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Abstract - In this paper, we propose a robust vehicle 
tracker for Infrared (IR) videos motivated by the recent 
advance in compressive sensing (CS). The new eL1-PF 
tracker solves a sparse model representation of moving 
targets via L1 regularized least squares. The sparse-
model solution addresses real-world environmental 
challenges such as image noises and partial occlusions. 
To further improve tracking performance for frame-to-
frame sequences involving large target pose changes, 
two extensions to the original L1 tracker are introduced 
(eL1). First, in the particle filter (PF) framework, pose 
information is explicitly modelled into the state space 
which significantly improves the effectiveness of particle 
sampling and propagation. Second, a probabilistic 
template update scheme is designed, which helps 
alleviating drift caused by a target pose change. The 
proposed tracker, named eL1-PF tracker, is tested on IR 
sequences from the DARPA Video Verification of 
Identity (VIVID) dataset. Promising results from the 
eL1-PF tracker are observed in these experiments in 
comparison with previous mean-shift and original L1–
regularization trackers.  
 
Keywords: Visual tracking, particle filter, L1-
regularization, Infrared target tracking 
 

1 Introduction 
Visual tracking is a critical task in many military-specific 
and security/medical related computer vision applications 
such as surveillance, robotics, human computer 
interaction, vehicle tracking, and medical imaging, etc. 
The challenges in designing a robust visual tracking 
algorithm include: occlusions, presence of noise, varying 
viewpoints, background clutter, and illumination changes 
[25]. For years, researchers have proposed a variety of 
tracking algorithms to overcome these difficulties. Most 
existing tracking methods generally consist of two 
components: an inference framework (e.g., Kalman filter, 
particle filter, etc.) and a target representation (e.g., linear 
subspace, sparse representation, etc.). A summary of 
related work is given in Section 2 and a thorough survey 
for general visual tracking can be found in [25]. 

In this paper we focus on vehicle tracking in infrared 
videos. Compared with normal videos, infrared videos are 
robust to day/night changes and hence suitable for 
environments with poor or unstable lighting conditions. 
Despite the advantage, infrared data brings to visual 
tracking additional challenges. One such challenge lies in 
the low image quality, which usually involves blurring 
and noises. Another difficulty is the background-
foreground similarity, which is usually due to the 
relatively low contrast in pixel intensity. In our work 
where vehicle traffic videos are taken from air, pose 
variation becomes an important challenge. Note that the 
change of vehicle poses also brings serious changes in 
appearance. Some example frames from the DARPA 
Video Verification of Identity (VIVID) dataset [21] are 
shown in Figure 1, where the challenges of low image 
quality and large-pose change can be clearly observed. 

 

 
Figure 1. Example frames from IR videos in the VIVID 

dataset [21]. Top row: challenges in background- 
foreground similarity and low image quality.  

Bottom row: pose changes.  
 

In our recent work [17], a robust visual tracker, named 
L1–PF tracker, is introduced that takes advantage of recent 
advances in compressive sensing and sparse 
representation [2] [6]. During tracking, a target candidate 
is represented by a linear combination of template sets 
composed of both target templates, which are obtained 
from previous frames, and trivial templates, each of which 
contains only one nonzero pixel. The intuition is that a 
good candidate target should be efficiently represented by 
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the target templates and therefore requires a sparse 
combination coefficient vector. Such a representation is 
then effectively solved by L1 regularization [2] [6]. Once a 
target is determined, the target tracking is continued using 
a particle filter (PF) framework. While the L1-PF tracking 
method has been shown to be robust in general visual-
spectrum tracking scenarios, its application to IR videos 
with rotation change has not been exploited.    

In this paper, we extend the L1-PF tracking method 
[17] with two major extensions for vehicle tracking in IR 
videos. First, we use five state parameters (two for 
dimension, one for rotation, and two for position) to 
explicitly describe the tracking state, while in [17] the six 
dimensional affine states are used. In comparison, the 
extended L1-PF (eL1-PF) method provides more flexible 
control over large frame-to-frame changes in target pose. 
Meanwhile, the sampling in the new state space becomes 
more reliable since it’s one dimensional lower than that in 
[17]. Second, we use probabilistic template update 
scheme, while in [17] the updating is biased toward 
template set sparseness. We show that the new update 
scheme is more reliable to target rotation and pose 
changes. The proposed method is tested on several IR 
videos from the VIVID dataset [21]. In all these videos, 
our method demonstrated excellent performance in 
comparison with other state-of-the-art trackers (i.e. mean-
shift and original L1–PF trackers). 

The rest of the paper is organized as follows. In 
Section 2 we summarize related research on visual 
tracking. Then, in Section 3, we present the particle filter 
framework with our pose-based state representation.  
After the sparse appearance representation is introduced, 
we present our new template-update scheme in Section 4. 
Section 5 describes the experiments. Finally, conclusions 
are made in Section 6. 
 

2 Related Work 
Target tracking is an important topic in computer vision 
and it has been studied for several decades. In this section, 
we summarize studies that are related to our work; 
however, a thorough survey is given in [25]. For visual 
tracking, robust similarity measures have been applied and 
the mean-shift (MS) algorithm or other optimization 
techniques utilized to find the optimal solution [5]. The 
MS algorithm iteratively carries out a kernel- based search 
starting at the previous location of the object. The success 
of the mean shift depends highly on the discriminating 
power of the histograms that are considered as the objects' 
probability density function.  

Tracking can be considered as an estimation of the 
state for a time series state space model. The problem is 
formulated in probabilistic terms as an inference 
framework. Works use a Kalman filter [2][23][23] to 
provide solutions that are optimal for a linear Gaussian 
model. The particle filter (PF), also known as the 
sequential Monte Carlo method [7] is one of the most 
popular approaches. The PF recursively constructs the 

posterior probability density function of the state space 
using Monte Carlo integration. PF has been developed in 
the computer vision and information fusion community 
and applied to tracking problems also under the name 
Condensation [11]. In [26], an appearance-adaptive model 
is incorporated in a particle filter to realize robust visual 
tracking and classification algorithms. In [12], an efficient 
method for using subspace representation in a particle 
filter by applying Rao-Blackwellization to integrate out 
the subspace coefficients in the state vector.  

The target representation used in our eL1-PF method 
is related to subspace-based tracking methods. These 
methods treat tracking as searching for a target in a 
subspace learned from previous tracking results. For 
example, in [1] the appearance of the object is represented 
using an eigenspace. The object appearances are 
represented using affine warps of learned linear subspaces 
of the image space [10]. In [18], a tracking method is 
proposed to incrementally learn a low-dimensional 
subspace representation, efficiently adapting online to 
changes in the target appearance. 

Our study is largely inspired by recent advances in 
compressive sensing [6] and its applications to many 
pattern recognition tasks (e.g., face recognition [22], 
shadow modeling [16], etc.). The problem is to exploit the 
compressibility and sparsity of the true signal and use a 
lower sampling frequency than the Shannon-Nyquist rate. 
Sparsity leads to efficient estimation, efficient 
compression, dimensionality reduction, and efficient 
modeling. In particular, the proposed method is a direct 
extension of our previous work [17] on L1 tracking. 
Details of L1 tracking will be illustrated in the following 
sections. 

 

3 Pose Tracking in the Particle Filter 
Framework  

In this section we first give a brief overview of the particle 
filter (PF) framework. After that, we will describe the 
pose-based state space and observation model used in our 
eL1-PF tracking algorithm. 

3.1 Particle Filter 
We use the particle filter (PF) framework to guide the 
tracking process. PF [7] is a well known Bayesian 
sequential importance sampling technique used for 
posterior distribution estimation of state variables in a 
dynamic system. PF becomes a popular tracking 
framework since the seminal work in [11] for nonlinear, 
non-Gaussian environments. The framework contains 
mainly two iterative steps: (1) a prediction step that is 
used to predict the target in the current frame based on 
previous observations, and (2) an update step that 
maintains sample (particle) weights for the Bayesian 
inference.  

In the context of visual tracking, let {y1, y2, …} be the 
observations (e.g., appearance in video frames) and {x1, 



x2, …} be the states (e.g., poses of target objects in the 
video), where yt and xt denote the observation and state 
variable at time t respectively. The task of prediction is to 
estimate the distribution of xt given all previous 
observations y1:t-1={y1, y2, …, yt-1} up to time t-1. This 
conditional distribution can be recursively computed as 

 
            ∫ −−−−− = 11:1111:1 )|()|()|( ttttttt dxyxPxxPyxP .   (1) 

The update step, at time t, updates the posterior 
probability P(xt|y1:t) through Bayes’ rule, 
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where P(yt|xt) indicates the observation likelihood. 
The posterior P(xt|y1:t) is in general very difficult to be 

computed explicitly due to the integration in formula (1). 
In the particle filter framework, it is instead approximated 
by a sample set {xt

1, xt
2, …, xt

N} with importance weights 
{wt

1, wt
2, …, wt

N}. Note that both samples and weights are 
time dependent. The candidate samples xt

i are drawn from 
an importance distribution and the weights are updated 
accordingly. Then the samples are resampled to generate a 
set of equally weighted particles according to their 
importance weights and to avoid degeneracy.  

The focus of this paper is not in PF algorithms but in 
sparse representation. For this reason, we follow the 
standard CONDENSATION framework in [11]. 

 

3.2 Modeling Object Pose in Particles 
In [17] affine particles are used to capture the change of 
target shape due to pose and view-point changes. 
Specifically, a state x contains six elements from the 
affine matrix. A drawback of such a formulation lies in 
the difficulties to control track accuracy over poses, 
especially about rotation, since rotation is not explicitly 
expressed in the six dimensional affine transformation 
vectors.  

To alleviate this problem, in this work we treat a target 
region with a rectangle and explicitly model its pose using 
five parameters. In particular, a state x=(w,h,θ,p1,p2)' is 
composed of the target width, height, rotation angle, and 
center-of-gravity position (x,y) respectively. With the 
formulation, the state transition probability is explicitly 
modeled with a Gaussian distribution, 
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where Φ is the zero mean Gaussian distribution with 
covariance matrix Σ=diag(σ2

w, σ2
h, σ2

θ, σ1
2, σ2

2) such that 
σw=σh are used for target dimension, σθ for rotation and 
σ1=σ2 for position. It is worth noting that the pose 

parameterization can also be helpful to model object 
motion. 

Another advantage of the new model is that, under the 
same condition, it requires fewer particle samples than 
does the affine model. This is due to the reduced state 
dimension. Though the reduction is only one dimension, 
the number of samples saved can be significant since they 
are usually exponential in state dimensions.  

 

3.3 Observation Model 
With a state vector xt, a rectangle region can be cropped 
from the frame at time t. This region is then normalized to 
have the same size as the templates. In addition, the 
intensities inside the region are normalized to have zero-
mean and unit variance, which is known to be robust to 
affine lighting change. After that, the pixel intensities in 
this rectangle are concatenated to form the observation 
vector yt.  

We model the observation likelihood P(yt|xt) so that it 
captures the similarity between a target candidate and the 
target templates. As will be described in next section, we 
use the subspace spanned by the target template set to 
model the observation appearance. The observation 
likelihood is then modeled as a Gaussian distribution over 
the approximation residual 
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where r(yt) is residual defined in Section 4 and σr denotes 
the variance.  

4 Tracking via L1 Regularization 

4.1 Sparse Representation for Visual 
Tracking 

In our recent work [17], a robust visual tracker is 
proposed using sparse representation and L1 
regularization. In the method, a moving target is 
approximated by the linear subspace spanned by a 
template set. Instead of using a transferred low-
dimensional space, as in many previous studies, we treat 
the target in the new frame as a sparse representation 
using previous observed targets. Intuitively, a new target 
should not deviate too much from its previous 
observations, and it should require only a limited number 
of previous instances to model its appearance.  

4.1.1 Template-based Target Representation 
Let a candidate target be y∈ℜd (we stack columns of a 
candidate patch to form a 1D vector), and let the template 
set be T=[t1…tn] ∈ℜd×n (d >> n) contain n target templates 



achieved from previous frames. Note that bold symbols 
are used to emphasize vectors or matrices. The global 
appearance of one object under different illumination and 
viewpoint conditions is known to lie approximately in a 
low-dimensional subspace. Therefore, we have, 
 

y = Ta +  = a1t1 + a2t2 + ... + antn +  ,    (5) 
 
where a=(a1, a1,…, an)' ∈ℜn is called a target coefficient 
vector, and  denotes the approximation error.  

In many visual tracking scenarios, target objects are 
often corrupted by noise or partially occluded in an image.  
Occlusions create unpredictable errors, affecting any part 
of the image and appearing at any size on the image. To 
incorporate the effect of occlusion and noise, similar to a 
previous study in face recognition [22], Equation 1 can be 
rewritten as 

 
y = a1t1+ ...+antn + e1i1+...+ enin + e-1i-1+...+ e-ni-n                  
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where ik ∈ℜd is a vector with only one nonzero entry 
ik(j)= kj, and i-k=–ik i.e. I=[i1 i2 … in i-1 i-2 … i-n] is a 
concatenation of an identity matrix and a negative identity 
matrix. We call ik trivial templates and e=( e1 e2 …en e-1 e-2 

…e-n)'∈ℜ2n trivial coefficients. Figure 2 illustrates the 
representation, where a target candidate (the region in the 
red rectangle) is represented by a linear combination of 
templates. 
 
 

 
Figure 2. Representing a candidate target y with target 

template set T and trivial templates I. 
 

4.1.2 Sparse Approximation and L1 Regularization 
Intuitively, a good target candidate is efficiently 
represented by the target templates, which implies a sparse 
coefficient vector c. In other words, most trivial 
coefficients tend to vanish. In the case of occlusion (and/or 
other unpleasant issues such as noise corruption or 
background clutter), a limited number of trivial 
coefficients will be activated, but the whole coefficient 
vector remains sparse. A poor target candidate, on the 
contrary, often leads to a dense representation. An 
example of such phenomena is shown in Figure 2. The 
sparse representation is achieved through solving an L1-
regularized least squares problem, which can be done 

efficiently through convex optimization. Then the 
candidate with the smallest target template projection error 
is chosen as the tracking result. After that, tracking is led 
by the Bayesian state inference framework in which a 
particle filter is used for propagating sample distributions 
over time. 
 The system model in (6) is underdetermined and 
does not have a unique solution for c.  The error caused by 
occlusion and noise typically corrupts a fraction of the 
image pixels. Therefore, for a good target candidate, there 
are only a limited number of nonzero coefficients in e that 
account for the noise and partial occlusion. Consequently, 
we want to have a sparse solution that requires an L0 
regularization:      
 
 min ||Bc - y||22  + λ ||c||0 .              (7) 
  
However, L0 regularization is in general a tough problem. 
Fortunately, thanks to the recent advances in sparsity 
analysis [6][2], it can be well approximated via an L1 
regularization. With this observation, our task becomes an 
L1-regularized least squares problem:  
      
 min ||Bc - y||22  + λ ||c||1,               (8) 
 
 subject to   c ≥ 0, 
 
where ||.||1 and ||.||2 denote the L1 and L2 norms 
respectively, λ is the regularization parameter, and c ≥0 is 
defined element-wise. 

To solve the L1-regularized least squares problem (8), 
we use the algorithm in [13] that is an interior-point 
method. The method uses the preconditioned conjugate 
gradients (PCG) algorithm to compute the search direction 
and the run time is determined by the product of the total 
number of PCG steps required over all iterations and the 
cost of a PCG step.  

We then find the tracking result by finding the 
smallest residual after projecting on the target template 
subspace. Specifically, at frame t, let X={x1, x2, …, xm} be 
the m state candidates and Y={y1, y2, …, ym} be the 
corresponding observations, the tracking result y' is chosen 
by  
 
        y'=argmaxy∈Y r(y) ,           (9) 
 
where r(y)=||y-Ta|| is the approximation residual with 
respect to the current template set T and template 
coefficients a achieved by solving (8). Note, in the above 
and all following notations, the frame id t is dropped for 
clarity, whenever there is no ambiguity. 
 

4.1.3 Advantages of Using L1 Regularization 
The L1 tracker presents many potential benefits: 
 

1. Robust to occlusion. Unlike component analysis, the 
sparsity constraints provide an automatic means to 
“filter” out local occlusions. Such method has been 



successfully applied to handle partial occlusions in 
face recognition [22].  

2. Robust to appearance change due to view change, 
illumination variation, or noise. 

3. Easy to generalize. The proposed representation 
does not require object- or class-specific modeling. 
Consequently, it provides a general solution that 
applies readily to different objects. For example, in 
[17], the tracker is has been applied to track different 
targets including faces, human bodies, vehicle, etc.  

 

4.2 Probabilistic Template Update 
Template-based methods have been studied for several 
decades in the computer vision literature, dating back at 
least to 1981 [14]. The object is tracked through the video 
by extracting a template from the first frame and finding 
the object of interest in successive frames. It has been 
observed that fixed template sets are not sufficient to 
handle variations temporal data [15], which is particularly 
true for our task where targets undergo large pose 
changes. 

Intuitively, object appearance remains the same only 
for a certain period of time, but eventually the template is 
no longer an accurate model of the object appearance. If 
we do not update the template, the template cannot capture 
the appearance variations due to illumination or pose 
changes. If we update the template too often, small errors 
are introduced each time the template is updated. The 
errors are accumulated and the tracker drifts from the 
target. We tackle this problem by dynamically updating 
the target template set T. 

In [17], a template-update scheme (TUS) is proposed 
in favour of maintaining a diverse template set. Template 
updating is triggered when a new target is found to be 
rather different than all existing templates. In experiments 
on Infrared (IR) videos when targets have large pose 
changes, however, we found such a TU scheme vulnerable 
to drift problems. The main reason is that, in IR videos, 
the intensity patterns of the target of interest are often 
similar to those in the surrounding regions (see Figure 1 
for examples). The similar target-to-background intensity 
makes a slow updating (due to target extraction and 
numerous templates) vulnerable to drift problems. On the 
other hand, we argue that diversity of template sets does 
not contribute much to the approximation accuracy, since 
the L1 regularization already takes care of redundancy.  

Based on the above observation, we propose instead a 
different template update scheme based on the observation 
likelihood. Intuitively, the new scheme updates the 
template set only when the system feels confident enough 
in the new target. Specifically, for a newly detected target 
y, the update happens when its observation likelihood 
P(y|x) is greater than a threshold .  

In the scheme, template set T is associated with a 
weight vector w=(w1, w2, …, wn). These weights are used 
(1) to control the importance of each template ti (by 
forcing ||ti||=wi) and (2) to choose the least useful template 
for replacing. The template weights are also dynamically 

updated, but we use a different update scheme than in 
[17]. In particular, the update is governed by the 
observation probability P(y'|ti) given a template  

 
P(y'|ti) = Φ ( || y'- ti ||; rσ  )               (10) 
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where r is the variance as in the observation likelihood. 
The new template update algorithm is summarized in 
Table 1. 
 
 

Table 1. Probabilistic Template Update 

Input:  
y' is the newly chosen tracking target. 
x is the chosen state corresponding to y'. 
a is the solution to (8). 
w is current weights, such that ||ti||=wi . 
τ is a predefined threshold. 

Output: 
Updated template set T and associated weights w. 

 
1. for i=1..n  
2.    wi ← wi + P(y'|ti)     /* update weights */ 
3. endfor 
4. if (P(y'|x) > τ) 
5.     j ← argmini wi 
6.     tj ← y'                    /* replace an old template */ 
7.     wj ← median(w)    /* replace an old weight */ 
8. endif  
9. Normalize w such that ∑iwi=1. 
10. Adjust w such that maxi wi<=0.2 to avoid skewing. 
11. for i=1..n  
12.     Normalize ti such that ||ti||=wi . 
13. endfor

 
 
 
 
 

5 Experiments 

5.1 Experimental Setup 
We conducted the proposed approach on three infrared 
(IR) sequences (V3V300004_003, V3V300004_004 and 
V3V300013_012) selected from the VIVID database [21]. 
All sequences contain several vehicles driving on road. 
The videos are taken from air and vehicles in the videos 
change their pose (turning on the road) between frames.    

In addition to the proposed method, we tested the 
original L1 tracker [17] and the mean-shift tracker [5] on 
the sequences. All three methods share the same manual 
initialization. For the mean shift tracker, which does not 
deal with pose change, the manual initialization is squared 



(but has a same area) to add robustness.  For both L1 
regularization methods, we use same parameter settings 
whenever possible. For example, for both trackers we use 
n=10 (i.e., 10 templates), =0.01 (for L1 regularization), 
100 particles, and same template sizes. Other parameters 
used in eL1-PF include r = 0.1,  = 0.2. 

 

5.2 Experimental Result 
Figures 3, 4 and 5 show the tracking results on the three IR 
sequences respectively. In each figure, the tracked targets 
are displayed with red bounding boxes (i.e., in the state 
space). Six frames across vehicle turning are selected to 
illustrate the performances of different trackers.  

From the results, we can see clearly that the new 
approach achieves the best performance and is robust to 
pose change. Some specific observations are listed below: 

 
• Both mean shift (MS) and the original L1 (L1-PF) 

trackers fail on the first sequence (V3V300004_003) 
as shown in Figure 3. For MS, the failure starts when 
the target is close to surroundings that share a similar 
intensity distribution with the target. This is observed 
in the second and third rows. The original L1 tracker 
survives at this point, but meets problems when the 
vehicle starts to turn around. Rows three and four 
show that, the shape of the original L1 tracker is tuned 
to the wrong direction, which is mainly due to that its 
affine state space enforces little shape constraints. In 
contrast, the proposed new eL1–PF tracker 
successfully tracks target and at the same time 
accurately estimates its pose. 

• All three methods perform reasonably well on the 
second sequence (V3V300004_004) as shown in 
Figure 4. This is mainly because the target vehicle has 
a square shape. In this case, the pose change does not 
raise big issues to the mean shift tracker, which relies 
mainly on the intensity distributions. Through a 
detailed check, however, we can still see that the 
proposed eL1–PF tracker method generates a better 
pose estimation. 

• On the third sequence (V3V300013_012) presented in 
Figure 5, we see that the both L1 trackers again 
outperform the mean shift tracker. The original L1 
tracker failed to correctly estimate the target pose, 
which is correctly captured by our eL1–PF tracker 
approach.  

 
 

 

 

 
 
 
 
 

     Meanshift                L1–PF                   eL1–PF 

Figure 3. Tracking results on VIVID IR sequence 
V3V300004_003. Frame from top to bottom: 1451, 

1483, 1515, 1547, 1579 and 1611. Trackers, from left 
to right, are the mean shift tracker [5], the original L1 
tracker [17], and the proposed new eL1–PF tracker. 



 

 

6 Conclusion 
We present a new visual tracker by exploiting the 
sparseness intrinsic in the tracking process. As a result, 
the new method uses L1 regularization in the particle filter 
framework, armed with a modeling for target pose and a 
probabilistic template updating. The extended L1-
regularized particle-filter (eL1-PF) method is applied to 
vehicle tracking in IR videos involving serious pose 
changes. Experiments on the VIVID dataset show the 
superiority of the proposed method over the previously 
proposed mean shift and L1–PF approaches.  
  
 

 
 
 
In the future, we plan to focus on several directions along 
the work. First, the current L1 tracker does not take benefit 
of the dependences between particle samples, which we 
believe can be used for improving the tracking efficiency. 
Second, the method can be naturally extended to multi-
target tracking and multi-modality tracking, since the 
representation has little limitation on the input sequences. 
Lastly, we can incorporate the multi-modality into 
simultaneous tracking and identification scenarios to 
discriminate between like targets, which has many 
important applications [2][18][19] [27]. 

Acknowledgement 
We thank the reviewers for insightful suggestions. Haibin 
Ling is supported in part by NSF (Grant No. IIS-
0916624). Xue Mei contributed to this work when he was 
with the University of Maryland College Park. This 

     Meanshift                 L1–PF                   eL1–PF 

Figure 4. Tracking results on VIVID IR sequence 
V3V300004_004. Frame from top to bottom: 1001, 

1033, 1065, 1097, 1129 and 1161. Trackers are same as 
in the previous figure. 

     Meanshift             L1–PF                     eL1–PF 

Figure 5. Tracking results on VIVID IR sequence 
V3V300013_012. Frame from top to bottom: 0020, 

0052, 0084, 0116, 0148 and 0180. Trackers are same as 
in the previous figure. 



material is based upon research work partially supported 
by the Office of Naval Research (ONR) Grant N00014-
09-C-0070. Any opinion, findings, and conclusions or 
recommendations expressed in this material are those of 
the authors and do not necessarily reflect the views of the 
ONR. 
 

7 References 
[1] M. J. Black and A. D. Jepson. “Eigentracking: 
Robust matching and tracking of articulated objects using 
a view-based representation,” International Journal of 
Computer Vision, 26:63-84, 1998. 

[2] E. Blasch and B. Kahler, “Multiresolution EO/IR 
Target Track and Identification”, ISIF Proc. Fusion05, 
2005. 

[3] Y. Boykov and D. Huttenlocher. “Adaptive bayesian 
recognition in tracking rigid objects,” in Proc. of the 
Computer Vision and Pattern Recognition (CVPR), 697--
704, 2000. 

[4] E. Candës, J. Romberg, and T. Tao. “Stable signal 
recovery from incomplete and inaccurate measurements,” 
Comm. on Pure and Applied Math, 59(8):1207-1223, 
2006. 

[5] D. Comaniciu, V. Ramesh, and P. Meer. “Kernel-
based object tracking,” IEEE Trans on Pattern Anal. and 
Mach. Intell., 25:564-577, 2003. 

[6] D. Donoho. “Compressed Sensing,” IEEE Trans. 
Information Theory, 52(4):1289-1306, 2006. 

[7] A. Doucet, N. de Freitas, and N. Gordon. Sequential 
Monte Carlo Methods in Practice. Springer-Verlag, 2001, 
New York. 

[8] G.J. Edwards, C.J. Taylor, and T.F. Cootes. 
“Improving Identification Performance by Integrating 
Evidence from Sequences,” Proc. of the Computer Vision 
and Pattern Recognition (CVPR), 1:486-491, 1999. 

[9] G. D. Hager and P. N. Belhumeur. “Efficient region 
tracking with parametric models of geometry and 
illumination,” IEEE Trans on Pattern Anal. and Mach. 
Intell., 20:1025-1039, 1998. 

[10] J. Ho, K.-C. Lee, M.-H. Yang, and D. Kriegman. 
“Visual tracking using learned subspaces,” Proceedings of 
the Computer Vision and Pattern Recognition (CVPR), 
782-789, 2004. 

[11] M. Isard and A. Blake. “Condensation - conditional 
density propagation for visual tracking,” International 
Journal of Computer Vision, 29:5-28, 1998. 

[12] Z. Khan, T. Balch, and F. Dellaert. “A Rao-
Blackwellized particle filter for EigenTracking,” 
Proceedings of the Computer Vision and Pattern 
Recognition (CVPR), 980-986, 2004. 

[13] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. 
Gorinevsky. “A method for large-scale l1-regularized least 
squares,” IEEE Journal on Selected Topics in Signal 
Processing, 1(4):606-617, 2007. 

[14] B. Lucas and T. Kanade. “An iterative image 
registration technique with an application to stereo 
vision,” International Joint Conferences on Artificial 
Intelligence (IJCAI), 674-679, 1981. 

[15] I. Matthews, T. Ishikawa, and S. Baker. The 
template update problem, IEEE Trans on Pattern Anal. 
and Mach. Intell., 810-815, 2004. 

[16] X. Mei, H. Ling, and D.W. Jacobs. “Sparse 
Representation of Cast Shadows via l1-Regularized Least 
Squares,” Proceedings of the International Conference on 
Computer Vision (ICCV), 2009. 

[17] X. Mei and H. Ling. “Robust Visual Tracking using 
l1 Minimization,” Proceedings of the International 
Conference on Computer Vision (ICCV), 2009. 

[18] P. Minviell, A. D. Marrs, S. Maskell, and A. Doucet, 
“Joint Target Tracking and Identification – Part I: 
Sequential Monte Carlo Model-Based Approaches, ISIF 
Proc. Fusion05, 2005. 

[19] P. Minviell, A. D. Marrs, S. Maskell, and A. Doucet, 
“Joint Target Tracking and Identification – Part II: Shape 
Video Computing, ISIF Proc. Fusion05, 2005. 

[20] D. A. Ross, J. Lim, R. Lin and M. Yang. 
“Incremental learning for robust visual tracking,” 
International Journal of Computer Vision, 77:125-141, 
2008. 

[21] VIVID database. [online] 
https://www.sdms.afrl.af.mil/request/data_request.php#vi
vid  

[22] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and 
Y. Ma. “Robust Face Recognition via Sparse 
Representation,” IEEE Trans on Pattern Anal. and Mach. 
Intell., 31(1):210-227, 2009. 

[23] C. Yang and E. Blasch, “Pose Angular-Aiding for 
Maneuvering Target Tracking,” ISIF Proc. Fusion05, 
2005. 

[24] C. Yang and E. Blasch. “Kalman Filtering with 
Nonlinear State Constraints.” ISIF Proc. Fusion 07, 2007. 

[25] A. Yilmaz, O. Javed, and M. Shah. “Object tracking: 
A survey.” ACM Comput. Survey, 38(4), 2006. 

[26] S. K. Zhou, R. Chellappa, and B. Moghaddam. 
“Visual tracking and recognition using appearance-
adaptive models in particle filters,” IEEE Trans. Image 
Processing, 11:1491-1506, 2004. 

[27] E. Blasch and L. Hong “Simultaneous Identification 
and Track Fusion,” IEEE Conf. on Dec. Control, Orlando, 
FL, Dec 1998. 


