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MESOSCALE SIMULATIONS OF PARTICLE REINFORCED
EPOXY-BASED COMPOSITES

Bradley W. White∗, H. Keo Springer†, Jennifer L. Jordan∗∗, Jonathan E. Spowart‡ and
Naresh N. Thadhani∗

∗School of Materials Science and Engineering, Georgia Tech, 771 Ferst Drive NW, Atlanta, GA 30332
†Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA 94550

∗∗AFRL/RWME, 2306 Perimeter Road, Eglin AFB, FL 32542
‡AFRL/RXBC, Wright-Patterson AFB, OH 45433

Abstract. Polymer matrix composites reinforced with metal powders have complex microstructures that
vary greatly from differences in particle size, morphology, loading fractions, etc. The effects of the underlying
microstructure on the mechanical and wave propagation behavior of these composites during dynamic
loading conditions are not well understood. To better understand these effects, epoxy (Epon826/DEA)
reinforced with different particle sizes of Al and loading fractions of Al and Ni were prepared by casting.
Microstructures from the composites were then used in 2D plane strain mesoscale simulations. The effect
of varying velocity loading conditions on the wave velocity was then examined to determine the Us-Up and
particle deformation response as a function of composite configuration.
Keywords: Particulate Composites, Shock, Mesoscale Simulations
PACS: 62.50.Ef, 81.05.Qk, 81.70.Bt

INTRODUCTION

Particle reinforced polymer composites such as
Al/Fe2O3/Epoxy [1] and Al/W/PTFE [2] are in-
creasingly being studied for use as structural
energetic materials designed to combine mechanical
strength with reactive property characteristics from
multiple materials into a single system designed
to be inert under static loads and react and release
energy under dynamic impact conditions [2, 3].

Factors such as particle size, morphology, and vol-
ume fraction are known to affect the mechanical be-
havior of particle reinforced composites. In a study
conducted on nano-Al particle reinforced polymer
composites [4], reactions were observed to occur at
impact velocities < 150 m/s and were dependent on
the volume fraction of the nano-Al. In computational
studies on Ni/Al particulate composites [5] the ef-
fects of particle morphology on reaction mechanisms
were investigated. They found mixtures containing

Ni-flake particles vs. spherical had significant flat-
tening of the Al particles and opened up more sur-
face area to come into contact with the Ni. One ma-
jor difference between these granular composites and
more homogeneous polymer matrix composites is
that voids are largely not present. As such the mecha-
nisms of mechanical mixing that lead to reactions un-
der shock wave propagation for polymer-based com-
posites are potentially different and need to be inves-
tigated.

In this work the interaction effects of particle
size and loading fractions of Ni and Al on the dy-
namic mechanical behavior of epoxy cast partic-
ulate composites under shock loading conditions
are examined. Computational efforts are specifically
used to examine the shock wave propagation at the
mesoscale to better understand the deformation of
the composite constituents.

Shock Compression of Condensed Matter - 2011
AIP Conf. Proc. 1426, 175-178 (2012); doi: 10.1063/1.3686248
©   2012 American Institute of Physics 978-0-7354-1006-0/$0.00
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TABLE 1. Composite configurations used to ob-
tain and import 2D microstructures in ALE3D.

Material Al Particle Al Vol. Ni Vol.
Size (μm) Frac. (%) Frac. (%)

EAN-1 52 40 10
EAN-2 5 40 10
EAN-3 5 20 10
EA-1 52 40 0
EA-2 52 20 0

MICROSTRUCTURE GENERATION

Due to their well known properties, Ni and Al were
chosen as reinforcing particles in an epoxy matrix.
The average Al particle size was varied between 5
and 52μm, the volume fraction of Al between 0.20
and 0.40, and the volume fraction of Ni (47μm)
from 0.00 to 0.10 (see Tab. 1). Representative mi-
crostructure images from samples were converted
into shape files used in 2D plane-strain simulations in
ALE3D. While simulations implementing the ’real’
microstructures would be ideal, in order to have a
greater control over the mesh resolution a MATLAB
script converted the real microstructure into an ideal-
ized one with each particle defined as a sphere. This
retained the volume fraction to within 1% of the orig-
inal microstructure and kept the same spatial distri-
bution of the particles. Two idealized microstructures
are shown in Fig. 1 for materials EAN-1 and EAN-
2 and an overlay of an idealized microstructure on
top the original microstructure in Fig. 2 for compos-
ite EA-2. A mesh resolution study determined an el-
ement size of 2.0 and 0.5μm in each direction was
sufficient to capture an accurate response for com-
posites containing the large and small Al particles
respectively.

SIMULATION SETUP

The microstructure simulation domain was chosen to
contain at least the homogeneous length scale of the
microstructure in each direction and have an aspect
ratio of 2:1 (w:h). This amounted to 1000 and 250μm
in the horizontal direction for composites containing
larger and smaller Al particles respectively. Along
the top and bottom sides of the domain a symme-
try plane was placed and along the right-hand side a

FIGURE 1. Idealized microstructures for EAN-1 (top)
and EAN-2 (bot). Ni shown as white particles, and Al gray.

FIGURE 2. Overlay of an idealized microstructure on
top of the original microstructure. The black and white
regions highlight differences in particle shapes.

free surface boundary condition. To create a shock
wave, a Cu driver impacted the domain at veloci-
ties between 400 and 1200 m/s to produce different
shock (Us) and particle (Up) speeds. Tracer points
were placed along the vertical direction at horizon-
tal distances of .25, .50, and .75 times the domain
width to track pressure and stress. See Fig. 3 for a
schematic of the boundary conditions.

For Al and Ni the equation of state and strength
models implemented were the Mie-Gruneisen and
Steinberg-Guinan models respectively with material
default parameters set for both Al and Ni. For epoxy
a Mie-Gruneisen EOS was used with γ0 = .763, C0=
2367 m/s, and S = 1.55. The constitutive behavior
of epoxy was defined using a tabular rate hardening
model where the flow stress is a function of the
equivalent plastic strain ε̄p and a power law strain
rate dependence through the following equation:

Y
(
ε̄p, ˙̄ε p

)
= Y (ε̄p)

[
a+b ˙̄ε p

]m (1)

Here, ˙̄ε p is the equivalent plastic strain rate, a
and b hardening model material constants and m the
power law strain rate parameter. Using data from [6]
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FIGURE 3. Schematic of the boundary and loading con-
ditions used for the 2D plane strain simulations.

this model was applied to the stress-strain curves
from strain rates of 134 to 1.4x104 s−1. By using
a strain rate of 3.9x103 s−1 as a reference curve
a set of values for the parameters were found by
minimizing the difference in the peak stress between
the experiments and model curves. The values for a,
b, and m were determined to be 0.085, 249.0, and
0.14 respectively.

EQUILIBRATION OF PRESSURE

From tracer data the pressure was monitored for
the entire duration of the shock wave propagation.
In comparing the average shock pressures between
EAN-1 with EAN-2 there was little difference in
the pressures achieved for each impact velocity (see
Fig. 4). However, the variations in pressure were
greater for composite EAN-1. This is contrary to
what was expected since the Ni and Al particles
are closer in size for this material and the pressures
are averaged over a much larger vertical distance,
500μm as opposed to 125μm for composite EAN-2.
This may be due to more homogeneous distribution
of the Al particles when smaller particles are used
while holding the volume fraction constant. When
comparing the pressure differences between EA-1
and EA-2 there was a decrease in the pressure as
the volume fraction of Al decreased.The pressure
was 18% larger for the composite EA-1. This was
expected since pressure is related to density and there
was a marked drop in density as the volume fraction
of Al decreased.
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FIGURE 4. Pressure traces for EAN-2 (left) and EAN-1
(right) at the positions 125 and 500μm respectively.

TABLE 2. Us-Up Hugoniot parameters.

Material S C0 [m/s] Exp. C0 [m/s]

EAN-1 1.590 2749 2374
EAN-2 1.385 2916 2357
EAN-3 1.708 2990 2079
EA-1 1.478 2968 2475
EA-2 1.417 2822 2280

US-UP RELATIONSHIPS

By determining the time at which the pressure was
0.20x the steady state pressure an average shock
velocity was calculated from the distances between
tracers. The results of the shock speed calculations
were plotted for each composite and velocity with a
linear line fit to the data. From these fits, values for S
and C0 were determined using Eqn. 2 that relates US

with UP, and the bulk sound speed C0.

US = SUP +C0 (2)

The values for S and C0 are tabulated in Tab. 2
along with C0 experimentally determined from ultra-
sonic sound speed measurements. Despite shifts to-
wards higher shock velocities as the volume fraction
of particles increased the composite shock veloci-
ties, other than EAN-3, had shock velocities that fell
within a 200m/s range with only slight differences in
the slopes and no clear influence of particle size or
the presence of Ni on the US-UP relationships. This
may indicate the contiguous epoxy matrix phase has
a dominant role on the shock propagation.

C0 determined from ultrasonic methods are notice-
ably lower. This is attributed to the assumption of
perfect bonding between the constituents since no in-
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terfaces or bond strengths were defined in the simu-
lations. The simulations also have no defects such as
microcracks or pores present that would affect the
bulk sound speed of the composite.

PARTICLE DEFORMATION

To better understand the mechanisms involved with
the mixing of constituents that can lead to a reac-
tion the stresses and strains were monitored as the
shock wave propagated through the microstructure
domains. For composite EA-1 the stresses of the
epoxy and Al particles were found to equilibrate
quickly within each phase behind the shock front
with no large variations. In all cases the epoxy car-
ried more load than Al and in cases where the com-
posites contained Ni most of the load was carried by
Ni. This was an indication that the epoxy can be used
to impart more strain into softer phases such as Al.

In the following plots the strains are shown for
EA-1 and EAN-2 (see Fig. 5) at the completion of
the simulations in which the shock front reaches the
free surface for an impact velocity of 800 m/s. For the
materials without Ni, the regions with the most plas-
tic strains were located at the Al/epoxy interfaces.
The Al appeared to have slight elongation perpen-
dicular to the shock wave propagation direction (to-
wards the right).

For composites containing Ni particles the defor-
mation behavior of Al was drastically different. In re-
gions surrounding Ni extreme strain values (> 400%)
were observed at the Ni/Epoxy or Ni/Al interfaces.
Al deformed to much larger extents than in compos-
ites without Ni and deformed to match the contours
of the Ni particles which strained very little. Ni in
these types of composites act as rigid anvils that en-
able much larger strains to be produced in the other
less stiff phases. Additionally enhanced ’fluid-like’
flow of epoxy and Al was observed to occur between
and around the Ni particles. This behavior may act
as a primary source of mixing that leads to reactions
in epoxy-based composites. More enhanced flow and
deformation of Al also occurred in composites with
smaller Al particles. This may be due a finite strain
field radius produced by the Ni particles. In Fig. 5
the large strains in Al are within approximately one
Ni particle diameters. In composites with the larger
Al the strain fields are on average only extend up to

FIGURE 5. Plastic strain plots for EA-1 (top) and EAN-
2 (bottom) for an impact velocity of 800 m/s.

a radius equivalent to one Al particle diameter.
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