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1.0  Introduction 
 Recent work by Gilgenbach, et al., describes a new class of magnetron, namely, the 
recirculating planar magnetron (RPM) [1], [2].  These crossed-field oscillators have a number of 
potential advantages, including rapid start-up, reduced cathode loading, and enhanced heat 
dissipation, when compared to standard cylindrical magnetron geometries. One of the variants 
of the RPM concept described by Ref [1] and Ref [2] is the axial B-field RPM.  An example of this 
type of RPM is shown in Figure 1.   
 

 
Figure 1.  Axial B-field RPM, without extraction, as described in Refs. [1], [2]. 

 
 The work described here involves using ICEPIC to computationally model the 
incorporation of a compact, axial, waveguide-based extraction scheme into the axial B-field 
variant of the RPM described in Refs. [1] and [2].  This extraction scheme, as presented by 
Greenwood in [3] and in follow-on work by Hoff et al. [4], magnetically couples microwave 
energy from two neighboring cavities of a cylindrical magnetron operating in the π-mode into 
an adjacent waveguide exciting a TE10-like mode.  Figure 2 depicts a cross section of a 
magnetron using the extraction concept described in [3]. 
 

 
Figure 2.  A compact, all cavity extraction technique for cylindrical magnetrons, as described 

in Refs. [3], [4]. 
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2.0  Waveguide Design 
 Because of the requirement of two adjacent cavities coupling into a single waveguide, 
Greenwood’s extraction concept [3] imposes certain additional constraints on magnetron 
design.   In standard rectangular waveguide, the longest cross sectional dimension, which we 
will call da determines the cutoff frequency, fc, for the lowest order guided mode (TE10), as 
shown in equation (1): 
 

𝑓𝑐 = 𝑐
2𝑑𝑎

             (1) 

 
 In equation (1), c is the speed of light.  The π mode wavelength, λπ, in slow wave 
structures such as that common to magnetrons [5] is equal to the distance across two vanes 
and two cavities, which, in this case, must equal to da (the waveguide cross sectional dimension 
parallel to the Y Axis in Figure 4).  Thus, in a planar magnetron, the minimum phase velocity, 
vph, to stay above cutoff in the rectangular waveguide is 
 

𝑣𝑝ℎ = 𝑓𝑐𝜆𝜋 = 𝑐
2𝑑𝑎

𝑑𝑎 =  𝑐
2

 .                                                                (2) 

 
 In most electron beam driven microwave sources, such as magnetrons, electrons must 
be accelerated such that they are in synchronism with the phase velocity, vph, of the 
electromagnetic wave for an energy exchange with the electromagnetic wave to take place.  In 
order for an electron in a magnetron to reach this velocity, a certain portion of the electric 
potential energy that exists as the applied voltage across the A-K gap, must be converted to 
kinetic energy as the electron moves from the cathode towards the anode.  The remainder of 
the potential energy is available to be contributed to the electromagnetic wave.  The fraction of 
the remaining potential energy divided by the total applied gap potential can be thought of as a 
measure of the maximum theoretical efficiency, given by   
 

𝐸𝑓𝑓𝑚𝑎𝑥 = 1 − 𝐾𝐸
𝑃𝐸

= 1 − (𝛾−1)𝑚𝑐2

𝑒𝑉
,                                            (3) 

 
where 𝛾 = (1 − 𝑣𝑝ℎ2 /𝑐2 )−1/2 and 𝑣𝑝ℎ is the π mode phase velocity. 
 A plot of the maximum theoretical efficiency for magnetron operation with 𝑣𝑝ℎ = 0.5𝑐 
as a function of applied voltage is given in Figure 3.  Also shown in Figure 3 are the maximum 
theoretical efficiency plots for phase velocities of 0.24c and 0.34c, which are bounding values 
for the π mode phase velocities of a number of relativistic magnetrons found in published 
literature [6], [7].  The operating voltage chosen for the present RPM simulations, 300 kV, is 
also indicated in Figure 3. 
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Figure 3.  Maximum theoretical efficiencies calculated using equation (3) for magnetron 

phase velocities of 0.24c, 0.34c, and 0.5c. 

 One method to reduce the overall waveguide cross sectional dimensions while 
maintaining the bandwidth necessary to extract microwave energy from the magnetron is by 
including capacitive ridges within the waveguide [8].  Figure 4 depicts cross sectional geometry 
of the extraction waveguides chosen for use with the RPM.  Overlaid with the waveguide 
geometry is a contour plot of the calculated electric field magnitude for the lowest order 
waveguide mode at the RPM design frequency, 2.25 GHz.  As would be expected, and is shown 
in Figure 4, the highest electric field stresses occur between the two capacitive waveguide 
ridges.  
 

 
Figure 4.  Electric field distribution for a ridged waveguide proposed for use in RF extraction 

of a RPM with a center frequency around 2.25 GHz. 

 Using the Ansys HFSS software suite [9], calculations were performed to determine two 
port network parameters for a one meter length of the ridged waveguide.  A plot of ridged 
waveguide S21 magnitude as a function of frequency is displayed in Figure 5 (a).  Waveguide 
cutoff was found to occur at approximately 2.0 GHz, providing ample frequency margin for 
operation of the RPM at the 2.25 GHz design frequency. 
 Because of the enhanced electric field magnitude due to the presence of the waveguide 
ridges, additional calculations were performed to determine proximity to the Kilpatrick limit 
[10]; the results of which are displayed in Figure 5 (b).  It is important to note that the Kilpatrick 
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limit is provided only as a reference point, as proper surface conditioning routinely allows 
operation at many times the Kilpatrick limit [11].  
 

 
Figure 5.  (a) Calculated S21 for a one meter section of the ridged waveguide described in 

Figure 4 and (b) calculated peak electric field within the waveguide compared with the 
Kilpatrick Limit of 41 MV/m at 2.25 GHz. 

 With a waveguide width of 4.8 cm, as shown in Figure 4, and an assumed waveguide 
wall thickness of 2 cm, the total distance spanned by one full π mode spatial wavelength will be 
5.2 cm.  At the design frequency of 2.25 GHz, the π mode phase velocity is equal to 0.39*c.  
Thus the calculated maximum theoretical efficiency at the RPM design frequency is 85.4%. 
 
 

3.0  RPM Simulations 
 The particle-in-cell code ICEPIC [12] was used to simulate the extracted recirculating 
planar magnetron.  Figure 6 depicts cross sectional geometry of the simulated RPM, with metal 
shown in grey and the interior vacuum region shown in white.  A cross section parallel to the X-
Y plane which bisects the anode block is given in Figure 6 (a) and a cross section parallel to the 
X-Z plane is given in Figure 6 (b).  A Cartesian grid was used with resolution equal to 1 mm in all 
three axes.  The cathode section between the two electrostatic end caps was allowed to emit 
using ICEPIC’s explosive emission model with the emission threshold set to 2 MV/m.  Further 
details on the slow wave structure geometry are provided in Figure 7.  
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Figure 6.  Cross sectional geometry of the simulated RPM parallel to the (a) X-Y plane and (b) 
X-Z plane.  The following numbered components are depicted:  1. cathode, 2. anode vane, 3. 
anode cavity, 4. waveguide, 5. waveguide ridges, 6. an RPM module, 7. aperture, 8. cathode 
electrostatic end caps, 9. waveguide load (perfectly matched layer (PML) [13]), 10. voltage 

wave injection port. 

 

 
Figure 7.  Detailed simulation geometry of the extracted RPM simulation.  Measurements are 

in centimeters.  Extraction apertures are four centimeters in length. 
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 Because the MELBA-C accelerator was identified as a likely test-bed for follow-on 
extracted RPM experiments, the operating voltage for the RPM simulations was selected to be 
around 300 kV, approximating operating voltage values described in previous magnetron work 
[7], [14].  In order to select a magnetic field for RPM operation, an initial estimation was made, 
based on the usual relativistic Buneman-Hartree relationship [15], equation 5, in conjunction 
with the approximately 2.25 GHz π mode cold frequency.  The magnetic field was then iterated 
in the simulation hot tests until optimal π mode oscillation was observed.   
 Figure 8 depicts data obtained in simulated hot tests using the 6-module RPM 
simulation geometry of Figure 6 operating with a 0.14 T axial magnetic field.  As previously 
stated, for the purposes of this discussion, an RPM “module” is a pairing of an upper and lower 
extraction waveguide and associated vanes, cavities and cathode area.  Steady state power and 
efficiency values were 565 MW and 33%, respectively, as shown in Figure 8 (a).  Operating 
impedance was approximately 46 Ohms.  Data from a FFT of inter-vane voltage measurements 
are plotted in Figure 8 (b).  The operating spectrum showed no evidence of mode competition, 
with a center frequency of 2.245 GHz.  Particle plots for the simulated RPM in planes parallel to 
the X-Y plane and X-Z plane are presented in Figure 9 (a) and Figure 9 (b), respectively.   
 
 
 

 
Figure 8.  (a) Power, voltage, current, and efficiency data and (b) frequency data for a 6-

module extracted RPM operating with an axial magnetic field of 0.14 T. 
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Figure 9.  Particle plots of the operating 6-module RPM:  X-Y plane (a) and X-Z plane (b). 

 Waveguide power for each of the extraction waveguides was sampled during steady 
state operation and is plotted in Figure 10 (a).  As would be expected from an inspection of 
relative spoke height in each of the RPM modules along the length of the device, extracted 
power in each waveguide is maximum in the center waveguides then tapers off toward the end 
modules.  Interestingly, when the power of each waveguide is compared in conjunction with 
the E x B drift direction (i.e. comparing modules in the order one to six in the upper section and 
in the order six to one in the lower section, as shown in Figure 10 (b)), the power variation 
profile of the upper and lower sections is almost identical.  The 70 MW power loading for the 
module three and four waveguides are predicted to have peak electric fields on the waveguide 
ridges at close to the Kilpatrick Limit at 2.25 GHz, as calculated for Figure 5. 
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Figure 10.  (a) Upper and lower waveguide power for each RPM module along with  

(b) module designation and E x B direction. 

 In order to study power scaling in the present extracted RPM concept, RPMs with 
various numbers of modules, ranging from one to 16, were simulated and compared.  The data 
from this series of simulations are plotted in Figure 11.  The RPMs with only one or two 
modules were found to exhibit unstable operation, if oscillation occurred at all.  For modules 
with three or more modules, total output power was found to scale linearly, at a rate of 120 
MW per module.  Operating efficiency for the stable RPMs was found to remain around 33%.    
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Figure 11.  Power and efficiency as a function of total number of modules for various 

extracted RPMs. 

4.0  Simulation Analysis 
 While the simulated 6-module RPM in this study was found to show no evidence of 
mode competition in the hot test frequency spectrum, shown in Figure 8 (b), careful 
examination of the particle data in Figure 9 (a) and (b) show a phase shift from module to 
module that is uncharacteristic of true π-mode operation.  In π mode operation, the phase shift 
from the beginning of one module to the beginning of the next adjacent one should be zero 
(because the phase shift between adjacent cavities should be π radians).  Figure 12 depicts time 
dependent inter-vane voltage measurements for the leftmost cavity of each module of the top 
RPM section.  These data are taken during two separate time periods:  99.0 ns to 100.0 ns in 
Figure 12 (a) and 207.7 ns to 208.7 ns in Figure 12 (b).  The relative phase change of the RF 
wave between each of the module sections was found to remain constant for the duration of 
steady-state operation of the RPM.   

The source of this additional phase shift between modules may be a result of the choice 
of recirculating sections connecting the upper and lower linear magnetron sections.  The 
recirculating end-section geometry was chosen based on early 2-D simulations of RPMs without 
extraction and was not optimized in any way as part of this study.  The phase mismatch created 
by the recirculating end-sections shifts over the spatial extent of the linear magnetron sections 
via nonlinear interactions with the beam.  This behavior is also likely to be a factor in the 
waveguide power-loading profile data displayed in Figure 10 (a).  It is expected that a careful 
optimization of the recirculating end-sections of the RPM would correct the inter-module phase 
shifts, as well as balance power across the waveguides in the upper and lower magnetron 
sections, and potentially favorably affecting operating efficiency. 
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Figure 12.  Inter-vane voltage data for the leftmost cavity of each of the six voltage modules 

of the upper RPM section. 
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