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Abstract – Data association, or determining corre-

spondence between targets and measurements, is a very

difficult problem that is of great practical importance.

In this paper we formulate the classical multi-target

data association problem as a graphical model and

demonstrate the remarkable performance that approx-

imate inference methods, specifically loopy belief propa-

gation, can provide. We apply it to calculating marginal

association weights (e.g., for JPDA) for single scan and

multiple scan problems, and to calculating a MAP hy-

pothesis (i.e., multi-dimensional assignment). Through

computational experiments involving challenging prob-

lems, we demonstrate the remarkable performance of

this very simple, polynomial time algorithm; e.g., errors

of less than 0.026 in marginal association weights and

finding the optimal 5D assignment 99.4% of the time

for a problem with realistic parameters. Impressively,

the formulation commits smaller errors in association

weights in challenging environments, i.e., in problems

with low Pd and/or high false alarm rates. Our for-

mulation paves the way for the expanding literature on

approximate inference methods in graphical models to

be applied to classical data association problems.

Keywords: Data association, JPDA, graphical mod-
els, loopy belief propagation, multi-dimensional assign-
ment

1 Introduction

In recent years, graphical models have emerged as a
powerful tool for inference and learning in large scale
systems. The promise of graphical models in tracking
problems was demonstrated in [1, 2, 3]. The formula-
tion in the former focussed on sensor networks, in which
each sensor had a narrow field of view. Non-overlapping
regions were defined and association variables were in-
stantiated to hypothesise joint association events for
all targets and measurements within a region. In the
present study, we consider the classical data association
problem, in which a single sensor surveils a large num-
ber of targets. Each target may give rise to at most
one measurement, and each measurement is related to
at most one target. In a sense, the resulting method

decomposes the formulation of [2], such that each mea-
surement is within its own region.

We focus on approximate solutions to two core prob-
lems in data association: firstly, calculating marginal
association probabilities such as those used in Joint
Probabilistic Data Association (JPDA) [4], and sec-
ondly, finding a maximum a posteriori (MAP) associ-
ation configuration, similar to that sought in [5]. Af-
ter introducing our notation and the tools of graphi-
cal models in Section 2, we provide (in Section 3) two
graphical model formulations of the single scan, single
sensor data association problem, and demonstrate the
remarkable performance that is achieved in Section 4.1.
Our method may be easily extended to problems involv-
ing multiple sensors and multiple time steps; we sketch
this development in Section 3.3, and demonstrate re-
sults in Section 4.2.

2 Background

2.1 Data association model

We now describe this classical model, introducing our
notation as we proceed. We denote by nt the number of
targets under track. While this is assumed fixed (and
known), varying (and uncertain) numbers of targets can
be accommodated easily through a framework such as
[6]. We denote by xi

t ∈ Rn, i ∈ {1, . . . , nt}, the state
of the i-th target at time t, and by Xt = (x1

t , . . . ,x
nt
t )

the augmented state of all targets at time t.
Our measurement model hypothesises a set of mea-

surements comprised of possible target detections and
false alarms. We denote by mt the number of measure-
ments at time t, and by zj

t ∈ Rm, j ∈ {1, . . . ,mt}, the
value of the j-th measurement. A target in state xi

t

will be detected with probability of detection Pd(xi
t).

The measurement resulting from this detection is dis-
tributed according to the PDF p(z|xi

t) and is indepen-
dent of all other measurements and targets.

False alarms occur according to a non-homogeneous
Poisson point process with intensity λfa(z). False alarm
measurements are independent of targets and their
measurements. The complete set of measurements at
time t is denoted as Zt = (mt,z

1
t , . . . ,z

mt
t ). The or-

dering of measurements within this vector is arbitrary.
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The complete set of measurements up to and including
time t is denoted as Zt = (Z1, . . . ,Zt).

The relationship between targets and measurements
is described via a set of association variables. The as-
sociation variables comprise of either or both of the
following:

1. For each target i ∈ {1, . . . , nt}, an association vari-
able ai

t ∈ {0, 1, . . . ,mt}, the value of which is an
index to the measurement with which the target is
hypothesised to be associated (zero if the target is
hypothesised to have not been detected)

2. For each measurement j ∈ {1, . . . ,mt}, an associa-
tion variable bj

t ∈ {0, 1, . . . , nt}, the value of which
is an index to the target with which the measure-
ment is hypothesised to be associated (zero if the
measurement is hypothesised to be a false alarm)

Note that the two sets of association variables are en-
tirely redundant: given the information from either set,
the other can be reconstructed perfectly. We consider
two formulations; the first, involving only target associ-
ation variables (a1

t , . . . , a
nt
t ), we refer to as a target ori-

ented formulation; the second, which incorporates both
sets of variables, we refer to as a hybrid formulation.
A similar measurement oriented formulation has been
considered but is omitted here due to space limitations;
it is closely related to the well-known Probabilistic Mul-
tiple Hypothesis Tracker (PMHT) [7].

Through straight-forward and well-known manipula-
tions, the joint probability of measurements and associ-
ations conditioned on target states can be written as:1

p(Zt,at|Xt) ∝
[

nt∏

i=1

(
Pd(xi

t)p(zai
t

t |xi
t)

λfa(z
ai

t
t )

)θd(ai
t)

·

· (1 − Pd(xi
t))

1−θd(ai
t)

]
ψc(at) (1)

where at = (a1
t , . . . , a

nt
t ), θd(ai

t) is the detection flag:

θd(ai
t) =

{
0, ai

t = 0
1, ai

t �= 0

and ψc(at) is the global consistency constraint

ψc(at) =

{
0, ∃ i, j ∈ {1, . . . , nt} s.t. ai

t = aj
t �= 0

1, otherwise

The proportionality in Eq. (1) is with respect to all
parameters other than the number of observations and
observation values (both of which are constants at run-
time).

1Abusing notation, we set f(za)0 = 1 even when za is unde-
fined (i.e., when a = 0).

2.2 Graphical models

Graphical models [8, 9, 10] aim to represent and ma-
nipulate the joint probability distributions of many
variables efficiently by exploiting factorisation. The
Kalman filter [11] and the hidden Markov model
(HMM) [12] are two examples of algorithms that exploit
sparsity of a particular kind (i.e., a Markov chain) to
efficiently conduct inference on systems involving many
probability variables. Inference methods based on the
graphical model framework generalise these algorithms
to a wider variety of state spaces and dependency struc-
tures.

Graphical model methods have been developed for
undirected graphical models (Markov random fields),
directed graphical models (Bayes nets) and factor
graphs. We prefer factor graphs [13] as they provide
the most expressive form of characterisation of the de-
pendency structure. In the general case, we have nodes
(i.e., random variables) n ∈ N , and factors (i.e., de-
pendencies) f ∈ F , where each f is equipped with a set
of neighbouring nodes, ηf ⊆ N . The joint distribution
is factored as:

p(xN ) ∝
∏

n∈N
ψn(xn)

∏

f∈F
ψf (xηf

)

The functions ψ·(·) collectively represent the joint prob-
ability distribution. For example, a Markov chain in-
volving variables (x1, . . . , xn) may be formulated using
a factor ψ1(x1) = p(x1) for the initial prior, and factors
ψk−1,k(xk−1, xk) = p(xk|xk−1), k ∈ {2, . . . , n} repre-
senting the Markov transition kernels, although many
other formulations are possible. Optimal inference can
be conducted on tree-structured factor graphs using be-
lief propagation (BP). BP proceeds by passing messages
between nodes and factors. We denote by µn→f (xn) the
message sent from node n ∈ ηf to factor f , by µf→n(xn)
the message sent from factor f to node n ∈ ηf and by
ηn = {f ∈ F|n ∈ f} the factors involving node n. The
iterative update equations are then:

µn→f (xn) = ψn(xn)
∏

ξ∈ηn\{f}

µξ→n(xn) (2)

µf→n(xn) =
∫

ψf (xηf
)

∏

ξ∈ηf\{n}

µξ→f (xξ)dxηf\{n}

(3)

where the integral in Eq. (3) is taken over the appro-
priate measure, i.e., a counting measure for discrete
components, and a Lebesgue measure for continuous
components. At convergence, the marginal distribution
at a node n can be calculated as:

p(xn) ∝ ψn(xn)
∏

ξ∈ηn

µξ→n(xn) (4)

In the case of a Markov chain, if all nodes are jointly
Gaussian, then BP is equivalent to a Kalman smoother.



Similarly, if all nodes are discrete, then BP is equivalent
to inference on an HMM using the forwards-backwards
algorithm. BP extends each of these algorithms from
chains to trees.

BP may be applied to loopy graphs (so-called loopy

belief propagation). Practically, this simply involves re-
peated application of Eqs. (2) and (3) until convergence
occurs (i.e., until the maximum error between subse-
quent messages is less than a pre-set threshold). Un-
fortunately, this is neither guaranteed to converge to
the right answer, nor to converge at all, although re-
markable performance has been demonstrated in var-
ious applications [14]. Conceptually, one can always
convert an arbitrary loopy graph to a tree by merging
nodes (so-called junction tree representations [8]), but
in practical problems, the dimensionality of the agglom-
erated variables may be prohibitive.

BP may also be applied to different probability dis-
tributions. In a graph involving a combination of dis-
crete and Gaussian nodes and factors, all continuous
messages will assume the form of Gaussian mixtures.
Particle BP [15] extends particle filtering methods from
Markov chains to general graphical models.

3 Graphical model data associa-

tion

In this section, we construct graphical model formula-
tions of the data association problem described in Sec-
tion 2.1, thus permitting us to solve data association
problems using the machinery described in Section 2.2.
The formulations are shown in Fig. 1. In the follow-
ing sections, we define the factors and write equivalent
forms of Eq. (1) which respect the corresponding graph
structures.

We do not include graph nodes for measurements in
any of the graphs in Fig. 1. Since they are known at
run-time, they do not need to be explicitly represented
as nodes. Rather, the graph directly represents the con-
ditional dependency structure, conditioned on the mea-
surements, and the measurements appear as parameters
in the factors in the graph.

3.1 Target oriented

First, we study the target oriented formulation, shown
in Fig. 1(a). The constraint that each target gives
rise to at most one measurement is implicit in the al-
phabet of the association variables ai

t. The constraint
that each measurement corresponds to at most one tar-
get is explicitly enforced by the consistency constraints
ψc1(ai

t, a
j
t ). Assuming that the prior distribution of Xt

factorises into a product of terms in each target xi
t, we

can write the Bayes update using Eq. (1) as

p(Xt,at|Zt) ∝
nt∏

i=1



ψp(xi
t, a

i
t)

nt∏

j=i+1

ψc1(ai
t, a

j
t )



 (5)

Figure 1: Target-oriented and hybrid formulations of
the data association problem using graphical models.

where

ψp(xi
t, a

i
t) =






[1 − Pd(xi
t)]p(xi

t|Zt−1), ai
t = 0

Pd(xi
t)p(z

ai
t

t |xi
t)p(xi

t|Z
t−1)

λfa(z
ai

t
t )

, ai
t �= 0

(6)

ψc1(ai
t, a

j
t ) =

{
0, ai

t = aj
t �= 0

1, otherwise
(7)

This expression respects the graph structure of
Fig. 1(a), i.e., the expression is made up of factors that
appear in the graph, involving variables to which the
respective factors in the graph are connected.

If the consistency constraint factors ψc1(ai
t, a

j
t ) are

omitted from Fig. 1(a), the resulting association
weights (i.e., the marginal probabilities of ai

t) are equiv-
alent to the weights calculated by Probabilistic Data
Association (PDA) [16]. Armed with our graphical for-
mulation, the JPDA weights can be calculated by ap-
plying classical graph inference methods. As gating will
generally restrict each target to associate with a small
number of measurements, consistency constraint fac-
tors ψc1(ai

t, a
j
t ) only need to be incorporated between

targets (i, j) that may possibly associate with the same
measurement. The resulting sparsity can be exploited
by the junction tree method [8] to calculate the ex-
act marginal probabilities of the association weights ai

t

in the presence of the consistency constraints. This
can be implemented very easily using freely available



libraries such as libDAI [17], taking as an input the
PDA weights and the constraint tables ψc1(ai

t, a
j
t ); the

result is quite similar to the fast mutual exclusion al-
gorithm of [18, 19]. The disadvantage of the method is
that its complexity is exponential in the width of the
junction tree. Consequently, its computational com-
plexity is problematic when many targets may share
observations.

Alternatively, and somewhat näıvely, we may sim-
ply apply loopy BP. As we will see (in Section 4.1),
the performance obtained by applying this approximate
method to the present graph is somewhat disappoint-
ing. This is not surprising, given that all association
variables are connected to each other, such that they
form a large clique. The hybrid model described in Sec-
tion 3.2 obtains much better performance with loopy
BP.

3.2 Hybrid

The hybrid formulation is shown in Fig. 1(b). In
this case, the constraints that each measurement cor-
responds to at most one target and each target gives
rise to at most one measurement are both implicit in
the alphabets of the respective association variables,
ai

t and bj
t . The constraint factors ψi,j

c (ai
t, b

j
t ) enforce

consistency of the representations, i.e., that the redun-
dant association variables ai

t and bj
t describe the same

association configuration. The definition of the factor
ψp(xi

t, a
i
t) is unchanged from Eq. (6), while the new

constraint factor ψi,j
c (ai

t, b
j
t ) is

ψi,j
c (ai

t, b
j
t ) =

{
0, ai

t = j, bj
t �= i or bj

t = i, ai
t �= j

1, otherwise
(8)

so that we can write Eq. (1) as

p(Xt,at|Zt) ∝
nt∏

i=1



ψp(xi
t, a

i
t)

mt∏

j=1

ψi,j
c (ai

t, b
j
t )



 (9)

When an optimal inference algorithm is applied to this
model, the result will be identical to the exact result ob-
tained from the target oriented model; the formulation
enforces constraints in a different (but equivalent) man-
ner. However, as we will see, approximate algorithms
may obtain quite different results.

The recent work [20] proves that loopy max-product
BP applied to a minor variation of the hybrid graph in
Fig. 1(b) is guaranteed to converge to the MAP assign-
ment.2 While this guarantee does not extend to the
use of loopy sum-product BP in finding marginal asso-
ciation weights, the experiments detailed in Section 4.1
demonstrate its remarkable performance when applied
to the hybrid formulation.

2assuming uniqueness of the optimum.

3.3 Multiple scans/sensors

The formulations described so far have concentrated
on the problem that exists within a single time step.
Extension to multiple time steps and/or multiple sen-
sors simply involves a replication of the nodes for each
time step, connecting the target states over time with
factors that encode the Markov transition kernel.3 In
many tracking problems, the resulting graph will be
mixed discrete-Gaussian, so that the messages sent be-
tween continuous nodes (and from discrete to contin-
uous) are in the form of Gaussian mixtures. In our
experiments, we approach this by marginalising over
the continuous target states. When marginalising vari-
ables in a graphical model, we must connect all of the
variables’ neighbouring factors to all of those factors’
other neighbours. The result is a purely discrete graph
which contains for each target an augmented associa-
tion variable ai = (ai

t−s+1, . . . , a
i
t) that hypothesises a

sequence of associations over all s scans in considera-
tion. These augmented association variables are con-
nected to sets of measurement association variables for
each scan (using the hybrid formulation of Section 3.2).
In a sense this is equivalent to using Gaussian mixture
messages (as there is a bijection between augmented
target association variable values and Gaussian mixture
components), but options for message simplification are
somewhat more limited (essentially, only pruning may
be used). Experiments with formulations that either di-
rectly use Gaussian mixture messages, or so-called weak

marginalisation [10] are a subject of future work.
Max-product BP may also be performed on this

graph, resulting in an approximate algorithm for multi-
dimensional assignment. This is similar in concept to
[21], although the formulation therein assumes an ad-
ditive decomposition of association weights (as a sum
of pairwise distances), rather than the standard associ-
ation model that we utilise.

4 Experiments

We consider a scenario in which a group of nt tar-
gets travel in grid formation over a 2D planar field
with equidistant spacing between adjacent targets. The
state dynamics and target-derived measurement equa-
tions are

xi
t = Fxi

t−1 + wi
t, zi

t = Hxi
t + vi

t

where the state of each target xi
t, consists of position

and velocity in two dimensions, wi
t ∼ N{0,Q} and

vi
t ∼ N{0,R} are i.i.d. dynamics and measurement

noise processes respectively, H = [1 0] ⊗ I2, R = I2,

F =
[

1 T
0 1

]
⊗ I2 and Q = q

[
T T 2/2

T 2/2 T 3/3

]
⊗ I2.

3For the multiple sensor case, sets of association nodes for
each sensor are connected to the same set of target state nodes.
The target state prior p(xi

t|Zt−1) that is incorporated into
Eq. (6) is only included in the ψp(xi

t, a
i
t) factor for the first time

step/sensor.



The sample period T = 1 sec, q = 10−2, and I2 is a
2 × 2 identity matrix. Targets are detected with prob-
ability Pd = 0.6 (unless otherwise stated), and false
alarms are distributed uniformly in a 100 × 100 region
(which covers all targets), arriving according to a Pois-
son process where the expected total number is equal
to 0.1 (unless otherwise stated).4 State estimates and
covariances are initialised with values consistent with
those that would be obtained through a random pro-
cess involving five measurements at consecutive time
steps with no association uncertainty. For each exper-
iment, 1000 Monte Carlo runs were performed. The
libDAI [17] implementation of loopy BP was used with
parallel updates, a convergence threshold of 10−6 and
a maximum of 1000 iterations.

4.1 Single scan

4.1.1 Marginal association probability errors

We first consider a scenario involving six targets4 in a
regular 2 × 3 grid. We vary the spacing between the
targets and examine the behaviour of our approximate
algorithms, comparing the marginal association weights
calculated to the exact JPDA weights. We examine the
average maximum association weight error per target
for the target-oriented formulation (Section 3.1) and
the hybrid formulation (Section 3.2). We also show
the error in the PDA weights (i.e., the weights calcu-
lated ignoring consistency constraints) for reference, as
a gauge of the degree of interaction between targets,
and hence of the difficulty of the scenario.

Results of experiments with probability of detection
Pd = 0.3, 0.6 and 0.9 are shown in Fig. 2(a-c,f-h,k-m).
The plots of the average maximum association proba-
bility error per target in (a-c) demonstrate that, while
the target-oriented formulation of Section 3.1 (dashed
line) commits errors of the same order of magnitude as
PDA (dot-dashed line), the errors in the weights cal-
culated by the hybrid formulation of Section 3.2 (solid
line) are quite small. For Pd = 0.9 the errors are rea-
sonably small (≤ 0.083), but for lower Pd, they are
remarkably small (≤ 0.026 for Pd = 0.6, and ≤ 0.006
for Pd = 0.3). The results of experiments with an in-
creased false alarm rate (from λfa = 0.1 to λfa = 1
and λfa = 2) with Pd = 0.9 are shown in Fig. 2(d-
e,i-j,n-o). The results show that the accuracy of the
approximate weights calculated by the hybrid formula-
tion improves as the false alarm rate increases (error
≤ 0.072 for λfa = 1 and ≤ 0.068 for λfa = 2).

One factor which acts to reduce coupling in the graph
(and hence reduce errors) is the “missed detection”
events, under which there is no competition between
targets for measurements. These events are more prob-
able when Pd is lower, and when λfa is higher. Ac-
cordingly, as demonstrated in the results, the BP-based

4This relatively small number was chosen to permit calcula-
tion of the exact weights (for comparison) in reasonable time.

algorithm can be expected to produce better approxi-
mations of association weights in challenging tracking
environments, i.e., those involving lower probability of
detection and/or higher false alarm rates.

The plots in Fig. 2(f-j) show the percentage of cases
in which loopy BP converges, while (k-o) show the av-
erage number of iterations (excluding non-convergent
cases). The results show that, while the target-oriented
formulation exhibits significant difficulties with non-
convergence, the hybrid formulation converges very re-
liably (100% and ≥ 97.6% of trials) for Pd = 0.3 and
0.6. While convergence is less reliable (≥ 46.4% of tri-
als) for Pd = 0.9, the average error differs little between
cases that converge and those that do not, so the oscil-
lation that is occurring would appear to be between rea-
sonably good solutions. With higher false alarm rates
(and Pd = 0.9), the hybrid formulation converges very
reliably (≥ 99.6% and 100% of trials for λfa = 1 and
λfa = 2 respectively). No attempt was made to employ
BP convergence aids such as damped updates.

Given the significant performance advantage of the
hybrid formulation over the target-oriented formula-
tion, the subsequent experiments employ it exclusively.
The marked difference in the performance of the target
oriented formulation and the hybrid formulation raises
the question of whether there may be structures in-
volving further redundancy that provide additional in-
creases in performance; this is a topic of future study.

4.1.2 Scalability of loopy BP method

Our second experiment examines the scalability of our
proposed method by calculating association weights for
a square grid of between 2× 2 and 10× 10 targets (i.e.,
between four and 100 targets), with a spacing of four
units. Gating is applied conservatively such that a fac-
tor is not incorporated between a target and a measure-
ment if the PDA weight is less than 10−6 (the alphabet
of the measurement association variable is constrained
accordingly). In the 10× 10 target case, the maximum
number of measurements to which a target is connected
is 11.3 on average (averaging over the 1000 Monte Carlo
trials), and the targets are connected to 6.3 measure-
ments on average (averaging over targets and Monte
Carlo trials). This level of connectivity across a dense
grid is unable to be addressed by any exact method.

Fig. 2(p) shows the average True Measurement Prob-
ability (TMP), i.e., the marginal weight of the correct
association for the target, for different problem sizes
(solid line), and the average number of iterations to con-
vergence (solid line with crosses). The diagram shows
that the quality of the solution suffers little degrada-
tion as the problem size increases, and that the num-
ber of iterations required grows at a relatively slow rate.
Asymptotically, we expect that this will level out to a
constant value as the number of targets exceeds the
graph connectivity, e.g., since associations of distant



targets are of little consequence. Loopy BP converged
in all trials and all network sizes.

The average run time for the 100 target scenario
was 19.4 sec. Without gating, there are nt × mt fac-
tors, each of which involves computation (when imple-
mented using a general-purpose inference library) of
(nt + 1) × (mt + 1) elements. Our näıve implemen-
tation with conservative gating involves (on average)
793 factors, each of which involves (on average) over
4900 elements. The number of factors can be reduced
by using a less conservative gating strategy (10−3 is a
more common threshold). The structure of the con-
straint matrices may also be exploited to obtain faster
run times; specifically, each target-measurement and
measurement-target message involves only two differ-
ent values. This is not exploited in our implementa-
tion, which utilises the general-purpose libDAI library,
such that all values are calculated independently. We
expect that an optimised, purpose specific implementa-
tion could speed computation by two orders of magni-
tude on the same hardware and using the same conser-
vative gating strategy. In an optimised implementation
(neglecting gating), each iteration of target association
variable to measurement association variable message
calculations will require (in total) 2ntm

2
t floating point

operations, while each iteration of measurement asso-
ciation variable to target association variable message
calculations will require 2n2

t mt operations. In addition
to these optimisations, the message passing structure
of BP lends itself to parallelisation, allowing for easy
exploitation of multi-core architectures (e.g., [22]).

4.2 Multiple scans

4.2.1 Marginal association weights

The experiment setup described in Section 4 was also
applied to scenarios involving two, three and four scans
of measurements (with six targets in a 2 × 3 grid,
spaced by four units). We apply loopy BP to the en-
tire graph (spanning multiple time steps) as described
in Section 3.3, comparing results to JPDA,5 in which
marginal weights for each target are calculated exactly
for each time step, and then propagated forward ap-
proximating the past joint association weights as the
product of the marginal weights for each target. The
computational complexity of an optimised implemen-
tation of this is approximately ntnh

∑t
k=t−s+1 mt and

n2
t

∑t
k=t−s+1 mt floating point operations (in total) for

each alternating iteration, where nh is the number of
(single target) association hypotheses per target. We
cannot solve for the optimal augmented (over time)

5Whereas standard JPDA approximates the posterior as a
unimodal Gaussian, we retain the full Gaussian mixture for each
target with the corresponding weights. Mixture reduction is ob-
viously necessary in practice; in this work we retain the full rep-
resentation in order to concentrate on the problem at hand, i.e.,
approximate inference of association weights.

weights in a problem of this size. BP failed to con-
verge in only 0, 1, 1 and 3 cases out of 1000 in the 1,
2, 3 and 4 scan experiments respectively. The average
number of iterations required was 24, 27, 31 and 28
respectively (excluding non-convergent cases).

Our results are shown in Fig. 2(q-t). The x and y
axes plot TMP in the final time step for loopy BP and
JPDA respectively. Intuitively, we expect that higher
TMP values represent better performance. Points to
the right of/below the x = y line on the plots represent
cases in which loopy BP yields a better result, while
points above/to the left of the x = y line represent
cases in which JPDA yields a better result. The plots
for the single scan case (Fig. 2(q)) reveal more about
the nature of the errors committed by loopy BP in the
experiments in the previous section. In this case, the
JPDA weights represent the exact marginal weights for
the scenario. In comparison, the BP result tends to
apply higher weight to the true measurement when its
weight is higher, and lower weight to the true measure-
ment when its weight is lower. The overall average error
is consistent with the result shown in Fig. 2(b). In the
2, 3 and 4 scan experiments in Fig. 2(r-t), there are
progressively fewer cases in which BP assigns a higher
weight to the true measurement, and a small number
of cases appear in which BP assigns very low weight
(e.g., ≈ 0.01) to the true hypothesis when JPDA as-
signs a greater value (e.g., ≈ 0.1 − 0.2). Consequently,
although BP yields a slightly higher (< 1%) mean TMP
in all experiments, it generally exhibits a slightly lower
(< 0.8%) mean log TMP, which is arguably the correct
measure for comparison. The erroneously low weights
are of practical importance as they would likely lead to
pruning of the correct hypothesis in a small proportion
of cases.

It is plausible that BP might be able to provide bet-
ter performance than JPDA over multiple time steps
as it is able to implicitly represent correlation between
target association events in earlier time steps. This im-
provement is not evident in this experiment. Rather it
seems that the strong loops that arise due to coupling
of time steps causes occasional anomalous behaviour.
Future work is required on this topic to examine the
causes of these effects, identify cases in which problems
are likely to occur, and develop alternative methods for
application in these cases.

4.2.2 Multi-dimensional assignment

As mentioned in Section 3.3, the max-product variant
of loopy BP can also be applied to find an approximate
MAP solution, i.e., an approximate solution to multi-
dimensional assignment problems. To demonstrate the
potential of the algorithm, we applied max-product BP
to the problem described in the previous section, and
compared to the optimal solution obtained using the
Matlab Optimization Toolbox. The results for 10, 000
Monte Carlo trials are summarised in Table 1.



# Scans Conv Feas Optimal # Iter
1 9995 10000 10000 9
2 9926 9938 9929 10
3 9941 9953 9935 10
4 9942 9953 9937 11

Table 1: Results of loopy max-product BP applied
to multi-dimensional assignment problems. Columns
show number of scans (i.e., number of dimensions in
assignment problem minus 1), number of Monte Carlo
trials (out of 10, 000) in which BP converged (we ex-
pect that all simulations in the one-scan case would
have converged if iteration was permitted to continue),
number of trials in which BP produced a feasible an-
swer (i.e., one which obeys the consistency constraints),
number of trials in which BP produced an optimal so-
lution (i.e., an objective within 10−6 of the integer pro-
gramming solution), and average number of iterations
required for BP to converge (excluding non-convergent
cases).

These results demonstrate the potential of loopy BP as
a viable alternative solution for multi-dimensional as-
signment problems. For example, even in a four scan
(5D) assignment problem, the optimal solution was
found in 99.4% of cases. Our future work on this prob-
lem includes testing the formulation in more stressing
scenarios, and applying Tree Re-weighted Max Product
(TRMP) [23], which can improve performance over max
product BP, and provide a “certificate of optimality” in
some circumstances.

5 Discussion

The experiments presented in Section 4 demonstrate
the remarkable performance of the hybrid graphical
model formulation of Section 3.2 for data association
problems. The experiments were designed to provide
challenging conditions involving a range of interaction
strengths and a large number of targets. The perfor-
mance of the graphical model-based method is clearly
impressive, especially in challenging environments, i.e.,
problems with low Pd and/or high false alarm rates.
This performance, coupled with the low order polyno-
mial complexity of the method, demonstrate that loopy
BP is a very attractive method for both calculation of
marginal association weights and multi-dimensional as-
signment.

Our future work includes comparing to existing ap-
proximate methods, incorporating varying and uncer-
tain target counts, and employing and/or developing
advanced inference methods to address the small pro-
portion of cases where performance is problematic.
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Figure 2: Results of computational experiments. (a-o) show the average maximum association weight error per
target, the average number of iterations and percentage of cases in which loopy BP converges for the experiments
in Section 4.1.1. The solid line shows the loopy BP hybrid formulation, the dashed line shows the loopy BP target-
oriented formulation, while the dot-dashed line shows the PDA weights (neglecting consistency constraints). (p)
shows the average marginal probability of the true measurement (or True Measurement Probability, TMP) with
an unmarked line and average number of iterations with a cross marked line for the scalability experiments
(Section 4.1.2). (q-t) show TMP for loopy BP (x axis) and JPDA (y axis) for experiments involving 1, 2, 3 and
4 scans of measurements (Section 4.2.1).


