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Abstract – We consider the problem of distributed
test of statistical independence under communication
constraints. While independence test is frequently en-
countered in various applications, distributed indepen-
dence test is particularly useful for events detection in
sensor networks: data correlation often occurs among
sensor observations in the presence of a target. Focus-
ing on the Gaussian case because of its tractability, we
study in this paper the characteristics of optimal scalar
quantizers for distributed test of independence where the
optimality is in the sense of optimizing the error expo-
nent. We also discuss the optimal quantizer properties
for the finite sample regime, i.e., that of directly mini-
mizing the error probability.

Keywords: Distributed signal processing, test of in-
dependence, sensor networks.

1 Introduction
Test of statistical independence has been a classcal

inference problem [1] and has found a wide range of ap-
plications, e.g., in image processing [2], economics [3].
The emerging wireless sensor networks bring new di-
mensions and challenges to this classical problem as
the data are no longer centrally available. Dependence
detection in distributed systems is often the first and
crucial step in event detection/identification; thus its
relevance in various sensor network applications is quite
evident. One particular example, which will be used
later is cooperative spectrum sensing in cognitive radio
network: the presence of the primary user’s signal in-
troduces dependence among the decentralized spectrum
sensors.
Take, for example, the Gaussian case and consider

the following hypothesis testing problem: a pair of ran-
dom sequences (Xi, Yi), i = 1, · · · , n, with (Xi, Yi) in-
dependent and identically distributed (i.i.d.) according
to the joint probability density function

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(

− 1

2(1− ρ2)
(x2−2ρxy+y2)

)

.

The two hypothese under test are

{

H0 : ρ 6= 0
H1 : ρ = 0

(1)

i.e., (X,Y ) is bivariate Gaussian and they are indepen-
dent under H1 and dependent under H0. Notice that
assuming zero mean and unit variance does not lose
any generality as long as the mean values and variances
are known. In the centralized case where X and Y se-
quences are available, this statistical inference problem
can be solved straightforwardly by applying some stan-
dard statistical inference frameworks depending on the
situations (e.g., whether or not ρ is known under H0

) [4].

The problem becomes much more interesting and
complicated when X and Y are not directly available;
instead, compressed versions of X and Y subject to
some rate constraints are used for the test of indepen-
dence. This distributed test of independence is the fo-
cus of the present paper. To be more specific, we as-
sume that X and Y are available respectively at two
distributed sensor nodes. The sensor nodes communi-
cate their data to the fusion center under a communica-
tion constraint of R1 and R2 bits per observation. The
fusion center, upon receiving the sensor data, makes
a final decision on whether X and Y are correlated or
not. Our attempt is to understand properties of optimal
quantizers at distributed nodes where the optimality is
associated with the performance at the fusion center
with regard to the dependence test.

Consider first the large sample regime, i.e., n is large.
Given that (Xi, Yi) form an i.i.d. sequence, it is easy
to show that any reasonable quantizers will lead to a
test with diminishing error probability as n grows for
R1 > 0 and R2 > 0. Thus a sensible criterion is the
speed with which the error probability approaches zero,
i.e., the error exponent characterization. This is indeed
the underlying reason for the problem setting where the
null hypothesis H0 represents dependence while inde-
pendence occurs under H1. Applying Stein’s lemma [5]
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to the hypothesis testing problem (1), for a given type
I error constraint, the error exponent for the type II
error (i.e., the Kullback Leibler distance between the
distributions under H0 and H1) reduces to the mutual
information between suitable random variables. For ex-
ample, with centralized test, the optimal error expo-
nent becomes I(X ;Y ). Our focus in the large sample
regime is to study quantizer properties in the context
of distributed test against independence with Gaussian
sources. Motivated by practical constraints that of-
ten require simple sensor processing, we consider only
scalar quantizers at local sensors with 1 bit per observa-
tion. That is, R1 = R2 = 1 and each sensor quantizer is
‘memoryless’. Our objective will be therefore to deter-
mine the optimal scalar quantizer structure that maxi-
mizes I(U, V ) where U and V are the one bit quantizer
output for the two sensors.
Characterizing optimal error exponents for depen-

dence test with communication constraints was first
considered by Ahlswede and Csiszár [6]. In particular,
for the special case of test of independence problem with
one sided data compression, i.e., R2 = ∞, a single letter
characterization of the optimal error exponent was ob-
tained in [6]. An overview of related work can be found
in [7] and the references therein. We note here that the
majority of the reported work are largely restricted to
(X,Y ) being discrete memoryless sources. Distributed
test of independence with continuous alphabet sources
(e.g., Gaussian sources) have been much less investi-
gated.
We will also study distributed test of independence

in the finite sample regime, that is, we attempt to char-
acterize properties of quantizers that directly minimize
error probability at the fusion center.
The rest of the paper is organized as follows. In Sec-

tion 2, we give the problem statement and our main
results. Section 3 are numerical examples. At last, we
conclude in section 4.

2 Problem Statement and Main

Results

2.1 Large sample regime

Consider the hypothesis test described in (1). The
fusion center does not have direct access to the source
sequence (Xi, Yi), i = 1, 2, · · · , n, but can be informed
about the sources only at limited rates. Precisely, the
local sensors apply scalar quantizers to their respective
observations:

Ui = γ1(Xi)

Vi = γ2(Yi)

where Ui and Vi ∈ {0, 1}.
For the large sample regime, the fusion center will de-

cide H0 or H1 given the sequence (Ui, Vi) i = 1, · · · , n
and we are to characterize the optimal quantizers that

maximize the error exponent. Using the Neyman-
Pearson criterion, we assume that the rejection region
is the set B ⊂ Xn whose complement of B is B̄. The
minimum probability of type II error for a prescribed
arbitrary small probability of type I error, denoted by
βR1,R2

(n, ǫ), is defined as

βR1,R2
(n, ǫ) = min

B
{Qn(B̄)|B ⊂ Xn, Pn(B) ≤ ǫ} (2)

The error exponent associated with βR1,R2
(n, ǫ) is, un-

der the problem setup, the mutual information between
U and V , I(U, V ). Our problem becomes finding a pair
of binary quantizers such that I(U, V ) is maximized.

By restricting each sensor to a one bit scalar quan-
tizer, we have the following result.

Theorem 1 For the distributed test of independence
problem described in (1) where each local quantizer is
restricted to be one bit scalar quantizer with a single
threshold, the optimal quantizers that maximize the er-
ror exponent are a sign detector, i.e., a binary quantizer
with threshold

t1 = t2 = 0 (3)

While the result is rather intuitive with the symmet-
ric problem setting, the proof is rather lengthy and is
sketched in the Appendix. Notice that the result relies
on the assumption of a single threshold quantizer: it is
not known if such restriction may be relaxed though it
appears to be the case from extensive numerical exam-
ples.

2.2 Finite sample regime

For the finite sample regime, we consider a Bayesian
approach where the priors for the two hypotheses are
assumed to be π0 and π1 respectively. We derive quan-
tizer properties for minimum error probability with
both two-sided and one-sided compression, with the lat-
ter refering to the situation in which the fusion center
has full data from one sensor while compressed data
from another. This situation arises naturally in the
case where one of the sensors is tasked with the final
decision making.

For the finite sample regime, we adopt the person-by-
person optimal approach and obtain the following result
for two-sided compression, following standard approach
described in [8].

Proposition 1 For the distributed testing of indepen-
dence problem with one bit quantization defined above.
If we further assume the fusion rule satisfies,

P (U0 = 1|U = 1, V = j) ≥ P (U0 = 1|U = 0, V = j)

P (U0 = 0|U = 0, V = j) ≥ P (U0 = 0|U = 1, V = j)



Ai =

1
∑

j=0

[P (U0 = 1|Ui = 1, Uī = j)− P (U0 = 1|Ui = 0, Uī = j)]P (Uī = j|xī) (4)

Bi =

1
∑

j=0

[P (U0 = 0|Ui = 0, Uī = j)− P (U0 = 0|Ui = 1, Uī = j)]P (Uī = j|xī) (5)

for all j = {0, 1}, then the optimal local decision rule
at ith sensor is given by:

P (Ui = 1|xi) =











1 if

∫

x
ī

BiP (xī|xiH1)dxī

∫

x
ī

AiP (xī|xiH0)dxī

≥ π0

π1

0 otherwise

(6)

where ī = 3 − i, for i = 1, 2, (hence, x1̄ = Y ), π0 =
P (H0), π1 = P (H1), and Ai, Bi, i = 1, 2, defined in
(4) and (5) at the top of next page.

If furthermore the fusion center uses the AND rule, we
have

Proposition 2 For the distributed test of indepen-
dence problem with one bit quantization defined above,
if we assume further that AND rule is used at the fu-
sion center, i.e., U0 = 1 if and only if U = V = 1, then
the optimal local decision rule is given by:

P (Ui = 1|xi) =











1 if

∫

D
ī

P (xī|xiH1)dxī

∫

D
ī

P (xī|xiH0)dxī

≥ π0

π1

0 otherwise

(7)

where Di = {xi : P (Ui = 1|xi) = 1} is the rejection
region for hypothesis H0 at ith local sensor.

For the case of one sided hypothesis testing of inde-
pendence, e.g., H0 : ρ > 0 versus H1 : ρ = 0, we have
the following corollary.

Corollary 1 For the distributed one sided hypothesis
testing of independence problem with one bit quantiza-
tion defined above, single semi-infinite intervals for D1

and D2 form a PBPO solution for minimum probability
of error.

The fact that optimal quantizer has semi-infinite quan-
tization intervals is rather appealing as it allows efficient
search of a single threshold for quantizer design. Proof
of Propositions 1 and 2 as well as Corollary 1 is omitted
due to space limit.

3 Numerical examples
Fig. 1 plots I(U ;V ) as a function of thresholds t1

and t2 for ρ = 0.65. Apparently I(U ;V ) achieves its
maximum (≈ 0.15) when (t1, t2) = (0, 0). We further
conjecture that, this point is actually a global maxi-
mum which is corroborated by extensive numerical re-
sults. The difficulty in proving it’s global maximum is
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Figure 1: Plot of I(U ;V ) as a function of thresholds t1
and t2 for ρ = 0.65.

that we do not have an analytical expression of the cu-
mulative distribution function for a bivariate Gaussian
distributed random variables.
An interesting application of our main result is the

spectrum sensing problem in cognitive radio network,
where multiple secondary users collaborate to detect
whether the primary user is present or not. While the
problem is well understood when the primary user’s sig-
nal is fully observed (possibly corrupted by noise), it is
more challenging when only a finite bits of information
from each secondary user can be communicated to a
decision maker. Consider the following simple model in
which local sensors Y1 and Y2 receive a noisy version of
the original signal through independent additive Gaus-
sian channels.

Y n
1 = Xn +Nn

1 , (8)

Y n
2 = Xn +Nn

2 , (9)

where Xn is a n length samples of the primary user’s
signal, i.e., Xn = [x1, x2, · · · , xn] 6= 0 when the pri-
mary user is transmitting (hypothesis H0) and Xn =
[0, 0, · · · , 0] when the primary user is silent (hypothe-
sis H1). In this example, we assume that X is a zero
mean independent Gaussian random process with vari-
ance P , for simplicity, which may be justified by the use
of Gaussian pulse shaping filter used in digital commu-
nications. The noise N1 and N2 are independent stan-
dard Gaussian random variables.
Upon receiving Y n

i , sensor i will send a binary de-
cision vector un

i to the fusion center, the fusion center



will then decide wether the original signal is present or
not. Clearly, if X is present, the received signals at lo-
cal sensors Y1 and Y2 are correlated (In the simulation,
we choose P = 2.857 to make sure that the correlation
of Y1 and Y2 under H0 is 0.65 ). We use the following
decision rules, for k = 1, 2 and i = 1, 2, · · · , n

uki = 1 if
yki√
P + 1

> t (10)

The fusion center decides u0i = 1 if and only if u1i =
u2i for i = 1, 2, · · · , n, and then make a final decision
using the following majority rule,

u = 1 if
n
∑

i=1

u0i ≥ t0(n) (11)

where t0(n) is chosen so that the probability of type I er-
ror Pe1 = 0.1. Since, under H0,

∑n

i=1 u0i is a binomial
distribution with probability of success p = Pr0(u1i =
u2i), which can be easily calculated, t0(n) can be eas-
ily evaluated numerically for each n. Randomization is
used to ensure that the false alarm probability to be
precisely 0.1 so as to maximize the detection probabil-
ity.
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Figure 2: Probability of error for spectrum sensing.

Fig. 2 shows the performance of the above algorithm.
In the simulation, we assume that Pr(H0) = 0.8,
and we choose five different local decision thresholds
(t = −1.5,−0.5, 0, 0.5, 1.5) in (10). To compare the
performance, we also plot the optimal error exponent
I(U ;V ) as plotted in Fig. 1. We observe that as
number of samples increases, the probability of error
decreases, and the threshold t = 0 performs the best
among others. Notice that the vertical axis is in loga-
rithmic scale and the slope appears to be equal to the
plotted I(U ;V ).

4 Conclusion
In this paper, we studied distributed test of indepen-

dence of bivariate Gaussian sources with communica-

tion constraints. In particular, with one bit quantiza-
tion, we derived quantization rules for single threshold
quantizer at the local sensors that optimize the error ex-
ponent. For distributed one sided independence testwe
proved that semi-infinite interval quantizers form a per-
son by person optimal (PBPO) solution for minimum
probability of error.

Appendix - Proof of Theorem 1
With one bit scalar quantization, optimizing error ex-

ponent is equivalent to maximize the mutual informa-
tion I(U ;V ). Define, under H0, Pij = Pr(U = i;V =
j), i, j = {0, 1}, which can be expressed in terms of
integration of (1) given the single threshold quantizer
assumption. By definition,

Pr(U = 1) = Pr(X ≥ t1) = Q(t1) (12)

Pr(V = 1) = Pr(Y ≥ t2) = Q(t2) (13)

where the Q function is complementary cumulative dis-
tribution function for standard Gaussian distribution.
We want to maximize I(U ;V ), where

I(U ;V ) = H(U) +H(V )−H(U ;V ) (14)

= H(Q(t1)) +H(Q(t2))

−H(P00, P01, P10, P11), (15)

where H(·) is the Shannon entropy function.
We now compute the first partial derivative of

I(U ;V ) with respect to t1 and t2, repectively. We get,
with tedious but straightforward computation,

∂I(U ;V )

∂t1
=

1√
2π

exp
−t21
2

{

log
Q(t1)

1−Q(t1)

+[1−Q(
t2 − ρt1
√

1− ρ2
)] log

P00

P10

+Q(
t2 − ρt1
√

1− ρ2
) log

P01

P11

}

(16)

∂I(U ;V )

∂t2
=

1√
2π

exp
−t22
2

{

log
Q(t2)

1−Q(t2)

+[1−Q(
t1 − ρt2
√

1− ρ2
)] log

P00

P01

+Q(
t1 − ρt2
√

1− ρ2
) log

P10

P11

}

(17)

One can easily check that (t1, t2) = (0, 0) is a critical
point, i.e., the first partial derivatives equal 0. We next
check its Hessian matrix:

M =

(

a(ρ) b(ρ)
b(ρ) c(ρ)

)

(18)

where

a(ρ) =
∂2I(U ;V )

∂t21
|(t1,t2)=(0,0)



b(ρ) =
∂2I(U ;V )

∂t1t2
|(t1,t2)=(0,0)

c(ρ) =
∂2I(U ;V )

∂t22
|(t1,t2)=(0,0)

We want to show that a(ρ) < 0 and detM = b(ρ)2 −
a(ρ)c(ρ) > 0 for all ρ ∈ [−1, 0) ∪ (0, 1].
We can easily calculate that,

a(ρ) = c(ρ) (19)

=
1

2π
[−4 +

2ρ
√

1− ρ2
log

P10

P11
+

1

4P10P11
]|(0,0)(20)

b(ρ) =
1

2π
[

2
√

1− ρ2
log

P11

P10
+

P10 − P11

2P10P11
]|(0,0) (21)

Next, we introduce a lemma concerning evaluating
the cumulative distribution function of a standard bi-
variate Gaussian distribution at point (0, 0).

Lemma 1 [9, page 290]

P00(t1 = t2 = 0) = P11(t1 = t2 = 0) =
1

4
+

1

2π
arcsin(ρ) (22)

P01(t1 = t2 = 0) = P10(t1 = t2 = 0) =
1

4
− 1

2π
arcsin(ρ) (23)

Using (22) and (23), we can further get

a(ρ) = c(ρ) =
1

2π
[−4 +

2ρ
√

1− ρ2
log

π − 2 arcsinρ

π + 2 arcsinρ

+
4π2

π2 − 4 arcsin2 ρ
] (24)

b(ρ) =
1

2π
[

2
√

1− ρ2
log

π + 2 arcsinρ

π − 2 arcsinρ

− 8π arcsin ρ

π2 − 4 arcsin2 ρ
] (25)

Next, we want to evaluate functions a(ρ), b(ρ) and
c(ρ) with the help of the following two lemmas.

Lemma 2 For a(ρ) and c(ρ) defined above, we have:

a(ρ) = c(ρ) ≤ 0 (26)

for all ρ ∈ [−1, 1] and the maximum is achieved when
ρ = 0.

Lemma 3 For the function b(ρ) defined above, we
have:

b(ρ) > 0, if ρ ∈ (0, 1] (27)

b(ρ) < 0, if ρ ∈ [−1, 0) (28)

b(ρ) = 0, if ρ = 0 (29)

Form Lemma 2, we can see that a(ρ) < 0 for all
ρ ∈ [−1, 0) ∪ (0, 1] is satisfied. Next, we want to prove
that b2(ρ) − a(ρ)c(ρ) < 0 for all ρ 6= 0 is also true.

Notice that, form Lemmas 2 and 3, we only need to
prove that

−a(ρ) > b(ρ) if ρ ∈ (0, 1] (30)

a(ρ) < b(ρ) if ρ ∈ [−1, 0) (31)

Define, d(ρ) = −a(ρ) − b(ρ) and e(ρ) = a(ρ) − b(ρ).
We want to show that

d(ρ) > 0 if ρ ∈ (0, 1] (32)

e(ρ) < 0 if ρ ∈ [−1, 0) (33)

This can be verified by noting that

d(ρ) =
1

2π
[−2

√

1− ρ

1 + ρ
log

π + 2 arcsinρ

π − 2 arcsinρ

+
8(π − 2 arcsinρ) arcsin ρ

π2 − 4 arcsin2 ρ
] (34)

e(ρ) =
1

2π
[2

√

1 + ρ

1− ρ
log

π − 2 arcsinρ

π + 2 arcsinρ

+
8(π + 2 arcsinρ) arcsin ρ

π2 − 4 arcsin2 ρ
] (35)
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