
PARALLEL FLUX TENSOR ANALYSIS FOR EFFICIENT MOVING OBJECT DETECTION

Kannappan Palaniappan1, Ilker Ersoy1, Guna Seetharaman2,
Shelby R. Davis3, Praveen Kumar1, Raghuveer M. Rao4, Richard Linderman2

1Dept. of Computer Science, University of Missouri, Columbia, MO 65211, USA
email:{palaniappank, ersoy}@missouri.edu

2Air Force Research Laboratory, Information Directorate, Rome NY 13441
email:{Gunasekaran.Seetharaman, Richard.Linderman}@rl.af.mil

3Black River Systems Company, Utica, New York 13502, davis@brsc.com
4Army Research Laboratory, Image Processing Branch, Adelphi, MD 20783

ABSTRACT

The flux tensor motion flow algorithm is a versatile computer
vision technique for robustly detecting moving objects in clut-
tered scenes. The flux tensor calculation has a high computa-
tional workload consisting of 3-D spatiotemporal filtering op-
erations combined with 3-D weighted integration operations
for estimating local averages of the flux tensor matrix trace. In
order to achieve efficient real-time processing of high band-
width video streams a data parallel multicore algorithm was
developed for the Cell Broadband Engine (Cell/B.E.) proces-
sor and evaluated in terms of the energy to computation ef-
ficiency compared to a fast sequential CPU implementation.
Our multicore implementation is 12 to 40 times faster than the
sequential version for HD video using a single PS-3 Cell/B.E.
processor and is faster than realtime for a range of filter con-
figurations and video frame sizes. We report on the power
efficiency measured in terms of performance per watt for the
Cell/B.E. implementation which is at least 50 times better
than the sequential version.

Index Terms— Parallel image processing, multicore
Sony Toshiba IBM Cell/B.E. processor, realtime video/image
processing, 3D convolution, power efficient

1. INTRODUCTION

Realtime persistent moving object detection and target track-
ing for surveillance and situational awareness applications
providing MOVINT information is a computationally chal-
lenging problem. Current trends in distributed sensor net-
works, agile systems and autonomous intelligent systems
favor the processing of large volumes of raw data closer
to the sensor to reduce network transmission requirements,
extract high priority scene information more rapidly and ex-
change integrated information for cooperative downstream
processing, cross-cueing sensors, and decentralized infor-
mation fusion. Energy efficiency is an important system

architecture requirement for embedded processing and op-
timizing data management requirements using distributed
platforms. Multicore parallel processing environments are
widely available today for which energy efficient versions of
image and video processing algorithms need to be designed
that can dynamically adjust the active number of processors
to modify the completion time based on the energy budget.
Scheduling algorithms to minimize total energy across iden-
tical parallel processors has been shown to be NP-hard even
for unit-sized jobs [1].

In this paper we characterize the workload of the flux
tensor algorithm for moving object detection in high band-
width video streams. The parallel flux tensor algorithm
exhibits super-linear speed-up due to the vectorization, loop
unrolling, short vector fused multiply add operations and
double-buffering optimizations for the Cell/B.E. architec-
ture which along with the power efficiency of the Cell/B.E.
processor provides a tremendous improvement in the perfor-
mance per watt metric compared to an optimized sequential
implementation. Power efficient real-time flux tensor pro-
cessing is required in a variety of operational scenarios in-
cluding video-based net-centric exploitation and tracking on
airborne platforms [2] and ground-based multi-sensor imag-
ing for force protection. Net-centricity provides improved
agility, collaborative distributed sensing and layered sensor
fusion. Such agile sensor networks need to be further en-
hanced to minimize overall power consumption under the
constraint of still yielding the best exploitable information
in a timely manner. Embedded video processing requires
efficient algorithms in terms of power-aware computing as
well as parallelization to enable real time performance in
analyzing complex video [3, 4].

There are a number of challenging computer vision prob-
lems that need to be solved for stabilizing, detecting, extract-
ing, verifying and tracking moving objects in airborne video
[5–9]. In this paper we focus on one part of the video process-
ing pipeline, namely power-efficient realtime moving object

14th International Conference on Information Fusion
Chicago, Illinois, USA, July 5-8, 2011

978-0-9824438-3-5 ©2011 ISIF 1226



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
JUL 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Parallel Flux Tensor Analysis for Efficient Moving Object Detection 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Missouri,Department of Computer 
Science,Columbia,MO,65211 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
Presented at the 14th International Conference on Information Fusion held in Chicago, IL on 5-8 July
2011. Sponsored in part by Office of Naval Research and U.S. Army Research Laboratory. 

14. ABSTRACT 
The flux tensor motion flow algorithm is a versatile computer vision technique for robustly detecting
moving objects in cluttered scenes. The flux tensor calculation has a high computational workload
consisting of 3-D spatiotemporal filtering operations combined with 3-D weighted integration operations
for estimating local averages of the flux tensor matrix trace. In order to achieve efficient real-time
processing of high bandwidth video streams a data parallel multicore algorithm was developed for the Cell
Broadband Engine (Cell/B.E.) processor and evaluated in terms of the energy to computation efficiency
compared to a fast sequential CPU implementation. Our multicore implementation is 12 to 40 times faster
than the sequential version for HD video using a single PS-3 Cell/B.E. processor and is faster than realtime
for a range of filter configurations and video frame sizes. We report on the power efficiency measured in
terms of performance per watt for the Cell/B.E. implementation which is at least 50 times better than the
sequential version. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

8 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



detection that is robust to natural environmental conditions
such as illumination variation, shadows, clutter, and noise. In
order to reliably detect moving blobs in unconstrained video,
we use the recently proposed flux tensor (JF ) operator [10,
11], which captures the temporal variations of the optical flow
field within the local 3D spatiotemporal volume. The flux ten-
sor detects only the moving structures, and is less sensitive to
illumination, focus and related problems compared to other
moving object detection algorithms including classical back-
ground subtraction, mixture of Gaussians and 3D structure
tensor orientation estimation. The flux tensor motion detec-
tion results have, in general, better spatial coherency enabling
more accurate motion-based object segmentation. The flux
tensor is more efficient in comparison to the 3D grayscale
structure tensor since motion information is more directly in-
corporated in the flux calculation which is less expensive than
eigenvalue decompositions at each pixel in the image [11,12].

This paper describes a parallel implementation of the
flux tensor optimized for the multicore Cell/B.E. processor
for real-time processing of high-bandwidth video streams in
power constrained environments. Some early supercomput-
ing architectures like the SIMD MasPar were ideally suited
for image analysis tasks like deformable motion estima-
tion [13]. The PS-3 Cell/B.E. processor provides a modern
power efficient single chip high performance computational
platform, with seven heterogenous cores - one Power Pro-
cessing Element (PPE) and six (of eight) active Synergistic
Processing Elements (SPEs). The PPE is a 64-bit processor
that is binary-compliant with the PowerPC 970 but with a
simpler architecture supporting dual issue, in-order execu-
tion. Each SPE consists of a 3.2 GHz Synergistic Processing
Unit (SPU), a large 128-entry 128-bit vector register file,
a small 256 Kbytes of private local store memory, short
pipelines, and a memory-flow controller (MFC) to access the
256 MB of shared main memory using non-blocking DMA
commands at 25.6 Gbytes/s. The SPUs are in-order dual-
issue statically scheduled short-vector number crunchers with
support for SIMD instructions operating on packed multiple
data value without dynamic branch prediction. The PS-3
version of the Cell/B.E. processor is optimized for single-
precision arithmetic (double-precision peak is less than 11
GFLOP/s) with truncation rounding. Each SPE can perform
25.6 GFLOP/s single-precision floating point operations at
3.2GHz. The Cell/B.E. supports both single program multiple
data (SPMD) and multiple program multiple data (MPMD)
parallel programming models that is more flexible than the
single instruction multiple data (SIMD) model for mapping
heterogeneous multithreaded data flow execution onto SPEs.

The Cell/B.E. offered one of the first commercial im-
plementations of a power efficient high performance single
chip multiprocessor with a significant number of general-
purpose programmable cores targeting a broad set of work-
loads [14]. A good description of scientific computing and
programming on the Cell/B.E. is provided in [15] and other

details of implementing scientific computing kernels and
programming memory hierarchies can be found in [16, 17].
In [18], the authors discuss interesting code transformation
techniques for moving scientific simulation codes to the
Cell/B.E. and [19] describes the fastest Fourier transform for
the Cell/B.E. processor (18.6 GFLOP/s). Many programming
frameworks/platforms like RapidMind [20], MFC (Multicore
Framework) by Mercury [21] have also emerged to support
efficient programming for multicore processors. In order
to reduce complexities of task management, multithreading
and synchronization for programming the Cell/B.E. some
tools for mapping serial code in a semi-automatic fashion are
in development [22]. We first give a brief overview of the
flux tensor method and discuss the sequential implementa-
tion along with the computation and memory characteristics.
Then we discuss the parallel architecture issues involved in
our Cell/B.E. implementation. A description of the data par-
titioning scheme and parallelization procedures to map the
flux tensor algorithm onto the Cell/B.E. cores is followed by
experimental results of speed-up and power efficiency ratios.

2. FLUX TENSOR-BASED MOTION DETECTION

The 3D flux tensor was shown to be a robust and compu-
tationally efficient method for coherent detection of moving
regions in video [10–12]. The flux tensor is a computation-
ally more efficient operator in comparison to the 3D grayscale
structure tensor [23, 24] since motion information is more di-
rectly incorporated in the flux calculation without the neces-
sity for computing eigenvalue decompositions as with the 3D
grayscale structure tensor. We summarize the mathematical
description of the flux tensor multidimensional orientation es-
timation method to describe the types of operators needed to
compute the flux tensor quantity for robust motion estimation.

In order to reliably detect moving structures without per-
forming expensive eigenvalue decompositions, the flux tensor
has been shown to be a more robust operator in comparison to
the more widely used structure or orientation tensor [11, 12].
The flux tensor is composed of the temporal variations in the
optical flow field within the local 3D spatiotemporal volume.
Computing temporal derivative of the optical flow equation
under a constant illumination model and setting the image
brightness acceleration to zero gives,

∂

∂t

(
dI(x)

dt

)
= Ixt vx + Iyt vy + Itt vt, (1)

where I(x) is the spatiotemporal image volume, t is time,
v(x) = [vx, vy, vt] is the optic-flow vector at x, and the sec-
ond derivative terms are defined as,

Ixt =
∂2I(x)

∂x ∂t
, Iyt =

∂2I(x)

∂y ∂t
, Itt =

∂2I(x)

∂t ∂t
(2)

The Ixt and Iyt terms capture information about moving
edges or gradients in the video while Itt incorporates in-
formation on moving textures and temporal illumination

1227



changes. A constrained total least squares solution for the
velocity field using Eq. 1 leads to the structure tensor matrix,
JF(x,W (x,y)), with matrix elements given by,

Jpq
F (x,W ) =

∫
Ω

W (x− y)

(
∂2I(y)

∂xp∂t

∂2I(y)

∂xq∂t

)
dy (3)

where W (x,y) is a windowed integration kernel. We use the
trace of the flux tensor matrix, referred to as Tr JF , that is
defined below,

Tr JF =

∫
Ω

W (x− y)(I2
xt(y) + I2

yt(y) + I2
tt(y))dy (4)

as the computational operator to reliably detect moving re-
gions in video streams. Each term in Eq. 4 incorporates in-
formation about temporal gradients which leads to efficient
filtering of moving image features. A spatially invariant inte-
gration kernel W (x− y), for multidimensional isotropic lo-
cal averaging is used for low power operation (instead of a
more expensive spatially varying kernel) and is applied after
the derivative filtering stages of computation in the flux tensor
trace are completed. A robust statistics formulation can be in-
corporated in the flux tensor computation to further improve
performance in low signal-to-noise conditions [25, 26].

2.1. Numerical Computation of the Flux Tensor

The calculation of the second derivative operators needed to
compute the trace of the flux tensor matrix are implemented
as convolutions with appropriate kernel filters. Although gen-
eral 3D convolution kernels can be used, separable kernels
are preferred as the 3D convolutions then can be decomposed
into a cascade of 1D convolutions with a substantial reduc-
tion in computational cost from O(n3

k) to O(nk) for an nk ×
nk × nk sized filter. For numerical stability as well as noise
reduction, a smoothing filter is applied along the third dimen-
sion that is not involved in the specific second derivative fil-
ter. The calculation of the first component of the trace, Ixt,
uses derivative filters in the x- and t-dimensions and smooth-
ing along the y-dimension, whereas calculation of Iyt uses
smoothing along the x-dimension. The final component of
the flux tensor matrix trace, Itt, is the second derivative along
the temporal direction and in this case the smoothing is ap-
plied along both spatial dimensions. The integral operator is
also implemented numerically as an averaging filter decom-
posed into three 1D filters. The operation flow is illustrated
in Figure 1. The data flow objects IDxSy , ISxSy and ISxDy

represent the intermediate spatial convolution results required
to calculate Ixt, Iyt and Itt. The operator modules shown
in Figure 1, are the spatial smoothing filters Sx and Sy , the
spatial derivative filters Dx and Dy , both in the x- and y-
directions respectively, and the temporal derivative operators
Dt and Dtt, representing first and second derivative filters in
t respectively. The final averaging filters are the integral part
of the flux tensor operator with Ax, Ay and At representing

averaging filters in x-, y- and t-directions respectively. The
data flow shown in Figure 1 reflects optimizations for a se-
quential implementation. Specifically, the summation block
is being done prior to the spatiotemporal averaging opera-
tors for improved computational efficiency but at the expense
of increased task dependencies and reduced parallelism (see
Eq. 5 discussion). Exchanging the order of the sum and
averaging filters will increase parallelism but would require
more memory or additional computation. For the implemen-
tation shown in Figure 1, calculating the flux tensor trace for
each video pixel requires eight 1D convolutions for the three
spatiotemporal derivatives and three 1D convolutions for lo-
cal averaging filters within the corresponding spatiotemporal
cubes. The number of temporal filtering operations is reduced
by saving intermediate results using additional memory.

The filter lengths or tap sizes associated with the three ker-
nels for computing the flux tensor trace, (nSx , nSy , nDx , nDy ,
nDt , nDtt , nAx , nAy , nAt ) are the full set of filter parameters
that would need to be specified for a given application. Since
we use spatially isotropic filters, we have a reduced set of pa-
rameters to specify, with nDx

= nDy
= nDs

, nSx
= nSy

=
nSs , nAx = nAy = nAs . Typically we use the same filter
lengths for the first and second temporal derivative kernels
(= nDt

) and for the spatial smoothing and derivative kernels,
i.e., nSs

= nDs
. Thus, there remains four main parameters

of the flux tensor; (nDs
, nDt

, nAs
, nAt

) which are the 1D fil-
ter sizes of the spatial derivative filter, the temporal derivative
filter, the spatial averaging filter, and the temporal averaging
filter respectively. In medium to close view (indoor) shots, the
choice of (5, 5, 5, 5) for filter sizes works well for detection.
For the very far view sequences, where the objects may be
quite small and moving very slowly, a (3, 9, 3, 3) size works
best. The large temporal filter size helps to catch the slow mo-
tion, the small spatial filter size helps to detect small motion
and keeps the smoothing to a minimum.

2.2. Sequential Implementation of Flux Tensor Operator

The flux tensor implementation uses just the luminance com-
ponent of the RGB video (1920× 1080 pixels). In our earlier
work [10], we described a reference sequential implementa-
tion that has minimum memory requirement and used just a
single input image First In First Out (FIFO) buffer of size
(nDt +nAt −1) for storing the input frames but at the cost of
recomputing all spatiotemporal derivatives and integrals for
each new video frame. This can be a significant penalty in
terms of time and power since many intermediate filtering
results that can be reused now have to be recomputed. A
more efficient sequential implementation that minimizes re-
dundant computations using one larger FIFO buffer of size
4∗ (nDt +nAt −1), for the intermediate spatial and temporal
derivatives, and storing these intermediate results to be reused
across temporal stages is described in [11]. Here, we discuss
a new alternative approach that further improves memory ef-
ficiency by using dual FIFO buffers with a smaller memory

1228



Fig. 1: Operator-centric data flow view of the various stages required to compute the flux tensor operator on a 3D spatiotemporal
volume showing the task dependency relationships. Note that the magnitude squaring operators are explicitly shown. The
summation stage is done prior to spatiotemporal averaging steps for memory efficiency at the cost of reduced parallelism.

footprint of 3 ∗nDt +nAt plus a few additional frames. Each
frame of the input sequence is first convolved with spatial
derivatives and smoothing filters. The intermediate results
are stored as frames to be used in temporal convolutions, and
pointers to these frames are stored in a FIFO buffer. The size
of the first FIFO structure is of length nDt and for each in-
put frame three spatial derivative frames IDxSy

, ISxDy
and

ISxSy
are calculated and stored. Hence, the number of frames

that need to be stored in the first FIFO structure is 3nDt
.

Once nDt
frames are processed and stored, the FIFO struc-

ture has enough frames for calculation of the temporal deriva-
tives. Three frames of storage are needed to hold the temporal
derivatives in memory for the current timestep.

Since averaging is distributive over addition for linear op-
erators, the sum of squares I2

xt+I2
yt+I2

tt, which is the trace of
the flux tensor matrix is computed first, then spatial averaging
is applied to this result and stored in a second FIFO structure
of size nAt

, to be used in the temporal part of averaging. The
numerical expression that is being computed is,

Tr JF (x) =
∑

y∈N (x,y,t)

W (x− y)
(
I2xt(y) + I2yt(y) + I2tt(y)

)
(5)

where N is the local neighborhood over which the square of
the second derivatives are summed. A weighted averaging
filter, such as a Gaussian, can be used at the expense of ad-
ditional computing cost. Typically box filters are used for
a power efficient implementation. This temporal averaging
FIFO keeps nAt

frames at a time and produces the flux ten-
sor trace after it is full. Once both FIFO’s are full, processing
a new input frame causes a shift of pointers in both FIFO’s,
reusing intermediate results from previous calculations and
reducing the total computation per flux tensor output frame.

3. PARALLEL IMPLEMENTATION OF THE FLUX
TENSOR OPERATOR ON THE CELL/B.E.

A power efficient multicore implementation needs to take full
advantage of the intrinsic Cell/B.E. architecture specific hard-
ware accelerations in order to use the best choice of data and
task partitioning across SPEs, manage memory transfers, and

take full advantage of vectorization and using local buffers.
The 3.2 GHz SPEs deliver their peak performance while exe-
cuting a fused short vector multiply add instruction (FMA) on
each clock cycle that operates on a four floating-point element
vector to complete eight floating point operations in SIMD
fashion. Thus a peak peformance of 25.6 single-precision
GFLOP/s per SPE can be obtained. An important point to
note is that the SPEs only work on data staged in their local
memory (local store). However, the SPE local storage is a
limited resource as only 256 Kbytes is available for program,
stack, local buffers and data structures. Making sure the SPEs
efficiently receive and operate on current data without exces-
sive buffering is critical to achieving high performance on the
Cell/B.E. architecture. Rather than considering cache control
and the impact of memory bandwidth, we focus on structur-
ing data movement within the Cell/B.E. processor to keep the
SPEs busy, and dividing the application into vectorized func-
tions to make efficient use of the SPE hardware.

We implemented and tested our code on the SONY PS-
3 which is a very energy efficient multicore processor with
program access to six of the eight Cell/B.E. SPE processors
and the main/external XDR memory on the PPE is limited
to 256 MB of which about 200 MB is available to the Linux
OS. To accommodate the required frame storage buffers and
data structures for the parallel implementation, the data par-
titioning and grouping of the operations needed careful con-
sideration. For main memory the parallel algorithm uses two
FIFO buffers of size nDt

and nAt
for calculation of tempo-

ral derivatives and temporal averaging. In the sequential im-
plementation, all the spatial derivatives are kept in the first
FIFO buffer which requires 3nDt

frames to be stored in main
memory. Due to the limited shared (global) memory on the
Cell/B.E. and taking advantage of the fast communication
bus the parallel implementation of the flux tensor is mem-
ory efficient and stores only the input sequence of images in
the first FIFO buffer of size nDt (instead of 3nDt for stor-
ing the spatial derivatives) and recalculates the spatiotempo-
ral derivatives for each successive frame at the cost of extra
calculations. We estimate the amount of redundant work to

1229



Fig. 2: Data partitioning scheme showing Work Unit (WU)
block width in pixels on SPEs. The 3D block represents the
spatiotemporal 3D grid of input data that needs to be pro-
cessed to produce one flux tensor output frame. The 3D grid
of data is chunked uniformly to distribute to each SPE. Since
the partition is too large to fit into the limited SPE memory,
each work block is further divided into smaller work units.
The WU sizes are dependent on the filter sizes as labeled.

be between a factor of 2 and 5 depending on the filter sizes
shown in Table 1, compared to the sequential version. There
is no overlap in the work unit computation between adjacent
SPEs, as shown by the vertical lines and faces marked in red
in Figure 2 but there is an extra quad word data transfer (16
bytes) on left and right sides to provide pixel padding in the
x-convolution direction. The second buffer FIFO2 operates
the same as in the sequential case.

In order to parallelize across SPEs, the data needs to be
partitioned into equal work blocks amongst different SPEs for
optimal performance. Since there are convolutions in three
dimensions (x, y, t), the whole work unit can be visualized
as a 3D block. This is partitioned into as many overlapping
blocks as there are number of active SPEs. The data is fetched
and processed one row at a time. Due to finite size of the lo-
cal store memory, each SPE may further subdivide the work
block into smaller chunks and process a work unit width of
WU columns each time. The data partitioning scheme and
full work unit block is illustrated in Figure 2. The execu-
tion process on the PPE and SPE side is summarized in Algo-
rithms 1 and 2 respectively. Optimized convolution operators
are represented using the ⊗ symbol without the explicit loop
unrolling and optimized FMA operations explicitly shown.

4. RESULTS AND DISCUSSION

The output of the flux tensor-based video object detection al-
gorithm applied to a sample video sequence from the ARL
Force Protection Surveillance System (FPSS) video collec-
tion [27] is shown in Figure 3. The first row shows color

Algorithm 1 Parallel Flux Tensor: PPE side
Input : Input Image sequence I(x, y, t)

Output : Flux Trace frame Tr JF (x, y, t− bnDt/2c − bnAt/2c)

1: for each time t do
2: Push(I(x, y, t), FIFO1)
3: Initialize number of intermediate flux frames, Nm ← 0

4: if FIFO1 contains nDt frames then
5: Partition data into blocks.
6: Put SPE control block information including work unit W and

output location for intermediate flux F and final output Tr JF .
7: Set up SPE threads and wait for results F , Tr JF .
8: Push(F , FIFO2)
9: Nm ← Nm + 1

10: if Nm > nAt then
11: Write output Tr JF

12: end if
13: end if
14: end for

Algorithm 2 Parallel Flux Tensor: SPE i

Input : Images in FIFO1, Nm, starting col Ci, and work block width W .
Output : Blocks of Intermediate Flux into FIFO2 and flux trace Tr JF

1: for each row r of Work Block do
2: Load from FIFO1, pixel data Ir from column Ci − bnDs/2c upto

Ci +W + bnDs/2c into local store
3: Push(Ir ⊗ Sx, ISx buffer);

Push(Ir ⊗Dx, IDx buffer);
4: if ISx buffer and IDx buffer have nDs rows then
5: ISxDy = ISx ⊗Dy ;

6: ISxSy = ISx ⊗ Sy ;

IDxSy = IDx ⊗ Sy ;

7: Iyt = ISxDy ⊗Dt;

Itt = ISxSy ⊗Dtt;

Ixt = IDxSy ⊗Dt;

Fr = I2xt + I2yt + I2tt ;
8: Push(Fr , FIFO2);

Pop(ISx buffer);
Pop(IDx buffer);

9: end if
10: end for
11: if Nm ≥ nAt then
12: for each row r of Work Block do
13: Load from FIFO2, Fr data from column Ci − bnAs/2c upto

Ci +W + bnAs/2c into local store
14: Push(Fr ⊗Ax,IAx buffer);
15: if IAx buffer has nAs rows then
16: IAxAy = IAx ⊗Ay ;

17: Tr JF = IAxAy ⊗At;

Pop(IAx buffer);
18: end if
19: end for
20: end if

1230



Fig. 3: Output of flux tensor motion estimation and blob
extraction algorithm on selected frames of color visible and
FLIR (forward looking long-wave infrared) data from the
ARL FPSS dataset [27].

and long-wave infrared frames from the original video se-
quence. The second and third rows show the grayscale flux
tensor response and the thresholded binary masks respectively
using the flux tensor motion analysis with (5, 5, 5, 5) filters,
followed by grayscale closing (circular structuring element
of radius 5) and using histogram based thresholding, adap-
tively switching between global Otsu and 80% cumulative
histogram value. The colored blobs show the detected moving
objects after post processing steps including morphological
noise removal using area opening and connected component
labeling to identify contiguous regions. The pink blobs are as-
sociated with two people walking in the far background. The
FLIR channel is not affected by shadows and produces more
compact blobs of moving objects suitable for tracking.

The sequential code was tested on a Dell PowerEdge 1850
server running CentOS Linux 5.4 using a single core of a dual
CPU dual core Intel Xeon 2.8 GHz with 2 MB of cache per
core, 4GB of memory and an 800MHz front side bus com-
piled using gcc -O3 version 4.1.2. The parallel code was
tested on a PS3 Cell/B.E. with 6 SPEs using an appropri-
ate SPE work unit for HD sized (1920 × 1080, WU=320
or smaller) and Standard Definition (SD) sized (640 × 480,
WU=112 pixels) images. The PS-3 uses about 135 watts
while the Dell PowerEdge 1850 uses about 550 watts for sys-
tem operation including CPU, peripheral devices, operating

Table 1: Speedup and performance to power ratios of the par-
allel multicore PS-3 Cell/B.E. implementation with 6 SPEs
using 135 watts is compared to the optimized sequential im-
plementation running on an Intel Xeon core in a Dell 1850
server using 550 watts. Sequential performance in frames
per second are shown in the (T Seq

1 )–1 columns. Parallel PS-
3 speed-up (SPS-3

6 ) is compared to the sequential implemen-
tation running on an Intel Xeon CPU. The power efficiency
improvement of the parallel implementation compared to the
sequential implementation are shown in the PPR columns.

Filter Configuration HD video SD video
nDs nDt nAs nAt (T Seq

1 )–1 SPS-3
6 PPR (T Seq

1 )–1 SPS-3
6 PPR

3 3 3 3 1.75 40.1 164 17.32 18.2 74
5 3 5 3 1.68 38.6 157 14.35 20.0 82
7 3 7 3 1.54 38.1 155 13.02 19.3 79
9 3 9 3 1.37 39.6 161 11.52 19.6 80
3 5 3 5 1.53 30.8 125 13.99 14.7 60
5 5 5 5 1.42 29.6 120 12.28 14.9 61
7 5 7 5 1.34 28.7 117 10.99 15.2 62
9 5 9 5 1.23 28.3 115 10.05 14.8 60
3 7 3 7 1.34 25.6 104 12.01 13.5 55
5 7 5 7 1.25 24.7 101 10.44 13.2 54
7 7 7 7 1.18 23.6 96 9.88 11.9 48
9 7 9 7 1.11 14.2 58 9.03 12.0 49
3 9 3 9 1.24 22.0 89 10.45 12.0 49
5 9 5 9 1.14 21.3 87 9.34 11.3 46
7 9 7 9 1.09 12.4 51 8.63 11.1 45
9 9 9 9 1.02 13.0 53 7.97 10.7 43

system, multitasking, etc. Total system power was used to
measure the performance to power efficiency ratios without
doing detailed power measurements that can become com-
plex to instrument and compare. The work unit size that can
be accommodated by one SPE with 256 KB of local store de-
pends on the size of the 3D convolution filters, especially the
temporal filters, data alignment and partitioning requirements
(usually multiples of 16 bytes). Parallel performance bench-
marking done on an IBM QS20 and QS22 Blade servers with
dual Cell/B.E.s both running Fedora Linux all compiled using
gcc -O3 version 4.1.2 will be reported elsewhere.

We compared the performance between the sequential and
parallel implementations of flux tensor for different filter con-
figurations on two different frame sizes of video streams us-
ing 3D grids. Speed-up using p processors was calculated as,
SPS-3
p = T Seq

1 /T PS-3
p where Tp is the average time measured

across p processors to complete the flux tensor computation
for one frame and T Seq

1 is the time taken for the single core
sequential implementation; p = 6 SPEs on the PS-3. The
performance to power efficiency improvement ratio was cal-
culated as, PPR = SPS-3

p
PSeq

PPS-3
where PA is the system power

used by architecture A and SPS-3
p is the speed-up ratio.

Table 1 shows the range of spatial and temporal sizes for
both derivative and integral/averaging filters varying between

1231



3, 5, 7 and 9 that were used for performance benchmarking.
The sequential frame rate or inverse of the time to compute
one frame on the Intel Xeon processor is given in column
(TSeq

1 )−1 in frames per second, the speed-up measured on
the PS-3 Cell/B.E. platform compared to the sequential per-
formance is given in column SPS-3

6 . For the smallest deriva-
tive and integral filters of size 3 the speed-up of the parallel
implementation compared to the sequential performance was
more than a factor of 40 even though there are only six com-
putational cores. The super-linear speed-up behavior is due
to the use of extensive vectorization, loop unrolling and FMA
operations to implement the flux tensor convolution kernels
despite the additional work done by the SPEs recomputing in-
termediate results in the parallel implementation compared to
the sequential version. As the filter sizes increase the speed-
up gain decreases since the total volume of computations in-
creases faster on the Cell (linearly with the size of the fil-
ter) since the parallel implementation needs to recompute all
of the intermediate spatial derivatives, whereas the sequential
implementation is able to store and reuse intermediate results
at the cost of extra memory. For larger filter sizes the limited
local store on the SPEs requires smaller data chunks (work
unit width in Figure 2) that then requires more than six threads
of execution and results in two stages of computation which
reduces speed-up; the filter configurations needing two stages
of execution are shown in bold font in Table 1. This can be
partly mitigated by using the more expensive IBM Cell/B.E.
Blade processors which have a lot more main memory but
also higher power consumption.

The speed-up of the multicore flux tensor implementation
ranged from a factor of 11 to 20 for the smaller SD video
frame sizes to between 12 and 40 for the larger HD frame size
video streams as shown in Table 1. The results for 16 different
filter configurations for both HD and SD video frame sizes are
compared and show substantial improvement in terms of both
parallel speed-up as well as performance to power efficiency.
Our implementation on the PS-3 Cell/B.E. was able to deliver
34.9 fr/s×1.32 GFLOPs/frame = 46 GFLOP/s which is 30%
of single-precision peak performance (153.6 GFLOP/s) but
significantly better than the expected memory-intensive peak
of 12.8 GFLOP/s. The identical code reaches 39%, 35% and
24% of peak performance on the QS20 (410 GFLOP/s for 16
SPEs) with 6, 8 and 16 SPEs respectively for the same filter
size configuration of nDs

= 9, nDt
= 5, nAs

= 9, nAt
= 5.

An earlier implementation that used better data alignments
but could only handle a limited number of filter sizes and
image widths was able to reach 68 fr/s and 58% of peak on
the QS20. We found that explicit memory management and
some assembly coding on the Cell/B.E. is required to reach
high performance even though this hand tuning incurs addi-
tional programming effort. Multicore GPU architectures are
also well suited for computer vision algorithms [28]. In future
work we will compare the power efficiency of the flux tensor
on GPUs using CUDA or OpenCL.

5. CONCLUSIONS

The flux tensor operator estimates significant orientations in
multidimensional gridded datasets and is an efficient tech-
nique for moving object detection in video datasets. The
parallel algorithm implemented for the Cell/B.E. PS-3 archi-
tecture with six SPE computational cores achieved a speed-up
improvement factor of 40 compared to the sequential algo-
rithm using the smallest filter sizes which offers substantial
energy efficiency optimization choices. The super-linear
speed-up behavior is due to the extensive use of vector-
ized floating point operations, FMA instructions and double
buffering to overlap computation and communication. Using
larger filter sizes the speed-up gain decreased to a factor of 12
since the total volume of computations increases faster on the
Cell/B.E. as the parallel implementation must recompute the
intermediate spatial derivatives in comparison to the sequen-
tial implementation which uses significantly more memory.
For larger filter sizes the limited local store on the SPEs also
leads to smaller data partitioning sizes that requires more
than six threads of execution which results in two stages of
computation thus reducing speed-up. For all filter sizes tested
the parallel flux tensor algorithm was able to exceed realtime
performance requirements using a single PS-3 Cell/B.E. pro-
cessor for SD sized video streams and for most of the filter
sizes for HD sized video streams. The lower power require-
ments for the multicore PS-3 Cell/B.E. compared to an Intel
Xeon processor makes the energy efficiency performance to
power ratio of the flux tensor more than 160 times better
for the smaller filter sizes and more than 50 times better for
the larger filter sizes for processing HD video streams. The
dependency of the energy efficiency factor on the flux tensor
filter size provides an additional dimension for energy opti-
mization based on output image quality, that is using slightly
smaller filter sizes for a marginal reduction in performance.

6. ACKNOWLEDGMENTS

We thank Filiz Bunyak and Pieter Bellens (Barcelona Supercomput-
ing Center) for discussions on timing and earlier drafts of the paper.
This paper is based on work presented at the First Int. Workshop
on Energy Efficient High-Performance Computing (EEHiPC10)
at HiPC 2010. This research was partially supported by the Air
Force Research Laboratory Visiting Faculty Research Program and
AFOSR/ASEE Summer Faculty Fellowship Programs at Rome,
NY, grants from the Air Force Research Laboratory under agree-
ments FA8750-09-2-0198, FA8750-10-1-0182, from the Leonard
Wood Institute (LWI 181223) in cooperation with the U.S. Army
Research Laboratory (ARL) under Cooperative Agreement Num-
ber W911NF-07-2-0062 and by U.S. National Institute of Health
award R33-EB00573. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of AFRL, ARL, or the U.S. Government. The U.S. Government
is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation thereon.

1232



7. REFERENCES

[1] S. Albers, F. Muller, and S. Schmelzer, “Speed scaling on par-
allel processors,” in Proc. 19th ACM Symposium on Paral-
lelism in Algorithms and Architectures, 2007, pp. 289–298.

[2] J. M. Metzler, M. H. Linderman, and L. M. Seversky, “N-CET:
Network-centric exploitation and tracking,” in IEEE Military
Communications Conf. (MILCOM), 2009, pp. 1–7.

[3] P. Kumar, K. Palaniappan, A. Mittal, and G. Seetharaman,
“Parallel blob extraction using the multi-core Cell processor,”
Lecture Notes in Computer Science (ACIVS), vol. 5807, pp.
320–332, 2009.

[4] S. Mehta, A. Misra, A. Singhal, P. Kumar, A. Mittal, and
K. Palaniappan, “Parallel implementation of video surveil-
lance algorithms on GPU architectures using CUDA,” in 17th
IEEE Int. Conf. Advanced Computing and Communications
(ADCOM), 2009.

[5] Z. Yue, D. Guarino, and R. Chellappa, “Moving object verifi-
cation in airborne video sequences,” IEEE Trans. Circuits and
Systems for Video Technology, vol. 19, no. 1, pp. 77–89, Jan.
2009.

[6] A. Hafiane, K. Palaniappan, and G. Seetharaman, “UAV-video
registration using block-based features,” in IEEE Int. Geo-
science and Remote Sensing Symposium, 2008, vol. II, pp.
1104–1107.

[7] S. Ali and M. Shah, “COCOA - Tracking in aerial imagery,”
in SPIE Airborne Intelligence, Surveillance, Reconnaissance
(ISR) Systems and Applications III, Daniel J. Henry, Ed., 2006,
number 6209 in Proceedings of the SPIE, p. Online.

[8] R.T. Collins, A.J. Lipton, H. Fujiyoshi, and T. Kanade, “Algo-
rithms for cooperative multisensor surveillance,” Proc. of the
IEEE, vol. 89, pp. 1456–1477, October 2001.

[9] G. Seetharaman, G. Gasperas, and K. Palaniappan, “A piece-
wise affine model for image registration in 3-D motion analy-
sis,” in IEEE Int. Conf. Image Processing, 2000, pp. 561–564.

[10] F. Bunyak, K. Palaniappan, S.K. Nath, and G. Seetharaman,
“Geodesic active contour based fusion of visible and infrared
video for persistent object tracking,” IEEE Workshop Applica-
tions of Computer Vision (WACV 2007), p. Online, 2007.

[11] F. Bunyak, K. Palaniappan, S. K. Nath, and G. Seetharaman,
“Flux tensor constrained geodesic active contours with sensor
fusion for persistent object tracking,” J. Multimedia, vol. 2, no.
4, pp. 20–33, August 2007.

[12] K. Palaniappan, I. Ersoy, and S. K. Nath, “Moving object
segmentation using the flux tensor for biological video mi-
croscopy,” Lecture Notes in Computer Science (PCM), vol.
4810, pp. 483–493, 2007.

[13] K. Palaniappan, M. Faisal, C. Kambhamettu, and A. F. Hasler,
“Implementation of an automatic semi-fluid motion analysis
algorithm on a massively parallel computer,” 10th IEEE Int.
Parallel Processing Symp., pp. 864–872, 1996.

[14] M. Gschwind, “The Cell Broadband Engine: Exploiting mul-
tiple levels of parallelism in a chip multiprocessor,” Interna-
tional Journal of Parallel Programming, vol. 35, no. 3, pp.
233–262, 2007.

[15] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra, and G. Bosilca,
“A rough guide to scientific computing on the Playstation 3,”
Tech. Rep. UT-CS-07-595, Innovative Computing Laboratory,
University of Tennessee Knoxville, 2007.

[16] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. A. Yelick, “Scientific computing kernels on the Cell pro-
cessor,” Int. J. Parallel Programming, vol. 35, pp. 263–298,
2007.

[17] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R. Horn,
L. Leem, J-Y. Park, M. Ren, A. Aiken, W. J. Dally, and P. Han-
rahan, “Sequoia: Programming the memory hierarchy, p. on-
line,” Proc. ACM/IEEE Conference Supercomputing, 2006.

[18] P. R. Woodward, J. Jayaraj, P-H. Lin, and P-C. Yew, “Mov-
ing scientific codes to multicore microprocessor CPUs,” IEEE
Computing in Science and Engineering, vol. 10, no. 6, pp. 16–
25, 2008.

[19] D. A. Bader and V. Agarwal, “FFTC: Fastest Fourier trans-
form for the IBM Cell Broadband Engine,” Lecture Notes in
Computer Science (HiPC), vol. 4873, pp. 172–184, 2007.

[20] M. D. McCool, “Data-parallel programming on Cell BE and
the GPU using the rapidmind development platform, p. online,”
In GSPx Multicore Applications Conference, 2006.

[21] B. Bouzas, R. Cooper, J. Greene, M. Pepe, and M-J. Prelle,
“Multicore framework: An API for programming heteroge-
neous multicore processors,” Tech. Rep., Mercury Computer
Systems, Inc., 2006.

[22] J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta, “CellSs:
making it easier to program the Cell broadband engine proces-
sor,” IBM Journal of Research and Development, vol. 51, no.
5, pp. 593–603, 2007.

[23] K. Palaniappan, H. S. Jiang, and T. I. Baskin, “Non-rigid mo-
tion estimation using the robust tensor method,” in IEEE CVPR
Workshop on Articulated and Nonrigid Motion, Washington
DC, USA, June 27–July 2 2004, vol. 1, pp. 25–33.

[24] C. Weele, H. Jiang, and et al, “A new algorithm for computa-
tional image analysis of deformable motion at high spatial and
temporal resolution applied to root growth,” Plant Physiology,
vol. 132, no. 3, pp. 1138–1148, July 2003.

[25] X. Zhuang, K. Palaniappan, and R. M. Haralick, “Highly
robust statistical methods based on minimum-error bayesian
classification,” in Visual Information Representation, Commu-
nication and Image Processing, C. W. Chen and Ya-Qin Zhang,
Eds., Optical Engineering, pp. 415–430. Marcel-Dekker, 1999.

[26] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaussian
mixture density modeling, decomposition and applications,”
IEEE Trans. Image Processing, vol. 5, no. 9, pp. 1293–1302,
Sept. 1996.

[27] A. L. Chan, “A description on the second dataset of the U.S.
Army Research Laboratory Force Protection Surveillance Sys-
tem,” Tech. Rep. ARL-MR-0670, Army Research Laboratory,
Adelphi, MD, 2007.

[28] S. Grauer-Gray, C. Kambhamettu, and K. Palaniappan, “GPU
implementation of belief propagation using CUDA for cloud
tracking and reconstruction,” in 5th IAPR Workshop on Pattern
Recognition in Remote Sensing (ICPR), 2008, pp. 1–4.

1233


