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1. Introduction 

Unmanned aerial vehicles (UAVs) and micro air vehicles (MAVs) provide situational awareness 

that shapes the decisions of the squad command. As such, these platforms are designed to serve 

as “eyes and ears” for the Soldier. One approach for accomplishing this mission is to develop a 

biologically inspired flapping wing insect that can maneuver into confined areas and hover, 

while obtaining data undetected. In order to execute aerial maneuvers, insects must not only 

generate lift to remain aloft, but they must also manipulate aerodynamic forces to steer and 

maneuver (1). For example, during flight, fruit flies ride on top of their vortices; this, in turn, 

creates lift. Analysis of insect flight indicates that in addition to the bending excitation 

(flapping), a simultaneous excitation of the twisting degree-of-freedom (pitching) is required to 

manipulate the control surface adequately (2). The focus of this report is to demonstrate the 

ability of a lead zirconate titanate (PZT) actuator to function as the driving mechanism for a 

flapping wing platform. The goal is to compare and discuss the flapping amplitude and resultant 

lift of the flapping excitation for four different flapping wing vehicles.  

Traditionally, PZT bimorph actuators have been used in many applications to excite the bending 

degree of freedom (DOF) (2). A common bimorph configuration consists of two thin ceramic 

plates bonded together and driven with opposing electrical fields. One plate expands while the 

other contracts, resulting in a bending deflection of the bimorph construction.  

Piezoelectric actuators operate under the reverse piezoelectric effect, wherein an electrical 

current passes through the material and it undergoes strain (up to 4%). Since the piezoelectric 

strain is not significant enough to generate a large deflection, a mechanical amplification scheme 

is needed to generate a considerable amount of displacement. As shown in figure 1, a 

piezoelectric bimorph is constructed from bonding two plates of piezoelectric materials so that 

their polarizations are anti-parallel to one another when an electric field is applied across the 

beam. In this way, the piezoelectric bimorph creates a bending moment, one layer expands while 

the other layer contracts. As shown in figure 2, a 3-cm PZT-5H bimorph actuator oscillating at 

resonance frequency is coupled to a flexural wing placed at the distal end of the bimorph. 

Figure 3 shows in greater detail the mechanical amplification scheme developed to further 

increase the bending excitation of the bimorph actuator. The motion of the PZT drives a lever 

mechanism attached to the wing root, which amplifies the wing stroke. As a result, a flapping 

motion is generated from operating at the fundamental resonance frequency of the system. It has 

been demonstrated that this simple actuation mechanism delivers one DOF. Michelson et al. (3) 

stated in his biologically inspired insect flight study that simply being able to beat wings is not 

adequate enough to sustain hovering flight; one must be able to develop the power necessary to 

fly.  
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Lever arm swings 

up and down 

(b)(a)
 

Figure 1.  (a) Three-dimensional (3-D) view of bimorph actuator (b) side view of bimorph. 

 

Figure 2.  Mechanical amplification scheme. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.  Mechanical amplification scheme (a) diagram and (b) picture. 

(a) 

(b) 
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In order to augment simple wing beats, a laminated or layered actuator structure is created using 

PZT segments that are not aligned with the primary plate axes (5). This approach is shown in 

figure 4, where bend-twist coupling is introduced to the flexural response of the layered PZT by 

adding off-axis PZT segments active in shear, thereby producing a layered structure, a 

functionally modified bimorph (FMB). Furthermore, by selectively charging off-axis layers in 

specific combinations with the bimorph, the response of the FMB may be tailored to yield a 

biaxial actuator that can actively control the flapping wing response. 

Most flying insects have three DOFs: wing angle, angle of attack, and out of stroke plane 

deviation (4). In order to achieve sufficient lift, there are four mechanisms—translational lift, 

circulatory lift, non-circulator lift, and wake capture—that are employed to generate lift forces 

(5). Hence, a functionally modified piezoelectric bimorph has been designed to realize two DOFs 

of motion, namely, the flapping and twisting motions, facilitated by a simple actuation 

mechanism. The aim of this approach is to demonstrate that it is possible to obtain a flapping 

motion by coupling a polymeric wing to a distal end of a piezoelectric bimorph actuator, 

replacing the use of motors. In this report, one DOF of motion, specifically the bending motion, 

is addressed and the translation of the passive pitching motion of the wings is assessed. 

(a) (b)
 

Figure 4.  (a) Three-dimensional view of FMB actuator and (b) side view of FMB actuator. 

2. Experimental 

PZT bimorphs were purchased from Physik Instrumente L.P., USA, and the dimensions were  

3.6 cm in length, 0.65 cm in width, and 0.075 cm in thickness. Three types of wings were 

fabricated with low density polyethylene, Fullcure®930, and electro active polymer 

dimethylsiloxane. The relative thickness of each type of wing material was 20 µm thick for the 

low density polyethylene. The polymeric wing spars were made of FullCure®840 Veroblue 

produced from an Eden 260V 3-D printer manufactured by Objet Geometries Ltd. The peak to 

peak displacement was measured using a MTI-2100 Fotonic™ Sensor manufactured from MTI 

Instruments (6). The flapping wing wind speed was measured with a hot wire thermo 
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anemometer by Extech Instruments Inc., which measures airflow down to 40 ft/min (0.45 mi/h) 

with a basic accuracy ±3%. 

The lift measurements were taken with a Nano-17 force torque transducer manufactured by ATI 

Industrial Automation. This sensor is an extremely small (17 mm diameter), 6-axis transducer 

typically used in robotics applications. As shown in figure 5, the Nano-17 is composed of 

internal silicon strain gauges within the transducer. The analog inputs are sent to a Net F/T box 

manufactured by ATI. Signals are then filtered and converted to digital signals and transmitted to 

a computer via Ethernet. The computer is capable of buffering the measurements and storing the 

counts to a text file which was later parsed using MATLAB (figure 6). 

 

 

Figure 5.  Nano-17 6-axis force/torque transducer. 

 

Figure 6.  Net digital board and nano 17-R transducer. 
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The sensor used was calibrated to a maximum axial load of 4.25 lbs-force (18.9N), much higher 

than seen during testing. It has a resolution of 0.354 grams-force. In order to reduce the effect of 

environmental vibration, the sensor was attached to a Thor Labs optical table. The high mass and 

damping available assisted in reducing noise from the environment. 

3 Results and Discussion 

3.1 Displacement versus Frequency 

Figure 7 shows the flapping wing tip displacement as a function of flapping frequency. Both the 

traditional bimorph actuator and the FMB actuator are made of PZT-5H. The displacement 

measurements were taken from a 22-µm-thick, low density polyethylene wing with a  

Wing Type 1 design (the wing is later shown in figure 10). The maximum flapping wing tip 

amplitude measured at 11 mm while operating at 21-Hz resonance frequency at ±36V. As shown 

in figure 7, it was confirmed that operating at the resonance frequency yields the highest 

displacement. Figure 8 displays the average axial air velocity produced by the low density 

polyethylene flapping wing obtained by using an Extech anemometer. Measurements were 

obtained at 21 Hz averaged over 400 s.  The distance between the trailing edge of the wing and 

the anemometer was maintained at 1 mm for all measurements. The maximum flow produced by 

the wings was measured to be 1117.6 mm/s at resonance (21 Hz). The spar motion, the bimorph 

amplification scheme, and the mechanical transmission element are all parameters that dictate 

the total flapping amplitude. It has been concluded that there is a direct relationship between the 

wing flapping amplitude and the air velocity over the range tested when the device is operated at 

the fundamental resonance frequency of the system. It should be noted that the flapping wing 

orientation of figure 8 pushes the wind down serving to lift the actuator-wing system. Insect 

flight of the mesoscale (1–15 cm range) lifts the insect in and out of the wing plane direction and 

is achieved by a combination of large stroke amplitude and wing rotation.  
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Figure 7.  Displacement as a function of frequency measured at ±36Vpp for the 

functionally modified bimorph. 

 

Figure 8.  Axial air velocity below the flapping wing. 

3.2 Selection of Venation Pattern 

Instantaneous forces on the wings change during a stroke cycle due to the turning of the wings, 

deformability of joints, attack angle, rotary velocity of the wings, elastic properties, or flight 

velocity. All three wing designs have the same wing membrane thickness of 20 µm. All three 

batten structures were fabricated on an Eden 260V 3-D prototyping machine, as shown in figure 

9. The membrane (i.e., wing skin) is made of low density polyethylene plastic and is 

subsequently attached with an adhesive after the 3-D deposition is completed. The wings are of 

the same centimeter length with a variation in the geometry and the batten structure, as shown in 

figures 10 through 12. A comparison in lift measurements were taken and discussed in 

section 3.3.  
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(a)
(b) (c)

 

Figure 9.  Batten structure of (a) Wing 1, (b) Wing 2, and (c) Wing 3. The batten structure was formed on a 

3-D prototyping machine and the membrane (wing skin) made of low density polyethylene was 

attached subsequently with an adhesive. 

 

Time (sec)
 

Figure 10.  Lift measurements for the traditional bimorph with Wing Type 1 design. 

 

    

Figure 11.  Lift measurements for the traditional bimorph with Wing Type 2 design. 
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Figure 12.  Lift measurements for the traditional bimorph with Wing Type 3 design. 

3.3 Lift Forces 

Stroke amplitude, wing angle of attack, wing tip trajectory, wing beat frequency, and wing 

rotation are all flapping kinematic characteristics that are required to produce lift. The flapping 

motion is amplified by a mechanical amplification scheme driven by a piezoelectric actuator 

resulting in a 45° flap angle response from the wing. The resultant lift force experienced by the 

flexible wings is shown in figures 10 through 12. The horizontal lift is the useful propulsive 

force otherwise known as the down stroke sweep direction, which is taken as positive force. The 

high-speed camera images confirm a 45° angle of attack formed by passive wing rotation, 

enabling the formation of lift augmentation thereby creating lift. As shown in figure 10, using the 

traditional bimorph 4-mN upstroke of force is generated by a flexible Wing Type 1 design 

operated at a 21-Hz flapping frequency. Table 1 gives the comparisons of each wing design and 

their respective lift values.  

Table 1.  Comparison of lift results and wing design. 

Wing Design Average Lift Bimorph Type

Wing Type 1 4 mN Traditional Bimorph

Wing Type 2 0 mN Traditional Bimorph

Wing Type 3 2mN Traditional Bimorph

Wing Type 1 10 mN Functionally Modif ied Bimorph
 

 

A positive lift peak represents a rotation at the end of a stroke reversal. If there is a delay in 

rotation, negative lift results at the beginning of the half stroke (5). In the Wing Type 1 case, 

there seems to be a delay in rotation, yielding an increase in negative lift. At the same flapping 

frequency, different wing structures generate different lift values. For example, in figure 11, 

Wing Type 2 displays an average force of zero and validates that the wing design could not 

produce a significant amount of aerodynamic lift force during the stroke. The design of Wing 

Type 2 does not have battens or reinforcements in the span direction, resulting in the least wing 

rotation of all the wing designs presented. Figure 12 depicts Wing Type 3, wherein the lift shows 

slightly improved average results. Wing Type 3 has venation patterns divided into a number of 



 
 

 9 

span-wise strips that can rotate independently about the longitudinal axis of the wing. The 

resultant forces on this wing type did not show a significant improvement. However, as shown in 

figure 13, the FMB actuator was combined with Wing Type 1 and yielded the highest lift during 

the test period (10 mN). In this experiment, asymmetric flapping is captured by the high-speed 

cameras, which aid in the understanding of the flapping motion (figure 14). There is a higher 

wing tip displacement generated by the FMB actuator in comparison to the traditional bimorph 

actuator, as shown in figure 15. This could contribute to the fundamental understanding 

validating an increased value in lift for the FMB actuator. The increased mass loading on the tip 

end of the FMB actuator increases the bending moment translating into an increased 

displacement 

 

Figure 13.  FMB actuator average lift of 10 mN with Wing Type 1 design. 
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Figure 14.  High-speed camera image depicting asymmetric flapping: (a) front view and 

(b) top view. 

 

Figure 15.  Traditional bimorph actuator vs. FMB actuator displacement. 

(a) 

(b) 
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4. Conclusion 

A functionally modified piezoelectric bimorph was designed to realize one DOF of motion, 

namely, the flapping, facilitated by a simple actuation mechanism. Experimental results indicated 

that at resonance the maximum peak-to-peak displacement measurements of the FMB exceed 

measurements for the traditional bimorph. We have demonstrated 11-mm deflection of one DOF 

of flapping motion with flapping wing wind speeds of 2.5 cm/s. The FMB actuator combined 

with Wing Type 1 yielded the highest lift, 10 mN, or 1.1212 gram-force on a 2.5 gram-force 

vehicle (minus the circuit board). This is attributed to the increase in flapping angle shown in 

figure 13. This result contributes to our fundamental understanding, validating an increased value 

in lift for the FMB actuator. The increased mass loading on the tip of the FMB actuator increases 

the bending moment, therefore, translating into an increased displacement.  

The preliminary lift results indicate that more work needs to be done to increase the lift of the 

system to at least the weight of the vehicle. Future work will include numerical validation of the 

3-D bending analysis via finite-element analysis and experimental validation, with the ultimate 

goal of developing a design tool for biaxial actuators for cm-scale flapping wing MAVs. 
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