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Abstract – This paper proposes a Novel filtering al-
gorithm for the general contact lens problem, where the
measurement uncertainty region takes a thin, curved,
contact lens-like shape in the states’ Cartesian coordi-
nates. Such problems have severe measurement nonlin-
earity and will lead to consistency problems for exist-
ing nonlinear filtering techniques such as the extended
Kalman filter (EKF) and the unscented Kalman fil-
ter (UKF). This problem is very ill-conditioned, which
makes it extremely hard and expensive to use a parti-
cle filter (PF). In this paper, a General Measurement
Adaptive Covariance rule (GMACR) is proposed, for
which the consistency of EKF is guaranteed. This leads
to a new filtering approach for the general contact lens
problem — the General Measurement Adaptive Covari-
ance Extended Kalman Filter (GMAC-EKF). Simula-
tion results show that GMAC-EKF is consistent and has
superior tracking accuracy. When the state estimate be-
comes sufficiently accurate, GMAC-EKF is equivalent
to EKF and has the optimal tracking performance.
The only drawback of the filter is that it has loss in

accuracy at the early stage of the filtering due to the
artificially enlarged measurement covariance. A hybrid
filter combining the alternative extended Kalman filter
and GMAC-EKF is also proposed, which yields the best
filtering performance.

Keywords: Tracking, nonlinear filtering, general con-
tact lens problem.

1 Introduction
The Kalman Filter (KF) is widely used for various

kinds of state estimation problems. It is well known
that KF is optimal for Linear Gaussian (LG) systems.
For nonlinear systems with non-Gaussian noises, varia-
tions of KF, e.g., the Converted Measurement Kalman
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W911NF-06-1-0467 and ONR under contract number N00014-
10-1-0029.

filter (CMKF) [3], the Extended Kalman Filter (EKF)
and the Unscented Kalman Fitler (UKF) have been
very successful. However there are exceptions, such as
the very long range tracking problem investigated in
[11], which belongs to the so called the “contact lens
problem” named after the thin, curved, contact lens-
like shape of the measurement uncertainty region in the
Cartesian coordinates. The curvature of the nonlinear
measurement uncertainty region and its impact on var-
ious filters was also discussed in [8, 9]. When range rate
measurements are also involved, the problem becomes
more challenging because the contact lens issue exists
not only in the position but also in the velocity. The
problem is thus named as the general contact lens prob-
lem, which is not covered by the Measurement Covari-
ance Adaptive Extended Kalman Filter (MCAEKF) in
[11]. Note that nonlinearities in state estimation prob-
lems come from two sources: system dynamics nonlin-
earity and measurement nonlinearity. In this paper we
focus on measurement nonlinearity, which is directly re-
lated to the filter update and is the prime cause of filter
inconsistency and divergence.1

The MCAEKF is proposed for the problem of very
long range tracking using range and direction sine mea-
surements from a phased array radar, which is a typi-
cal “contact lens problem”. In the presence of the se-
vere measurement nonlinearity, the filters above (except
CMKF) failed to produce consistent filtering results.
CMKF, however, has significant loss in range accuracy.
MCAEKF successfully solved the consistency and accu-
racy problems simultaneously by adaptively changing
the measurement covariance matrix to guarantee the
consistency of EKF. However, it is limited to the con-
tact lens problem in position and can not be used with
range rate measurements.

An important observation from MCAEKF is that,
to guarantee the consistency of EKF, the measurement

1The nonlinearity in system dynamics, which is involved only
in the track prediction, has been successfully treated in the ex-
isting filtering approaches, e.g., the UKF.
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covariances need to be modified to have a less curved
uncertainty region in the Cartesian coordinates. In this
paper a general measurement adaptive covariance rule
(GMACR) is proposed, where the measurement is not
required to be convertible to the Cartesian coordinates.
This leads to a General Measurement Adaptive Covari-
ance Extended Kalman filter (GMAC-EKF) which is
shown to be consistent and have superior tracking ac-
curacy. When the track estimate becomes sufficiently
accurate GMAC-EKF is equivalent to EKF and has the
optimal tracking performance.
The Alternative Extended Kalman Filter (AEKF)[4,

7] was proposed for the state update with range rate
measurements. It uses an approximate linearization
of the observation function of the range rate measure-
ment, which implicitly assumes that the position errors
do not contribute to the errors of the estimated range
rate. AEKF, although heuristic, is shown to be much
more robust than EKF and has small tracking errors.
However, as shown later in this paper, AEKF has con-
sistency problems as the state estimate becomes accu-
rate and it can cause significant loss in range accuracy.
Further investigations indicate that it may cause also
large errors in crossrange. The strength of AEKF is at
the initial stage of the filtering, when the use of range
rate measurements will significantly improve the track-
ing accuracy in the crossrange directions. In this pa-
per, a hybrid filter combining the advantage of AEKF
at the early stage and the strength of GMAC-EKF at
later stage of the filtering is also proposed, which yields
the best filtering performance.
The paper is organized as follows. Sec. 2 illustrates

the contact lens problem and shows the challenges in
solving it. The performance of EKF, UKF, and AEKF
are investigated in a 2-D tracking scenario using range,
azimuth and range rate measurements, which show that
beyond certain limits these filters will have consistency
problems. The necessity of adaptively modifying the
measurement covariance for EKF update is also jus-
tified. Sec. 3 proposes the GMACR and the GMAC-
EKF. Simulation results are presented in Sec. 4. Con-
cluding remarks are given in Sec. 5.

2 The General Contact Lens
Problem and Its Challenges

The contact lens problem occurs when states in the
Cartesian coordinates are updated with nonlinear mea-
surements from a different coordinate system e.g., the
polar or the range–direction-sine (r-u-v) coordinates,
where the measurement uncertainty region has (because
of the very accurate range) a very thin, curved, con-
tact lens-like shape in the states’ Cartesian coordinates.
Fig. 2 shows an illustrative example of the uncertainty
region of such a measurement.
From basic geometry, the crossrange uncertainty in-

creases with a larger range. However, the uncertainty in

The origin

Measurement 

uncertainty region

Figure 1: Example: A curved measurement uncertainty
region which is very accurate in the range direction, but
has large uncertainty in the crossrange.

the range direction is fixed. As the range increases, the
measurement uncertainty region takes a curved shape
like a contact lens which is increasingly non-Gaussian
(non-elliptical) in the Cartesian coordinates. When
the range of such measurements is over certain limit,
conventional filters, such as EKF, UKF, have been ob-
served to have significant consistency problems [9, 11].
The CMKF is consistent but it has a loss in range ac-
curacy [11]. This is because, to be consistent, the mea-
surement conversion needs to significantly decrease the
accuracy in the range direction.2 The Particle filter
(PF) is not suitable for the contact lens problem be-
cause of the thiness of the measurement uncertainty
region, which will cause severe particle depletion.
Range rate measurements are often available from

radars. Like for range measurements, the measurement
nonlinearity becomes more severe as the range rate ac-
curacy increases and it can also cause consistency prob-
lems for EKF and UKF. To show this, consider a 2-D
tracking scenario where the radar obtains range r, az-
imuth a and range rate ṙ measurements of a target. The
target follows the continuous white noise acceleration
(CWNA) motion model [3] with process noise intensity
(PSD) q̃. The state of the target is defined as

x = [ξ ξ̇ ζ ζ̇]
′

(1)

which evolves as

x(k + 1) = Fx(k) + v(k) (2)

where T is the sampling time and

F =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (3)

2See [11] for an example of this in the measurement conversion
from the r-u-v coordinates to the Cartesian coordinates.



The covariance of the process noise in (2) is

E[v(k)v(k)′] =


1
3T

3 1
2T

2 0 0
1
2T

2 T 0 0
0 0 1

3T
3 1

2T
2

0 0 1
2T

2 T

 q̃ (4)

The nonlinear measurements functions are given by

r =
√

ξ2 + ζ2 + wr (5)

a = arctan
ζ

ξ
+ wa (6)

ṙ =
ξξ̇ + ζζ̇√
ξ2 + ζ2

+ wṙ (7)

The measurement noises wr, wa and wṙ are assumed to
be zero mean white Gaussian with standard deviations
σr, σa and σṙ respectively, and for the sake of simplicity
it is assumed that the noises are mutually uncorrelated.

Assume that the sensor is at the origin which takes
measurements of the target every T = 1 s, with mea-
surement standard deviations σr = 10m, σa = 2mrad
and σṙ to be specified. The target has initial velocity
[−9−2]m/s and process noise intensity q̃ = 10−3 m2/s3.
The initial position is to be specified in the simulations.

In the first case, EKF (1st order) is used for track-
ing. Fig. 2 shows the filtering results including the Root
Mean Square position Error (RMSposErr) and the Nor-
malized Estimation Error Squared (NEES) [3], which
are obtained using 100 Monte Carlo runs. The target
starts from [100 100] km. Fig. 2 shows that, when the
standard deviation of the range rate (sdRr) measure-
ments is σṙ = 1m/s, the EKF already shows inconsis-
tency and has large position errors. When the error
standard deviation decreases to σṙ = 0.5m/s, the con-
sistency problem became much worse, which leads to
the larger errors in position.

For the UKF, the same tracking scenario is used,
the target starts further away from the radar at
[600 600] km.3 From Fig. 3 it can be seen that the UKF
has consistency problems when σṙ = 1m/s. The filter
inconsistency becomes more significant as σṙ decreases
to 0.5m/s. In both cases, the UKF has loss in posi-
tion accuracy compared to the UKF without the range
rate measurements. The reason, similar to that in the
contact lens problem discussed earlier in this section,
is that in the filter update the highly accurate range
rate measurement is overly “selective”, like the PF, “ne-
glecting” the crossrange position estimates.

Another filter using the range, azimuth and range
rate measurements is the Alternative Extended Kalman
filter (AEKF) proposed in [4]. For range and azimuth it
uses the converted measurement approach as in CMKF;
for the range rate measurement, an approximate lin-

3For the radar accuracy considered, the UKF has no consis-
tency problem below this range.
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Figure 2: Case 1: EKF filtering results for various range
rate accuracies

0 50 100 150
3

4

5

6

7

8

9

10

11

12

Time (s)

N
E

E
S

 

 
UKF with sdRr=1m/s
UKF with sdRr=0.5m/s
UKF without range rate measurement

Sensor:
sdR=10m
sdAz=2mrad

Target initial postion:
[600 600] km

(a) NEES

0 50 100 150
200

400

600

800

1000

1200

1400

1600

1800

2000

Time (s)

R
M

S
E

po
s 

(m
)

 

 
UKF with sdRr=1m/s
UKF with sdRr=0.5m/s
UKF without range rate measurement

Sensor:
sdR=10m
sdAz=2mrad

Target initial postion:
[600 600] km

(b) RMSpos
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rate accuracies



earization of the observation matrix is used. The re-
sulting observation matrix is

Ha =

 1 0 0 0
0 0 1 0
0 dṙ

dẋ 0 dṙ
dẏ

 (8)

In comparison, the standard observation matrix is

H =

 1 0 0 0
0 0 1 0
dṙ
dx

dṙ
dẋ

dṙ
dy

dṙ
dẏ

 (9)

Next, the AEKF is compared to the UKF in the same
2-D tracking scenario as above.
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Figure 4: AEKF vs. UKF: consistency test
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Figure 5: AEKF vs. UKF: RMS position errors

Fig. 4 shows that AEKF shows some degree of incon-
sistency. In contrast, a standard EKF will quickly di-
verge in the same tracking scenario, which is not shown
in the figure for the sake of clarity. The key for AEKF
to be much more robust than EKF is that the cross-
correlation between the predicted state estimates and
the innovation is calculated using P (k|k − 1)Ha(k) in-
stead of P (k|k − 1)H(k). This effectively prevents the
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Figure 6: AEKF vs. UKF: range accuracy

range rate measurement from being “overly selective”
on the position estimates, and improves the consistency
of the filter. However, as shown in Fig. 6, the heuristic
AEKF has significant loss in range accuracy (which is
even worse than the UKF without using the range rate
measurements). Further simulations show that the con-
sistency problem of AEKF may lead to large errors in
crossrange.

Fig. 5 shows that the AEKF has smaller position er-
rors than the UKF (without using range rate measure-
ments)4 before 70 s. AEKF’s fast convergence at the
initial stage of the filtering is consistently observed in
various simulations. This is because the use of range
rate measurements helps reduce the crossrange errors
in both velocity and position.

From the above discussions, for the general contact
lens problem, the EKF, UKF and AEKF all have their
working limits beyond which they will show consistency
problems and have loss in accuracy. In the next sec-
tion the GMACR, which guarantees the consistency of
the linearized EKF, is presented. This is then used to
develop the GMAC-EKF for the general contact lens
problem.

3 The Solution to the General
Contact Lens Problem:
GMAC-EKF

In [11] it has been shown that EKF works very well
when the state estimate becomes accurate, and unlike
CMKF, a consistent EKF has no loss in accuracy. In
fact, the consistency problem of EKF occurs only in
the early stage of the filtering when the state estimates
are not accurate enough. Fig. 7 gives the geometric
explanation for this phenomenon.

4As shown in Fig. 3, in the tracking scenario considered, UKF
with the range rate measurements has consistency problems and
position errors larger than the UKF without the range rate mea-
surements.



In Fig. 7(a) the intersection of the measurement un-
certainty and the predicted state uncertainty, indicated
by the dark region, is significantly curved and non-
Gaussian (non-elliptical). In this case, the actual pos-
terior uncertainty of the state will also be very different
from Gaussian, which is, thus, impossible to be repre-
sented by a Gaussian density. For the above reason,
in order to keep the “Gaussian based” filters, e.g., the
EKF and UKF, consistent, it is necessary to somehow
thicken the uncertainty region to make it more Gaus-
sian like. The CMKF does this in its measurement
conversion, which significantly decreases the accuracy
in the range direction [11]. However, one feature of the
linearized EKF is trying to preserve the measurement
accuracy and this will cause consistency problems in
this case.
On the other hand, if the predicted state estimate

is accurate enough, as shown in Fig. 3, the intersec-
tion of the uncertainties is not very curved, thus the
posterior distribution of the state can be well approxi-
mated by a Gaussian density. In this case, EKF has no
consistency problem and will yield the optimal filtering
performance.
Like MCAEKF, the idea of GMAC-EKF is to allow

EKF to thicken the posterior uncertainty when neces-
sary by artificially increasing elements in the measure-
ment covariance matrix before the update. The general
Measurement Adaptive Covariance rule (GMACR) pre-
sented in the sequel is able to guarantee the consistency
of EKF and is applicable to both range and range rate
measurements.

Measurement 

uncertainty region

Predicted state 

uncertainty

(a) Large predicted uncertainty region in the
crossrange direction (initial stage of the filter-
ing)

Measurement 

uncertainty region

Predicted state 

uncertainty

(b) Small predicted uncertainty region in the
crossrange direction (when the state estimates
become accurate.)

Figure 7: A geometric illustration of the reason of the
divergence of EKF

3.1 GMACR

From the above discussion, it can be seen that the
key for the general measurement adaptive covariance
rule (GMACR) is to characterize and quantify the cur-
vature of the posterior uncertainty region. To illustrate
how this can be done, Fig. 8 shows a curved uncer-
tainty region and the Gaussian uncertainty with the
same center and thickness. The impact of the curva-

Gaussian (elliptical) uncertainty 

region with the same center and 

thickness

DC

thickness

A curved (contact lens 

shaped) uncertainty regionshaped) uncertainty region 

(non!Gaussian)

Figure 8: The quantification of the curvature of a
curved (contact lens shaped) uncertainty region

ture at a point in the curved uncertainty region can be
characterized by the “distance” DC from the point to
the corresponding Gaussian uncertainty.
To be specific, consider the previously investigated

2-D tracking problem. Let x̂ = [ξ̂
ˆ̇
ξ ζ̂

ˆ̇
ζ] denote the

center of the two uncertainty regions (the elliptical and
the contact lens). Next, the measures of the curvature
of the uncertainty regions are defined.

Range measurement

For a point x = [ξ ξ̇ ζ ζ̇] in the curved uncertainty
region, from simple geometry one has

re =

√
ξ̂2 + ζ̂2 (10)

rp =
ξξ̂ + ζζ̂√
ξ2 + ζ2

(11)

where re is the range at x̂, rp is the range re projected
on x. From simple geometry one has

Dr
C(x) =

(re)
2

rp
− re (12)

Range rate measurement

Suppose x̂ contains the true velocity. As the posi-
tion moves across the uncertainty region, the projected
range rate also changes. One has,

ṙe =
ξ̂
ˆ̇
ξ + ζ̂

ˆ̇
ζ√

ξ2 + ζ2
(13)



ṙp =
ξ
ˆ̇
ξ + ζ

ˆ̇
ζ√

ξ2 + ζ2
(14)

Dṙ
C(x) = |ṙp − ṙe| (15)

where ṙe is the range rate at x̂, ṙp is the range rate
being projected on x.
The distance D∗

C(x) (where * stands for r or ṙ for
range and range rate respectively) can also be inter-
preted as the error introduced by the corresponding
measurement nonlinearity. The curvature of the un-
certainty region can be quantified using

c∗a =
maxx∈Φa{D∗

C(x)}
σ∗

(16)

where * stands for r or ṙ, Φa denotes the predicted un-
certainty region that contains most (100a%, with typi-
cal a = 0.95) of the prior probability. For the posterior
uncertainty region to be Gaussian like, its curvature,
(w.r.t. range or range rate) should not be higher than
a threshold C∗, namely

c∗a ≤ C∗ (17)

Formally, the general measurement adaptive covari-
ance rule (GMACR) is as follows:

• Calculate the minimum allowable standard devia-
tion of the measurement noise σmin

∗ from (17)

σmin
∗ =

1

C∗ max
x∈Φa

{D∗
C(x)} (18)

• To guarantee the consistency of the linearized
EKF, the standard deviation used by the filter up-
date should not be smaller than σM

∗ (19), which
is the larger one between σmin

∗ (18) and the actual
measurement standard deviation σ∗.

σM
∗ = max{σmin

∗ , σ∗} (19)

3.2 GMAC-EKF

For the problem of tracking using range and range
rate measurements, the GMAC-EKF operates as fol-
lows:

• Generate N (e.g., N = 100) random samples
from the predicted distribution of the states, which
yields approximately the set Φa.

• Calculate Dr
C(x) (12) and Dṙ

C(x) (15) for all the
samples.

• Find σmin
r and σmin

ṙ according to (18). Based
on GMACR σM

r = max{σmin
r , σr} and σM

ṙ =
max{σmin

ṙ , σṙ}. Then one has the modified mea-
surement covariance matrix as

RM =

 (σM
r )2

σ2
a

(σM
ṙ )2

 (20)

• Do the measurement update using EKF with the
modified measurement covariance matrix (20).

Note that the N samples can be generated more effi-
ciently at more desirable locations, which is illustrated
in the appendix.

4 Simulation Results
The performance of GMAC-EKF is evaluated using

the same tracking scenario as in Sec. 2. The target
starts from [600 600] km; the sensor accuracies in range,
azimuth, and range rate are σr = 1m, σa = 2mrad and
σṙ = 0.5m/s. The threshold (see (17)) for range and
range rate are chosen as5

Cr = C ṙ =
1

4
(21)

Fig. 9 shows the modified range and range rate stan-
dard deviations σM

r and σM
ṙ (19) from the first 30 s in

one run of simulation. At the initial stage of the fil-
tering large standard deviations were used because the
state estimates were very inaccurate in crossrange. This
may temporarily cause some loss of tracking accuracy,
however, as shown in Sec. 3, this is necessary for the
linearized EKF to be consistent. The modified stan-
dard deviations decease sharply as the accuracy of the
state estimate increases. After 12 s the actual range
and range rate measurement standard deviations are
used for the filtering and GMAC-EKF is equivalent to
the standard EKF and its performance is practically
optimal.
The following simulation results (obtained from 100

Monte Carlo runs) compare the performance of GMAC-
EKF, UKF and AEKF. Fig. 10 shows that the GMAC-
EKF is consistent, while the other two filters show dif-
ferent levels of inconsistency. Fig. 11 shows that, at the
early stage of the filtering (before 30 s), the AEKF has
the smallest position errors. This is because that the
GMAC-EKF uses artificially increased standard devi-
ations for the range rate measurements (see Fig. 4),
which causes the filter to converge slower than the
AEKF. Note that the use of the increased range stan-
dard deviations causes little loss of accuracy in cross-
range. After 30 s, the GMAC-EKF has the smallest
position errors, because it is consistent and equivalent
to the EKF, thus has no loss in accuracy. Fig. 12 com-
pares the accuracy of the filters in range, before 20 s
the GMAC-EKF has some loss in range accuracy due
to the increased measurement standard deviations in
range, after that it has high accuracy as the UKF. The
AEKF, however, has much larger range errors.
From the above discussions it can be seen that the

only drawback of GMAC-EKF is the loss of accuracy
due to the enlarged measurement covariance at the

5For a different problem cs need to be fine tuned in the filter
design process.
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Figure 9: GMAC-EKF: modified standard deviations
in range and range rate from the first 30 s of one round
of the simulations.
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Figure 10: GMAC-EKF vs. UKF and AEKF: Consis-
tency Test
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Figure 11: GMAC-EKF vs. UKF and AEKF: Position
Errors
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Figure 12: GMAC-EKF vs. UKF and AEKF: range
accuracy

early stage of the filtering. While AEKF, although not
performing very well in the late stage of the filtering,
has the strength of fast convergence in the early filter-
ing stage. Note that the GMACR allows the switching
from an arbitrary filter to EKF, thus combine the ad-
vantages of the filters. A simple switching rule

• Use AEKF if σmin
ṙ ≥ σṙ, where σmin

ṙ is given in
(18); otherwise, use GMAC-EKF.

can be used to combine AEKF and GMAC-EKF. The
resulting hybrid filter yields the best filtering results,
which is not shown in the paper for the sake of concise-
ness.

5 Conclusions
This paper investigates the problem of tracking in the

presence of severe measurement nonlinearity, which is
referred to as the general contact lens problem because
of the thin, curved and contact lens-like shape of mea-
surement uncertainty region. One typical problem of
this kind is the problem of tracking using highly accu-
rate range and range rate measurements. For this prob-
lem, existing nonlinear filters including the extended
Kalman filter (EKF), the unscented Kalman (UKF) fil-
ter and the particle filter (PF) are shown to have con-
sistency problems. The alternative extended Kalman



filter (AEKF) for the fusion of range rate measurements
is also investigated. It is shown that AEKF converges
very fast at the early stage of the filtering, however, it
does not perform very well as the state estimate be-
comes more accurate.

For the general contact lens problem, a General
Adaptive Covariance Rule is proposed, which guaran-
tees the consistency of the linearized EKF. This leads
to the General Adaptive Covariance Extended Kalman
Filter (GMAC-EKF), which is shown to be consistent
and has the optimal performance when it converges to
EKF. A drawback of GMAC-EKF is that it may have
some loss in accuracy at the initial stage of the filter-
ing due to the artificially enlarged measurement covari-
ance matrix. To fix this, a hybrid filter based on the
GMACR, which combines the strength of AEKF and
GMAC-EKF, can be used.

This paper answers the key question of how the lin-
earized EKF can be used for nonlinear measurement
update without causing consistency problems, which
greatly extends the usability of EKF in nonlinear fil-
tering problems.

6 Appendix — An Efficient Way
for Generating Samples for the
Φa Uncertainty Region

Let x̂P and PP denote the predicted position and
its covariance (Note that for the problem considered
velocity states are not needed for the calculation of DC

from (12) and (15).). The sample points are generated
as follows:

• Find the orthogonal basis of the hyperplane that
is perpendicular to x̂P . (suppose x̂P is in a space
with dimension L, then the dimension of the hy-
perplane is L− 1.)

• Generate N random samples ns(i), i = 1, ..., N in
this hyperplane.

• For each ns(i) do

τ(i) = ns(i)
′P−1

P ns(i) (22)

ns(i) =
4(L− 1)

τ(i)
ns(i) (23)

Then the samples are given by xs(i) = x̂P +
ns(i), i = 1, ..., N .

The above sampling procedure will put the samples at
the cross range boundary of the Φa uncertainty region,
where the impact of the nonlinearity is the most signif-
icant. For the special case when L=2, there are only
two such xs(i) which can be directly calculated without
using random samples.
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