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Abstract – A novel method of constructing a joint
PDF under H1, when the joint PDF under H0 is
known, is developed. It has direct application in dis-
tributed detection systems. The construction is based
on the exponential family and it is shown that asymp-
totically the constructed PDF is optimal. The general-
ized likelihood ratio test (GLRT) is derived based on this
method for the partially observed linear model. Interest-
ingly, the test statistic is equivalent to the clairvoyant
GLRT, which uses the true PDF under H1, even if the
noise is non-Gaussian.
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1 Introduction
Data fusion or sensor fusion in distributed detection
systems has been widely studied over the years. By
combining the data from different sensors, better per-
formance can be expected than using a single sensor
alone. The optimal detection performance can be ob-
tained if the joint probability density function (PDF)
of the measurements from different sensors under each
hypothesis is completely known. However in practice,
this joint PDF is usually not available. So a key is-
sue in this area is how to construct the joint PDF of
the measurements from different sensors. One common
approach is to assume that the measurements are inde-
pendent [1], [2]. This approach has been widely used
due to its simplicity, since the joint PDF is then the
product of the marginal PDFs. This leads to the prod-
uct rule in combining classifiers, and it is effectively
a severe rule as stated in [3] that “it is sufficient for
a single recognition engine to inhibit a particular in-
terpretation by outputting a close to zero probability
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08-P-1214.

for it”. Moreover, the independence is a strong as-
sumption and the measurements can be correlated in
many cases. The dependence between measurements
has been considered in [4, 5, 6]. A copula based frame-
work is used in [4, 5] to estimate the joint PDF from the
marginal PDFs. The exponentially embedded families
(EEFs) are proposed in [6] to asymptotically minimize
the Kullback-Leibler (KL) divergence between the true
PDF and the estimated one.

Note that all the above methods are based on the
assumption that we know the marginal PDFs of the
measurements. But in many cases, the marginal PDFs
may not be available or accurate. This could happen
when we do not have enough training data. In this pa-
per, we will present a new way of constructing a joint
PDF without the knowledge of marginal PDFs but only
a reference PDF. The constructed joint PDF takes the
form of the exponential family and the maximum like-
lihood estimate (MLE) of the unknown parameters can
be easily solved based on the exponential family. Since
there is no Gaussian distribution assumption on the
reference PDF, this method can be very useful when
the underlying distributions are non-Gaussian. In the
examples when we apply this method to the detection
problem, under some conditions, the detection statis-
tics can be shown to be the same as the the clairvoyant
generalized likelihood ratio test (GLRT), which is the
test when the true PDF under H1 is known except for
the usual unknown parameters.

The paper is organized as follows. Section 2 formu-
lates the detection problem. The construction of the
joint PDF is presented and is applied to the detection
problem in Section 3. The KL divergence between the
true PDF to the constructed PDF is examined in Sec-
tion 4. We give two examples in Section 5. In Section
6, some simulation results are shown. Conclusions are
given in Section 7.
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2 Problem Statement
Consider the detection problem when we observe the
outputs of two sensors, T1(x) and T2(x) which are
transformations of the underlying samples x that are
unobservable (see Figure 1). All the results are valid
for any number of sensors. We just choose two for
simplicity. Assume that we have enough training data
T1i

(x)’s and T2i
(x)’s under H0 when there is no signal

present. Hence we have a good estimate of the joint
PDF of T1 and T2 under H0 (see [7]), and thus we as-
sume pT1,T2(t1, t2;H0) is completely known. Under H1

when a signal is present, we may not have enough train-
ing data to estimate the joint PDF under H1. So our
goal is to construct an appropriate pT1,T2(t1, t2;H1)
and use it for detection. Since pT1,T2(t1, t2;H1) can-
not be uniquely specified based on pT1,T2(t1, t2;H0),
we need the following reasonable assumptions to con-
struct the joint PDF.

1) Under H1 the signal is small and thus
pT1,T2(t1, t2;H1) is close to pT1,T2(t1, t2;H0).

2) pT1,T2(t1, t2;H1) depends on signal parameters
θ so that

pT1,T2(t1, t2;H1) = pT1,T2(t1, t2;θ)

and
pT1,T2(t1, t2;H0) = pT1,T2(t1, t2;0)

Note that since θ represents signal amplitudes, θ �= 0
under H1. Therefore, the detection problem is

H0 : θ = 0

H1 : θ �= 0

3 Construction of Joint PDF for
Detection

To simplify the notation, let

T =
[

T1

T2

]

so that the joint PDF pT1,T2(t1, t2;θ) can be written
as pT(t;θ). Since we assume that ||θ|| is small, we
expand the log-likelihood function using a first order
Taylor expansion.

ln pT(t;θ) = ln pT(t;0)+θT ∂ ln pT(t;θ)
∂θ

∣∣
θ=0 +o(||θ||)

(1)
We omit the o(||θ||) term but in order for pT(t;θ) to
be a valid PDF, we normalize the PDF to integrate to
one as

pT(t;θ)

= exp
[
θT ∂ ln pT(t;θ)

∂θ

∣∣
θ=0 − K(θ) + ln pT(t;0)

]

(2)

Sensor 1 Sensor 2

Central
Processor

T1(x) T2(x)

Area of 
Interest

pT1,T2(t1,t2;H0)

H0 or H1 ? 

Figure 1: Distributed detection system with two sensors

where

K(θ) = lnE0

[
exp

(
θT ∂ ln pT(t;θ)

∂θ

∣∣
θ=0

)]
(3)

Here E0 denotes the expected value under H0.
Next we assume that the sensor outputs are the score

functions, i.e.,

t =
∂ ln pT(t;θ)

∂θ

∣∣
θ=0

(4)

and are sufficient statistics for the constructed PDF un-
der H1. This will be true if pT(t;θ) is in the exponential
family with

pT(t;θ) = exp
[
θT t − K(θ) + ln pT(t;0)

]
(5)

where
K(θ) = lnE0

[
exp

(
θT T

)]
(6)

and E0(T) = 0. This can be easily verified since by
(5), we have

∂ ln pT(t;θ)
∂θ

∣∣
θ=0

= t − ∂K(θ)
∂θ

∣∣
θ=0

and
∂K(θ)

∂θ

∣∣
θ=0 = E0(T)



as well known properties of the exponential family.
Note that even if E0(T) �= 0, we still have

t − E0(T) =
∂ ln pT(t;θ)

∂θ

∣∣
θ=0

We can use t − E0(T) instead of t as the sensor out-
puts and hence still satisfy (4) and (5). As a result, we
will use (5) as our constructed PDF. This implies that
t is a sufficient statistic for the constructed exponential
PDF, and hence this PDF incorporates all the sensor
information. Note that if T1, T2 are statistically de-
pendent under H0, they will also be dependent under
H1. Also note that only pT(t;0) is required in (5). It is
assumed in practice that this can be estimated or found
analytically [7] with reasonable accuracy.

Since θ is unknown, the GLRT is used for detec-
tion [8]. We want to maximize pT(t;θ) or ln pT(t;θ)

pT(t;0) =

θT t − K(θ) over θ. This is a convex optimization prob-
lem since K(θ) is convex by Holder’s inequality [9].
Hence many convex optimization techniques can be uti-
lized [10, 11]. By taking the derivative with respect to
θ, the MLE of θ is found by solving

t =
∂K(θ)

∂θ
(7)

Also because K(θ) is convex, the MLE θ̂ is unique.
Then we decide H1 if

ln
pT(t; θ̂)
pT(t;0)

= θ̂
T
t − K(θ̂) > τ (8)

where τ is a threshold.

4 KL Divergence Between The
True PDF and The Con-
structed PDF

The KL divergence is a non-symmetric measure of dif-
ference between two PDFs. For two PDFs p1 and p0,
it is defined as

D (p1 ‖p0 ) =
∫

p1(x) ln
p1(x)
p0(x)

dx

It is well known that D (p1 ‖p0 ) ≥ 0 with equality if
and only if p1 = p0 [12]. By Stein’s lemma [13], the
KL divergence measures the asymptotic performance
for detection.

It can be shown that pT(t; θ̂) is the optimal under
both hypotheses. That is, if it is under H0, pT(t; θ̂) =
pT(t;0) asymptotically, and if it is under H1, pT(t; θ̂)
is asymptotically the closest to the true PDF in KL
divergence. Similar results and arguments have been
shown in [6, 14].

5 Examples
In this section, we will apply the the constructed PDF
of (5) to some detection problems. We will start with
the simple case with Gaussian noise, and then we will
extend the result to the more general case with Gaus-
sian mixture noise.

5.1 Partially Observed Linear Model
with Gaussian Noise

Suppose we have the linear model with

x = Hα + w (9)

with

H0 : α = 0

H1 : α �= 0

where x is an N × 1 vector of the underlying unobserv-
able samples, H is an N × p observation matrix with
full column rank, α is an p × 1 vector of the unknown
signal amplitudes, and w is an N × 1 vector of white
Gaussian noise with known variance σ2. We observe
two sensor outputs

T1(x) = HT
1 x

T2(x) = HT
2 x (10)

where T1 and T2 could be any subset of columns of
H. Note that [H1,H2] does not have to be H. This
model is called a partially observed linear model. Note
that a sufficient statistic is HT x, so there is some in-
formation loss over the case when x is observed, unless
H = [H1,H2].

Let G = [H1,H2], then we have

T =
[

T1(x)
T2(x)

]
=

[
HT

1 x
HT

2 x

]
= GT x (11)

Therefore, T is also Gaussian with PDF

T ∼ N
(
0, σ2GT G

)
under H0

and T1, T2 are seen to be correlated for HT
1 H2 �= 0.

As a result, we construct the PDF as in (5) with

K(θ) = ln E0

[
exp

(
θT T

)]
=

1
2
σ2θT GT Gθ (12)

Note that θ is the vector of the unknown parameters
in the constructed PDF, and it is different from the
unknown parameters α in the linear model.

By (7) and (12), the MLE of θ satisfies

t =
∂K(θ)

∂θ
= σ2GT Gθ

So
θ̂ =

1
σ2

(
GT G

)−1
t



and the test statistic becomes

θ̂
T
t − K(θ̂) =

1
2σ2

tT
(
GT G

)−1
t (13)

Next we consider the clairvoyant GLRT. That is the
GLRT when we know the true PDF of T under H1

except for the underlying unknown parameters α. From
(11) we know that

T ∼ N
(
GT Hα, σ2GT G

)
under H1

We write the true PDF under H1 as pT(t;α). The
MLE of α is found by maximizing

ln
pT(t;α)
pT(t;0)

= − 1
2σ2

(
t − GT Hα

)T (
GT G

)−1 (
t − GT Hα

)

+
1

2σ2
tT

(
GT G

)−1
t

Let t be q×1. If q ≤ p, i.e., the length of t is less than
the length of α, then the MLE α̂ may not be unique.
Since

(
t − GT Hα

)T (
GT G

)−1 (
t − GT Hα

)
≥ 0, we

could always find α̂ such that t = GT Hα̂ and hence(
t − GT Hα̂

)T (
GT G

)−1 (
t − GT Hα̂

)
= 0. Hence the

clairvoyant GLRT statistic becomes

ln
pT(t; α̂)
pT(t;0)

=
1

2σ2
tT

(
GT G

)−1
t

which is the same as the GLRT on our constructed PDF
(see (13)) when q ≤ p.

5.2 Partially Observed Linear Model
with Non-Gaussian Noise

The partially observed linear model remains the same
as in the previous subsection except instead of assuming
that w is white Gaussian, we will assume that w has
a Gaussian mixture distribution with two components,
i.e.,

w ∼ πN (0, σ2
1I) + (1 − π)N (0, σ2

2I) (14)

where π, σ2
1 and σ2

2 are known (0 < π < 1). The
following derivation can be easily extended when w ∼∑L

i=1 πiN (0, σ2
i I).

Since w has a Gaussian mixture distribution, T =
GT x is also Gaussian mixture distributed and

T ∼ πN (0, σ2
1G

T G)+(1−π)N (0, σ2
2G

T G) under H0

It can be shown that the GLRT statistic is

max
θ

[
θT t − ln

(
πe

1
2 σ2

1θ
T
GT Gθ + (1 − π)e

1
2 σ2

2θ
T
GT Gθ

)]
(15)

Although no analytical solution of the MLE of θ ex-
ists, it can be found using convex optimization tech-
niques [10, 11]. Moreover, an analytical solution exists
as ||θ|| → 0. It can be shown that

θ̂ =
1

πσ2
1 + (1 − π)σ2

2

(
GT G

)−1
t (16)

and the GLRT statistic becomes

1
2 (πσ2

1 + (1 − π)σ2
2)

tT
(
GT G

)−1
t (17)

as ||θ|| → 0.
The clairvoyant GLRT statistic can be shown to be

equivalent to
tT

(
GT G

)−1
t (18)

when q ≤ p. Hence the clairvoyant GLRT coincides
with the GLRT using the constructed PDF as ||θ|| → 0.

Note that the noise in (14) is uncorrelated but not
independent. We consider a general case when the noise
can be correlated with PDF

w ∼ πN (0,C1) + (1 − π)N (0,C2) (19)

It can be shown that for the GLRT using the con-
structed PDF, the test statistic is

max
θ

[
θT t − ln

(
πe

1
2θ

T
GT C1Gθ + (1 − π)e

1
2θ

T
GT C2Gθ

)]
(20)

and the clairvoyant GLRT statistic is

− ln

(
π

det1/2 (C1)
exp

[
−1

2
tT

(
GT C1G

)−1
t
]

+
1 − π

det1/2 (C2)
exp

[
−1

2
tT

(
GT C2G

)−1
t
])

(21)

when q ≤ p.

6 Simulations
Since the GLRT using the constructed PDF coincides
with the clairvoyant GLRT under Gaussian noise as
shown in subsection 5.1, we will only compare the
performances under non-Gaussian noise (both uncor-
related noise as in (14) and correlated noise as in (19)).

Consider the model where

x[n] = A1 + A2r
n + A3 cos(2πfn + φ) + w[n] (22)

for n = 0, 1, . . . , N − 1 with known r and frequency f
but unknown amplitudes A1, A2, A3 and phase φ. This
is a linear model as in (9) where

H =

⎡
⎢⎢⎢⎣

1 1 1 0
1 r cos(2πf) sin(2πf)
...

...
...

...
1 rN−1 cos(2πf(N − 1)) sin(2πf(N − 1))

⎤
⎥⎥⎥⎦

and α = [A1, A2, A3 cos φ,−A3 sinφ]T .
Let w have an uncorrelated Gaussian mixture dis-

tribution as in (14). For the partially observed linear
model, we observe two sensor outputs as in (10). We
compare the GLRT in (15) with the clairvoyant GLRT



in (18). Note that the MLE of θ in (15) is found nu-
merically, not by the asymptotic approximation in (16).
In the simulation, we use N = 20, A1 = 2, A2 = 3,
A3 = 4, φ = π/4, r = 0.95, f = 0.34, π = 0.9, σ2

1 = 50,
σ2

2 = 500, and H1 and H2 are the first and third
columns in H respectively, i.e., H1 = [1, 1, . . . , 1]T ,
H2 = [1, cos(2πf), . . . , cos(2πf(N −1))]T . As shown in
Figure 2, the performances are almost the same which
justifies their equivalence under small signals assump-
tion shown in Section 5.
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Figure 2: ROC curves for the GLRT using the con-
structed PDF and the clairvoyant GLRT with uncorre-
lated Gaussian mixture noise.

Next for the same model in (22), let w have a cor-
related Gaussian mixture distribution as in (14). We
compare performances of the GLRT using the con-
structed PDF as in (20) and the clairvoyant GLRT
as in (21). We use N = 20, A1 = 3, A2 = 4,
A3 = 3, φ = π/7, r = 0.9, f = 0.46, π = 0.7, H1 =
[1, 1, . . . , 1]T , H2 = [1, cos(2πf), . . . , cos(2πf(N−1))]T .
The covariance matrices C1, C2 are generated using
C1 = RT

1 × R1, C2 = RT
2 × R2, where R1, R2 are

full rank N × N matrices. As shown in Figure 3, the
performances are still very similar.

7 Conclusions

A novel method of combining sensor outputs for de-
tection based on the exponential family has been pro-
posed. It does not require the joint PDF under H1. The
constructed PDF has been shown to be optimal in KL
divergence. The GLRT statistic based on this method
can be shown to be equivalent to the clairvoyant GLRT
statistic for the partially observed linear model with
both Gaussian or non-Gaussian noise. The equivalence
is also shown in simulations.
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Figure 3: ROC curves for the GLRT using the con-
structed PDF and the clairvoyant GLRT with corre-
lated Gaussian mixture noise.
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