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Abstract - The goal of Combat Identification (CID), and 
as well, Situational Awareness (SA), is to combine data 
and information at the appropriate information 
representation in order to declare a positive ID according 
to a classification structure. CID includes the ultimate 
determination of the intent and prediction of future 
actions of an object or entity via the establishment of 
tactical knowledge. To facilitate CID, we utilize the 
concept of conceptual spaces to represent cooperative 
and non-cooperative CID. The Choquet integral 
combined with Bayes risk enables methods that provide a 
statistical approach to adversary intent prediction 
through the CID knowledge spaces. The use of the 
Choquet Integral for CID is applied in the context of a 
Maritime Domain Awareness (MDA) example. 
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1 Introduction 
What is tactical knowledge? First knowledge can be 
defined and applied to situations where small scale 
knowledge (tactical information) relates to a larger 
purpose (strategic operations). One can then leverage a 
definition from Kessler and White [1] who utilized 
business logic from Davenport and Prusek [2] to provide a 
common reference frame. Therefore, knowledge can be 
defined as “a fluid mix of framed experience, values, 
contextual information, and expert insight that provides a 
framework for evaluating and incorporating new 
experiences and information”. One can note four themes 
of knowledge representation that includes information 
(what), context (when/where), evaluation (how), and 
expert users (who).  
 
Knowledge representation may vary over new information 
and reasoning as well as the data representation which is 
important for tactical awareness. Difficulties arise over 
uncertain events. The Choquet integral can be useful for 
defining the likelihood of an uncertain event. Using the 
Choquet integral constructs for achieving tactical 
knowledge representation has these proposed benefits: 
 

• Provides contextual stability and maintainability 
through additive capacities 

• Provides contextual substance and meaning to new 
information 

• Helps avoid contextual errors through top-down set 
based integration of information 

• Provides confidence in decision-making through 
likelihood calculations 

• Enables accurate and reliable decision-making over 
uncertain events 

• Bounds the expectation through lower and upper 
threshold margins 

 
Knowledge representation is ultimately a cognitive 
construct that a human achieves through a variety of 
mechanisms. Mostly, the human mind processes 
abstractions of information, often represented in some 
form of a spatial-temporal construct. The spatial-temporal 
approach to knowledge representation is discussed by 
Hawkins and Blakeslee in their recent book On 
Intelligence [3]. The human brain is not a number-
crunching machine, rather Hawkins proposes that it stores 
memories, builds models of the world, and performs 
pattern associations. Maney [4] indicates that humans then 
use these models to make predictions based on a mental 
model. Each person utilizes their “tactical” model that 
forms a strategic understanding of the tactical domain.). 
 
We propose that the usefulness of the Choquet integral, 
specifically the expansion provided by Warren [5], via 
cooperative, unintentionally cooperative, and non-
cooperative object threat identification of moving targets, 
for intent assessment. Through the examples using the 
Choquet Integration Function (CIF), we show that a 
measure of information inconsistency between imprecise 
knowledge information can be determined and is related 
to a Bayes’ risk. 

2 Conceptual Spaces 
The context to place the idea of knowledge representation 
may be with the use of conceptual spaces. The concept of 
a conceptual space was pioneered by Gärdenfors [6]. 
Gärdenfors explains that there are two overarching goals 
in cognitive science. One is explanatory – the study of 
humans and animals to formulate theories of cognition. 
The other is constructive – the building of artifacts that 
can accomplish cognitive tasks (e.g. IBM’s Deep Blue 
supercomputer that played chess against Garry Kasparov). 
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For both explanatory and constructive goals, the issue is 
how the representations of knowledge (i.e. tactical 
constructs) are used by and modeled within a cognitive 
system. 
 
Conceptual spaces are constructed from geometrical 
representations based on a number of quality dimensions 
that make up the space. As Gärdenfors illustrates for the 
conceptual space of taste, there are four quality 
dimensions (e.g. a four dimensional space) which includes 
salt, sweet, sour, and bitter. The taste dimensions are 
represented by the Henning taste tetrahedron in Figure 1 
[7] as given by Gärdenfors. 
 

 
 

Figure 1. Quality Dimensions for Taste 

Gärdenfors further posits that the conceptual space S can 
be established by a class of quality dimensions D1,…,Dn; 
where S is represented by a vector v equal to <d1,…,dn>. 
Each dimension then has certain topological structure. The 
use of partitioning the conceptual space into dimensions is 
similar to the work of the work of Lorenz and Biermann 
[8], and Schuck and Hunter [9]. 
 
The equivalent diagram to the Henning Taste Tetrahedron 
for tactical information entities to identify a moving target 
from cooperative and non-cooperative ID sensing is 
shown in Figure 2. 
 

 
 

Figure 2. Quality Dimensions for Combat Identification 

These four quality dimensions consist of kinematics, 
cooperative information (e.g. Identification Friend-or-Foe 
(IFF)), unintentionally cooperative information (e.g. 
Electronic Support (ES)), and non-cooperative 
information (e.g. High Range Resolution (HRR) Radar). 
Kinematics is the envelope of possible object position 
states, velocities, and accelerations. Persistent IFF, such as 
used for air traffic control (ATC) is considered 
cooperative information because the information source 
willingly discloses information about itself to a requestor. 
ES is considered to be unintentionally cooperative 
information because the information source, in the course 
of its normal operations, unknowingly discloses 
information about its identity based on the characteristics 
of its emissions. Non-cooperative information (often 
termed Non-Cooperative Target Recognition (NCTR)) 
requires no cooperation from an information source other 
than its physical existence in order to derive features 
associated with its identity. The evidence from the CID 
quality dimensions can contribute to the original Joint 
Directors of Laboratories (JDL) model [10, 11, 12] 
definitions of object refinement of an object (F-16, tank, 
Airbus A300, small boat, etc.), the situation refinement of 
it (Friend, Hostile, Neutral, etc.), and ultimately the threat 
refinement (representing the knowledge of the object’s 
intentions and capabilities) [13]. CID dimensions also 
support Data Fusion Information Group (DFIG) model 
Level 5 user refinement in target labeling [14]. 

3 Choquet Integral Constructs 
Rickard [15] has generalized and extended the geometric 
theory of conceptual spaces to one that satisfies a multi-
dimensional fuzzy space. In this fuzzy space reside 
domains that correspond to disjoint categories that define 
the “flavor” of information (Figure 2 represents this for 
CID/SA). For knowledge representation, Rickard states 
that “Objects in a conceptual space are represented by 
points, in each domain, that characterize their dimensional 
values” [15]. Within each domain we can look at the 
distance or similarity between objects as relative distances 
between points, which can be based on the 
aforementioned domain knowledge and fidelity of 
confidence. The natural application of fuzzy methods for 
abstract knowledge partitioning provides a transition to 
the concept of the Choquet integral. 

3.1 Choquet Origins 
The Choquet integral is named for Gustave Choquet in his 
groundbreaking treatise the Theory of Capacities [16]. 
While an extensive set of work, Choquet’s development 
focused on non-additive, subset functions that could 
define the likelihood of an uncertain event (a capacity). 
The Choquet integral is an early example of what was to 
become fuzzy logic as pioneered by Zadeh [17], with a 
capacity a type of fuzzy measure. The Choquet integral is 
a non-linear transformation that integrates a real function 
with respect to a fuzzy measure [18]. The Choquet 
relationship is given as [16]: 



 
 

 
 
 

 
 f(A U B) ≤ f(A)  + f(B)  −  f(A I B) (1) 

Where f is a capacity and A and B are subsets of a space X. 
 
The Choquet relationship is built upon by Sugeno [19] in 
his classic work on the application of fuzzy integrals 
where for the same subsets A and B with A I B = φ: 
 

g(A U B) = g(A)  + g(B)  + λ g(A) g(B)              (2) 

Where g is the Sugeno measure (also referred to as a 
density) and λ is a constant on the interval [-1, ∞] that 
defines the additivity of the subsets, and is a probability 
measure when equal to 0 [18].  
 
According to Klir [20], the Choquet integral is a kind of 
monotone measure, μ, on the ordered pair [X, C] where X 
is the universal set and C is the nonempty family of 
subsets X. The Choquet is denoted as μ: C → [0, ∞] and 
satisfies for all A, B ∈ C, if A ⊆ B, then μ(A) ≤ μ(B)   
(monotonicity). 
 
If μ(A U B) is either ≥ or ≤ μ(A) + μ(B) ∀ A U B ∈ C such 
that A I B = φ, then the monotone measure is called 
superadditive or subadditive respectively and its 
characteristics are expanded in the following way [20, 
21]: 
 

a) μ(A U B) > μ(A) + μ(B) synergy/cooperation 
between A and B where the importance of A and B 
together is greater than the sum of the individual 
importances – this is superadditivity) 

b) μ(A U B) = μ(A) + μ(B)  (A and B are non-interactive 
and thus independent) 

c) μ(A U B) < μ(A) + μ(B)  (incompatibility between A 
and B where the importance of A and B together is 
less than the sum of the individual importances – 
this is subadditivity) 

 
Klir [20] further states that classical probability theory can 
only capture (b), else the axiom of additivity is otherwise 
violated. Thus the theory of monotone measures like the 
Choquet Integral provides a richer framework for 
capturing and formalizing uncertainty. 
 
Following these relationships (a-c), the Choquet 
Integration Function (CIF) is a non-additive fuzzy 
integral where subsets of information (or knowledge) are 
aggregated (not individual operators), which enables inter-
element interdependencies (e.g. associations) and non-
linearities to be captured. We can associate the values as a 
distance measure to capture the additive nature of 
knowledge representation. The Choquet Integral approach 
models the feature of human cognition which is concerned 
with the synthesis of information according to the balance 
between information elements, i.e. this provides a 

mechanized cognitive equilibrium or cognitive dissonance 
method and can employ “negative” information processes, 
where the absence of information that is expected 
provides evidence towards an outcome. 

3.2 Choquet Integration Function 
The Choquet technique proposed by Warren [5] is a non-
aggregation process that enables structures of knowledge 
variables to be developed for high level strategic 
processes even when interdependencies exist. Warren 
defines knowledge fusion as a higher abstracted process 
that sits above information and data fusion, which is 
consistent with our discussion of level 2 and 3 fusion in 
the Data Fusion Information Group (DFIG) model [14]. 
Warren has defined Globular Knowledge Fusion (GKF) 
as a method to synthesize information when 
interdependencies exist from inter-element causal 
influences through tiers that allow information to be 
shared in a non-additive fashion. In other words, the GKF 
method looks at the mapping of function values where 
individual values that are close together have an 
increasing effect on the aggregate value, but disparate 
values have a decreasing effect for superadditive weights 
[5]. Using causal relationships is ideal in the SA and CID 
realms because of the difficulty in establishing 
information interdependencies between multiple sources 
that may be related. 
 
To incorporate knowledge elements in tactical awareness, 
the use of the CIF enables the representation of 
knowledge in a system to further define information 
aggregation. The discrete CIF (C(•)) is defined as [5]: 
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With wi = the individual information weights (as used in 
the Sugeno [19] equation (4)),  ( )iAu  = the monotone 
subset weight (where ( ) 00 =Au ), λ = the non-additive 
parameter in the Sugeno equation, and f(x) is the global 
value estimate. Some of these measures (such as wi) could 
be determined from data mining techniques and 
knowledge of the reliability of information sources. 

3.3 Choquet Simulations 
To show the development and usefulness of the Choquet 
Integral for tactical knowledge representation, this section 
demonstrates simulations of the use of importance values 
for information additivity for knowledge representation. 
Assume an SA space of the relative function values of the 
cumulative cooperative (cI), unintentionally cooperative 



 
 

 
 
 

(uI), and non-cooperative (nI) information sets I 
(conceptual spaces) – shown in Figure 2 – completely 
define the information and thus knowledge space for CID 
and SA. Let u(Ai) represent the contributions from the 
three subsets (cI, uI, nI) from which the goal is to 
determine the kinematic kI value of the object.   
 
EXAMPLE 1: Marginal agreement between sources of 
tactical knowledge. 
 
In the example, let (cI = 63, uI = 42, and nI = 21). WAV is 
the Weighted Average of the three inputs. 
 

 
Figure 3. WAV and λ Values for w = 0.01 to 1.0 for u(Ai) 

= 63,42,21. 

 

 
Figure 4. Choquet and Ω Values for w = 0.01 to 1.0 for 

μ(Ai) = 63, 42, 21. 

 
In the MatLab generated Figures 3 and 4, the information 
weight, w, is set across a range from 0.01 to 1.0 in 0.01 
steps for three global values (f(x)) of 63, 42, and 21, which 
equate to the subset weights u(Ai). Any single value for wi 
would reflect an expert opinion [22] of the value of the 
information if scaled to some normalized value. So the 
values for how these are set would have to follow experts 

weighing in on the value of a given information source 
and source type. For example, a positive encrypted 
transponder reply would have a very high cI. 
 
A positive λ implies that individual global values f(x) have 
increasing value and synergy. The negative values model 
redundancy by decreasing the marginal strengths of 
increasing subset weights wi [5]. The value of additive 
knowledge is achieved whenever the sum of for all inputs 
is greater than one (e.g. when the sample number exceeds 
33) which is the point where λ becomes negative per the 
interval [0, -1]. Using a value of information may help to 
determine when information lacks independence. For 
example, there may be some information overlap between 
communications intelligence (COMINT) (one type of 
unintentionally cooperative information) and other 
information. The aggregation process can then have 
designed non-linearities that depend upon the degree of 
consistency of the data. The u(Ai)  are always bounded 
and range from 0 to 100 which could be provided from the 
results of a lower order fusion process such as 
probabilities from a Bayesian or evidential process. The Ω 
value is simply the weighted average (WAV) value of the 
subset weights minus the Choquet value which is a 
measure of information inconsistency [5]. Figure 4 also 
shows the results of the statistical analysis of the standard 
deviation (Std Dev), variance (Var), and certainty 
equivalent (CE). The determination and meaning of the 
CE is discussed in section 4. 
 
EXAMPLE 2: Disagreement between sources of tactical 
knowledge. 
 
Further insight on the behavior of the Choquet function 
for other subset weights follows (cI = 83, uI = 42, and nI = 
1). 
 

 
Figure 5. WAV and λ Values for w = 0.01 to 1.0 for μ(Ai) 

= 83, 42, 1. 

 
 



 
 

 
 
 

 
Figure 6. Choquet and Ω Values for w = 0.01 to 1.0 for 

μ(Ai)=83,42,1 
 
The divergent subset values of (cI, uI, nI) used in the 
generation of Figures 5 and 6 shows that the information 
inconsistency, Ω, has a dramatic effect on the change in 
the Choquet values. The difference in the initial Ω values 
are about double even though the WAV is the same for 
both sets of u(Ai). Regardless, once the wi values are 
greater than 0.33, the omega values are about the same 
until the greater values of wi show superadditivity and 
increase to larger values than in example 1 because of the 
increased disparity in values. 
 
EXAMPLE 3: Agreement between tactical knowledge. 
 
Continued insight on the behavior of the Choquet function 
for other subset weights follows (cI = 92, uI = 90, and nI = 
85). 
 

 
 

Figure 7. WAV and λ Values for w = 0.01 to 1.0 for 
μ(Ai)=92, 90, 85 

 
 

 
Figure 8. Choquet and Ω Values for w = 0.01 to 1.0 for 

μ(Ai) = 92, 90, 85 

 
In Figures 7 and 8 it can be seen that when the subset 
weights are closely spaced (in agreement) with (cI = 92, uI 
= 90, and nI = 85) the Choquet values are only minimally 
different from the WAV with a small variance. Here, 
regardless of the importance weight value, a decision 
could be made with high confidence. 
 
In terms of confidence in decision making, in Figures 4, 6, 
and 8, as wi increases, the Choquet function values 
increase. This leads to a decrease in information 
inconsistency and could represent a tactical knowledge 
increase. Thus, if this knowledge state (cI, uI, nI) was 
established at an automated decision process, then there 
might be cause to then report out this knowledge state 
based on some sort of decision threshold. Part of the 
challenge of reporting out and requesting information and 
knowledge is the necessity to determine when more 
information is needed and establishing decision threshold. 

4 Defining the CIF as a Bayes Risk Function 
A Bayes risk function can aid in the decision threshold 
analysis. The most common risk function used for 
Bayesian estimation is the mean square error (MSE), also 
called squared error risk. The MSE is defined by the 
following, 
 

       (6) 
 
where the expectation is taken over the joint distribution 
of  θ and x. 
 
Using the MSE as risk, the Bayes estimate of the 
unknown parameter is simply the mean of the posterior 
distribution, 
 

     (7) 
 



 
 

 
 
 

This is known as the minimum mean square error 
(MMSE) estimator. The Bayes risk, in this case, is the 
posterior variance1 [22] 
 
For the case of our Choquet calculations, the posterior 
variance is available from our previous calculations of a 
given set of three global values across a range of 
importance values. In Figures 4, 6, and 8, the variance and 
standard deviation of the posterior Choquet values are 
determined. An interesting characteristic of the Choquet 
values is that regardless of the global value values or their 
relative agreement, the first standard deviation from the 
zero disagreement point (Ω = 0 when all wi  = 0.33 (where 
λ becomes negative)) occurs at about the importance 
value of 0.11 (between 0.09 and 0.12). The mean, 
standard deviation, and CE values are shown in the box in 
all three figures. For a risk-averse decision maker, the CE 
is less than the expected value of the uncertain “gamble” 
in the decision space because the decision-maker wants to 
reduce uncertainty. The CE calculation is discussed in 
Clemen and Reilly [24] from the approximation by Pratt 
[25] when the expected value (mean) and variance are 
available and is defined as 
 

         (8) 
 

where μ is the mean of the distribution (not to be confused 
with μ(Ai) which is the monotone subset weight), σ2 is the 
variance and RT is the risk tolerance. For the results in 
Figures 4, 6, and 8, the RT was set to the Choquet value at 
the zero disagreement point at wi = 0.33 for each 
distribution. 
 
For each set of subset weights discussed, the CE is always 
less than μ. However, as the agreement between the subset 
weights becomes perfect (when they are all equal), the CE 
is equivalent to μ. So a decision can be made based on the 
risk assessment of how far from complete agreement or 
knowledge is sufficient. In essence, with the monotone 
stationary statistics of the Choquet values, risk tolerance 
can be readily mapped to decision outcomes of a 
knowledge state. Like Bayes risk, the CE is an estimator 
of the MSE. 

5 Conclusions and Recommendations 
In this paper we have presented a means through the use 
of the fuzzy Choquet integral to represent knowledge for 
use in tactical decisions. Our basis of knowledge 
instantiation is based on the research of how human 
decision-making is performed. Since human decision 
making is not based on pure number crunching, but rather 
considers a more abstract weighting of information sets, 
our approach based on the discrete Choquet integral as 
described by Warren [5] attempts to mimic a user-

                                                 
1 http://en.wikipedia.org/wiki/Bayes_estimator.  

abstracted weighted process. In other words, the method 
presented using the Choquet integral supports tactical 
knowledge-based decision needs. 
 
Some mention of the “ugly truth” associated with lower 
level information fusion needs to be considered. As 
described by Hall and Llinas [26] in their classic work on 
the ugly truths in multi-sensor data fusion, if the 
underlying data is problematic or poorly understood, then 
there is little chance of crafting a meaningful fusion 
process. Generating a reliable process that the user can 
trust is certainly true for knowledge-based fusion. Well 
profiled sensors and data providers with a common 
ontology feeding a robust, well-understood probabilistic 
or evidential fusion method are required to make our 
proposed Choquet knowledge fusion process work. 
Otherwise, no amount of numerical alchemy will provide 
useful outputs and may even cloud the understanding of a 
situation, especially a tactical one. 
 
Further work will extend the analysis to a more complete 
representation of a specific tactical problem for homeland 
security or military application. We have completed 
additional material that will be published that considers 
hypotheses from a series of observations were made of a 
small fishing boat transiting a littoral area off of the 
northeast coast of the United States for Maritime Domain 
Awareness (MDA). Some hypotheses that our model 
Threat Discernment system will try to answer include: 
“The trawler ship Valerie Day is preparing to fish in a 
prohibited fishing zone.”, “The trawler ship Valerie Day is 
transiting through the region” and “The trawler ship 
Valerie Day is transporting contraband cargo”. Because of 
our knowledge of the area and activities in this region, the 
subset weight assignment intervals are mapped to the 
complete list of hypotheses and subset weights from 
cooperative, unintentionally cooperative, and non-
cooperative systems. 
 
Additional domains of application could come from areas 
like border control, terrorist target analysis, and mixed 
military/peacekeeping operations common in Iraq and 
Afghanistan. Also, the use of non-equal importance 
weights should be undertaken since differing values of 
information are closer to what is representative for 
realized sensor systems. These could be based on 
understanding of individual sensor systems and 
characteristics of their fused results. Our additional work 
will demonstrate a closed form solution for differing 
individual values of wi.  
 
Generally cooperative systems provide rich information 
sets, but unless the integrity of the information can be 
assured, there is the question of corruption by intentional 
deception. Unintentionally cooperative and non-
cooperative can provide more definitive information, but 
it is usually harder to get and can involve high “expense” 
and time investments such as the acquisition of satellite 



 
 

 
 
 

imagery. Understanding these real-world issues will lead 
to well-described subset weights and importance values. 

References 
[1] O. Kessler and F. White, Data fusion perspectives 
and its role in information processing, Handbook of 
Multisensor Data Fusion, Second Edition: Theory and 
Practice M. Liggins, J. Llinas and D. Hall (eds.) Boca 
Raton, FL: Taylor and Francis, 2008, 15—44. 

[2] T. Davenport, and L. Prusek, Working knowledge: 
how organizations manage what they know, Harvard 
Business School Press, Boston, MA, 2000. 

[3] J. Hawkins and S. Blakeslee, On Intelligence, New 
York, NY: Times Books, 2004. 

[4] K. Maney, Father of Palm handhelds focuses on 
making computers even brainier, USA Today, March 29, 
2005. 
http://www.usatoday.com/money/industries/technology/m
aney/2005-03-29-palm_x.htm 

[5] L. H. Warren, Strategic information synthesis by 
globular knowledge fusion, Proceedings of Information, 
Decision and Control, February 8-10, 1999, 407—412.  

[6] P. Gärdenfors, Conceptual spaces as a framework 
for knowledge representation, Mind and Matter, vol. 2(2), 
2004, 9—27. 

[7] H. Henning, Die qualitatenreihe des geschmacks, 
Zeitschrift fur Psychologie und Physiologie der 
Sinnesorgane, 1961, 203—219. 

[8] F. P. Lorenz and J. Biermann, Knowledge-based 
fusion of formets: discussion of an example, Proceedings 
of the 5th International Conference on Information 
Fusion, vol. 1, July 8-11, 2002, 374—379.  

[9] T. Schuck and J. Hunter, Distributed classification in 
a multi-source environment,  Proceedings of the Fifth 
Annual Conference on Information Fusion, vol. 2, 2003, 
874—880. 

[10] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. 
Waltz and F. White, Revisiting the JDL data fusion model 
II, Proceedings of the 7th International Conference on 
Information Fusion, 2004. 

[11] A. Steinberg, C. Bowman and F. White, Revisions to 
the JDL data fusion model, NATO/IRIS Conference, 
October, 1998. 

[12] F. E. White Jr., Data fusion subpanel report, 
Technical Proceedings of the 1991 Joint Service Data 
Fusion Symposium, vol. 1, Laurel, MD, 1991. 

[13] F. E. White Jr., A model for data fusion, Proceedings 
of the 1st National Symposium on Sensor Fusion, 1988. 

[14] E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. 
Das, G. M. Powell, D. D. Corkill, and E. H. Ruspini, 
Issues and challenges of knowledge representation and 
reasoning methods in situation assessment (Level 2 
Fusion), J. of Advances in Information Fusion, Dec. 2006. 
 
[15] J. Rickard, A concept geometry for conceptual 
spaces, Fuzzy Optimum Decision Making, vol. 5, 2006, 
311—329. 

[16] G. Choquet, Theory of capacities, Annales de 
l’Institut Fourier, vol. 5, 1953, 131—295. 

[17] L. Zadeh, Fuzzy sets, Control 8, 1965, 338—353. 

[18] P. Gader, A. Mendez-Vasquez, K. Chamberlin, J. 
Bolton and A. Zare, Multi-sensor and algorithm fusion 
with the Choquet integral: applications to landmine 
detection, IEEE International Geoscience and Remote 
Sensing Symposium, vol. 3, September 2004, 1605—
1608. 

[19] M. Sugeno, Theory of fuzzy integrals and its 
applications, Tokyo Institute of Technology, PhD Thesis, 
1974. 

[20] G. Klir, Uncertainty and Information, Foundations 
of Generalized Information Theory, Hoboken, NJ: John 
Wiley and Sons, Inc., 2006. 

[21] M. Grabisch, A graphical interpretation of the 
Choquet integral, IEEE Transactions on Fuzzy Systems, 
vol. 8, no. 5, October 2000, 627—631.  

[22] R. Hummel and M. Landy, A statistical viewpoint on 
the theory of evidence, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 10, no. 2, March 
1988, 235—247. 

[23] D. Johnson, Minimum mean squared error 
estimators, Connexions, 2004. 
(http://cnx.org/content/m11267/latest/) 

[24] R. Clemen and T. Reilly, Making Hard Decisions 
with Decision Tools, Pacific Grove, CA: Duxbury 
Thompson Learning, 2001. 

[25] J. Pratt, Risk aversion in the small and in the large, 
Econometrica, vol. 32, 1964, 122—136. 

[26] D. Hall and J. Llinas, Multisensor data fusion, 
Handbook of Multisensor Data Fusion, Second Edition: 
Theory and Practice, M. Liggins, J. Llinas and D. Hall 
(eds.), Boca Raton, FL: Taylor and Francis, 2008, 1—14. 


	1 Introduction
	2 Conceptual Spaces
	3 Choquet Integral Constructs
	3.1 Choquet Origins
	3.2 Choquet Integration Function
	3.3 Choquet Simulations

	4 Defining the CIF as a Bayes Risk Function
	5 Conclusions and Recommendations
	References

