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1. Introduction

Anisotropy is prevalent in numerous biological tissues, which are comprised of fibers, or
bundles of cells aligned in a uniform direction. For example, within the white matter
regions of the human brain, axons tend to form complex fiber tracts that promote
anatomical connectivity and communication. The bundles of axonal fibers can be
visualized using non-invasive tools such as diffusion tensor magnetic resonance medical
imaging (DTI). The basic principle behind DTI is that water diffuses more rapidly in the
direction aligned with the internal structure, and more slowly as it moves perpendicular
to the preferred direction. From the diffusion tensor computed from the imaging,
diffusion anisotropy measures such as the fractional anisotropy (FA) can further be
computed. In addition, the principal direction of the diffusion tensor can be used to
estimate the white matter connectivity of the brain. Visualization of the white matter
connectivity is called tractography. An example of DTI tractography is shown in figure
1. Note that DTI is one particular method or application of the broader
Diffusion-Weighted Imaging (DWI).

The anisotropic properties of biological tissue are important to capture within a
computational framework because the axonal fiber tracts have been reported to be
approximately three times stiffer than the surrounding matrix (1). In fact, numerous
efforts have focused on incorporating details of fiber tractography into a computational
framework where many use transversely isotropic viscoelastic constitutive models to
represent the bulk and fiber mixture. For example, Margulies et al. (2) conduct
experiments and optimization techniques to develop a transversely isotropic viscoelastic
constitutive model for a porcine brainstem tissue sample. Wright et al. (3) present an
analytical and computational model that also treats the white matter as an anisotropic,
hyperelastic material using DTI to incorporate the structural orientation of the neural
axons into the model. Wright et al. show that the degree of injury that is predicted in a
computational model of DAI is highly dependent on the incorporation of the axonal
orientation information and the inclusion of anisotropy into the constitutive model for
white matter.

The work presented here extends previous efforts by using the transversely isotropic
hyperelastic model formulation, and describes a new design and implementation for
informing the finite element model using DTI in a three dimensional, parallel computing
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framework. Besides biological materials, the algorithms described in this paper can be
applied to a broad range of engineering materials, as well. For example, Kevlar armor
protection systems contain fiber directions that rotate with the curvature of the surface.
The finite element implementation included here sets the appropriate framework for
incorporating fiber directions into finite element models used in a diverse range of
applications.

In this report, we begin by describing the continuum theory behind the implementation
of the transversely isotropic hyperelastic model in section 2 followed by results of a
validation study of the implementation within the finite element framework in section 3.
Then, section 4 presents an algorithm for linking DTI and the transverse isotropic model.
Section 5 discusses an extension of the research to modeling the white matter tissue of
the human brain in a three-dimensional finite element code. Then section 6 offers some
concluding remarks and opportunities for future work.

Figure 1. Using Diffusion Tensor Imaging (DTI), axonal fiber tractography can be overlaid on a
finite element mesh and used to construct a transversely isotropic model. Tractography consists
of complex fibers shown from (b) dorsal, (c) right lateral side and (d) posterior views.

2



2. Continuum Theory of Transversely Isotropic Hyperelasticity

2.1 Kinematics of Finite Deformations

We begin by defining the deformation gradient defined as:

F =
∂x

∂X
(1)

where x is the deformed configuration of a material particle and X is the reference
position. The ratio of deformed to undeformed volumes is given by the determinant of
F,

J = det(F) (2)

Some materials behave differently in bulk and shear, so it is most beneficial to perform a
multiplicative decomposition of F into volume-changing (dilational) and
volume-preserving (distortional) parts (4). To do this, a deviatoric deformation gradient
is defined in which the volume change is eliminated:

F = J−1/3F (3)

It then follows that:

C = F
T
F (4)

B = F F
T

(5)

where C and B are referred to as the modified right Cauchy-Green tensor, and the
modified left Cauchy-Green tensor, respectively. The modified principle invariants of
the Cauchy-Green deformation tensor are:

I1 = tr C = tr B (6)

I2 =
1

2

[(
tr C

)2 − tr
(
C

2
)]

=
1

2

[(
tr B

)2 − tr
(
B

2
)]

(7)

I3 = det C = det B (8)
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Two additional invariants are introduced in order to capture the mechanics of transverse
isotropic materials:

I4 = a0 ·Ca0 (9)

I5 = a0 ·C
2
a0 (10)

where I4 and I5 arise directly from the anisotropy and describe the properties of the
fiber family and its interaction with the other material constituents. The vector a0 is
introduced to describe the undeformed fiber direction where we have assumed that the
only anisotropic property of the solid comes from the presence of the fibers. For a
material that is reinforced by only one family of fibers, the stress at a material point
depends not only on the deformation gradient F, but also on that single preferred
direction, which is called the fiber direction.

2.2 Decoupled Representation of Strain Energy

Following the approach taken by others (2, 4, 5) in the representation of transversely
isotropic hyperelasticity, a unique decoupled representation of the strain energy function
per unit volume in terms of the five invariants is given by:

Ψ(I1, I2, I3, I4, I5) = Ψiso(I1, I2, I3) + Ψaniso(I4, I5) (11)

where Ψiso(I1, I2, I3) describes the response of the isotropic matrix, and Ψaniso(I4, I5)

describes the directional contribution of the fiber reinforcement. Note that for an
incompressible material, I3 = J2 = 1.

2.3 Uncoupled Stress Tensor

For a hyperelastic material, the 2nd Piola-Kirchhoff stress is derived from the strain
energy as:

S = 2
∂Ψ

∂C
(12)

= 2J−2/3DEV

[
∂Ψ
(
C
)

∂C

]
− pJC−1 (13)

where the operator DEV [·] = [·]− 1
3

(
[·] : C

)
C
−1

extracts the deviatoric part of a tensor in
the reference configuration and p = −∂Ψ

∂J
is the hydrostatic pressure. Using the chain
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rule, equation 13 can be further written as:

S = 2J−2/3DEV

[ ∑
a=1−5,a6=3

(
∂Ψ

∂Ia

∂Ia

∂C

)]
− pJC−1 (14)

where the terms ∂Ia
∂C

are given as:

∂I1

∂C
= I (15)

∂I2

∂C
= I1I−C (16)

∂I4

∂C
= a0 ⊗ a0 (17)

∂I5

∂C
= a0 ⊗C · a0 + a0 ·C⊗ a0 (18)

where I is a 2nd rank identity tensor.

A push-forward operation on the second Piola-Kirchoff stress tensor S to the current
configuration, and a scaling with the inverse of the volume ratio, transforms equation 16
to the Cauchy stress tensor of a transversely isotropic, compressible hyperelastic
material:

σ =
2

J
dev

[
F
∂Ψ

∂C
F
T
]
− pI (19)

σ =
2

J
dev

[(
Ψ1 + I1Ψ2

)
B−Ψ2B

2
+ I4Ψ4a⊗ a + I4Ψ5

(
a⊗Ba + aB⊗ a

)]
− pI (20)

where

dev [·] = [·]− 1

3
([·] : I) I (21)

Ψi =
∂Ψ

∂I i
(22)

a = Fa0 (23)

in which a describes the configuration of a0 during the deformation.
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2.4 Uncoupled Stress Tensor for a Particular Ψ

Within the framework of incompressible, transversely isotropic hyperelasticity, the strain
energy function can be written in the uncoupled form as:

Ψ(C) = Ψvol(J) + Ψisoc(C) (24)

where Ψvol(J) represents the volumetric strain energy contribution and Ψisoc(C)

represents the isochoric strain energy function. Following Weiss (5), the isochoric part
of the strain energy can be further subdivided into separate functions associated with
the modified invariants:

Ψ(C) = Ψvol(J) + F 1

(
I1, I2

)
+ F 2

(
I4

)
(25)

with:

F 1 = C1

(
I1 − 3

)
+ C2

(
I2 − 3

)
(26)

F 2 = C3

[
exp

(
I4 − 1

)
− I4

]
(27)

where C1, C2, and C3 are constants obtained from parameter fits to experimental data.
Equation 26 corresponds to a modified Mooney-Rivlin model, and equation 27 describes
an exponential behavior in the fiber direction that is a characteristic of most soft tissues.

Then, similar to equation 13, the second Piola-Kirchoff stress is given by:

S = 2J−2/3DEV

[
∂Ψisoc

(
C
)

∂C

]
− ∂Ψvol (J)

∂J
JC−1 (28)

where the partial derivative of the isochoric part is given by:

∂Ψisoc
(
C
)

∂C
=

[
∂Ψisoc

(
C
)

∂I1

+
∂Ψisoc

(
C
)

∂I2

I1

]
I−

∂Ψisoc
(
C
)

∂I2

C +
∂Ψisoc

(
C
)

∂I4

a0 ⊗ a0 (29)
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so then substituting equation 29 into the DEV operator in equation 28,

DEV

[
∂Ψisoc

(
C
)

∂C

]
=

[
∂Ψisoc

(
C
)

∂I1

+
∂Ψisoc

(
C
)

∂I2

I1

]
I−

∂Ψisoc
(
C
)

∂I2

C +
∂Ψisoc

(
C
)

∂I4

a0 ⊗ a0

− 1

3

[
∂Ψisoc

(
C
)

∂I1

I1 + 2
∂Ψisoc

(
C
)

∂I2

I2 +
∂Ψisoc

(
C
)

∂I4

I4

]
C−1 (30)

Then, the second Piola-Kirchoff stress is given by:

S = 2J−2/3

[(
∂Ψisoc

(
C
)

∂I1

+
∂Ψisoc

(
C
)

∂I2

I1

)
I−

∂Ψisoc
(
C
)

∂I2

C +
∂Ψisoc

(
C
)

∂I4

a0 ⊗ a0

−1

3

(
∂Ψisoc

(
C
)

∂I1

I1 + 2
∂Ψisoc

(
C
)

∂I2

I2 +
∂Ψisoc

(
C
)

∂I4

I4

)
C−1

]
− ∂Ψvol (J)

∂J
JC−1

(31)

where,

∂Ψvol (J)

∂J
= p (32)

∂Ψisoc
(
C
)

∂I1

= C1 (33)

∂Ψisoc
(
C
)

∂I2

= C2 (34)

∂Ψisoc
(
C
)

∂I4

= C3

[
exp

(
I4 − 1

)
− 1
]

(35)

Then, substituting into equation 31:

S = −pJC−1+

2J−2/3
[(
C1 + C2I1

)
I− C2C + C3

[
exp

(
I4 − 1

)
− 1
]
a0 ⊗ a0

−1/3
(
C1I1 + 2C2I2 + C3

[
exp

(
I4 − 1

)
− 1
]
I4

)
C−1

] (36)

a push-forward operation yields the Cauchy stress:

σ = −pI+
2

J

[(
C1 + C2I1

)
B− C2B

2
+ C3

[
exp

(
I4 − 1

)
− 1
]
a⊗ a

−1/3
(
C1I1 + 2C2I2 + C3

[
exp

(
I4 − 1

)
− 1
]
I4

)
I
] (37)
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3. Validation of Numerical Method

To insure that the stress update was properly implemented into the computational
framework, numerical tests were performed and compared to an analytical solution.
Single element computations of uniaxial, strip biaxial, and equibiaxial tests were
performed to validate the update of the stress for the implementation against theoretical
solutions. If the stresses are applied in the x-y plane along the principal axes so the σzz
component is zero and the incompressibility constraint det F = 1 is applied, the
deformation gradient can be expressed as:

F =

 λx 0 0

0 λy 0

0 0 1
λxλy

 (38)

Then using equation 37, the stresses are:

σxx = 2
[(
C1 + C2I1

) (
Bxx −Bzz

)
− C2

(
B

2

xx −B
2

zz

)
+

C3

[
exp

(
I4 − 1

)
− 1
]
I4

(
a2
x − a2

z

)] (39)

σyy = 2
[(
C1 + C2I1

) (
Byy −Bzz

)
− C2

(
B

2

yy −B
2

zz

)
+

C3

[
exp

(
I4 − 1

)
− 1
]
I4

(
a2
y − a2

z

)] (40)

In the case of uniaxial extension, σyy = σzz = 0 and λy = λz. For a strip biaxial test,
σzz = 0 and λz = 1. For an equibiaxial test, σzz = 0 and λx = λy. In addition, the same
material constants were used for all three cases including, C1 = 10.0, C2 = 10.0,
C3 = 100.0 and κ = 10.0e9. As seen in figure 2, good agreement between the theoretical
and finite element solutions for all three cases of loading is acheived. The convergence
of the finite element solution to the theoretical solution demonstrates that the stress
update equations were implemented correctly.
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Figure 2. Comparison between the finite element results and analytic solutions for three different
loading conditions, (a) uniaxial, (b) strip biaxial and (c) equibiaxial.

4. An Algorithm for Linking DTI and Continuum Mechanics

The transversely isotropic hyperelastic model previously implemented depends on the
fiber reinforcement in the undeformed configuration, a0. The algorithm developed here
describes how to assign each finite element an orientation based on the fiber
tractography obtained from DTI, as introduced in section 1. This is complex because of
the non-linear tractography and unstructured finite element shapes within the
three-dimensional framework. Algorithms for both hexahedral and tetrahedral
elements are described.

First, the algorithm divides each fiber line, fi (where i goes between 0 and the number of
tractography fibers), into individual fiber segments, sj (where j goes between 1 and the
number of segments within a given fiber line). Each fiber segment consists of two fiber
segment points with coordinates p1 and p2: s = p2 − p1. The first discretized point
within the fiber segment is assigned a direction based on the vector connecting it to the
second point. If the fiber point exists at the end of a fiber line, that terminating point
receives the same orientation as the previous point. A schematic of the discretization
process is shown in figure 3.

Next, the algorithm determines if a fiber segment within a given tractography fiber
overlaps spatially with a finite element. In order to determine this, various cases need to

9



Figure 3. Fiber discretization and notation definitions used throughout the report.

be analyzed. We begin our search algorithm at the fiber segment end points. For each
element in the volumetric mesh, every point within each fiber is analyzed for the cases
schematically shown in figure 4. Case 1 exists if the first point in a fiber segment is
contained in a given element. Case 2 exists if the second point of a fiber segment is
contained in a given element. Case 3 exists if both endpoints of the fiber segment are
contained within a given element. Case 4 exists if a fiber segment intersects the faces of
the element, but its fiber points are not contained within a given element. Case 5 exists
if the element contains none of the fiber points, and the segment does not intersect the
element faces. Note, that there is an unlikely subset of case 3 when a given fiber
segment lies parallel with a single element face, so this orientation would be shared by
any adjacent element also.

For all of the cases shown in figure 4, determining if a fiber point is contained within a
finite element is complicated by the unstructured mesh shapes. For example, in
elements with adjacent faces far from orthogonal with each other, a fiber point may lie
outside of the faces of the element even if the fiber point spatial coordinates are in the
bounds of the maximum and minimum element nodal coordinates. Therefore, an
algorithm to determine if the fiber point is inside of the element is implemented. The
algorithm takes into consideration the angles of the element faces explicitly by
computing normals to the element faces and the coordinates of the fiber point, as
schematically shown in figure 5.

A slightly more complicated algorithm is used for case 4 where the line segment
intersects the element faces, but no points in the fiber segment reside within the element.

10



Figure 4. Schematic of the various cases that are possible when determining if a fiber segment
(within a given tractography fiber) overlaps with a finite element in space.

Figure 5. Method used to test if a specified point is within the element. Algorithms for both
tetrahedron and hexahedron elements are designed and implemented.
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As schematically shown in figure 6, first the algorithm calculates the normal of the first
face, n by taking the cross product of two vectors which share the same vertex, P1.

n = (P2 − P1)× (P3 − P1) (41)

Next, the algorithm takes the dot product of the distance between an endpoint, L1 or L2,
and the shared vertex P1. This results in two dot products, the distances from L1 and L2

from P1:
x1 = (L1 − P1) · (n) (42)

x2 = (L2 − P1) · (n) (43)

If x1 · x2 ≥ 0, the line segment never intersects the plane of the face. If x1 = x2, the line
segment and the plane are parallel, and the line segment can be disregarded since it does
not intersect two different faces of the element. If the two preceding conditions do not
exist, the code will find the location of the point, P , on the given line segment which
intersects the plane.

P = L1 + (L2 − L1)(
−x1

x2 − x1

) (44)

The point P is the intersection point that exists on the plane of the element face; therefore,
the algorithm must test if P also lies within the surface area of an element face (see
figure 6). A point is inside of a polygon if it is always on the same side of all the
segments that create a continuous loop around the edges. For a given fiber segment that
solely intersects the element faces, there should be exactly two intersection points on a
single element.

If there exist elements for a given finite element mesh where no fiber tracks overlap, the
elements are assigned an orientation vector of zero, a0 = 0. Therefore, the transversely
isotropic material condenses to an isotropic material.

4.1 A Scheme for Averaging Multiple Fibers

The previous discussion described the methods used to find the existence and direction
of a single fiber in a hexahedral or tetrahedral element. The fiber direction assigned to
an element with only one fiber segment is given by:

a0 =
s

||s||
(45)
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Figure 6. Method used to test if a line intersects the faces of an element for the case in which the
line segment intersects the element faces, but no points in the segment reside within the element
(See Case 4 in figure 4).
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where s represents the orientation vector of the fiber segment. Depending on the fiber
or mesh densities, there could be multiple fibers, multiple fiber segments, or both
existing in a single element, as schematically depicted in figure 7. The current effort
develops an average scheme for each possibility since the current implementation only
permits one orientation vector per element. In future work, we hope to extend the
model to have the capability to include multiple fiber orientations within a single finite
element, which will require additional modifications to the theoretical basis. The
method of Diffusion Spectrum Imaging (DSI) is an example of where this functionality
would be useful to have, since DSI is capable of describing fiber crossings.

Figure 7. Depending on the fiber or mesh densities, there could be multiple fibers, or multiple
fiber segments, or both existing in a single element which requires an averaging scheme.

In the case of a single fiber with multiple fiber segments within the same element, an
approximation of an “average” vector direction is taken because the material model uses
only one fiber direction per element. By simply adding the vectors, you obtain a
resultant “average” direction, which provides an estimate of an overall fiber orientation
as schematically depicted in figure 8.

For two or more fibers in a single element, the assigned orientation, a0, is calculated by
the following:

ae =

max
fibers∑
i=0

max
segments
in fiber i∑
j=1

s[j][i] (46)
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Figure 8. The sum of the vectors will give an average orientation.

a0 =
ae

||ae||
(47)

where sj are the orientation vectors of the fiber segments within the element, and ae

represents the average of sj – two averages are taken with each element. First, the
vectors from the segments, sj , within the same fiber line and element are averaged.
Second, the average of all fibers within that element are calculated. Because the fiber
average scheme depends on the element size, future efforts will explore the effects of
finite element mesh density. A course finite mesh decreases computational cost, but
may also smear out the complex fiber orientations. However, there are regions of the
fiber tractography that change slowly over spacial distance so a course mesh may be
more appropriate. The preceding procedures for determining an element orientation for
the transverse isotropic model can be summarized by the global algorithm shown in
figure 9.

Figure 9. The global algorithm used to obtain final vector orientations for each element.
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Although this method will automatically take into account the vector magnitudes, one
limitation of this approach involves the loss of orientation information due to the
averaging scheme for adjacent fiber segments that are close to perpendicular. For
example, as shown in figure 10, if one point of the fiber segment, p1, is entirely outside of
the element, while the other point of the segment, p2, is inside the element but relatively
close to the element’s surface, that fiber segment direction will receive more weight than
it should. It receives the same amount of weight as it would if it were fully contained
within the element. Although the accuracy of the fiber representation is limited by the
mesh resolution, it is possible in the future to create a more accurate averaging of fiber
directions in each element.

Figure 10. Averaging fibers which are not fully contained in the element can create a misrepre-
sented average direction for the individual element.

To visualize the assigned element fiber directions, the unit vector was scaled by a
characteristic length of the element (diagonal or side length) and added to the center
coordinates of each element. The VTK output file describes the lines connecting the
center positions and endpoints of the scaled unit vectors, which can be opened up in
Paraview (Kitware) and then compared against the original dataset. The visualization
lines are not meant to completely coincide with the input fiber lines but rather represent
the directions assigned to each element. Since the visualization lines are positioned at
the center of each element, the lines will be in close proximity to the fiber lines they
represent, but will not be exactly overlapping. A higher resolution mesh will produce a
more accurate representation of fiber direction assignment to the elements.
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5. Application to Modeling White Matter Tissue of the Human Brain

The primary objective of implementing the transverse isotropic model was to
incorporate fiber directions into the finite element models for application to anisotropic
biological tissue. Multiple scenarios were created to test the algorithms; however,
instead of presenting the exhaustive list here, only the brain model is shown. Figure 11a
shows the input fiber tractography superimposed with a finite element mesh of the
human brain. Figure 11b shows the fiber orientations assigned to the elements, obtained
from the fiber tractography. While this example shows qualitative agreement, it is
important to note that the finite element mesh and the fiber tractography are not from
the same individual at this time. There is currently a major focus to develop models
from a single individual.

Figure 11. DTI input data versus the assigned orientation output.
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6. Concluding Remarks

The work presented here provides a novel way to use state-of-the-art medical imaging to
inform a 3-D transversely isotropic model of biological tissue. After testing the
numerical model’s implementation, an algorithm was created in order to read fiber data
and output the undeformed fiber directions into the material model. The initial results
are promising since they qualitatively show adequate correlation between the original
DTI data and the averaged directions that were assigned to the elements. The
DWI-informed modeling can be extended to other biological tissues and different
material models. Aside from using DTI for imaging the white matter of the brain, it can
also measure skeletal muscle fiber directions in fixated skeletal muscles. Additionally,
the model could be useful for finite element modeling of non-biological fibrous
materials, such as kevlar and various synthetic polymers.

As mentioned earlier, future work will include finite element models that correspond to
the MRI data and DTI data derived from the same individual. The algorithm could be
improved by constantly updating the fiber directions, which may change during
deformation, although this would most likely increase the overall time required to run
the simulation and may not be necessary for simulations of short events, such as blast or
impact loading. Furthermore, DSI images may be incorporated into the computational
framework so that fiber crossings may also be included.
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