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Optical Multi-hysteresises and ”Rogue Waves” in Nonlinear Plasma

A. E. Kaplan
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An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical
effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and
transition, and emergence of gigantic ”rogue waves”. Those are trapped quasi-soliton field spikes
inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once
they have been excited by orders of magnitude larger pumping. The phenomenon persists even in
the layers with ”soft” boundaries, as well as in a semi-infinite plasma with low absorption.

PACS numbers: 42.65.Pc, 42.65.-k, 42.65.Tg, 52.35.Sb

Diverse wave-related phenomena exhibit a common
critical behavior: a dramatic transition at a crossover
point from a traveling wave in the underlying (semi-
infinite) medium to a non-propagating, evanescent wave
that carry no energy. The crossover occurs in optics at
the angle of total internal reflection at a dielectric inter-
face, at a laser frequency near either a plasma frequency,
or a waveguide cut-off frequency, or band-gap edge of a
material, including BEC; in quantum mechanics for elec-
tron scattering at the energy close to a potential plateau,
etc. It can be of great significance to nonlinear optics: a
nonlinear refractive index can cause a phase-transition-
like effect, since a small light-induced change may trans-
late into a switch from full reflection to full transmission,
resulting in a huge hysteresis. Predicted in [1] for non-
linear interfaces, it was explored experimentally in [2],
with an inconclusive outcome, with some of the experi-
ments (including the latest [2c]) showing a clear hystere-
sis, while [2b] showing none (see also below). 2D numer-
ical simulations were not well suited then for modeling
hysteresis; their very formulation excluded multivalued
outcome by using single-valued boundary conditions.

In this Letter we discover, however, that even the
most basic, 1D-case, reveals a large and apparently lit-
tle known phenomenon of highly-multistable nonlinear
EM-propagation and the emergence of trapped ”rogue”
(R) waves, with intensity exceeding the incident one by
orders of magnitude. They may be released by plasma
expansion, in a phase-like transition, as in a boiling liq-
uid. Even a slight nonlinearity due to the most funda-
mental mechanism – relativistic (RL) mass-effect of free
electrons – suffices to initiate the effect. Multiple (up to
hundreds) hysteretic jumps between almost full reflection
and full transparency may occur as the laser intensity is
swept up and down. We treat the problem here in the
context of ideal plasma on account of recent interest in
high-intensity laser-plasma interactions and fundamental
nature of RL-nonlinearity, but all approaches are valid
for other crossover problems. Temporal RL-solitons have
been considered in detail in the literature [3]; close to
those of underdense plasma are the so called Bragg or
band-gap solitions [4], including the ones in BEC [5]. The

difference in this work is made by multi-hysteresises (and
standing, unmoving quasi-solitons instead of propagating
ones) due to self-induced retro-reflection. The remark-
able new property is that for the same incident power an
EM-wave can penetrate into a nonlinear material to dif-

ferent depths – varying by orders of magnitude – depend-
ing of the history of pumping. We assume a stationary,
cw, or long pulse mode, and use only RL-nonlinearity in
a cold plasma. While this model is greatly simplified vs

various kinetic approaches, it allows us to keep the basic
features necessary to elucidate new results, and have the
theory applicable to other systems.
Even a few-λ-thick plasma layer can produce the ef-

fect, so that the absorption of light (including nonlinear
self-focusing) would not affect the propagation signifi-
cantly. Furthermore, while abrupt boundaries contribute
to the effect, they are not essential: a layer with ”soft”
boundaries still exhibits all the major features of the
phenomenon. The phenomenon persists even for semi-

infinite plasma with a small absorption, which also de-
velops a strong retro-reflection. The ”Sommerfeld condi-
tion” (no wave comes from the ”infinity”) is to be revis-
ited here: a wave is back-reflected deep inside the plasma
and returns to the boundary. Imposed on a forward wave,
it results in a semi-standing wave, trapped quasi-soliton
R-waves, and multistability, same as in a finite layer.
The energy accumulated in R-waves and excited free elec-
trons, can then be released if plasma density reduces, as
it may happen, e. g. in an astrophysical environment.
The wave propagation here is governed by the same so

called nonlinear Klein-Gordon-Fock equation:

[∇2 − ∂2/(v∂t)2]ψ = k20f(|ψ|2)ψ; f(0) = 1. (1)

where f(|ψ|2) is a function responsible for nonlinearity.
Here, a generic variable, ψ, could be a scalar (e.g. a
wave function in RQM), or a field vector in EM-wave
propagation, v is a scale velocity, (v = c for plasma and
in RQM), and k−1

0
is a spatial scale of the problem, (for

RQM, k0 = m0c/h̄ = 2π/λC , where λC is the Compton
wavelength, and m0 is the rest-mass of an electron); for
plasma k0 = ωpl/c, where ωpl is a plasma frequency due
to free-charge density, ρe, and in the X-ray physics, ωph =



2

Eph/h̄ is related to photo-ionization limit, Eph, of atoms.

For an ω-monochromatic wave ψ = ~E(~r) e−iωt/2 + c.c.,

where ~E(~r) is a complex amplitude, and using u2 = |E|2,
(1) is reduced to a nonlinear Helmholtz equation:

∇2~E + k2ǫ(u2)~E = 0; ǫpl = 1− ω2

pl(u
2)/ω2 (2)

where k = ω/c, and ω2

pl = 4πeρe/m, m – electron mass,
and E = E/Enl with Enl being some characteristic non-
linear scale; for a RL-mass-effect it is Erl = ωm0c/e.
In general, nonlinear ǫ may have various origins: a

varying ionization rate, plasma waves, ponderomotive
force, etc. Assuming fully ionized gas, ρe = const, and a
circularly-polarized wave, E(ζ) (êx + iêy) e

−iωt/2 + c.c.,
that has very negligible high-harmonics generation and
minimal longitudinal plasma waves excitation, the most
basic remaining source of nonlinearity is a field-induced
RL mass-effect of electron: m = m0γ, with a relativis-
tic factor γ =

√

1 + (p/m0c)2 =
√
1 + u2 [see e. g. [6])

where p is the momentum of electron, so that

ǫrl = 1− [ν2γ(u2)]−1 with ν = ω/(ωpl)0 (3)

where (ωpl)0 is a linear plasma frequency with m = m0.
Since m = m(u2), a single electron exhibits large hys-
teretic cyclotron resonance predicted in [6a] and observed
in [7]. The mass-effect has also became one of the ma-
jor players of light-plasma interaction [3], e. g. in RL
self-focusing, and in acceleration of electrons by the beat-
wave and wake-field. The EM-propagation could also be
accompanied by RL-intrinsic bistability [8].
In a 1D-case, letting a plane EM-wave propagate in the

z-axis, we have ∇2 = d2/dz2. For a boundary between
two dielectrics, a EM-wave incident from a dielectric with
ǫin > 0 under the angle θ onto a material of ǫNL > 0,
ǫ in (2) is replaced by ǫin[ǫNL(ω)/ǫin(ω)− sin2 θ]. For
a mw waveguide with a critical frequency ωwg, ǫ in (2)
is replaced by ǫwg(1 − ω2

wg/ω
2). The crossover point is

attained at ǫ = 0. In this approximation, (2) reduces to

E ′′ + ǫ(ζ, u2)E = 0, (4)

where ζ = kz, and ”prime” denotes d/dζ; in general,
we do not assume ǫ uniform in ζ-axis. In a weakly-
nonlinear media one can break the field into counter-
propagating traveling waves and find their amplitudes
via boundary conditions. However, near a crossover
point one in general cannot distinguish between those
waves. To make no assumptions about the wave compo-
sition, we represent the field using real variables u, and
phase (eikonal), φ, as E = u(ζ)exp[iφ(ζ)]. Since E is in
general complex, while ǫ = ǫ(u2), Eq. (4) is isomorphous
to a 3-rd order eqn for u; yet, it is fully integrable in
quadratures. Its first integral is a scaled momentum flux
of EM-field, P ≡ u2φ′ = inv. In a lossless media P is con-
served over the entire space ζ <∞, even if the medium is
non-uniform, multi-layered, linear and/or nonlinear, etc.

If a layer borders a dielectric of ǫ = ǫex at the exit, we
have P = u2ex

√
ǫex, where u

2

ex is the exit wave intensity.
Eq. (2) is reduced then to a 2-nd order equation for u:

u′′ + u[ǫ(ζ, u2)− P 2/u4] = 0, (5)

which makes an unusual yet greatly useful tool. By ad-
dressing only a real amplitude, while using flux P as a
parameter, (5) is nonlinear even for a linear propaga-

tion, yet is still analytically solvable if a density ρe is
uniform across the layer (∂ǫ/∂ζ = 0). A full-energy-like

invariant of (5) is u′
2
/2 + U(u2) = W = inv, with U =

[
∫ u2

0
ǫ(u2) d(u2)+ P 2/u2]/2 , where u′

2
/2 is ”kinetic”,

and U – ”potential” energies. For a RL-nonlinearity (3),
U(u2) = (u2 + P 2/u2)/2 − [γ(u2) − 1]/ν2. Here W is
a scaled free EM energy density of ǫ-nonlinear medium
[9] W = c[H2 +

∫

ǫd(E2)]/(2E2

rl), where H is magnetic
field. If a layer exit wall is a dielectric, one has W =
U(u2ex), since then u′ex = 0 (see below). For a metallic

mirror, W = u′ex
2
/2, since now uex = 0; and W = 0

for an evanescent wave in a semi-infinite medium. The
implicit solution for spatial dynamics of u in general case
is found now as ζ =

∫

{2[W −U(u2)]}−1/2du .
Boundary conditions at the borders with linear di-

electrics at the entrance, ζ = 0, with ǫin, and at the
exit, ζ = d, with ǫex, result in complex amplitudes of
incident, Ein, and reflected, Erfl, waves at ζ = 0:

Ein,rfl = [u± ǫ
−1/2
in (P/u− iu′)]/2; (6)

where ”+” corresponds to Ein, and ”−” – to Erfl, and
the exit point, ζ = d: u = Eex ≡ uex; u

′ = 0; and φ′ =√
ǫex. A condition P = 0 corresponds to full reflection,

resulting in either strictly standing wave, or nonlinear
evanescent wave in a semi-infinite plasma, in particular
in a ”standing” soliton-like solution (see below). If ǫ(u2 =
0) < 0, there are no linear traveling waves; yet a purely
traveling nonlinear wave may exist at sufficiently strong
intensity u2 = u2trv = const, such that ǫ(u2trv) > 0:

Etrv = utrv exp(iφ
′ζ), φ′ = ±

√

ǫ(u2trv), (7)

propagating either forward (+) or backward (−). How-
ever, if ǫ(u = 0) < 0, it is strongly unstable. A non-
periodic solution of (5) with P = 0 is a nonlinear evanes-
cent wave that forms a standing, trapped soliton. In
low-RL case, one needs a small detuning from crossover
point, δ ≡ ν − 1 ≪ 1, to attain the effect at low laser
intensity, u2 ≪ 1, so that the the dielectric constant (3)
is Kerr-like and small: ǫrl ≈ −2δ+u2/2, |ǫrl| ≪ 1. A full
solution of (5) with P = 0 and u → 0 at ζ → ∞ yields
then a standing soliton with a familiar intensity profile:

u2 = 8δ/ cosh2 [(ζ − ζpk )
√
2δ] (8)

where the peak location ζpk is an integration constant.
For an arbitrary frequency, ν < 1, the soliton peak in-
tensity is u2sol = 4(1 − ν2)/ν4, instead of 8δ as in (8);
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FIG. 1: Hysteretic transmission of light through a plasma
layer of thickness L. FT and NTR are full transparency and
near total reflection limits. Points 1, 2, 3 mark a linear evanes-
cent wave, 1-st, and 2-nd upper stable states respectively, and
4 – a R-wave sustained by a very low pumping. Arrows in-
dicate direction of jumps within the lowest hysteretic loop.
Inset: spatial amplitude profiles of waves corresponding to
points 1-4 in the main plot.

ǫ(u2pk) = (1 − ν2)/(2 − ν2) ≥ 0. When ν2 < 1/2, it is

a strongly-RL soliton, u2sol ≫ 1, and its peak narrows
down to a half-wave: u2 ≈ u2sol cos

2(ζ − ζpk) at u
2 > 1.

In a finite layer one has a mix of standing/evanescent
and traveling waves, with u2min = u2ex = P > 0. A full
integration of (5) with nonlinearity ǫrl ≈ −2δ + u2/2
yields then elliptic integrals of imaginary argument of
the first kind; more importantly, eq. (5) and its invari-
ant avails themselves to detailed analysis. The numerical
simulations are needed, however, to find a solution for
(a) strongly-RL field [using (5) and its integrals], or (b)
non-uniform plasma density in (5), or(c) plasma with ab-
sorption [eq. (4)]. It then is found by an ”inverse propa-
gation” procedure, whereby we essentially back-track the
propagation from a purely traveling exit wave back to the
entrance. One sets first a certain magnitude of u2ex = P ,
u′ex = 0 at the exit, numerically computes an amplitude
profile u(ζ) back to the entrance and incident and re-
flected intensities u2ex and u2rfl using (6), and then maps

u2ex and u2rfl vs incident intensity, u
2

in. A data set u2in(P )

and u2rfl(P ) for any given P is found then with a sin-
gle run, vs a so called multi-shooting commonly used in
search of solution with conditions set at two boundaries.
This provides a very fast numerical simulation vs multi-
shooting; besides, the latter one is very unreliable when
dealing with apriory unknown number of multi-solutions.

For a fully-RL simulation with a L = 10λ, where L is
the layer thickness, Fig. 1 show the emergence of large
number, Nhs, of huge hysteretic loops of the transmission
(same as in reflection, not shown here), which bounces
between full transparency (near the points touching an
FT line) to nearly full reflection (near the points touch-
ing an envelope NFR). In general, Nhs = O(L/λ). In

an unbound plasma, the solution of (5) with a traveling
component, P > 0, is a spatially periodic and positively
defined, with the intensity, u2(ζ), bouncing between two
limits, u2ex, and u

2

pk. If P/16 ≪ δ2 ≪ 1, we have

P = u2ex ≤ u2 ≤ u2pk ≈ 8δ + P/2δ (9)

i. e. the peaks are relatively large, u2pk ≫ u2ex and form
a train of well separated quasi-solitons nearly coinciding
with a standing soliton (8) of the peak intensity u2pk ≈ 8δ.

As P and u2in increase, they grow larger and closer to each
other. The spatial period, Λ, of this structure is:

Λ/λ ≈ ln(16δ/
√
P )/(2π

√
2δ) (10)

In a strongly RL case, P > 1, we have u2pk/P ≈
1 + (1 + P )−2, and Λ ≈ λ/2, as for a standing, albeit in-
hibited wave in free space, while traveling wave emerges
dominant, resulting in self-induced transparency.
Hysteretic jumps occur when either valley or peak of

the intensity profile coincide with an entrance, ζ = 0.
The valley, u2

0
= u2ex, marks an off-jump in Fig. 1, and

the peak, u20 = u2pk – an on-jump. Suppose that in a layer

of L > λ/(2π
√
2δ), the incident intensity u2in is ramped

up from zero. When u2in < 2δ, Fig. 1. point 1, the
amplitude is almost exponentially decaying, ζ = 0, as
u ≈ 2uin exp (−

√
2δζ), i. e. is a nearly-linear evanescent

wave, curve 1 in Fig. 1 inset; the layer is strongly refrac-
tive, and the transmission is low. As u2in increases, the
front end of that profile swells up, becoming a semi-bell-
like curve, close to (8) with ζpk ≈ 0. With further slight
increase of pumping, it gets unsustainable, and the field
configuration has to jump up to the next stable branch of
excitation, whereby it forms a steady R-wave at the back
of the layer. If after that u2in is pulled down adiabati-
cally slow, the R-wave moves to the middle of the layer
(Fig. 1. point 2, curve 2 in the inset). Finally, when it
is exactly at the midlayer (Fig. 1. point 4, curve 4 in
the inset), both valleys are at the borders of the layer,
the pumping is nearly minimal to support an R-wave;
below it the profile is unsustainable again, and the sys-
tem jumps down to a regular nearly-evanescent wave and
almost full reflection.
At this remarkable point, the layer is fully transpar-

ent, i. e. all the (very low) incident power is trans-
mitted through, while a giant R-wave of peak intensity
(uin)

2

pk ≈ 2δ inside the layer is sustained by a tiny in-

cident power, (uin)
2

min. If L
√
2δ/Nλ > 1, the contrast

ratio – essentially a nonlinear resonator’s finesse, Q, is

Q =
(uin)

2

pk

(uin)2min

≈ exp(2πL
√
2δ/Nλ)

128 δ
≫ 1 (11)

whereN is the number of R-waves in a layer; the one with
N = 1 occurs after the first jump-up. In the example for
Fig. 1 (δ = 0.02, L = 10λ), Q ∼ 107. In semi-infinite
plasma, Q is limited by absorption, see below. It also
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FIG. 2: Hysteretic absorption of light in a semi-infinite
plasma layer with absorption α. FA is a full absorption limit.
Points 1, 2, 3 mark a linear evanescent wave, 1-st, and 2-nd
upper stable states respectively. Arrows – the same as in Fig.
1. Inset: intensity profile; points and verticals 1-3 indicate
locations of the plasma boundary for the respective points in
the main plot; ⊳’s show direction into plasma layer.

decreases as N increases; the field profile for N = 2, is
depicted in Fig. 1, point 3, curve 3 in the inset.

Only half of multi-steady-states are stable; the stability
condition is that the EM-energy density increases with
the pumping, i. e. dW/d(u2in) > 0, which also coincides
with the condition d(u2ex)/d(u

2

in) > 0, similar to [1].

One can view R-waves at a N -th stable branch as a
N -th order mode of a self-induced resonator, with full
transparency points marking the resonance. The mirror-
like sharp boundaries of plasma layer enhance the reso-
nances [10], but do not constitute necessary condition.
Our numerical simulations using (4) showed that a layer
with ”soft” shoulders making ∼ 50% of the entire layer
length, still exhibits a few hysteresises, and a large num-
ber of self-induced resonances.

The fundamental manifestation of the phenomenon
transpires in a semi-infinite plasma. Only two kind of
waves [1] in a lossless case satisfy then the Sommerfeld
condition – no wave ”comes back” from ζ → ∞ – a
traveling (7), du/dζ → 0, and an evanescent (8) wave,
u → 0. Our investigation of (2), to be published else-
where, showed that the wave (7) is unstable both in
2D&3D-propagation – and, of (1) – in temporal domain
in 1D-case. However, using (4), one can show that even
a steady 1D-wave (7) is unstable against small absorp-
tion by replacing ν2 in ǫpl (3) with ν2(1 + iα), where
α = (ωτ)−1 is an absorption factor, and τ is an electron
momentum relaxation time (typically α ≪ 1). A condi-
tion for a hysteresis to emerge is then α < αcr ≈ eδ [11], if
δ ≪ 1. Near α ∼ αcr, a jump-up occurs at u2in ≈ πδ. The
ratio (11) to sustain a single R-wave is limited now by
Q ≈ δ/α, and can still be huge. Hysteresises in reflection
at α = 10−3 are shown in Fig. 2, and the intensity profile
for u2in > 2δ – in the inset. An initially traveling wave

develops oscillations due to rising standing wave, which
eventually becomes a train of trapped R-waves, the last
one being a quasi-soliton close to (8), and then vanishes
exponentially. Reducing α pushes that last R-wave fur-
ther back, but does not extinguish retro-reflection from
the R-wave train at the crossover area deep inside plasma,
keeping the condition u→ 0 at ζ → ∞.

Lab observation of the phenomena in plasma could be
set up with e. g. jets of gas irradiated by a powerful CO2

laser, with a gas density controlled to reach a crossover
point at λCO2

≈ 10µm; the recent experiments [12] may
actually indicate R-waves released by plasma expansion.
This process may be naturally occurring in astrophysical
environment in plasma sheets expelled from a star (e. g.
the Sun); part of the star’s radiation spectrum below the
initial plasma frequency is powerful enough to penetrate
into the layer and be trapped as R-waves. When the layer
expands, they can be released as a burst of radiation. It
is also conceivable that the R-waves trapping and conse-
quent release may be part of the physics of ball-lighting
subjected to a powerful radiation emitted by the main
lighting discharge in mw and far infrared domains. The
R-waves might be used e. g. for laser fusion to deposit
laser power much deeper into the fusion pallets; or for
heating the ionosphere layers by a powerful rf radiation.

In conclusion, optical multi-hysteresises may emerge
in a plasma near critical plasma frequency due to fun-
damental relativistic mass-effect of electrons. They may
result in huge trapped, or standing rogue waves with the
intensity greatly exceeding that of pumping radiation.

This work is supported by the US AFOSR.
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