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Final Report: Atmospheric Polarization Imaging with Variable  
Aerosols and Clouds 

 
Dr. Joseph A. Shaw (jshaw@montana.edu), Montana State University – Bozeman 

 

 
Executive Summary 
 
Effective prediction and exploitation of polarization signatures in optical remote sensing requires 
improved understanding of the underlying physical mechanisms and phenomenology. To this 
end we have developed and deployed an all-sky polarization imager, along with a wide range of 
atmospheric sensors, to study the influence of aerosols and clouds on skylight polarization in the 
visible and near-infrared spectral bands. We developed the all-sky polarization imager with prior 
AFOSR support, and this report focuses on its deployment and on some of its primary results. 
Key results include the following:  

 The clear atmosphere exhibits a pattern of skylight polarization that can be predicted 
from Rayleigh scattering theory, with a band of maximum degree of polarization located 
90° from the sun, but in the real atmosphere this polarization maximum is significantly 
lower than the theoretical 100% predicted by single Rayleigh scattering (reasons include 
multiple Rayleigh scattering by non-point scatterers, an always-present small amount of 
aerosols that are larger than Rayleigh particles, and a non-zero surface reflectance);   

 Increased aerosol concentration reduces the degree of polarization at all spectral bands; 
 Clouds reduce the degree of polarization at all spectral bands, even in a cloud-free 

portion of the sky away from an isolated cloud;  
 Clouds often do not alter the angle of polarization for skylight below the cloud;  
 Under certain illumination conditions (particularly when the cloud is located in a region 

of weak skylight polarization so that the cloud scattering dominates), the angle of 
polarization observed beneath a cloud is oriented 90° relative to the clear-sky value;  

 Polarization fluctuations have been observed in our data up to several hours prior to the 
appearance of a visible cloud in a previously clear sky, suggesting that the polarization 
may be a highly sensitive indicator of aerosol growth that leads to a cloud;  

 Measurements made at the Mauna Loa Observatory (a mountaintop observatory in 
Hawaii) confirmed previous studies by Coulson and extended them to partly cloudy 
conditions;  

 The Mauna Loa measurements led to an initial relationship between surface reflectance 
and the resulting decreased clear-sky degree of polarization.  

 
This effort (Dec. 2006 – May 2010) involved four researchers:  

1. Dr. Joseph A. Shaw – Professor and principal Investigator  
2. Dr. Nathan J. Pust – postdoctoral associate  
3. Mr. Andrew Dahlberg – graduate student working primarily on Mauna Loa polarization 
4. Mr. Paul Nugent – graduate student working primarily on cloud imaging and later 

Research Engineer (supported primarily with NASA funding, but partly supported by 
AFOSR polarization funds) 
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Two graduate students successfully defended Master of Science theses based partly or fully on 
work supported by this grant:  

1. Mr. Andrew Dahlberg – All-sky polarization imager deployment at Mauna Loa 
Observatory, Hawaii – M.S. Thesis, May 2010 
(http://etd.lib.montana.edu/etd/view/item.php?id=1048). 

2. Mr. Paul Nugent – Wide-angle infrared cloud imaging for cloud cover statistics, M.S. 
Thesis, May 2008 (http://etd.lib.montana.edu/etd/view/item.php?id=642). 

 
The following journal papers have been generated with full or partial support from this project:  

1. N. J. Pust and J. A. Shaw, “Digital all-sky polarization imaging of partly cloudy skies,” 
Appl. Opt. 47(34), H190-H198 (doi:10.1364/AO.47.00H190), Dec. 2008.  

2. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-
space optical communication,” Opt. Express 17(10), 7862-7872, 11 May 2009.  

3. P. W. Nugent, J. A. Shaw, N. J. Pust, and S. Piazzolla, “Correcting calibrated infrared sky 
imagery for the effect of an infrared window,” J. Atmos. Oceanic Technol. 26(11), 2403-
2412, doi:10.1175/2009JTECHA1288.1, Nov. 2009.  

4. K. S. Repasky, J. A. Reagan, A. R. Nehrir, D. S. Hoffman, M. J. Thomas, J. L. Carlsten, 
J. A. Shaw, and G. E. Shaw, “Observational studies of atmospheric aerosols over 
Bozeman, Montana using a two color lidar, a water vapor DIAL, a solar radiometer, and 
a ground based nephelometer over a twenty four hour period,” J. Atmos. Ocean Technol. 
27, doi:10.1175/2010JTECHA1463.1 (2010).  

5. N. J. Pust and J. A. Shaw, “Comparison of skylight polarization measurements and 
MODTRAN-P calculations,” J. Applied Remote Sensing (submitted spring 2010).  

The following conference papers were published with full or partial support from this project:  
 

1. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Wide-angle infrared cloud imaging for  
measuring cloud statistics in support of Earth-Space optical communication,” Proc. SPIE 
6709 (Free-Space Laser Communications VII, San Diego, CA), 67090F-1-9, Aug. 2007. 

2. J. A. Shaw and N. J. Pust, “All-sky polarization imaging,” Proc. SPIE 6682 (Polarization 
Scence and Remote Sensing III, San Diego, CA), 668204-1-6 Aug. 2007.  

3. J. A. Shaw, “A survey of infrared polarization in the outdoors,” Invited paper, Proc. SPIE 
6660 (Infrared Detectors and Focal Plane Arrays, San Diego, CA), 666006-1-10, Aug. 
2007. 

4. N. J. Pust, J. A. Shaw, A. Dahlberg, “All-sky imaging polarimetry,” Optical Technology 
Center Annual Meeting, Montana State University, Bozeman, MT, 20 Sep. 2007. 

5. J. A. Shaw (by E. R. Westwater), “Wide-angle infrared cloud imaging,” DoE 
Atmospheric Radiation Measurement (ARM) program, Cloud Properties Working Group 
meeting, Annapolis, MD, 13 Nov. 2007.  

6. N. J. Pust, J. A. Shaw, and A. R. Dahlberg, “Visible-NIR imaging polarimetry of metal  
surfaces viewed under a variable atmosphere,” Proc. SPIE 6972 (Polarization: 
Measurement, Analysis, and Remote Sensing VIII, Orlando, FL), 18-19 Mar. 2008.  

7. P. W. Nugent and J. A. Shaw, “Large-area blackbody emissivity variation with 
observation angle,” Proc. SPIE 7300 (Infrared Imaging Systems: Design, Analysis, 
Modeling, and Testing XX), Orlando, FL, 14 April 2009 (doi:10.1117/12.819223).  
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8. N. J. Pust and J. A. Shaw, “How good is a single-scattering model of visible-NIR 
atmospheric skylight polarization?” Proc. SPIE 7461 (Polarization Science and Remote 
Sensing IV), 74610B, 3 Aug. 2009 (doi:10.1117/12.828343). 

9. N. J. Pust, J. A. Shaw, A. R. Dahlberg, “Concurrent polarimetric measurements of 
painted metal and illuminating skylight compared with a microfacet model,” Proc. 
SPIE 7461 (Polarization Science and Remote Sensing IV), 74610X, 3 Aug. 2009  
(doi:10.1117/12.826546). 

10. A. R. Dahlberg, N. J. Pust, J. A. Shaw, “All-sky imaging polarimeter measurements of 
visible and NIR skylight at Mauna Loa, Hawaii,” Proc. SPIE 7461 (Polarization Science 
and Remote Sensing IV), 746107, 3 Aug. 2009 (doi:10.1117/12.826537).  

11. J. A. Shaw, N. J. Pust, B. Staal, J. Johnson, A. Dahlberg, “Continuous outdoor operation 
of an all-sky polarization imager,” Proc. SPIE 7672 (Polarization: Measurement, 
Analysis, and Remote Sensing IX), 76720A-1-7, 7 April 2010 (doi:10.1117/12.851374).  
 

The following conference presentations were given (without published paper) with partial or 
full support from this project:  
 

1. J. A. Shaw and N. J. Pust, “All-sky polarization imaging,” 9th International Meeting on 
Light and Color in Nature, Montana State University, Bozeman, MT, 25-29 June, 2007.   

2. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Wide-angle infrared imaging for measuring 
clouds for Earth-space optical communications,” URSI National Radio Science Meeting, 
Boulder, CO, 5-8 Jan. 2008.  

3. A. Dahlberg, N. J. Pust, and J. A. Shaw, “All-sky imaging polarimeter deployment at 
Mauna Loa, Hawaii,” Optical Technology Center (OpTeC) annual meeting, Montana 
State University, Bozeman, MT, 27 Aug. 2008.  

4. P. W. Nugent, J. A. Shaw, and S. Piazzolla, “Infrared cloud imaging in support of Earth-
space optical communication,” Optical Technology Center (OpTeC) annual meeting, 
Montana State University, Bozeman, MT, 27 Aug. 2008.  

5. J. Johnson, P. W. Nugent, K. Simpson, B. Staal, and J. A. Shaw, “Microcontroller and 
mechanical design for the new-generation infrared cloud imager,” Optical Technology 
Center (OpTeC) annual meeting, Montana State University, Bozeman, MT, 27 Aug. 
2008.  

6. J. A. Shaw, N. J. Pust, and A. Dahlberg, “All-sky polarization imaging in variably cloudy 
skies,” National Radio Science Meeting (URSI), Boulder, CO, 6 January 2009.  

7. A. R. Dahlberg, N. J. Pust, J. A. Shaw, “Methods for displaying all-sky polarization 
imager data,” poster-only presentation at SPIE Polarization Science and Remote Sensing 
IV, San Diego, CA, 3 Aug. 2009.   

8. P. W. Nugent and J. A. Shaw, “Radiometric calibration of low-cost, non-thermally 
stabilized infrared imagers,” Optical Technology Center (OpTeC) annual meeting, 
Montana State University, Bozeman, MT, 20 Aug. 2009. 

9. A. R. Dahlberg, N. J. Pust, J. A. Shaw, “methods for displaying all-sky polarization 
imager data,” Optical Technology Center (OpTeC) annual meeting, Montana State 
University, Bozeman, MT, 20 Aug. 2009.  

10. J. A. Shaw, “Atmospheric effects on polarization,” Workshop on polarimetry in space- 
situational awareness, Air Force Research Laboratory, Albuquerque, NM, 9 Feb. 2010.  
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11. A. Dahlberg, N. J. Pust, and J. A. Shaw, “All-sky imaging of visible-wavelength 
atmospheric polarization at Mauna Loa, Hawaii,” Proc. International Geoscience and 
Rem. Sens. Symposium (ISBN 978-1-4244-9566-5), 1683-1686, 25 July 2010.  

12. K. S. Repasky, A. R. Nehrir, D. S. Hoffman, M. J. Thomas, J. L. Carlsten, J. A. Shaw,  
“Observational studies of atmospheric aerosols in the lower troposphere using multiple 
sensors,” Proceedings of the International Geoscience and Remote Sensing Symposium 
(ISBN 978-1-4244-9566-5), 2583-2586, 25 July 2010.  

13. A. R. Dahlberg, N. J. Pust, J. A. Shaw, “All-sky polarization imaging at Mauna Loa, 
Hawaii,” Optical Technology Center (OpTeC) annual meeting, Montana State University, 
Bozeman, MT, 26 Aug. 2010.  

14. N. J. Pust, A. R. Dahlberg, J. A. Shaw, “Full-sky radiance models,” Optical Technology 
Center annual meeting, Montana State University, Bozeman, MT, 26 Aug. 2010. 

15. M. Thomas, J. A. Shaw, N. J. Pust, G. E. Shaw, K. S. Repasky, J. A. Reagan, “In-situ and 
solar radiometer measurements of aerosols over MSU,” Optical Technology Center 
(OpTeC) annual meeting, Montana State University, Bozeman, MT, 26 Aug. 2010.   

16. J. A. Shaw, N. J. Pust, A. R. Dahlberg, “All-sky polarization imaging,” Invited talk at 
MISR User’s Workshop, California Institute of Technology, Pasadena, CA, 9-10 Dec. 
2010.  

17. M. J. Thomas, T. L. Lathem, J. A. Shaw, G. E. Shaw, A. Nenes, N. J. Pust, K. S. 
Repasky, “Aerosols in clean and smoky air at Bozeman, Montana,” American 
Geophysical Union (AGU) Fall Meeting, San Francisco, CA, 13-17 Dec. 2010. 

18. N. J. Pust, J. A. Shaw, A. R. Dahlberg, “Comparison of observed full-sky polarization to  
radiative transfer model using AERONET retrieval inputs,” American Geophysical 
Union (AGU) Fall Meeting, San Francisco, CA, 13-17 Dec. 2010.  

 
Introduction  
 
Polarization-sensitive imaging provides the possibility of enhancing detection of man-made 
objects in low-contrast scenes and enhancing the accuracy of remotely sensed atmospheric 
properties, such as optical properties of aerosols that obscure a battlefield or modulate the earth’s 
climate. However, effective prediction and exploitation of polarization signatures requires 
thorough understanding of the physics giving rise to the object and background signatures.  
 
The atmospheric variables that most strongly influence polarization signatures at visible and 
near-infrared wavelengths are aerosol and cloud distributions and optical properties. Humidity 
also plays a role, but primarily through growth of aerosols and clouds. At these wavelengths, a 
clear sky has a distinct pattern of partially polarized light that peaks in a band stretching across 
the sky 90° from the Sun. The theory of a single Rayleigh scattering event predicts that the 
degree of polarization (DoP) in this band will be 100%, but in reality multiple scattering reduces 
the maximum value significantly, often well below 70%. Aerosols and cloud particles, whose 
sizes are comparable to or larger than the optical wavelength, alter the pure Rayleigh background 
through scattering processes that do not follow the simple Rayleigh law. Consequently, 
predicting the observed degree of polarization in skylight in nearly all realistic conditions 
requires careful consideration of clouds and aerosols.  
In response to this need for atmospheric polarization prediction capability, the Air Force 
Research Laboratory (AFRL) is developing a polarized Modtran (Mod-P) radiative transfer code. 
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However, in any one model run only a single atmospheric path can be characterized. That path 
can be modeled as clear or cloudy, but not partly cloudy. Similarly, a spatially variable 
distribution of aerosols cannot be simulated without multiple model runs. Related to this is the 
inability to model spatially variable surface albedo (i.e., ground reflectance).  Therefore, there is 
a need to understand more about how variable aerosols, clouds, and surface albedo influence 
atmospheric polarization distributions.  There is a related need to understand more about how the 
resulting sky polarization patterns (and other meteorological variables) influence polarization 
signatures of man-made objects observed outdoors.  
 
To illustrate these questions further, consider a situation where the sky is cloudy in one area and 
clear in another. Would the MOD-P code predict the proper polarization state from the clear 
patch, even though it cannot simultaneously include the influence of the cloudy patch? Would it 
predict the proper polarization state from the cloudy patch, even though it cannot simultaneously 
include the influence of the clear patch? Would these values be significantly different from those 
that would be found under totally cloudy or totally clear conditions? Our research has used an 
all-sky Atmospheric Polarization Imager (API) instrument to show that the polarization state of 
light observed at one point in the sky can vary significantly as the clouds and aerosols change in 
another part of the sky. For example, the maximum degree of observed polarization in a clear 
portion of the sky is often notably lower when clouds exist in other parts of the sky (Pust and 
Shaw 2006, 2008). We have also observed significant variation of skylight polarization with 
aerosol content and surface albedo. For example, the maximum degree of polarization in a 
visibly clear sky at a wavelength of 450 nm was observed to vary from 80% to less than 50% as 
haze built up from forest fire smoke (Pust and Shaw 2006). Furthermore, variations in the 
underlying surface albedo appear to explain a morning-to-afternoon asymmetry in the observed 
polarization pattern in the sky above the Mauna Loa Observatory on the island of Hawaii 
(Dahlberg et al. 2009).  
 
The Atmospheric Polarization Imager (API) System  
 
The API instrument that we designed, built, calibrated, and operated extensively expands the 
capabilities of previous all-sky polarization imagers to enable the first quantitative studies of sky 
polarization in partly cloudy skies. For example, it provides real-time digital data and removes 
the uncertainty of film processing inherent in systems described by North and Duggin (1997) and 
Horvath et al. (2002). Our use of electronically tunable liquid crystal variable retarders (LCVRs) 
allows the API to achieve much faster Stokes-image acquisition than instruments that rely on 
rotating polarization elements (Cronin et al. 2006; Voss and Liu 1997; Liu and Voss 1997), 
enabling operation in changing cloud conditions without polarization artifacts. The API 
instrument records a Stokes vector at each pixel of a 1-Mpixel image of the full sky dome in 
approximately 0.3-1.3 s, depending on the required exposure time (Pust and Shaw 2006). The 
four elements of the Stokes vector, or Stokes parameters, completely describe the polarization 
state of the light detected at each pixel. These parameters are used to calculate the degree of 
polarization (DoP), which expresses the percentage of the incident light that is polarized (or 
degree of linear polarization, DoLP, with only linear polarization), and the angle of polarization 
(AoP), which expresses the orientation of the polarized light.   
The API system achieves rapid polarimetric tuning through the use of LCVRs and a fixed linear 
polarizer, but relies on a rotating filter wheel for the slower spectral tuning that can be accepted 
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