within the highest density region (HDR) of the PDF 
of the CAE data. In [13] the authors developed a maximum 
horizontal distance between the two CDF’s. The selection of 
a rejection criterion is subjective. Similarly, the 
Kolmogorov-Smirnov statistic measures the vertical distance 
between the two CDF’s. If, however, the data have a very 
small variability (almost deterministic), the vertical distance 
could be very large even though the two CDFs are very 
similar when their distance is measured horizontally. 

Another measure of the distance between CDF’s was 
developed in [14], where the area between the two CDF’s 
was suggested as a validation metric. It was argued that the 
area metric enjoys several advantages such as ease of 
interpretation, objectiveness and ability to express validation 
results in terms of physical units. The CDF of the CAE data 
is assumed to be known. The authors suggested that this 
CDF be obtained by solving the mathematical model 
analytically or by propagating a large number of replicate 
samples via Monte-Carlo simulation. The test data, on the 
other hand, is usually provided as a collection of point 
values in a data set. The empirical cumulative distribution 
function (ECDF) was used to describe the distribution of the 
test data. The authors illustrated that this area metric is better 
than those based solely on the mean or/and variance of the 
data as it was able to detect the difference when the mean 
and variance of observations are matched but the distribution 
isn't. When applied to scalar time series data, the ݑ-pooling 
method was developed to pool all the observations together 
and use statistical tests (e.g. Kolmogorov-Smirnov test) to 
evaluate the accuracy of the model since the pooled points 
should form a uniform distribution if test data match CAE 
data. The threshold value was not provided since the authors 
consider it as the task of decision makers. In the ݑ-pooling 
method the CAE data distribution is assumed to be known 
but in practical this is often not the case.  

In [15] the author proposed a discretized version of the 
area metric and gave the flexibility to reflect what portion of 
the ECDF to be emphasized for comparison. In [16] the 
authors used the Anderson-Darling test statistic as a measure 
of the discrepancy between two CDFs. The Anderson-
Darling test uses a weighted quadratic ECDF statistic to 
measure the distance between the two CDF’s and penalizes 
heavily deviations from the tail portion of the CDF. It was 
shown that the Anderson-Darling test has more statistical 
power than the Kolmogorov-Smirnov test [17]. 

PDF/CDF-based techniques do not require a distribution 
assumption. Their application is limited to scalars. The only 
implementation for scalar time series is the use of the ݑ-
pooling technique developed by [14]. PDF/CDF-based 
techniques cannot handle the correlation structure of 
multivariate data. Some of the PDF/CDF-based techniques 
have objective rejection criteria but require the PDF/CDF of 
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the experimental SRQ to be known. Model confidence is not 
quantified by PDF/CDF based techniques as only a measure 
of the distance between the two PDF’s/CDF’s is calculated. 
SME opinions can be incorporated to reveal the distribution 
of either test data or CAE data. Issues related to type-I error 
do not exist since PDF/CDF-based techniques are not based 
on hypothesis testing. Computational cost is negligible.  

Bayesian posterior estimation techniques: validation 
techniques that estimate the posterior distribution of test data 
and CAE data using the Bayes theorem. Bayesian posterior 
estimation techniques can be considered as a combination of 
feature-based techniques and PDF/CDF-based techniques, in 
that a bias function is used to quantify the discrepancy in the 
magnitudes of test data and CAE data, and a Gaussian 
process is implemented to handle non-deterministic data. 
These techniques can be traced to [18], where a Gaussian 
Process was used to model the test data and CAE data 
(scalar time series) and the posterior parameters in the 
Gaussian process were inferred using Bayes' theorem. The 
authors suggested performing normality transformations if 
the data is not normal.  

Bayarri et al. (see [19]) developed tolerance bounds for 
model predictions. Their perspective of validation is not 
simply to provide answer (yes/no) to the question whether to 
accept the computer model, but rather, to evaluate the 
accuracy of computer model prediction (CAE data) for the 
intended use.  

Higdon (see [20]) developed posteriors based on non-
normal priors of parameters of the Gaussian process model. 
Chen et al. [21, 22] developed posteriors for both model bias 
and output using a more flexible beta distribution prior. 
Tolerance bounds were developed for validation purposes. 
The traditional criterion for validation is that the model is 
accepted if the interval of the model bias contains zero or if 
the interval of the true value of the system response quantity 
contains the computer model output. This criterion can be 
problematic since it tends to reject the computer model at 
regions with many physical observations (and thus 
prediction intervals are narrow) but fails to reject the 
computer model at regions with few or no physical 
observations (and thus prediction intervals are wide).  

Bayesian posterior estimation techniques are dependent on 
a normality assumption since a Gaussian process model is 
used. Sample size has a significant effect on the width of 
tolerance bounds. The technique is limited to scalar time 
series. Bayesian posterior estimation techniques do not have 
objective rejection criteria. Model confidence can be 
quantified. SME opinions are incorporated in terms of prior 
distributions of the parameters of the Gaussian process 
model. Bayesian posterior estimation techniques are not 
subject to issues related to type-I error since they are not 
based on hypothesis testing. Computational cost is high due 
to the use of the Gaussian process, MCMC and MLE.  

Classical hypothesis testing techniques: validation 
techniques that employ a defined hypothesis to evaluate. For 
non-deterministic scalar data, the ݐ-test is used to assess the 
similarity between the means of test data and CAE data [6, 
23, 24], and the ܨ-test to assess the similarity between the 
variances [6, 23, 24]. Extension to vector data can be 
achieved by using Hotelling's ܶଶ-test for comparing 
multivariate means [25, 26], and Wilk's ࢫ-distribution for 
comparing covariance matrices [26, 27]. Multivariate 
hypothesis tests (hypothesis test that is designed for vector) 
limit the inflation of type-I error present in multiple 
univariate tests (hypothesis test that is designed for scalars) 
[28]. Normality is assumed for both the test data and CAE 
data in all these hypothesis tests [23]. When this assumption 
is not valid, transformation to normality is suggested [24]. 
Alternatively, the bootstrap method was suggested to 
estimate the distribution of data [26]. In [24] the authors 
suggested to use univariate and multivariate tests 
collectively. The univariate tests can yield conflicting 
validation results but can identify which response in the 
multivariate data is most suspect. Multivariate tests, on the 
other hand, take into account the correlation structure.  

A method closely related to Hotelling's ܶଶ-test is the ݎଶ  
method developed by [29] (referred to as Mahalanobis 
distance later). The ݎଶ method assumes normality and the ݎଶ 
statistic follows a ߯ଶ distribution. The critical value is 
determined as the cumulative probability of a ߯ଶ random 
variable greater than the given significance level. The 
computer model is rejected if the probability of ݎଶ being 
greater than the critical value is less than the significance 
level. The ݎଶ method is applicable for both scalar and vector 
data and takes into account uncertainty in the model 
parameter. This method was further developed by 
formulating confidence intervals for the ݎଶ statistic [30]. It 
was extended to non-normal data by the use of the maximum 
likelihood estimation (MLE) [31]. The rejection criteria can 
be determined by Monte Carlo simulation.  

Classical hypothesis testing techniques depend on a 
normality assumption except for the modified ݎଶ method in 
[31]. Classical hypothesis testing techniques are of the point-
null hypothesis testing type and validation results are 
affected by sample size [28]. Application to time series is 
not appropriate because of the serial dependence. Classical 
hypothesis testing techniques have objective rejection 
criteria. Model confidence is not quantified because classical 
hypothesis testing techniques only judge whether a computer 
model is accurate. SME opinions are not currently 
incorporated but can be useful for determining the 
distribution used in the modified ݎଶ method [31]. Classical 
univariate hypothesis testing is subject to accumulation of 
type-I error when applied to each response of multivariate 
data. The choice of significance level has a substantial effect 
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on validation results. Computational cost is low except for 
the r2 method. Classical hypothesis testing technique is best 
used for validating computer model generating non-
deterministic scalar or vector outputs assuming normality. 

Bayesian hypothesis testing techniques: validation 
techniques that combine classical hypothesis testing 
techniques and Bayes theorem to update validation results 
based on available data and SME opinions. Using Bayes 
factor [23, 32, 33], the authors set up hypothesis testing to 
examine whether the Bayes factor is above or below unity 
[34]. Normality is no longer required but can be used to 
provide an explicit expression of the posterior distribution. 
In [35] the authors treated the Bayes factor as a random 
variable to address the uncertainty in model parameters. In 
[24] the authors transformed non-normal data to normal and 
showed how the transformation helps reduce the type-I error. 
In [36, 37] multiple data sets were considered by assuming 
the data in each set are independent. The overall Bayes 
factor is calculated by multiplying together the individual 
Bayes factors for each data set. In [38] the authors derived 
model confidence based on Bayes factor and claimed to be 
the first to derive explicit expression of the model 
confidence for Bayesian point-null hypothesis testing.  

A comparison between point-null and interval based 
hypothesis testing was made in [16, 39]; it was shown that 
the chance of rejecting a correct model increases as the 
sample size increases for point-null hypothesis testing. 

 To have more consistent results, a Bayesian interval-based 
hypothesis testing method (BIH) was proposed [38]. 
Bayesian hypothesis testing techniques were demonstrated 
to be superior to classical hypothesis testing because both 
hypotheses (null and alternative) are considered 
simultaneously [35]. Similarly, it was shown that the -value 
used in classical hypothesis testing can engender misleading 
results [40]. 

Bayesian hypothesis testing techniques are not dependent 
on a normality assumption although the selection of a non-
normal distribution may increase the computational cost. 
Sample size does not have a significant effect on Bayesian 
interval-based hypothesis testing. Bayesian hypothesis 
testing techniques have objective rejection criteria based on 
model confidence. SME opinions are incorporated to 
determine parameters used in the prior distribution of the test 
statistic. Bayesian hypothesis testing techniques are not 
subject to issues related to type-I error. Computational cost 
is modest, although not as low as the previously described 
methods.  

 
 

 
 
 
2. METHODOLOGY 

Dimensionality reduction techniques are used commonly 
for multivariate. In the context of validation, Principal 
Component Analysis (PCA) was coupled with the  method 
[40], and with Hotelling's -test [12]. However PCA lacks 
the ability to deal with non-deterministic data. BIH was 
coupled with Probabilistic Principle Component Analysis 
(PPCA) to remove correlation of data, reduce dimensionality 
and handle non-deterministic data [41-43]. This is the basis 
of the Bayesian validation framework whose process is 
shown in Figure 3.  

  

 
 
 

 
Figure 3: Bayesian interval-based hypothesis 

testing coupled with PPCA  

Figure 2: Attributes of validation techniques 
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First multivariate test and CAE data are obtained from 
experiments and simulations. PPCA is applied to the 
difference between test and CAE data to obtain the reduced 
difference. The PPCA transformation matrix is a function of 
the eigenvalues and eigenvectors of the covariance matrix of 
the difference data. A latent variable model is established to 
relate the difference data (observed) to a corresponding 
vector of latent (unobserved) variables. The reduced 
difference is the expectation of the latent variable. The 
dimensionality reduction is achieved by retaining only a few 
of the largest eigenvalues so that the resulting reduced 
difference data represent at least 95% of the variability 
information in the difference data. 

After PPCA, the reduced difference data is uncorrelated. 
As a result, various validation techniques can be considered 
that are only suitable for univariate data (scalar or scalar 
time series). The Bayesian hypothesis testing technique is 
selected here as it is the only technique that produces model 
confidence which provides a quantitative assessment of the 
goodness of the model. 

Bayesian interval-based hypothesis testing is performed on 
the reduced difference data. The test examines whether the 
expected value of the reduced difference is within the 
integration bounds of the integral of Eq. (2.1). The null 
hypothesis is that the expected reduced difference is within 
the integration bounds (accept the model). The prior 
distribution of the expected reduced difference is assumed to 
be Gaussian. Its posterior is obtained by applying Bayes’ 
rule to update the prior using the observed data (reduced 
difference) and a Gaussian model with mean vector ૉ and 
covariance . The model confidence is calculated as: 

 

ߢ ൌ න
1

ඥሺ2ߨሻ||
ݔ݁ ቆെ

1
2
ሺૄ െ ૉሻ்

ିଵሺૄ െ ૉሻቇ ݀ૄ
ࢿ

ࢿି
 

  (2.1)
 

The model confidence is the probability that the expected 
reduced difference falls in the integration bounds with 
respect to its posterior probability density function. 

 
2.1 Integration Bounds 
Model confidence was shown to be sensitive to the 

selection of the integration bounds [41]. Here two methods 
of selecting the integration bounds will be explored. 

Norm-based integration bounds: As illustrated in Figure 4, 
error bounds ൣ– ,܍  ൧ are symmetrically set up around the test܍
data defined as the maximum allowable deviation from the 
data: 

 
܍  ൌ ܾԡܜԡ∞ (2.1)

 
where ԡ·ԡ∞ denotes the infinity norm or maximum norm of 
the test data and  ܍ א Թൈଵ; ܜ is the test data, ܜ א Թൈ, and 

݉ is the number of responses and ݊ the number of 
observations of each response. 

The magnitude of ܍ is chosen to be some fraction, ܾ, of 
the ܮ∞ norm of the test data based on intended engineering 
applications or SME opinion.  

 

 
 
 
 

     
 

The magnitude of the integration bounds used in the 
calculation of model confidence is calculated using: 

 
 ઽ ൌ ܅ଵିۻሺݏܾܽ T܍ሻ (2.2)

 
where ܾܽݏሺ·ሻ returns the absolute value. The matrix product 
܅ଵିۻ T is the same transformation matrix applied to the 
difference data to obtain the reduced difference in the PPCA 
transformation. 

Variability-based integration bounds: Following the 
procedure outlined in [41], the integration bounds magnitude 
is calculated as a fraction of the standard deviations of the 
reduced test data: 

 
 ઽ ൌ ܾඥ݀݅ܽ݃ሺ௧ሻ (2.3)

 
where ݀݅ܽ݃ሺ·ሻ returns the diagonal components of a matrix 
as a vector, and ܾ is determined iteratively by considering 
only the covariance of the reduced test data in Eq. 2.1. ௧ is 
the uncertainty associated with the test data.  
 

2.2 Bootstrapping 
In the methodology described in Section 2, it is assumed 

that the reduced difference follows a multivariate normal 
distribution. Oftentimes, this assumption may not 

Figure 4: Example of norm-based integration 
bounds  



 Proceedings of the 2012 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS) 

Model Validation for Simulations of Vehicle Systems, Pan et al. UNCLASSIFIED 
 

Page 7 of 13 

necessarily hold. To remedy this, a bootstrap-based 
technique was developed as an alternative approach to 
calculate model confidence without relying on distributions 
for the error model. 

The bootstrap method was introduced by Bradley Efron 
[44] in the 1980s; the primary objective was to calculate 
confidence intervals for parameters in situations where 
standard methods were not applicable [45]. For example, 
asymptotic results are unacceptably inaccurate when the 
number of observations is small. Since its invention, the 
bootstrap method has been applied to many engineering 
fields such as geophysics, biomedical engineering, image 
processing, environmental engineering, artificial neural 
networks, etc. 

The bootstrap-based technique developed for the research 
presented in this paper is illustrated in Figure 5. 

 

 
 
 
 
In most practical applications, the number of resamples  

that need to be drawn should be of the order of a thousand 
[46]. More detailed guidelines on choosing  are provided in 
[47]. The bootstrap method employed here is of the non-
parametric type; however, parametric bootstrapping will also 
be considered in future research since it is noted in [46] that 
parametric bootstrap methods can be more accurate than 
non-parametric ones when the sample size is small. In 
addition, the i.i.d. assumption for the samples is arguable; 
therefore, we will also consider bootstrap methods designed 
for dependent data, e.g., moving-block bootstrapping [46]. 
 
 

3. THERMAL BENCHMARK PROBLEM 
In this section, we illustrate the presented Bayesian 

methodology for quantifying model confidence using a 
benchmark validation problem from the literature. 
Specifically, a thermal benchmark problem [48] was 
developed for a model validation challenge workshop held at 
Sandia National Laboratories in 2006. The computational 
model to be validated is a one-dimensional heat conduction 
model that predicts temperature for a material layer of 
thickness  subject to a specific heat flux  (Figure 6).  

 

 
 
 
 

 
The boundary conditions are specified flux  on the  

face and adiabatic on the  face. The computational 
model for temperature prediction is given by: 

 

 

  (3.1)
 

The thermal properties  and , and the initial condition 
for temperature  are prescribed constants. 

Four replicate experiments were conducted for each of 
four configurations (combinations) of thickness , and heat 
flux magnitude , on the  face (two levels for each 
variable) to obtain test data. The values of  and  in each 
configuration are given in Table 1. 
 

 
 

Configuration Heat flux,  (W/m2) Thickness,  (cm) 
1 1000 1.27 
2 1000 2.54 
3 2000 1.27 
4 2000 2.54 

 
All the experimental data are provided in [48]. It is 

assumed that there is no measurement error. Graphical 
comparison of test data to CAE data is shown in Figures 7-
10. The error bars indicate the maximum and minimum 
values of the four replicate experiments. 

Figure 5: Bootstrapping technique 

Figure 6: Schematic of the heat conduction 
problem [48] 

Table 1: Values of  and  in each configuration [48] 
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3.1 Validation Results 
There are 7 published solutions to the benchmark problem 

[49-55]. Each of these approaches fall under one of the 
categories presented in Section 1.2 (see Figure 11). All of 
these approaches yield qualitative assessments, as 
summarized in the authors’ own words in Table 2).  

We calculated model confidence for four variations of the 
presented Bayesian validation framework; results are 
presented in Figure 12. ‘Norm-based Bayesian’ refers to the 
method that employs the norm-based integration bounds 
introduced in Section 2.1, and calculates the model 
confidence using Bayes factor. ‘Norm-based bootstrap’ 
refers to the method that employs the same norm-based 
integration bounds, but calculates the model confidence 
using the bootstrap technique presented in Section 2.2. 
‘Variability-based Bayesian’ and ‘Variability-based 
bootstrap’ differ from ‘Norm-based Bayesian’ and ‘Norm-
based bootstrap’, respectively, only in the fact that the 
variability-based integration bounds were used instead of the 
norm-based integration bounds. 

While there is a small variation in the results, it can be 
concluded that for this benchmark problem i) the normality 
assumption made in the Bayesian calculation does not have a 
significant impact on model confidence quantification; ii) 
validation results are relatively insensitive to the technique 
for determining integration bounds; and iii) the 
computational model can be accepted as adequate 
representation of reality since confidence is well above 50%.  

Figure 7: Graphical comparison of test and 
CAE data for configuration 1 

Figure 8: Graphical comparison of test and 
CAE data for configuration 2 

Figure 9: Graphical comparison of test and 
CAE data for configuration 3 

Figure 10: Graphical comparison of test and 
CAE data for configuration 4 
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Liu et al. [49] “Negligible bias” 

Ferson et al. [50] “Mismatch” 

Higdon et al. [51] “Small discrepancy” 

Hills and Dowding [52] “Poor” 

McFarland and Mahadevan [53] “Valid” 

Brandyberry [54] “Equivalent means” 

Rutherford [55] “Inadequate” 

 
 

 
 

 
 
 
 

 

3.2 Statistical Power 
Statistical power is a useful tool to assess the robustness of 

the computed model confidence. Formally, it is defined as 
the probability that the hypothesis test procedure will reject 
the null hypothesis when it is false (i.e., the probability of 
not committing a type-II error) [56].  

For the thermal benchmark problem, the statistical power 
of the Bayesian validation framework is significantly higher 
than that of classical hypothesis testing (79% vs. 11%). 
Bayesian hypothesis testing supports the null hypothesis 
directly by providing the probability of it being true, while 
the classical hypothesis testing does so by concluding that 
there is not sufficient evidence to reject the null hypothesis.  

The factors that influence statistical power are the type of 
hypothesis testing used, sample size and the distance 
between the test statistic (the expected reduced difference) 
and the integration bounds bound. Statistical power is low if 
the integration bounds are set to be too narrow, or the 
sample size is not large enough. Guidelines can be 
established to choose the ideal sample size or the integration 
bounds to achieve a certain level of statistical power. 
 
4. ONGOING AND FUTURE WORK 

The research presented in this paper is supporting the 
activities of a tri-service Energy/Power Community of 
Interest (E/P CoI) for providing best practice guidelines for 
model sharing and verification and validation. Current 
members of this CoI include the Air Force Research 
Laboratory, the U.S. Army Tank Automotive Research, 
Development and Engineering Center, the Navy Surface 
Warfare Center, Carderock Division, the Automotive 
Research Center at the University of Michigan and the 
Electric Ship Research and Development Consortium at 
Florida State University. A straw-man model [57] has been 
developed by the Air Force Research Laboratory in order to 
be used as a testbed for the CoI's activities, and an electro-
thermal battery model, developed at the Automotive 
Research Center at the University of Michigan [58] has been 
integrated in the straw-man model (Figure 13).  

As a first step towards validating the straw-man model, 
the Bayesian validation framework was used to quantify 
model confidence for the electro-thermal battery model. The 
model confidence is 99%, indicating good match between 
test data and CAE data, which is consistent with the 
graphical comparison shown in Figures 14 and 15. 
Fragments of data are presented for clarity. 
 

Figure 11: Categorization of solutions to the 
thermal benchmark problem 

Figure 12: Comparison of validation results 

Table 2:  Summary of validation results from the published 
solutions to the thermal benchmark problem 
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5. SUMMARY 
There exist various validation techniques developed for 

different purposes and applications. However, there are no 
clear formal guidelines for using these techniques. 
Categorization of existing validation methods is thus 
essential to compare them systematically in order to 
establish suitable application domains for each category. We 
have presented such a categorization in this paper based on 
several attributes that highlight their advantages and 
disadvantages. The Bayesian validation framework was 
found to be the only validation technique that yields 
quantitative (as opposed to qualitative) assessment of the 
goodness of a model. Based on this finding, we implemented 
a Bayesian validation method and: i) developed alternative 
techniques for determining the integration bounds used for 
computing model confidence and ii) incorporated a 
bootstrap-based technique to eliminate the need to assume 
any distribution model for the data. We also used statistical 
power to assess the robustness of model confidence, 
showing that Bayesian hypothesis testing is superior to 
classical hypothesis testing.   
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