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Martin W. Zwierlein, MIT 

 
Progress 06/2011-05/2012 

 
Overview 

In this project we aim to directly realize a model system of strongly correlated 
electrons moving in two dimensions using ultracold fermionic atoms stored in a 
sheet of light. The goal is to create high-temperature superfluids in two 
dimensions, to establish interferometry and magnetometry with these systems, 
and to study the phase diagram of two-dimensional Fermi gases with arbitrary 
interactions and spin imbalance. Fast rotation will mimic high magnetic fields and 
allow the approach to the Quantum Hall regime. The system shares traits with 
High-Tc materials, where super currents flow between stacks of weakly connected 
two dimensional planes. This year has seen rather spectacular progress: We 
could study the evolution of fermion pairing from three to two dimensions; 
determine the equation of state of strongly interacting Fermi gases across the 
superfluid transition; produce mixtures of sodium and fermionic potassium for the 
study of impurities in lower dimensions; and create and study spin-orbit coupling in 
a degenerate Fermi gas. 

 

 

1. Evolution of Fermion Pairing from Three to Two Dimensions 

Ariel T. Sommer, Lawrence W. Cheuk, Mark Jen-Hao Ku, Waseem S. Bakr, Martin W. 

Zwierlein 

Phys. Rev. Lett. 108, 045302 (2012) 

Highlighted as a Viewpoint in Physics 5, 10 (2012) by Mohit Randeria 

 

Interacting fermions in coupled two-dimensional (2D) layers present unique physical 

phenomena and are central to the description of unconventional superconductivity in high-

transition-temperature cuprates and layered organic conductors. Reduced dimensionality 

enhances the effect of fluctuations, while interlayer coupling can stabilize 

superconductivity and even amplify the transition temperature. A fermionic superfluid 

loaded into a periodic potential should form stacks of two-dimensional superfluids with 

tunable interlayer coupling, a key ingredient of the model proposed by Anderson to 

explain high transition temperatures observed in the cuprates. For deep potentials in the 

regime of uncoupled 2D layers, increasing the temperature of the gas is expected to 

destroy superfluidity through the Berezinskii-Kosterlitz-Thouless mechanism, while more 

exotic multi-plane vortex loop excitations are predicted for a 3D-anisotropic BCS 

superfluid near the critical point. 

In this work, we studied fermion pairing across the crossover from 3D to 2D in a periodic 

potential of increasing depth. We follow the evolution of fermion pairing in the dimensional 

crossover from 3D to 2D as a strongly interacting Fermi gas of 
6
Li atoms becomes 

confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice. 

Decreasing the dimensionality leads to the opening of a gap in radiofrequency spectra, 



even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the 

measured binding energy EB of fermion pairs increases in surprising agreement with 

mean-field theory for the BEC-BCS crossover in two dimensions. 

 

 
 

 

 

 

 

 

2. Revealing the Superfluid Lambda Transition in the Universal Thermodynamics 

of a  Unitary Fermi Gas 

Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein 

Science 335, 563 (2012) 

Highlighted in a Science Perspective by Wilhelm Zwerger 

 

Fermi gases, collections of fermions such as neutrons and electrons, are found 

throughout nature, from solids to neutron stars. Interacting Fermi gases can form a 

superfluid or, for charged fermions, a superconductor. We have directly observed the 

superfluid phase transition in a strongly interacting Fermi gas via high-precision 

measurements of the local compressibility, density and pressure. Our data completely 

determine the universal thermodynamics of these gases without any fit or external 

thermometer. The onset of superfluidity is observed in the compressibility, the chemical 

potential, the entropy, and the heat capacity, which displays a characteristic lambda-like 

feature at the critical temperature of 16.7% of the Fermi temperature. Scaled to the 

density of electrons in a metal, this form of superfluidity would occur far above room 

temperature. Our measurements provide a benchmark for many-body theories on strongly 

Figure 1 Figure 1 Evolution of Fermion Pairing from Three to Two Dimensions. Radio-Frequency 

Spectra show the opening of a pairing gap as the Fermi Gas is more and more confined to two 

dimensions. V0 denotes the strength of the optical lattice used to confine the gas, in units of the 

recoil energy ER of a 6Li atom in the lattice. 



 

 

                                                              

interacting fermions, relevant for problems ranging from high-temperature 

superconductivity to the equation of state of neutron stars. 

 

 
Figure 2 Observation of the Superfluid Lambda Transition in a trongly interacting Fermi Gas. Shown 

is the specific heat of the gas, directly obtained from the density profiles of a trapped gas. 

 

3. Feynman diagrams versus Feynman quantum emulator 

K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. W. 

Cheuk, A. Schirotzek, M. W. Zwierlein 

Feynman diagrams versus Fermi-gas Feynman emulator 

 Nature Physics 8, 366 (2012) 

 

Precise understanding of strongly interacting fermions, from electrons in modern 

materials to nuclear matter, presents a major goal in modern physics. However, the 

theoretical description of interacting Fermi systems is usually plagued by the intricate 

quantum statistics at play. Here we present a cross-validation between a new theoretical 

approach, Bold Diagrammatic Monte Carlo (BDMC), and precision experiments on ultra-

cold atoms. Specifically, we compute and measure with unprecedented accuracy the 

normal-state equation of state of the unitary gas, a prototypical example of a strongly 

correlated fermionic system. Excellent agreement demonstrates that a series of Feynman 

diagrams can be controllably resummed in a non-perturbative regime using BDMC. This 

opens the door to the solution of some of the most challenging problems across many 

areas of physics. 

 



 
Figure 3 Equation of State of a Unitary Fermi Gas. a) Density and b) pressure as a function of the 

ratio of the chemical potential to the temperature. Density and pressure are normalized by the 

respective quantities of a non-interacting Fermi gas at the same ratio kBT. 

 

4. Quantum degenerate Bose-Fermi mixture of chemically different atomic species 

with widely tunable interactions 

Jee Woo Park, Cheng-Hsun Wu, Ibon Santiago, Tobias G. Tiecke, Peyman Ahmadi, 

Martin W. Zwierlein 

Phys. Rev. A 85, 051602(R) (2012) 

 

We have created a quantum degenerate Bose-Fermi mixture of 
23

Na and 
40

K with widely 

tunable interactions via broad interspecies Feshbach resonances. Twenty Feshbach 

resonances between 
23

Na and 
40

K were identified. The large and negative triplet 

background scattering length between 
23

Na and 
40

K causes a sharp enhancement of the 

fermion density in the presence of a Bose condensate. As explained via the asymptotic 

bound-state model (ABM), this strong background scattering leads to a series of wide 

Feshbach resonances observed at low magnetic fields. Our work opens up the prospect 

to create chemically stable, fermionic ground state molecules of 
23

Na-
40

K where strong, 

long-range dipolar interactions will set the dominant energy scale. 



 

 

                                                              

 
Figure 4 Strongly interacting degenerate Bose-Fermi mixture of 

23
Na and 

40
K. The fermion cloud (to 

the right) displays an untypical “bimodality” due to the strong interactions with the sodium 

condensate. 

 

5. Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas 

Lawrence W. Cheuk, Ariel T. Sommer, Zoran Hadzibabic, Tarik Yefsah, Waseem S. Bakr, 

Martin W. Zwierlein 

Phys. Rev. Lett., in print, preprint arXiv: 1205.3483 (2012) 

 

The coupling of the spin of electrons to their motional state lies at the heart of recently 

discovered topological phases of matter. Here we create and detect spin-orbit coupling in 

an atomic Fermi gas, a highly controllable form of quantum degenerate matter. We reveal 

the spin-orbit gap via spin-injection spectroscopy, which characterizes the energy-

momentum dispersion and spin composition of the quantum states. For energies within 

the spin-orbit gap, the system acts as a spin diode. To fully inhibit transport, we open an 

additional spin gap, thereby creating a spin-orbit coupled lattice whose spinful band 

structure we probe. In the presence of s-wave interactions, such systems should display 

induced p-wave pairing, topological superfluidity, and Majorana edge states. 

 
Figure 5 Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas. (A) A radiofrequency 

pulse transfers atoms from the reservoir states |>R and |>R (shown in black) into the spin-orbit 

coupled system (shown in red and blue). Transfer occurs when the RF photon energy equals the 

energy difference between the reservoir state and the spin-orbit coupled state at quasi-momentum 



q. (B,C,D and E) Transfer as a function of RF frequency and detuning hand quasi-momentum q. 

(B and C) Spin-resolved |> and |> spectra, respectively, when transferring out of |>R. (D and E) 

Spin-resolved |> and |> spectra, respectively, when transferring out of |>R. (F, G and H) The 

reconstructed spinful dispersions of a spin-orbit coupled Fermi gas for various strengths of Raman 

coupling. 

 

6. Ultracold Fermionic Feshbach Molecules of 
23

Na
40

K 

Cheng-Hsun Wu, Jee Woo Park, Peyman Ahmadi, Sebastian Will, Martin W. Zwierlein. 
Phys. Rev. Lett., in print, preprint arXiv:1206.5023 (2012). 

We report on the formation of ultracold fermionic Feshbach molecules of 
23

Na
40

K, the first 
fermionic molecule that is chemically stable in its ground state. The lifetime of the nearly 
degenerate molecular gas exceeds 100 ms in the vicinity of the Feshbach resonance. The 
measured dependence of the molecular binding energy on the magnetic field 
demonstrates the open-channel character of the molecules over a wide field range and 
implies significant singlet admixture. This will enable efficient transfer into the singlet 
vibrational ground state, resulting in a stable molecular Fermi gas with strong dipolar 
interactions. 

 

Figure 6 Radiofrequency association of ultracold Feshbach molecules of NaK. Starting with a 

mixture of sodium atoms in hyperfine state |1,1>Na and potassium atoms in hyperfine state |9/2,-

3/2>K, rf spectroscopy near the |9/2,-3/2>K to |9/2,-5/2>K hyperfine transition reveals free 
40

K atoms 

repulsively interacting with the 
23

Na bath (near zero rf offset), as well as associated molecules (near 

85 kHz rf offset). A fit to the molecular association spectrum yields a binding energy of Eb = h x 

84(6) kHz. The magnetic field corresponding to the atomic transition at 34.975 MHz was 129.4 G. 
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Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas

Lawrence W. Cheuk,1 Ariel T. Sommer,1 Zoran Hadzibabic,1, 2

Tarik Yefsah,1 Waseem S. Bakr,1 and Martin W. Zwierlein1

1Department of Physics, MIT-Harvard Center for Ultracold Atoms, and
Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA

2Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

The coupling of the spin of electrons to their motional state lies at the heart of recently discovered
topological phases of matter [1–3]. Here we create and detect spin-orbit coupling in an atomic
Fermi gas, a highly controllable form of quantum degenerate matter [4, 5]. We reveal the spin-orbit
gap [6] via spin-injection spectroscopy, which characterizes the energy-momentum dispersion and
spin composition of the quantum states. For energies within the spin-orbit gap, the system acts as a
spin diode. To fully inhibit transport, we open an additional spin gap, thereby creating a spin-orbit
coupled lattice [7] whose spinful band structure we probe. In the presence of s-wave interactions,
such systems should display induced p-wave pairing [8], topological superfluidity [9], and Majorana
edge states [10].

Spin-orbit coupling is responsible for a variety of phe-
nomena, from the fine structure of atomic spectra to the
spin Hall effect, topological edge states, and the predicted
phenomenon of topological superconductivity [3, 11]. In
electronic systems, spin-orbit coupling arises from the rel-
ativistic transformation of electric fields into magnetic
fields in a moving reference frame. In the reference
frame of an electron moving with wavevector k in an
electric field, the motional magnetic field couples to the
electron spin through the magnetic dipole interaction.
This spin-orbit coupling phenomenon is responsible for
lifting the degeneracy of spin states in the excited or-
bitals of atoms and solid-state materials such as zinc-
blende structures [12]. In a two-dimensional semicon-
ductor heterostructure, the electric field can arise from
structure or bulk inversion asymmetry [13], leading to
magnetic fields of the form B(R) = α(−ky, kx, 0) or
B(D) = β(ky, kx, 0). The resulting spin-orbit coupling
terms in the Hamiltonian are known as the Rashba [14]
and Dresselhaus [12] contributions, respectively. In-
cluding a possible momentum-independent Zeeman field

B(Z) = (0, B
(Z)
y , B

(Z)
z ), the Hamiltonian of the electron

takes the form:

H =
~2k2

2m
− gµB

~
S · (B(D) + B(R) + B(Z)), (1)

where g is the electron g-factor, µB is the Bohr magneton
and S is the electron spin.

The energy-momentum dispersion and the associated
spin texture of the Hamiltonian in Eq. (1) are shown in

Figure 1A for B
(Z)
y = 0 and α = β. In the absence of a

perpendicular Zeeman field B
(Z)
z , the spectrum consists

of free particle parabolas for the two spin states that are
shifted relative to each other in k-space owing to the spin-

orbit interaction. For a finite field B
(Z)
z , a gap opens in

the spectrum. This gap, known as the spin-orbit gap,
has been recently observed in one-dimensional quantum
wires [6, 15]. The two energy bands are spinful in the
sense that the spin of an atom is locked to its momentum.

Similar band structures have been used to explain the
anomalous quantum Hall effect and predict a saturation
of the Hall conductivity for Fermi energies in the gap
region [16].

In this work, we engineer the Hamiltonian in Eq. (1)
with equal Rashba and Dresselhaus strengths in an opti-
cally trapped, degenerate gas of fermionic lithium atoms
via Raman dressing of atomic hyperfine states [17, 18].
Raman fields have previously been used to generate spin-
orbit coupling and gauge fields in pioneering work on
Bose-Einstein condensates [19–21], and recently spin-
orbit coupling in Fermi gases [22]. Here, we directly
measure the spin-orbit band structure of Eq. (1), as well
as the rich band structure of a spin-orbit coupled lat-
tice. For this, we introduce spin-injection spectroscopy,
which is capable of completely characterizing the quan-
tum states of spin-orbit coupled fermions, including the
energy-momentum dispersion and the associated spin-
texture. By tracing the evolution of quantum states in
the Brillouin zone, this method is able to directly mea-
sure topological invariants, such as the Chern number in
a two-dimensional system [3, 11, 23].

In order to directly reveal the single-particle eigen-
states of the spin-orbit coupled system, we reduce the in-
teractions in our Fermi gas to a negligible strength. This
is convenient for studying topological insulators, whose
behavior is mostly governed by single-particle physics.
On the other hand, a single-component spin-orbit cou-
pled Fermi gas is expected to develop effective p-wave
interactions mediated by s-wave interactions [8], either
in the presence of an s-wave Feshbach resonance, or
in the presence of flat bands as realized below. This
can lead to BCS pairing in a p-wave channel, and in a
two-dimensional system with pure Rashba coupling, to
px + ipy pairing and chiral superfluidity [8, 9].

We generate spin-orbit coupling using a pair of laser
beams that connect two atomic hyperfine levels, la-
beled |↑〉 and |↓〉, via a two-photon Raman transition
(Fig. 1B,C). The Raman process imparts momentum
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FIG. 1. Realization of spin-orbit coupling in an atomic Fermi gas. (A) Energy bands as a function of quasi-momentum q for
Raman coupling strength of ~ΩR = 0.25ER and ~δ = 0. The spin composition of the states is indicated by the color. Dashed
lines show energy bands for ~ΩR = 0ER and ~δ = 0ER. (B) Geometry of the Raman beams: A pair of Raman beams at ±19◦

relative to the ŷ axis couples states |↓, kx = q〉 and |↑, kx = q +Q〉. A bias magnetic field B in the ẑ direction provides the
quantization axis. (C) The hyperfine interaction splits |↑〉 and |↓〉 by ~ω0, and the relevant polarization components are π and
σ+. ~δ is the two-photon detuning. (D) Momentum-dependent Rabi oscillations in the spin texture after sudden switch-on of
the Raman beams. Here ~ΩR = 0.78(2)ER and the detuning ~δ = −0.25(1)ER. (E) A π-pulse for the resonant momentum-
class of atoms is applied at different two-photon detunings ~δ. The Raman strength is ~ΩR = 0.035(5)ER in order to retain
momentum selectivity. (F and G): Adiabatic loading and unloading of atoms into the upper (lower) band at coupling strength
of ~ΩR = 0.53(5)ER. The Raman beams are turned on with δ = ∓8.5ΩR, and the detuning is swept linearly to δ = 0 and back

at a rate of |δ̇| = 0.27(5)Ω2
R. This loads atoms into the upper (lower) band, as indicated by the diagrams on the right. The

spin texture follows the instantaneous value of δ, indicating adiabaticity.

~Qx̂ to an atom while changing its spin from |↓〉 to |↑〉,
and momentum −~Qx̂ while changing the spin from |↑〉
to |↓〉. Defining a quasimomentum q = kx − Q

2 for spin

|↓〉 and q = kx+ Q
2 for spin |↑〉, one obtains the Hamilto-

nian of the form given in Eq. (1) [19]. In this mapping,

B
(Z)
z = ~ΩR/gµB , where ΩR is the two-photon Rabi fre-

quency, B
(Z)
y = ~δ/gµB , where δ is the two-photon de-

tuning, and α = β = ~2Q
2mgµB

(see Supplemental Material).
When the spin-orbit gap is opened suddenly, an atom

prepared in the state |↓, kx = q −Q/2〉 oscillates between
|↓, kx = q −Q/2〉 and |↑, kx = q +Q/2〉 with a momen-
tum dependent frequency ∆(q)/h, where ∆(q) is the en-
ergy difference between the bands at quasimomentum
q. Such Rabi oscillations correspond to Larmor preces-
sion of the pseudo-spin in the effective magnetic field
B(SO) = B(D) + B(R) + B(Z). We have observed these
oscillations by starting with atoms in |↓〉, pulsing on the
Raman field for a variable duration τ , and imaging the
atoms spin-selectively after time-of-flight expansion from
the trap. Time-of-flight maps momentum to real space,
allowing direct momentum resolution of the spin popula-
tions. As a function of pulse duration, we observe oscil-
lations of the pseudospin polarization with momentum-
dependent frequencies (Fig. 1D). Our Fermi gas occupies

a large range of momentum states with near-unity occu-
pation. Therefore, each image at a given pulse duration τ
contains information for a large range of momenta q. The
observation of momentum-dependent oscillations demon-
strates the presence of a spin-orbit gap, and shows that
the atomic system is coherent over many cycles. To high-
light the momentum selectivity of this process, we pre-
pare an equal mixture of atoms in states |↑〉 and |↓〉 and
pulse on the Raman fields for a time t = π/ΩR for dif-
ferent two-photon detunings δ. This inverts the spin for
atoms with momentum q where ∆(q) is minimal. Since
the minimum of ∆(q) varies linearly with δ due to the
Doppler shift ∝ kxQ, the momentum q at which the spin
is inverted depends linearly on δ (Fig. 1E).

Instead of pulsing on the Raman field and projecting
the initial state into a superposition of states in the two
bands, one can introduce the spin-orbit gap adiabatically
with respect to band populations. This is achieved by
starting with a spin-polarized Fermi gas and sweeping
the two-photon detuning δ from an initial value δi to a
final detuning δf . The magnitude of the initial detun-
ing |δi| is much larger than the two-photon recoil energy
ER = ~2Q2/2m, so that the effective Zeeman field is al-
most entirely parallel with the spins. Depending on the
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FIG. 2. Spin–injection spectroscopy of a spin-orbit coupled Fermi gas. (A) A radiofrequency (RF) pulse transfers atoms from
the reservoir states (shown in black) |↑〉R and |↓〉R into the spin-orbit coupled system (shown in red and blue). Transfer occurs
when the RF photon energy equals the energy difference between the reservoir state and the spin-orbit coupled state at quasi-
momentum q. (B,C,D and E) Transfer as a function of RF frequency detuning h∆ν and quasi momentum q at Raman coupling
strength of ~ΩR = 0.43(5)ER and ~δ = 0.00(3)ER. Note that starting with reservoir |↓〉R (|↑〉R), transfer to state |↑〉 (|↓〉) is
entirely due to spin-orbit coupling. Hence the signal is generally much weaker than that for state |↓〉 (|↑〉) except right in the
gap, where their ratio approaches 50%/50%. (B and C) Spin-resolved |↓〉 and |↑〉 spectra, respectively, when transferring out of
|↑〉R. (D and E) Spin-resolved |↓〉 and |↑〉 spectra, respectively, when transferring out of |↓〉R. (F,G and H) The reconstructed
spinful dispersions for ~δ = 0.00(3)ER and ~ΩR = 0ER, ~ΩR = 0.43(5)ER and ~ΩR = 0.9(1)ER, respectively.

direction of the sweep, this loads atoms into either the
upper or the lower dressed band. We interrupt the sweep
at various times, and image the spin-momentum distri-
bution. This reveals that the spin texture follows the
effective Zeeman field. The process is reversible, as we
verify by sweeping the detuning back to δi and restoring
full spin-polarization. (Fig. 1F and G).

Having demonstrated the ability to engineer spin-orbit
coupling in a Fermi gas, we introduce a general approach
to measure the complete eigenstates and energies of
fermions at each quasi-momentum q and thus resolve the
band structure and associated spin texture of spin-orbit
coupled atomic systems. Our approach yields equivalent
information to spin and angle-resolved photoemission
spectroscopy (spin-ARPES), a powerful technique re-
cently developed in condensed matter physics [24]. Spin-
ARPES is particularly useful for studying magnetic and
quantum spin Hall materials; it has been used, for exam-
ple, to directly measure topological quantum numbers in
the Bi1−xSbx series, revealing the presence of topological
order and chiral properties [25].

Our spectroscopic technique uses radiofrequency (RF)

spin-injection of atoms from a free Fermi gas into an
empty spin-orbit coupled system using photons of a
known energy (Fig. 2A). After injection, the momentum
and spin of the injected atoms are analyzed using time of
flight [26] combined with spin-resolved detection. Atoms
are initially loaded into one of two free “reservoir” atomic
states |↓〉R and |↑〉R which can be coupled to the states |↓〉
and |↑〉, respectively, via the RF spin-injection field, with-
out changing the quasimomentum. The injection occurs
when the frequency of the RF pulse matches the energy
difference between the spin-orbit coupled bands and the
initial reservoir state (see Fig. 2A). Spin-injection from
|↓〉R (|↑〉R) populates mostly the region of the spin-orbit
coupled bands with a strong admixture of |↓〉 (|↑〉) states.
Thus, the use of two reservoir states allows us to measure
both the |↓〉-rich and the |↑〉-rich parts of the spin-orbit
coupled bands. Following the injection process, the Ra-
man beams are switched off, and the atoms are simulta-
neously released from the trap. After a sufficiently long
time of free expansion, the density distribution gives ac-
cess to the momentum distribution, which we measure
using state-selective absorption imaging. By counting
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the number of atoms of a given spin and momentum as
a function of injection energy, we determine the disper-
sion of the spin-orbit coupled bands along with their spin
texture.

The topological characteristics of the bands, which are
encoded in the eigenstates, can be extracted from the
spin and momentum composition. For our spin-orbit sys-
tem with δ = 0, the spin of the eigenstates is confined
to the y-z plane on the Bloch sphere because the effec-
tive magnetic field has no x̂ component. More general
couplings may not restrict the spin to a great circle on
the Bloch sphere, in which case at least two spin compo-
nents must be measured for a complete characterization
of the bands. This can be achieved by rotating the dif-
ferent spin components onto the measurement basis with
an RF pulse.

Applying spin-injection spectroscopy, we have mea-
sured the band structure of the equal-part Rashba-
Dresselhaus Hamiltonian at δ = 0 for several ΩR. Fig-
ure 2B, C, D and E show spin- and momentum- resolved
spin-injection spectra obtained with atoms starting in the
|↑〉R reservoir (top row) and starting in the |↓〉R reservoir
(bottom row), for the case ~ΩR = 0.43(5)ER and δ = 0.
The (q, ↑)↔ (−q, ↓) symmetry of the system can be seen
in the spectra in Fig. 2. The energy at each quasimo-
mentum is found by adding the energy injected into the
system by the RF pulse to the initial kinetic energy of the
free particle in the reservoir. Figure 2F, G and H show
the dispersion and spin texture of the bands obtained
from the data. As ΩR is increased, we observe the open-
ing of a spin-orbit gap at q = 0. The spin composition of
the bands evolves from purely |↑〉 or |↓〉 away from the
spin-orbit gap to a mixture of the two spin states in the
vicinity of the spin-orbit gap, where the spin states are
resonantly coupled.

The dispersion investigated above is the simplest pos-
sible for a spin-orbit coupled system and arises naturally
in some condensed matter systems. A Fermi gas with
this dispersion has an interesting spinful semi-metallic
behavior when the Fermi energy lies within the spin-
orbit gap. When the Fermi energy is outside the spin-
orbit gap, there is a four-fold degeneracy of states at the
Fermi surface. Inside the gap, however, the degeneracy
is halved. Furthermore, propagation of spin up parti-
cles at the Fermi energy can only occur in the positive
q direction, while spin down fermions can only propa-
gate in the opposite way. Particles are thus protected
from back-scattering in the absence of magnetic impuri-
ties that would rotate their spin. Such a spinful semi-
metal can be used to build spin-current diodes, since the
material permits flow of polarized spin-currents in one
direction only.

An even richer band structure involving multiple spin-
ful bands separated by fully insulating gaps can arise
in the presence of a periodic lattice potential. This has
been realized for Bose-Einstein condensates by adding

RF coupling between the Raman-coupled states |↑〉 and
|↓〉 [7]. Using a similar method, we create a spinful lat-
tice for ultracold fermions, and use spin-injection spec-
troscopy to probe the resulting spinful band structure.
The combined Raman/RF coupling scheme is shown in
Fig. 3A. The Raman field couples the states |↓, kx = q〉
and |↑, kx = q +Q〉 with strength ΩR, whereas the RF
field couples the states |↓, kx = q〉 and |↑, kx = q〉 with
strength ΩRF . As a result, the set of coupled states for
a given quasimomentum q, shown in the repeated Bril-
louin scheme in Fig. 3B, is |σ, kx = q + nQ〉 for integer
n and σ =↑, ↓. The lowest four bands are degenerate at
the band center q = 0 when ΩR = ΩRF = 0. The Raman
field splits the degeneracy between the first and fourth
band, leaving the other two degenerate. The remaining
degeneracy, which is a Dirac point, is removed with the
addition of the RF field. Thus, when the system is filled
up to the top of the second band, it is an insulator. Fur-
thermore, when ΩRF is large enough, a band gap also
opens between the first and second bands.

Fig. 3D and E show the spin-injection spectra, mea-
sured with fermions initially in reservoir state |↓〉R, which
is sufficient to reconstruct the full band structure given
the (q, ↑) ↔ (−q, ↓) symmetry of the Hamiltonian. The
transitions between the reservoir and the spin-orbit cou-
pled bands for ~ΩR = 0.40(5)ER and ~ΩRF = 0.28(2)ER
are shown in Fig. 3C. The experimental spectra (Fig. 3D
and E) for the same parameters are compared to the
corresponding theoretically calculated spectra, shown in
Fig. 3F and G. We focus on the features of the |↓〉 channel
of the spectrum, which is stronger because of the better
spin-composition overlap with the reservoir state. The
spectrum exhibits four prominent features separated by
three energy gaps, labeled ∆1, ∆2 and ∆3 in Fig. 3F and
3G. The gaps giving rise to these features are shown on
the band structure in Fig. 3C. The gap ∆1 is opened by
the spin-orbit coupling, while ∆2 is opened by a direct
RF coupling and ∆3 is opened by a second order process
that involves both the RF and Raman fields, explaining
its smallness. We have explored the Raman/RF system
for a range of coupling strengths as shown in the spectra
in Fig. 4B and 4C. The corresponding band structures are
shown in Fig 4A. With a careful choice of the Raman/RF
coupling strengths, spinful flat bands are realized, where
interactions should play a dominant role [27].

To illustrate how the energy bands along with the
corresponding eigenstates can be extracted, we recon-
struct the energy bands along with the spin texture for
~ΩR = 0.93(7)ER and ~ΩRF = 0.28(2)ER, as shown in
Fig. 4D. The energies of the bands are obtained from
the resonant frequencies in the spin-injection spectra,
while the spin composition is extracted from the relative
weights of the signal in the two spin channels (see Supple-
mental Material). In general, the eigenvector

∣∣ψ(n)(q)
〉

for the nth energy band at a given quasi-momentum q,
can be expanded in terms of free space eigenstates as
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FIG. 3. Creating and probing a spin-orbit coupled lattice. (A) The addition of a radiofrequency field allows momentum transfer
of any multiple of Q. The combined Raman-RF system produces a spinful lattice band structure. (B) The band structure of
the Raman-RF system in the repeated zone scheme. The topmost band structure corresponds to ~ΩRF = 0 and ~ΩR = 0.25ER,
which has a band crossing at quasi-momentum q = 0. The middle band structure corresponds to a larger Raman coupling of
~ΩR = 0.5ER with ~ΩRF = 0. In the bottom-most band structure, ~ΩR = 0.5ER while ~ΩRF is increased to 0.25ER. (C) Spin
injection from free particle bands to spinful lattice bands, starting from |↓〉R. Transitions near zero RF detuning (h∆ν ∼ 0)
that give rise to dominant spectral features are identified. (D and E) Experimental spectrum of the Raman-RF system with
~ΩR = 0.40(5)ER and ~ΩRF = 0.28(2)ER in the spin |↓〉 and spin |↑〉 channels, measured after injection from reservoir |↓〉R.
The dominant features span many Brillouin zones, corresponding to projection of lattice states onto free particle states after
time-of-flight. (F and G) The theoretical spectra corresponding to D and E, respectively. The features corresponding to the
gaps and transitions identified in C are labeled.

|ψn(q)〉 =
∑
m,σ c

(n)
σ (kx = q +mQ) |σ, kx = q +mQ〉. In

spin-injection spectroscopy, the projection of the lattice
wavefunctions onto free particle states allows us to not
only extract the average spin, but also the magnitude of

the coefficients c
(n)
σ (kx). From the projection coefficients

c
(n)
σ (kx), one can define the spin ~S(kx) (see Supplemental

materials). In Fig. 4E, F and G, we show the extracted
value of Sy(kx) and |Sz(kx)| for the bottommost band
when ~ΩR = 0.93(7)ER and ~ΩRF = 0.28(2)ER. For
more general spin-orbit Hamiltonians involving σx, one
can extract the phase between all three components of
~S(kx) with additional RF pulses, and fully characterize
the eigenstate for the corresponding quasimomentum q.
The topology of the band, encoded in the evolution of its
eigenstates across the Brillouin zone, can thus be mea-
sured.

In summary, we have created and directly probed a
spin-orbit gap in a Fermi gas of ultracold atoms and re-
alized a fully gapped band structure allowing for spinful
flat bands. We introduced spin-injection spectroscopy
to characterize the spin-textured energy-momentum dis-
persion. Such measurements would reveal the non-trivial
topology of the bands in systems with more general spin-
orbit couplings [28], opening a path to probing topo-
logical insulators with ultracold atoms. Recently de-

veloped high numerical aperture imaging techniques can
be used for microscopic patterning of lower dimensional
Fermi gases into heterostructures with regions charac-
terized by different topological numbers separated by
sharp interfaces [29, 30]. In such systems, spatially
resolved spin-injection spectroscopy can directly reveal
topologically protected edge states such as Majorana
fermions, which have been proposed for topological quan-
tum computation[10, 31, 32].

This work was supported by the NSF, a grant from the
Army Research Office with funding from the DARPA
OLE program, ARO-MURI on Atomtronics, AFOSR-
MURI, ONR YIP, DARPA YFA, an AFOSR PECASE,
and the David and Lucile Packard Foundation. Z. H.
acknowledges funding from EPSRC under Grant No.
EP/I010580/1.
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FIG. 4. Evolution of spin-textured energy bands of a spin-orbit coupled lattice. (A) Theoretical band structures for various
combinations of ΩR and ΩRF . The first band becomes flat while remaining spinful for ~ΩR = 0.93ER and ~ΩRF = 0.11ER and
0.28ER. (B and C) The corresponding experimental Raman-RF spin-injection spectra for injection from |↓〉R for channels |↓〉
and |↑〉, respectively. The color map used is the same as Fig. 2B and 2E after rescaling to the maximum intensity (which for
4C is 20% of 4E), except for the top left panel in (C), which is scaled to the maximum intensity of the corresponding panel in
(B). Possible interaction effects between |↑〉 with |↓〉R (see Fig. S2) makes only the dominant features resolvable in |↑〉, while
finer features are visible in |↓〉. (D) Experimentally reconstructed band structure for ~ΩR = 0.93(7)ER and ~ΩRF = 0.28(2).
The spin texture is indicated by the color of the points. (E,F and G) Experimentally measured spin components Sy and |Sz|
as a function of momentum kx for the lattice wavefunctions corresponding to the bottommost band in D.
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SUPPLEMENTAL MATERIALS

System preparation and Raman setup

Fermionic 6Li in the hyperfine state
|F = 3/2,mF = 3/2〉 is sympathetically cooled to
degeneracy by 23Na atoms in a magnetic trap. The
atoms are transferred to a nearly spherical crossed opti-
cal dipole trap with mean trapping frequency ∼ 150 Hz.
Depending on the measurement, the atoms are then
transferred into one of the lowest four hyperfine states
in the ground state manifold via radiofrequency (RF)
sweeps. The four lowest hyperfine states are states |↓〉R,
|↓〉, |↑〉, |↑〉R in the text. Subsequently, the magnetic
field is ramped to B = B0ẑ, with B0 = 11.6 G. The
geometry of the Raman beams is shown in Fig. 1B. The
two beams, detuned by 3.96 GHz to the blue of the D1

line, generate a moving lattice with lattice wavevector
Q = 2π × (1.0µm)−1 and corresponding recoil energy

of ER = ~2Q2

2m = h × 32(1) kHz. The calibration of
the recoil energy ER is performed using the data in
Fig. 1E and relies only on the relation of Q to the
traveled distance for a given time-of-flight. To couple
states |↑〉 and |↓〉, the frequency difference between the
two beams is set near the hyperfine splitting of ω0 =
2π× 207.7 MHz. For the one-photon detuning that we
use, ΩR/Γsc ≈ 240, where Γsc is the scattering rate.
Note that one-body losses from single-photon scattering
events do not perturb the measured spin-injection
spectra, as they affect all energy states equally and only
reduce the number of atoms in each momentum state.

Experimental procedure

In the presence of the Raman beams, a differential
Stark shift between |↑〉 and |↓〉 can alter the resonant
two-photon frequency. The frequency corresponding to
δ = 0 is calibrated using RF spectroscopy on the |↑〉 to
|↓〉 transition in the presence of the Raman beams with
a large two-photon detuning δ ≈ 2π×1 MHz. The res-
onant frequencies for |↓〉R → |↓〉 and |↑〉R → |↑〉 are
calibrated similarly. The differential Stark shift for the
largest Raman coupling strength is measured to be 4 kHz
for |↑〉 → |↓〉, and < 1 kHz for the |↓〉R → |↓〉 and
|↑〉R → |↑〉 transitions. For spin-injection spectroscopy,
the injection process uses a RF field that couples the
states |↓〉R (|↑〉R) and |↑〉 (|↓〉R). All spectra are taken
with a RF injection pulse duration of 0.5 ms, and an in-
jection field strength corresponding to a maximum trans-
fer fraction < 0.30. The experimental frequency resolu-
tion for spin-injection is 3 kHz ≈ 0.1ER, while the mo-
mentum resolution is estimated to be 0.05Q, limited by
expansion time and imaging resolution. For all measure-
ments, state-selective absorption images are taken after

time-of-flight of 4 ms. As the atoms are released, the
bias magnetic field is ramped to 300 G, where the reso-
nant imaging frequencies for different hyperfine states are
well-resolved, allowing spin-selective absorption imaging.
To obtain the spectra shown in Fig. 1 and 2, the time-of-
flight images for each spin state are first integrated along
ŷ, orthogonal to the spin-orbit direction. For a given
quasi-momentum q, the integrated one-dimensional den-
sity profiles from the two spin channels are then combined
to produce the final spectrum. As an example, we show
in Fig. S1 the time-of-flight images and the corresponding
integrated density profiles, at a specific detuning δ/ER
for the spectrum in Fig. 1E.

Hamiltonian for Raman-coupled system

The spin of an atom is coupled to its momentum using
a pair of laser beams near a Raman transition. Using the
rotating wave approximation, the Raman beams generate
a spinor potential

V (~r) =
~ΩR

2
(σx cosQx− σy sinQx) +

δ

2
σz, (2)

where ΩR is the two-photon Rabi frequency. After a local
pseudo-spin rotation about the z axis with angle Qx, the
Hamiltonian becomes [19]

H =
~2k2

2m
+

~2Q
2m

σzq +
~ΩR

2
σx +

δ

2
σz +

ER
4
, (3)

where q is the quasi-momentum defined in the text. Fol-
lowing a global pseudo-spin rotation σz → σy, σy → σx
and σx → σz, the Hamiltonian becomes

H =
~2k2

2m
+

~2Q
2m

σyq +
~ΩR

2
σz +

δ

2
σy +

ER
4
, (4)

which up to a constant has the same Rashba-Dresselhaus

form as Eq. (1), with α = β = ~2Q
2mgµB

, B
(Z)
y = ~δ/gµB

and B
(Z)
z = ~ΩR/gµB . In this convention, the bare hy-

perfine states, labeled |↑〉 and |↓〉 are eigenstates of σy.

Reconstructing the spinful dispersion for the
Raman-coupled system

For the equal Rashba-Dresselhaus system, the two
channels in a spectrum from reservoir |σ〉R are first re-
labeled by quasi-momentum q. The ratio of the trans-
ferred atoms in each channel at a given q directly mea-
sures the q-dependent spin composition. The dispersion
is then reconstructed by adding the free particle disper-
sion ε0(q) = (q∓Q/2)2/2m to the spectrum correspond-
ing to injection from |↑〉R (|↓〉R). The result is shown in
Fig. 2F,G and H, where the color denotes the spin tex-
ture and the strength of the color is weighed by the total
number of atoms at a given q.
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FIG. S1. Example of converting time-of-flight images to a spinful spectrum. Here, we show the conversion process for the
spectrum in Fig. 1E for a specific detuning ~δ = −1.88ER. (A and B) Time-of-flight images rescaled in terms of the recoil
momentum Q in the |↑〉 and |↓〉 channels, respectively. (C and D) The time-of-flight images in A and B are integrated along the
ky direction to produce 1-dimensional densities n(q/Q). The conversion to quasi-momentum q involves adding a spin channel
dependent momentum offset. (E) Combining C and D for every quasi-momentum q produces a slice in the final spectrum. In
the figure, this is the region bounded by the two dashed lines. Repeating the same procedure for other detunings yields the
full spectrum.

Hamiltonian for the Raman/RF system

Raman dressing creates a spin-orbit gap in momentum
space. Adding radiofrequency (RF) coupling with zero
momentum transfer creates a lattice potential with true
band gaps [7]. The RF drive is applied at the same fre-
quency as the Raman frequency, with coupling strength
ΩRF . An atom can now receive an arbitrary number of
units of the recoil momentum ~Q by interacting alter-
nately with the Raman field and the RF field (see Figure
3(A)). When the two spin states are coupled at different
momenta using Raman lasers, and additionally at the
same momentum using RF, the Hamiltonian becomes

H =
~2k2

2m
+
~ΩR

2
(σx cosQx−σy sinQx)+

~ΩRF
2

σx+
δ

2
σz.

(5)
Since the Hamiltonian has discrete translational symme-
try along x̂, its eigenstates can be expanded in plane
waves as

|ψn(kx)〉 =
∑

j,σ=↑,↓

c(n)σ (kx)
∣∣∣σ, kx = k̃x + jQ

〉
, (6)

where k̃x is the quasi-momentum given by to kx restricted
to the first Brillouin zone, and n is the band index.

Spin-injection spectrum for the Raman/RF system

Starting from reservoir σ =↑, ↓, the injected popula-
tion in band n with quasi-momentum k̃x at a given RF
frequency ω, PI,σ(ω, n,m, k̃x), is given by

PI,σ(ω, n, l, k̃x) ∝ Ω2
I,σ

∑
j

nσ(k̃x + lQ)|c(n)σ (k̃x + jQ)|2

×L((~ω + ε0l (k̃x + jQ))− (~ω0 + εn(k̃x))),(7)

where ΩI,σ is the RF strength coupling the reservoir state
to |σ〉, nσ(k) is the trap-averaged momentum distribution

for reservoir state |σ〉R, ε0l (k) = ~2(k+lQ)2

2m is the free par-
ticle dispersion of the lth non-interacting band, εn(k) is
the dispersion for the nth band, ω0 is the hyperfine fre-
quency difference between |↑〉 and |↓〉, and L(x) is the RF
lineshape. After injection, the atoms are released from
the trap. After sufficient time-of-flight, the momentum
distribution is given by the real space atomic density pro-
file, which for the spin σ′ channel is

PTOF,σ′,σ(ω, kx) =
∑
n,l

PI,σ(ω, n, l, k̃x)|c(n)σ′ (kx)|2. (8)

The theoretical spectra in Fig. 3F and G are obtained

using Eq. (8) and coefficients c
(n)
σ (kx) found by numeri-

cally diagonalizing the Hamiltonian in Eq. (5). The ex-
perimental and theoretical spectra for Fig. 4 are shown
in Fig. S2.
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FIG. S2. Experimental and theoretical Spin-injection spectra of Raman/RF system for different Raman/RF strengths. (A and
B) The experimental Raman/RF spin-injection spectra for injection from |↓〉R for channels |↓〉 and |↑〉, respectively. The color
map used is the same as Fig. 2B and 2E after rescaling to the maximum intensity (which for 4C is 20% of 4E), except for
the top left panel in (B), which is scaled to the maximum intensity of the corresponding panel in (A). (C and D) Theoretical
spectra corresponding to B and C. We do not take into account finite imaging resolution, which affects the sharpness along the
momentum axis kx/Q. Scattering due to residual interactions between hyperfine states can also lead to blurring of momenta
along kx/Q, and will be most pronounced for the spectra in B, as state |↑〉 scatters more strongly with |↓〉R (scattering length
∼ −450a0) than |↓〉 does with |↓〉R (scattering length ∼ −2a0 with typical initial 1/kF ∼ 3000a0 before TOF).

Reconstructing the spinful band structure for the
Raman/RF System

We first describe a general procedure to reconstruct the
band structure for any spinful lattice from spin-injection
spectra. One performs spin-injection spectroscopy with
reservoir states that are filled up to a Fermi momentum
smaller than half the recoil momentum, kF < Q/2. One
then selects a prominent feature on the spectrum and

finds the resonant transfer frequencies as a function of kx,
over one Brillouin zone. A mask centered on the resonant
frequencies and repeated over all kx with period Q is then
created. With the mask for a specific feature applied, the
spin channel σ′ for the spectrum starting from |σ〉R has
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transfer intensity given by

Iσ′,σ(n, l, kx) ∝
∑
j

nσ(k̃x+lQ)|c(n)σ (k̃x+jQ)|2|c(n)σ′ (kx)|2.

(9)
Here, the Fermi momentum kF is less than half the recoil
momentum Q/2 and therefore only the l = 0 contributes.
Defining Nσ(n, l, k̃x) =

∑
j,σ′ Iσ′,σ(n, l, k̃x + jQ), one ob-

tains

|c(n)σ′ (kx)|2 =
Iσ′,σ(n, l, kx)

Nσ(n, l, k̃x)
. (10)

Defining ~S(kx) = 1
2c

(n)(kx)†σc(n)(kx), where c(n)(kx) =

(c
(n)
↑ (kx), c

(n)
↓ (kx))T , allows to measure Sz(kx). With ad-

ditional RF pulses, one can measure Sx(kx) and Sy(kx).
After the bands that coupled strongly to |σ, k〉 , k < Q are
measured, one iterates the process with a larger Fermi sea
to obtain other bands.

In the text, we demonstrate extraction of band struc-
ture and spin texture in a spin-orbit coupled lattice. The
initial Fermi sea has kF > Q, therefore spectral fea-
tures corresponding to transitions out of different non-
interacting reservoir bands can all appear near zero RF
detuning. One can however identify spectral features cor-
responding to different transitions and apply the above
procedure. In addition, since the Raman/RF system is
set to δ = 0, one can invoke the additional symmetry
of the band structure about q = 0, meaning that it is
sufficient to fit a certain spectral feature over half of a
Brillouin zone. Due to a larger signal in the |↓〉 channel,
features in this channel were used to create the mask.

In order to be consistent with the earlier conven-
tion for the Rashba-Dresselhaus system, we apply a
global spin rotation such that Sy(kx) corresponds to
1
2

(
|c(n)↑ (kx)|2 − |c(n)↓ (kx)|2

)
. The experimentally mea-

sured Sy(kx) for the lowest band for ~ΩR = 0.93(7)ER
and ~ΩRF = 0.28(2)ER is shown in Fig. 4F. Since
the Hamiltonian only has components in the pseudo-
spin ŷ and ẑ direction, one can also extract |Sz(kx)| =√

1
4 − Sy(kx)2, as shown in Fig. 4E.

[1] M. König, et al . Quantum Spin Hall Insulator State in
HgTe Quantum Wells. Science 318, 766 (2007).

[2] D. Hsieh, et al . A topological dirac insulator in a quan-
tum spin hall phase. Rev. Mod. Phys. 82, 3045 (2010).

[3] M. Z. Hasan, C. L. Kane. Colloquium: Topological insu-
lators. Rev. Mod. Phys. 82, 3045 (2010).

[4] M. Inguscio, W. Ketterle, C. Salomon, eds., Ultracold
Fermi gases, Proceedings of the International School of
Physics Enrico Fermi, Course CLXIV, Varenna, 20-30
June 2006 (IOS Press, Amsterdam, 2008).

[5] I. Bloch, J. Dalibard, W. Zwerger. Many-body physics
with ultracold gases. Rev. Mod. Phys. 80, 885 (2008).

[6] C. H. L. Quay, et al . Observation of a one-dimensional
spin-orbit gap in a quantum wire. Nat. Phys. 6, 336
(2010).
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will slow down their spin rates with time after the
RLDP. However, they cannot explain the apparent
difference in spin distributions between AXMSPs
and radio MSPs, because radio MSPs, which
have weak surface magnetic field strengths, could
not spin down by the required amount even in a
Hubble time. The true age of a pulsar (23) is given
by t ¼ P=ððn − 1ÞP:Þ½1 − ðP0=PÞn−1�. Assum-
ing an evolution with a braking index n ¼ 3
and B ¼ 1:0� 108 G, the time scale t is larger
than 10 Gy, using P0 ¼ 〈P〉AXMSP ¼ 3:3 ms and
PðtÞ ¼ 〈P〉MSP ¼ 5:5 ms. To make things worse,
one has to add the main-sequence lifetime of the
LMXB donor star, which is typically 3 to 12Gy,
thereby reaching unrealistic large total ages. Al-
though the statistics of AXMSPs still has its basis
in small numbers and care must be taken for both
detection biases (such as eclipsing effects of radio
MSPs) and comparison between various sub-
populations (8), it is evident from both observa-
tions and theoretical work that the RLDP effect
presented here plays an important role for the
spin distribution of MSPs.

The RLDP effect may also help explain a few
other puzzles, for example, why characteristic (or
spin-down) ages of radio MSPs often largely ex-
ceed cooling age determinations of their white
dwarf companions (24). It has been suggested
that standard coolingmodels of white dwarfs may
not be correct (25–27), particularly for low-mass
helium white dwarfs. These white dwarfs avoid
hydrogen shell flashes at early stages and retain
thick hydrogen envelopes, at the bottom of which
residual hydrogen burning can continue for sev-
eral billion years after their formation, keeping the
white dwarfs relatively hot (~104 K) and thereby
appearing much younger than they actually are.
However, it is well known that the characteristic
age is not a trustworthy measure of true age (28),
and the RLDP effect exacerbates this discrepancy
even further. In the model calculation presented
in Fig. 1, it was assumed that B ¼ 1:0� 108G
andϕ ¼ 1:0. However,P0 and t0 depend strong-
ly on bothB andϕ. This is shown in Fig. 2, where
I have calculated the RLDP effect for different
choices of B and ϕ by using the same stellar
donor model [i.e., same M

:ðtÞ profile] as before.
The use of other LMXB donor star masses, met-
allicities, and initial orbital periods would lead
to otherM

:ðtÞ profiles (16, 17) and hence different
evolutionary tracks. The conclusion is that recycled
MSPs can basically be born with any characteristic
age. Thus, we are left with the cooling age of the
white dwarf companion as the sole reliable, although
still not accurate, measure as an age indicator.

A final puzzle is why no sub-millisecond pul-
sars have been found among the 216 radio MSPs
detected in total so far. Although modern obser-
vational techniques are sensitive enough to pick
up sub-millisecond radio pulsations, the fastest
spinning known radio MSP, J1748−2446ad (29),
has a spin frequency of only 716 Hz, correspond-
ing to a spin period of 1.4 ms. This spin rate is
far from the expected minimum equilibrium spin
period (8) and the physical mass shedding limit

of about 1500 Hz. It has been suggested that grav-
itational wave radiation during the accretion phase
halts the spin period above a certain level (30, 31).
The RLDP effect presented here is a promising
candidate for an alternative mechanism, in case a
sub-millisecond AXMSP is detected (8).
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Revealing the Superfluid Lambda
Transition in the Universal
Thermodynamics of a Unitary Fermi Gas
Mark J. H. Ku, Ariel T. Sommer, Lawrence W. Cheuk, Martin W. Zwierlein*

Fermi gases, collections of fermions such as neutrons and electrons, are found throughout nature, from
solids to neutron stars. Interacting Fermi gases can form a superfluid or, for charged fermions, a
superconductor. We have observed the superfluid phase transition in a strongly interacting Fermi gas by
high-precision measurements of the local compressibility, density, and pressure. Our data completely
determine the universal thermodynamics of these gases without any fit or external thermometer. The
onset of superfluidity is observed in the compressibility, the chemical potential, the entropy, and the heat
capacity, which displays a characteristic lambda-like feature at the critical temperature Tc/TF = 0.167(13).
The ground-state energy is 3

5 xN EF with x = 0.376(4). Our measurements provide a benchmark for
many-body theories of strongly interacting fermions.

Phase transitions are ubiquitous in nature:
Water freezes into ice, electron spins sud-
denly align as materials turn into magnets,

and metals become superconducting. Near the

transitions, many systems exhibit critical behav-
ior, reflected by singularities in thermodynamic
quantities: The magnetic susceptibility diverges
at a ferromagnetic transition, and the specific heat
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shows a jump at superconducting and superfluid
transitions (1, 2), resolved as the famous lambda
peak in 4He (3). A novel form of superfluidity has
been realized in trapped, ultracold atomic gases of
strongly interacting fermions, particles with half-
integer spin (4–7). Thanks to an exquisite control
over relevant system parameters, these gases have
recently emerged as a versatile system well suited
to solve open problems in many-body physics (7).

Initial measurements on the thermodynamics
of strongly interacting Fermi gases have focused
on trap-averaged quantities (8–10) in which the
superfluid transition is inherently difficult to ob-
serve. The emergence of the condensate of fermion
pairs in a spin-balanced Fermi gas is accompa-
nied by only minute changes in the gas density
(5). Quantities that involve integration of the den-
sity over the local potential, such as the energy
E (11) and the pressure P (12), are only weakly
sensitive to the sudden variations in the thermo-
dynamics of the gas expected near the superfluid
phase transition (13).

For a neutral gas, thermodynamic quantities
involving the second derivative of the pressure P
are expected to become singular at the second-
order phase transition into the superfluid state.
An example is the isothermal compressibility
k ¼ 1

n
∂n
∂P jT , the relative change of the gas density

n due to a change in the pressure P. Because the
change in pressure is related to the change in
chemical potential m of the gas via dP = n dm at
constant temperature, k ¼ 1

n2
∂2P
∂m2 jT is a second de-

rivative of the pressure, and thus should reveal
a clear signature of the transition.

The general strategy to determine the ther-
modynamic properties of a given substance is to
measure an equation of state (EoS), such as the
pressure P(m,T ) as a function of the chemical po-
tential m and the temperature T. Equivalently, re-
placing the pressure by the density n ¼ ∂P

∂m jT, one
can determine the density EoS n(m,T ).We directly
measure the local gas density n(V ) as a function of
the local potential V from in situ absorption
images of a trapped, strongly interacting Fermi
gas of 6Li atoms at a Feshbach resonance (5).
The trapping potential is cylindrically symmetric,
with harmonic confinement along the axial direc-
tion; this symmetry allows us to find the three-
dimensional (3D) density through the inverse
Abel transform of the measured column density
(14, 15). The local potential is directly determined
from the atomic density distribution and the ac-
curately known harmonic potential along the axial
direction.

The compressibility k follows as the change
of the density nwith respect to the local potential
V experienced by the trapped gas. The change in
the local chemical potential is given by the neg-
ative change in the local potential, dm = −dV, and

hence the local compressibility is k ¼ − 1
n2

dn
dV jT .

We can then replace the unknown chemical po-
tential m in the density EoS n(m,T ) by the known
variation of nwith m in the atom trap, given by k.
Instead of the a priori unknown temperature T,
we determine the pressure P(V ) = ∫

m

−∞dm′nðm′Þ =
∫
∞
V dV ′nðV ′Þ given by the integral of the density
over the potential (16). The resulting equation of
state n(k,P) contains only quantities that can be
directly obtained from the density distribution.
This represents a crucial advance over previous
methods that require the input of additional ther-
modynamic quantities, such as the temperature T
and the chemical potential m, whose determina-
tion requires the use of a fitting procedure or an
external thermometer, as in (11, 12).

We normalize the compressibility and the pres-
sure by the respective quantities at the same
local density for a noninteracting Fermi gas at
T = 0, k0 ¼ 3

2
1

nEF , and P0 ¼ 2
5 nEF , where

EF ¼ ħ2ð3p2nÞ2=3
2m is the local Fermi energy andm is

the particle mass, yielding k̃≡ k/k0 and p̃ ≡ P/P0.
For dilute gases at the Feshbach resonance, the
scattering length diverges and is no longer a rele-
vant length scale. In the absence of an interaction-
dependent length scale, the thermodynamics of
such resonant gases are universal (17), and k̃ is a
universal function of p̃ only. Every experimental
profile n(V ), irrespective of the trapping potential,
the total number of atoms, or the temperature, must
produce the same universal curve k̃ versus p̃. By
averaging many profiles, one obtains a low-noise
determination of k̃ ( p̃).

Our method has been tested on the nonin-
teracting Fermi gas that can be studied in two in-
dependent ways: in spin-balanced gases near the
zero-crossing of the scattering length and in the
wings of highly imbalanced clouds at unitarity,
where only one spin state is present locally. Both
determinations yield the same noninteracting com-
pressibility EoS (Fig. 1).

Figure 1 also shows the compressibility equa-
tion of state k̃ ( p̃) for the unitary Fermi gas. In the
high-temperature ( p̃ >> 1) regime, the pressure,
and hence all other thermodynamic quantities, al-
low for a Virial expansion in terms of the fugacity
ebm (18): P bl3 = 2∑ j bj e

jbm, with the nth-order
Virial coefficients bn. It is known that b1 = 1, b2 =
3

ffiffiffi
2

p
/8, and b3 = −0.29095295 (18); our data show

good agreement with the third-order Virial expan-
sion. Fixing b2 and b3, our measurement yields a
prediction for b4 = +0.065(10), in agreement with
(12), but contradicting a recent four-body calcu-
lation that gives a negative sign (19).

At degenerate temperatures ( p̃ ≲ 1), the nor-
malized compressibility rises beyond that of a
noninteracting Fermi gas, as expected for an at-
tractively interacting gas. A sudden rise of the com-
pressibility at around p̃ = 0.55, followed by a
decrease at lower temperatures marks the super-
fluid transition. The expected singularity of the
compressibility at the transition is rounded off by
the finite resolution of our imaging system. Be-
low the transition point, the decrease of the com-
pressibility is consistent with the expectation from
Bardeen-Cooper-Schrieffer (BCS) theory, inwhich
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Fig. 1. Normalized compressibility k/k0 versus normalized pressure P/P0 of the unitary Fermi gas (red
solid circles). Each data point is the average of between 30 and 150 profiles. The error bars show mean T
SD, including systematic errors from image calibration (13). Blue solid line: third-order Virial expansion.
Black open squares (black open diamonds): data for a noninteracting Fermi gas obtained with a highly spin-
imbalanced mixture at the Feshbach resonance (spin-balanced gas near zero-crossing of the scattering
length). Black solid curve: theory for a noninteracting Fermi gas. Black dashed curve: the relation k̃= 1/p̃
that must be obeyed at zero temperature both for the noninteracting gas (k̃= 1/p̃= 1) and the unitary gas
(k̃= 1/p̃= 1/x) (dotted lines). Gray band: the uncertainty region for the T = 0 value of k̃= 1/x and p̃= x.
Blue dashed curve: model for the EoS of the unitary Fermi gas [above Tc: interpolation from the Monte
Carlo calculation (34); below Tc: BCS theory, including phonon and pair-breaking excitations]. Green solid
curve: effect of 2 mm optical resolution on the model EoS.
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single-particle excitations freeze out and pairs form
(see model in Fig. 1).

As T → 0, the Fermi energy EF is the only
intensive energy scale, so the chemical potential
must be related to EF by a universal number, m =
xEF, where x is known as the Bertsch parameter
(6, 7). It follows that at T = 0, k̃ = 1/p̃ = 1/x (13).
The extrapolation of the low-temperature exper-
imental data for k̃ ( p̃) toward the curve k̃ = 1/p̃
gives x = 0.37(1), a value that we find consistently
for the normalized chemical potential, energy, and
free energy at our lowest temperatures.

From the universal function k̃ ( p̃), we obtain
all other thermodynamic quantities of the unitary
gas. First, to find the normalized temperature T/TF
(where kB TF = EF), note that the change in pres-
sure with T/TF at constant temperature is re-
lated to the compressibility. One finds dp̃

dðT=TF Þ ¼5
2
TF
T p̃ − 1

k̃

� �
, so by integration (13)

T

TF
¼ T

TF

� �
i

exp
2

5

Z
pi˜

p̃

dp̃
1

p̃ − 1

k̃

8<
:

9=
; ð1Þ

where (T/TF)i is the normalized temperature at an
initial normalized pressure p̃i that can be chosen
to lie in the Virial regime validated above.

Thanks to the relation E = 3
2PV, valid at

unitarity (17), we can also directly obtain the heat
capacity per particle at constant volume V (13),

CV

kBN
≡

1

kBN

∂E
∂T

jN,V ¼ 3

5

dp̃

dðT=TFÞ

¼ 3

2

TF
T

p̃ −
1

k̃

� �
ð2Þ

Figure 2 shows the normalized compressibility
and the specific heat as a function of T/TF. At
high temperatures, the specific heat approaches
that of a noninteracting Fermi gas and eventually
CV = 3

2 N kB, the value for a Boltzmann gas. A
dramatic rise is observed for T/TF at around 0.16,
followed by a steep drop at lower temperatures.
Such a l-shaped feature in the specific heat is
characteristic of second-order phase transitions,
as in the famous l transition in 4He (3). Jumps in
the specific heat are well known from supercon-
ductors (1) and 3He (2). In experiments on atomic
gases, such jumps had only been inferred from
derivatives to fit functions that implied a jump
(20, 21). We do not expect to resolve the critical
behavior very close to Tc. Because of the spatially
varying chemical potential in our trapped sample,
the critical region is confined to a narrow shell.

Based on the estimate in (22), the thickness of the
critical shell is 1% of the cloud size. The finite
resolution of our imaging system (2 mm or about
5% of the cloud size in the radial direction) suf-
fices to explain the rounding of the singularity
expected from criticality. The rounding also re-
duces the observed jump in the heat capacity at
the transition. We obtain a lower bound ∆C/Cn ≡
(Cs − Cn)/Cn ≥ 1:0þ4

−1 , where Cs/N (Cn/N) is the
specific heat per particle at the peak (the onset of
the sudden rise). Considering the strong inter-
actions, this is surprisingly close to the BCS
value of 1.43 (1). Below Tc, the specific heat is
expected to decrease as ∼ exp(−∆0/kB T ) due to
the pairing gap ∆0. At low temperatures, T << Tc ,
the phonon contribution º T3 dominates (23).
This behavior is consistent with our data, but the
phonon regime is not resolved.

To validate our in situ measurements of the
superfluid phase transition, we have employed
the rapid ramp method to detect fermion pair con-
densation (24, 25). The results (Fig. 2C) show
that the onset of condensation and the sudden rise
in specific heat and compressibility all occur at
the same critical temperature, within the error bars.
Unlike previous experimental determinations of
Tc/TF for the homogeneous unitary Fermi gas
(11, 12), we determine Tc/TF directly from the den-
sity profiles, finding a sudden rise in the specific
heat and the onset of condensation at Tc/TF =
0.167(13). This value is determined as the mid-
point of the sudden rise, and the error is assessed
as the shift due to the uncertainty of the Feshbach
resonance (13). This is in very good agreement
with theoretical determinations, such as the self-
consistent T-matrix approach that gives Tc/TF ≈
0.16 (23), andMonte Carlo calculations that give
Tc/TF = 0.171(5) (26) and 0.152(7) (27). There is
a current debate on the possibility of a pseudo-
gap phase of preformed pairs above Tc (12, 28).
A pairing gap for single-particle excitations above
the transition should be signaled by a downturn
of the specific heat above Tc, which is not ob-
served in our measurements.

From the definition of the compressibility
k ¼ 1

n2
∂n
∂m jT , we can obtain the reduced chemical

potential m/EF as a function of the T/TF (Fig. 3A)
(13). This function is here obtained frommeasured
quantities, rather than from numerical derivatives
of data that involved uncontrolled thermometry (11).
In the interval of T/TF from around 0.25 to 1,
the chemical potential is close to that of a non-
interacting Fermi gas, shifted by (xn − 1)EF be-
cause of interactions present in the normal state,
with xn ≈ 0.45. Unlike a normal Fermi gas, the
chemical potential attains a maximum of m/EF =
0.42(1) at T/TF = 0.171(10), and then decreases at
lower temperatures, as expected for a superfluid
of paired fermions (23). As the temperature is in-
creased from zero in a superfluid, first the emer-
gence of phonons (sound excitations) and then
the breaking of fermion pairs contribute to in-
creasing the chemical potential. At Tc, the sin-
gular compressibility implies a sharp change in
slope for m/EF, in agreement with our observa-
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Fig. 2. (A) Normalized compressibility k̃ = [2/3]k n EF and (B) specific heat per particle CV /NkB of a
unitary Fermi gas as a function of reduced temperature T/TF (solid red circles). Black solid curve: theory for
a noninteracting Fermi gas. Blue solid curve: third-order Virial expansion for the unitary gas. Black open
squares: data for the normalized compressibility as a function of T/TF of a noninteracting Fermi gas
(combining data from both highly imbalanced gases at unitarity and balanced gases near zero-crossing).
Blue dashed (green solid) curve: model from Fig. 1, excluding (including) the effect of finite imaging
resolution. (C) Global condensate fraction at unitarity as determined from a rapid ramp to the molecular
side of the Feshbach resonance, plotted as a function of local T/TF at the trap center. The onset of con-
densation coincides with the sudden rise of the specific heat. Error bars, mean T SD.
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tion and theory (23). At low temperatures, the
reduced chemical potential m/EF saturates to the
universal value x. As the internal energy E and
the free energy F satisfy E(T ) > E(0) = 3

5N xEF =
F(0) > F(T ) for all T, the reduced quantities
fE ≡ 5

3
E

NEF
¼ p̃ and fF ≡ 5

3
F

NEF
¼ 5

3
m
EF
− 2

3 p̃ (Fig.
3A) provide upper and lower bounds for x (29).
Taking the coldest points of these three curves and
including the systematic error due to the effective
interaction range, we find x = 0.376(4). The un-
certainty in the Feshbach resonance is expected
to shift x by at most 2% (13). This value is con-
sistent with a recent upper bound x < 0.383(1) from
(30), is close to x = 0.36(1) from a self-consistent
T-matrix calculation (23), and agrees with x =
0.367(9) from an epsilon expansion (31). It lies
below earlier estimates x = 0.44(2) (32) and x =
0.42(1) (33) from fixed-node quantumMonteCarlo
calculation that provides upper bounds on x. Our
measurement agrees with several less accurate ex-
perimental determinations (6) but disagrees with
the most recent experimental value 0.415(10) that
was used to calibrate the pressure in (12).

From the energy, pressure, and chemical po-
tential, we can obtain the entropy S = 1

T(E + PV −
mN), and hence the entropy per particle S=NkB ¼
TF
T

p̃ −
m
EF

� �
as a function of T/TF (Fig. 3B). At

high temperatures, S is close to the entropy of
an ideal Fermi gas at the same T/TF. Above Tc,
the entropy per particle is nowhere small com-
pared with kB. Also, the specific heat CV is not
linear in T in the normal phase. This shows that
the normal regime above Tc cannot be described in
terms of a Landau Fermi Liquid picture, although
some thermodynamic quantities agree surpris-
ingly well with the expectation for a Fermi liquid
[see (12) and (13)]. Below about T/TF = 0.17, the
entropy starts to strongly fall off comparedwith that
of a noninteracting Fermi gas, which we again
interpret as the freezing out of single-particle excita-
tions as a result of the formation of fermion pairs.
Far below Tc, phonons dominate. They only have a
minute contribution to the entropy (23), less than
0.02 kB at T/TF = 0.1, consistent with our measure-
ments. At the critical point, we obtain Sc = 0.73(13)
NkB, in agreement with theory (23). It is encourag-
ing for future experiments with fermions in optical
lattices that we obtain entropies less than 0.04 N
kB, far below critical entropies required to reach
magnetically ordered phases.

From the chemical potential m/EF andT=TF ¼
4p

ð3p2Þ2=3
1

ðnl3Þ2=3, we finally obtain the density EoS

n(m,T ) ≡ 1
l3
fnðbmÞ, with the de Broglie wave-

length l ¼
ffiffiffiffiffiffiffiffi
2pħ2
mkBT

q
. The pressure EoS follows

as P(m,T ) ≡ kBT
l3

fPðbmÞ, with fP ¼ 2
5
TF
T p̃fnðbmÞ.

Figure 4 shows the density and pressure nor-
malized by their noninteracting counterparts at
the same chemical potential and temperature. For
the normal state, a concurrent theoretical calcu-
lation employing a new Monte Carlo method
agrees excellently with our data (34). Our data

deviate from a previous experimental determi-
nation of the pressure EoS (12) that was cal-
ibrated with an independently measured value of

x = 0.415(10) (35) and disagree with the energy
measurement in (11) that used a thermometry in-
consistent with the Virial expansion (10). Around
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Fig. 3. (A) Chemical potential m, energy E, and free energy F of the unitary Fermi gas versus T/TF. m (red
solid circles) is normalized by the Fermi energy EF, and E (black solid circle) and F (green solid circle) are
normalized by E0 = 3

5N EF. At high temperatures, all quantities approximately track those for a non-
interacting Fermi gas, shifted by xn − 1 (dashed curves). The peak in the chemical potential signals the
onset of superfluidity. In the deeply superfluid regime at low temperatures, m/EF, E/E0, and F/F0 all approach
x (blue dashed line). (B) Entropy per particle. At high temperatures, the entropy closely tracks that of a
noninteracting Fermi gas (black solid curve). The open squares are from the self-consistent T-matrix
calculation (23). A few representative error bars are shown, representing mean T SD.
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Fig. 4. (A) Density and (B) pressure of a unitary Fermi gas versus m/kB T, normalized by the density and
pressure of a noninteracting Fermi gas at the same chemical potential m and temperature T. Red solid
circles: experimental EoS. Blue dashed curves: low-temperature behavior with x = 0.364 (upper), 0.376
(middle), and 0.388 (lower). Black dashed curve: low-temperature behavior with x at upper bound of 0.383
from (30). Green solid circles (black fine dashed line): MIT experimental data (theory) for the ideal Fermi
gas. Blue solid squares (blue curve): diagrammatic Monte Carlo calculation (34) for density (pressure, with
blue dashed curves denoting the uncertainty bands). Solid green line: third-order Virial expansion. Open
black squares: self-consistent T-matrix calculation (23). Open green circles: lattice calculation (36). Orange
star and blue triangle: critical point from the Monte Carlo calculations (26) and (27), respectively. Solid
diamonds: Ecole Normale Supérieure experiment (12). Purple open diamonds: Tokyo experiment (11).
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the critical point, the density shows a strong var-
iation, whereas the pressure, the integral of the
density over m at constant T, is naturally less sen-
sitive to the superfluid transition.

In conclusion, we have performed thermody-
namic measurements of the unitary Fermi gas
across the superfluid phase transition at the level
of uncertainty of a few percent, without any fits
or input from theory, enabling validation of the-
ories for strongly interacting matter. Similar un-
biased methods can be applied to other systems,
for example, two-dimensional Bose and Fermi
gases or fermions in optical lattices.
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Iron Catalysts for Selective
Anti-Markovnikov Alkene
Hydrosilylation Using Tertiary Silanes
Aaron M. Tondreau,1 Crisita Carmen Hojilla Atienza,1 Keith J. Weller,2 Susan A. Nye,2

Kenrick M. Lewis,3 Johannes G. P. Delis,4 Paul J. Chirik1*

Alkene hydrosilylation, the addition of a silicon hydride (Si-H) across a carbon-carbon double bond,
is one of the largest-scale industrial applications of homogeneous catalysis and is used in the
commercial production of numerous consumer goods. For decades, precious metals, principally
compounds of platinum and rhodium, have been used as catalysts for this reaction class. Despite
their widespread application, limitations such as high and volatile catalyst costs and competing
side reactions have persisted. Here, we report that well-characterized molecular iron coordination
compounds promote the selective anti-Markovnikov addition of sterically hindered, tertiary silanes
to alkenes under mild conditions. These Earth-abundant base-metal catalysts, coordinated by
optimized bis(imino)pyridine ligands, show promise for industrial application.

Metal-catalyzedolefinhydrosilylation,which
forms alkylsilanes by cleaving a silicon-
hydrogen bond and adding the frag-

ments across a carbon-carbon double bond (1, 2),
finds widespread application in the commercial
manufacture of silicone-based surfactants, fluids,
molding products, release coatings, and pressure-
sensitive adhesives (3, 4). Consequently, hydro-
silylation has emerged as one of the largest-scale
applications of homogeneous catalysis (5–9).

For more than three decades, precious metal com-
pounds with Pt, Pd, Ru, and Rh have been used
almost exclusively as catalysts. Platinum com-
pounds such as Karstedt’s and Speier’s cata-
lysts, Pt2{[(CH2=CH)SiMe2]2O}3 (Me, methyl) and
H2PtCl6·6H2O/

iPrOH(iPr, isopropyl), respective-
ly, are the most widely used industrial catalysts
(1, 10–12), though they suffer from chemical lim-
itations such as intolerance to amino-substituted
olefins and a tendency to catalyze competing isom-

erization of the terminal alkenes to internal isomers.
Undesired isomerization often necessitates sub-
sequent purification steps that are both energy
and cost intensive. Furthermore, decomposition
of the catalyst to colloidal platinum contributes to
unwanted side reactions and also causes dis-
coloration of the final products.

It has been estimated that the worldwide sil-
icone industry consumed ~180,000 troy ounces
(5.6metric tons) of platinum in2007 andmost is not
recovered (13). The high cost, coupled with the in-
creasing demands on preciousmetals due to fuel-cell
and other emerging technologies, has increased the
volatility of the platinum market (14). The combi-
nation of chemical, economic, and political chal-
lenges inspires the exploration of inexpensive and
Earth-abundant catalysts using iron, manganese,
and cobalt (15). At the core of this challenge is sup-
pressing tendencies of first-row transition metals
toward one-electron redox processes in favor of the
two-electron chemistry associated with the heavier
metals that probably make up the fundamental
steps in a catalytic cycle for alkene hydrosilylation.

1Department of Chemistry, Princeton University, Princeton, NJ
08544, USA. 2Momentive Performance Materials, 260 Hudson
River Road, Waterford, NY 12188, USA. 3Momentive Perform-
ance Materials, 769 Old Saw Mill River Road, Tarrytown, NY
10591, USA. 4Momentive PerformanceMaterials bv, Plasticslaan
1, 4612PX Bergen op Zoom, Netherlands.
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Quantum degenerate Bose-Fermi mixture of chemically different atomic species
with widely tunable interactions

Jee Woo Park,1,2 Cheng-Hsun Wu,1,2 Ibon Santiago,1,2 Tobias G. Tiecke,1,3 Sebastian Will,1,2
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We have created a quantum degenerate Bose-Fermi mixture of 23Na and 40K with widely tunable interactions
via broad interspecies Feshbach resonances. Over 30 Feshbach resonances between 23Na and 40K were identified,
including p-wave multiplet resonances. The large and negative triplet background scattering length between 23Na
and 40K causes a sharp enhancement of the fermion density in the presence of a Bose condensate. As explained via
the asymptotic bound-state model, this strong background scattering leads to wide Feshbach resonances observed
at low magnetic fields. Our work opens up the prospect to create chemically stable, fermionic ground-state
molecules of 23Na-40K, where strong, long-range dipolar interactions would set the dominant energy scale.

DOI: 10.1103/PhysRevA.85.051602 PACS number(s): 67.85.−d, 03.75.Ss, 34.50.−s, 37.10.De

Ultracold quantum gases realize paradigms of condensed-
matter physics in pristine fashion, such as the superfluid
to Mott insulator transition [1], the BEC-BCS crossover in
fermionic superfluids [2,3], and the Berezinskii-Kosterlitz-
Thouless transition in two-dimensional Bose gases [4]. A
plethora of novel many-body systems may become accessible
through the advent of quantum mixtures of different atomic
species. In particular, Bose-Fermi mixtures with widely
tunable interactions should reveal boson-mediated interactions
between fermions and possibly boson-induced p-wave super-
fluidity [5,6]. The fate of impurities in a Fermi sea [7] or a Bose
condensate [8–10] can be studied, and new quantum phases of
matter are predicted in optical lattices [11]. Furthermore, the
creation of fermionic ground-state molecules starting from a
degenerate Bose-Fermi mixture opens up an intriguing avenue
of research, as this results in a Fermi gas with long-range,
anisotropic dipole-dipole interactions [12]. Since the first
degenerate Bose-Fermi mixture of different atomic species,
23Na and 6Li [13], a variety of such systems has been realized
[8,14–23]. However, so far only one mixture, 87Rb-40K, has
allowed tunability of interspecies interactions with relative
ease by means of a moderately wide (�B ≈ 3 G) Feshbach
resonance [24], and only in this case fermionic Feshbach
molecules have successfully been produced [25,26].

In this Rapid Communication, we report on the experimen-
tal realization of a unique Bose-Fermi mixture of 23Na and
40K and the observation of over 30 s- and p-wave Feshbach
resonances at low magnetic fields. We demonstrate that 23Na
is an efficient coolant for sympathetic cooling of 40K. A
pattern of wide s-wave resonances exists for most of the
energetically stable hyperfine combinations, the widest being
located at 138 G with a width of about 30 G in the 23Na|F = 1,

mF = 1〉 + 40K|F = 9/2,mF = −5/2〉 hyperfine configura-
tion. We also observe p-wave multiplet resonances that
are resolved thanks to their location at low magnetic
fields.

In the singlet rovibrational ground state, the NaK molecule
is known to have a large permanent electric dipole moment of

2.72(6) D [27,28], five times larger than that of KRb [12], and is
predicted to be chemically stable against atom-atom exchange
reactions [29], in contrast to KRb [30]. An ultracold gas of
fermionic ground-state molecules of NaK will thus be an ideal
system for the study of Fermi gases with strong, long-range
dipolar interactions. Indeed, the interaction energy here can be
expected to be on the order of the Fermi energy.

The experimental setup is based on the apparatus presented
in Ref. [8], which employs two independent Zeeman slowers
capable of simultaneously loading sodium and potassium
atoms directly into a UHV chamber. The potassium slower

µ µ

µ µ

FIG. 1. (Color online) Simultaneous quantum degeneracy of 23Na
and 40K atoms. (a) and (b), and (d) and (e) are pairs of time-of-flight
(TOF) absorption images of a 23Na BEC and a 40K Fermi cloud
with different atom number balance. A strong attractive interaction
between the two species is observed in (e) as a sharp increase of
the central density in the fermionic cloud in the presence of a Bose
condensate. (c) and (f) are the center-sliced column density of the
fermionic clouds of (b) and (e), respectively. TOF was (a) 11 ms,
(b) 7 ms, (d) 17 ms, and (e) 5 ms. Atom numbers are (a) 2.4 × 105,
(b) 2 × 105, (d) 8.2 × 105, and (e) 6.7 × 104.
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selectively decelerates the 40K isotope, loading 107 atoms into
a magneto-optical trap (MOT) in 10 s. For 23Na, we use a
dark spot MOT [31], which allows us to load approximately
109 atoms in 2 s.

Multispecies experiments can suffer from atom losses due
to light-assisted collisions in the MOT and spin-changing
collisions in the magnetic trap. In order to minimize such
losses, we developed a shelving technique where 23Na is first
loaded into the MOT, optically pumped to the |2,2〉 stretched
state, and captured in the magnetic trap. Next, the trap gradient
is reduced to 7.7 G/cm to only support the stretched state
of 23Na against gravity. With this gradient left on, and the
23Na thus “shelved in the dark” in a purely magnetic trap,
finally the MOT and slower beams for 40K are switched
on to load the 40K MOT. This scheme guarantees that only
23Na atoms in the |2,2〉 state are present in the magnetic
trap before loading 40K, and it also potentially reduces light-
assisted collisions that would be encountered in a double-
species MOT.

Once both species are loaded into the optically plugged
magnetic trap [8], the mixture is cooled for 7 s by rf-induced
evaporation of 23Na, where thermally excited 23Na atoms in the
|2,2〉 state are removed from the trap by coupling to the high-
field seeking state of |1,1〉. We decompress the initial magnetic
gradient of 220 G/cm to 27.5 G/cm at the end of evaporation
to reduce three-body losses. The 5-μK cold mixture is then
loaded into a crossed optical dipole trap (laser wavelength
1064 nm, maximum power 4.7 and 17 W, waist 73 and
135 μm).

At this stage, the 1/e lifetime of the mixture, with 23Na and
40K still in their stretched states, is about τ = 250 ms, already
signaling a strong attractive interaction increasing three-body
losses and spin-changing dipolar losses. We thus immediately
transfer 23Na atoms into their hyperfine ground state |1,1〉 via a
Landau-Zener sweep, and remove any remaining |2,2〉 atoms
via a resonant light pulse. In the 23Na|1,1〉 + 40K|9/2,9/2〉
state, the mixture now lives for τ = 20 s. The gas is further
evaporatively cooled in this spin mixture for 2 s by reducing
the intensity of the dipole trap beams.

At the end of evaporation, a degenerate Fermi gas of
40K with 2 × 105 atoms and T/TF = 0.6 coexists with a
Bose-Einstein condensate of 23Na. Two sets of absorption
images of the mixture for different values of 23Na and 40K
atom numbers are shown in Fig. 1, where atom numbers
are varied by changing the MOT loading times of the two
species. The strong attractive interaction between 23Na and
40K in the 23Na|1,1〉 + 40K|9/2,9/2〉 state is apparent. As the
condensate grows, the fermionic cloud acquires a bimodal
density distribution as it experiences the strong mean-field
potential of the bosons [25]—see Fig. 1(e).

The evolution of the phase space densities (PSDs) and atom
numbers N of both species during evaporation is shown in
Fig. 2 . Temperature is determined by fitting a thermal profile
to the wings of the 23Na cloud. The cooling efficiency � =
−d ln(PSD)/d ln(N ) for sodium in the magnetic trap is �Na =
2.7, a rather high value thanks to the steep confinement in the
plugged trap. This efficiency is not affected by the presence
of the relatively small admixture of 40K. Sympathetic cooling
is less efficient than in other mixtures [8,32] as 40K is seen to
be lost due to three-body collisions in the magnetic trap. We
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FIG. 2. (Color online) Evolution of the phase space density (PSD)
with atom number (N ). Blue circles: 40K; red squares: 23Na with 40K;
green diamonds: 23Na alone. Open and solid symbols represent the
PSD in the magnetic trap and optical trap, respectively.

find �K = 4.6 for 40K. In the crossed optical dipole trap, with
sodium in |1,1〉, the sodium cooling becomes less efficient due
to the weaker confinement, �Na = 0.9, but the 40K number
is essentially conserved in this mixture so that sympathetic
cooling is highly efficient, with �K = 15.3. The lowest T/TF

achieved for 40K after evaporating all of 23Na is T/TF = 0.35
with 3 × 105 atoms.

With this degenerate Bose-Fermi mixture at our disposal,
the natural next step is to search for interspecies Feshbach
resonances between 23Na and 40K. There have been theoretical
indications for resonances below 100 G [34]. In addition,
a large and negative triplet scattering length was predicted
in Ref. [35], a value that has recently been refined to at =
−575+191

−532 [34], indicating that the triplet potential has an
almost bound, virtual state right above threshold. A large
background scattering length is often a catalyst for wide
Feshbach resonances [36], caused by strong coupling of
molecular states to the almost resonant open channel. A
famous example is the 300-G-wide Feshbach resonance in
6Li [37].

We performed Feshbach loss spectroscopy, mapping out
atom losses of both species as a function of magnetic field.
Over 30 Feshbach resonances were observed in four different
spin state combinations of 23Na|1,1〉 + 40K|9/2,mF 〉, from the
ground spin state mF = −9/2 up to mF = −3/2. Spin states
of 40K are prepared starting from mF = +9/2 by a single
Landau-Zener sweep through the intermediate mF states at
15 G. The experimentally observed resonance positions and
widths are reported in Table I. Many wide s-wave Feshbach
resonances at low magnetic fields are identified, the widest one
at 138 G for collisions between 23Na|1,1〉 + 40K|9/2, − 5/2〉,
with a width of 30 G—see Fig. 3.

p-wave Feshbach resonances are known to split into a
doublet structure due to different projections of the orbital
angular momentum onto the magnetic field axis [38]. In
the NaK system, however, we observe triplet features for
many p-wave resonances—see Fig. 4. These originate from
the magnetic dipole-dipole interaction of constituent atoms,
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TABLE I. Data summary on the Feshbach resonances between 23Na in |1,1〉 and 40K in |9/2,mF 〉. The positions and widths of the

resonances, Bexpt
0 and �Bexpt, are determined by phenomenological Gaussian fits (∝e−(B−B

expt
0 )2/�B2

expt ) to the observed loss features. For p-wave
resonances, we report the positions and widths of the resolved features, i.e., doublets and multiplets. B th

0 and �Bth give the theoretical positions
and widths from the ABM model.

Collision channel B
expt
0 (G) �Bexpt (G) B th

0 (G) �Bth (G) Resonance type

23Na|1,1〉 + 40K|9/2, −9/2〉 6.35, 6.41, 6.47, 6.68 0.02 7.2 p

19.12, 19.18, 19.27 0.02 18.3 p

78.3 1.1 75.5 1.1 s

88.2 4.3 84.5 5.4 s
23Na|1,1〉 + 40K|9/2, −7/2〉 7.32, 7.54 0.2, 0.03 8.7 p

23.19, 23.29 0.05, 0.05 22.1 p

81.6 0.2 82.1 0.04 s

89.8 1.1 87.3 0.6 s

108.6 6.6 105.7 13.1 s
23Na|1,1〉 + 40K|9/2, −5/2〉 9.23, 9.60 0.14, 0.11 11.0 p

29.19, 29.45, 29.52 0.04 27.8 p

96.5 0.5 97.2 0.04 s

106.9 1.8 103.8 0.45 s

148 (138a) 37 (30a) 137.1 26 s
23Na|1,1〉 + 40K|9/2, −3/2〉 12.51, 12.68 0.16, 0.06 14.8 p

39.39, 39.86 0.15, 0.14 37.2 p

116.9 0.5 118.3 0.07 s

129.5 4.6 127.2 0.39 s

175 20 187.8 50.5 s

aThe resonance position and width have been refined by measuring the molecular binding energies via rf spectroscopy [33].

which couple molecular states with different total internal
spin. The diagonal terms of the magnetic dipole-dipole
interaction induce an energy shift that differs for the ml = 0
and |ml| = 1 quantum numbers, giving rise to the well-known
doublet structures. The off-diagonal terms in the dipole-dipole
interaction couple different values of ml while conserving
the total angular momentum ml + MF , where MF = mF,K +
mF,Na. These terms are in most mixtures negligible since
molecular states with different values of MF have to be nearly
degenerate to result in a significant energy shift. However,
due to the low-field nature of the NaK p-wave resonances,
multiple molecular states are nearly degenerate with the
open-channel spin state, allowing for the triplet structure to be
resolved.

The assignment of s- and p-wave characters of the
resonances follows from a simple, but powerful model of the
molecular states involved. The singlet and triplet potentials
of the interatomic potential allow for a variety of bound
states. From the known scattering length [34] and the van
der Waals coefficient C6 [39], the weakest s-wave bound
states are expected at about Es

s = −150(10) MHz and Es
t =

−1625(50) MHz for the singlet and triplet s-wave potentials,
where the errors reflect uncertainties of the scattering lengths
from Ref. [34]. The p-wave bound states follow from the
s-wave bound states as in Ref. [40] and are slightly adjusted
to fit the observed resonance positions. As described in
Refs. [41,42], as a first guess for locations of Feshbach
resonances one can neglect the part of the hyperfine interaction
that couples singlet and triplet bound states. This already
provides the pattern of Feshbach resonances as positions
where these (uncoupled) molecular states cross the atomic

(open-channel) threshold. The analysis shows that the ob-
served resonances are caused by the triplet bound states.
Next, we use the asymptotic bound-state model (ABM) to
include the singlet-triplet coupling of molecular states [43].
To couple the molecular states to the open channel, we follow
Marcelis et al. [36] and only include the effect of the virtual
state causing the large and negative triplet scattering length.
The spin part of the coupling matrix element is obtained
from the ABM Hamiltonian and the spatial part, i.e., the
wave-function overlap between the respective bound state and
the virtual state, is taken as one free fit parameter. For the
background scattering length of the low-field resonances the
effect of broad resonances is included. The virtual state causes
strong coupling of several s-wave molecular states to the open
channel, leading to wide, open-channel-dominated resonances
as known from the case of 6Li. The theoretical values obtained
with this model are shown in Table I. An exceptionally broad
resonance for mF = −3/2 is predicted to be even wider and
to be shifted further, possibly hinting at a shift between the
loss maximum and the actual Feshbach resonance position.
Our approach leads to a refined triplet bound-state energy of
Es

t = −1654(3) MHz and E
p
t = −1478(7) MHz, and using

the long-range potential from Ref. [34], we obtain a refined
value of the triplet scattering length of at = −830(70)a0.
The errors correspond to one standard deviation of a least-
squares fit to the eight narrowest s-wave resonances that
are least sensitive to the coupling to the scattering states
and hence the error induced by the ABM is expected to be
small [43].

In conclusion, we have produced a degenerate Bose-Fermi
mixture of 23Na and 40K, and identified over 30 s- and
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FIG. 3. (Color online) Feshbach resonances in 23Na-40K, here
for 23Na|1,1〉 + 40K|9/2,−5/2〉 collisions. (a) Scattering length from
the ABM model. (b) Open-channel threshold energy (black solid
line), uncoupled (s-wave: dashed lines; p-wave: light blue/light
gray lines) and coupled molecular states (s-wave: red/gray solid
lines; p-wave: blue/dark gray solid lines). The blue dots denote
experimentally measured resonances. The inset shows the energy,
relative to threshold, of the molecular state at the wide s-wave
resonance at 138 G [33]. (c) Experimental loss spectra of 40K in
the presence of 23Na. Three s-wave resonances and two p-wave
manifolds are found, the latter resolved in one doublet and one
triplet.

p-wave interspecies Feshbach resonances, including several
exceptionally broad resonances. Remarkably, many p-wave
Feshbach resonances are observed to be triplets or even
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FIG. 4. (Color online) Triplet structure of the p-wave resonance
at 19.1 G for the 23Na|1,1〉 + 40K|9/2, − 9/2〉 spin configuration. A
phenomenological triple Gaussian fit is applied as a guide to the eyes.

multiplets. Our strongly interacting 23Na-40K mixture near
these Feshbach resonances should allow the study of Bose or
Fermi polarons [7], of boson-mediated interactions between
fermions, and possibly of unique states of matter in optical
lattices. The formation of fermionic Feshbach molecules is
within reach. In the rovibrational ground state, NaK molecules
possess a large induced electric dipole moment and are stable
against exchange reactions. One can thus hope to create
a Fermi gas of polar molecules with strong dipole-dipole
interactions that dominate the many-body physics of the gas,
rather than being a small perturbative effect.

We thank Eberhard Tiemann for performing a coupled-
channel calculation based on our results which stimulated
us to further investigate the p-wave multiplet structures. We
also thank Tout Wang for stimulating discussions. This work
was supported by the NSF, AFOSR-MURI and -PECASE,
ARO-MURI, ONR YIP, DARPA YFA, a grant from the Army
Research Office with funding from the DARPA OLE program
and the David and Lucille Packard Foundation.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885
(2008).

[2] Ultracold Fermi Gases, Proceedings of the International School
of Physics “Enrico Fermi,” Course CLXIV, Varenna, 2006,
edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS,
Amsterdam, 2008).

[3] W. Ketterle and M. Zwierlein, Riv. Nuovo Cimento 31, 247
(2008).

[4] Z. Hadzibabic and J. Dalibard, Riv. Nuovo Cimento 34, 389
(2011).

[5] M. J. Bijlsma, B. A. Heringa, and H. T. C. Stoof, Phys. Rev. A
61, 053601 (2000).

[6] H. Heiselberg, C. J. Pethick, H. Smith, and L. Viverit, Phys. Rev.
Lett. 85, 2418 (2000).

[7] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Phys. Rev. Lett. 102, 230402 (2009).

[8] C.-H. Wu, I. Santiago, J. W. Park, P. Ahmadi,
and M. W. Zwierlein, Phys. Rev. A 84, 011601
(2011).

[9] E. Fratini and P. Pieri, Phys. Rev. A 81, 051605
(2010).

[10] Z.-Q. Yu, S. Zhang, and H. Zhai, Phys. Rev. A 83, 041603
(2011).

[11] M. Lewenstein, L. Santos, M. A. Baranov, and H. Fehrmann,
Phys. Rev. Lett. 92, 050401 (2004).

[12] K. K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe’er,
B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne,
D. S. Jin, and J. Ye, Science 322, 231 (2008).

051602-4



RAPID COMMUNICATIONS

QUANTUM DEGENERATE BOSE-FERMI MIXTURE OF . . . PHYSICAL REVIEW A 85, 051602(R) (2012)

[13] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta, M. W.
Zwierlein, A. Görlitz, and W. Ketterle, Phys. Rev. Lett. 88,
160401 (2002).

[14] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev.
Lett. 89, 150403 (2002).

[15] J. Goldwin, S. Inouye, M. L. Olsen, B. Newman, B. D. DePaola,
and D. S. Jin, Phys. Rev. A 70, 021601 (2004).

[16] C. Ospelkaus, S. Ospelkaus, K. Sengstock, and K. Bongs, Phys.
Rev. Lett. 96, 020401 (2006).

[17] S. Aubin, M. H. T. Extavour, S. Myrskog, L. J. Leblanc,
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We follow the evolution of fermion pairing in the dimensional crossover from three-dimensional to two-

dimensional as a strongly interacting Fermi gas of 6Li atoms becomes confined to a stack of two-

dimensional layers formed by a one-dimensional optical lattice. Decreasing the dimensionality leads to

the opening of a gap in radio-frequency spectra, even on the Bardeen-Cooper-Schrieffer side of a

Feshbach resonance. The measured binding energy of fermion pairs closely follows the theoretical

two-body binding energy and, in the two-dimensional limit, the zero-temperature mean-field Bose-

Einstein-condensation to Bardeen-Cooper-Schrieffer crossover theory.

DOI: 10.1103/PhysRevLett.108.045302 PACS numbers: 67.85.�d, 03.75.Lm, 05.30.Fk, 32.30.Bv

Interacting fermions in coupled two-dimensional (2D)
layers present unique physical phenomena and are central
to the description of unconventional superconductivity in
high-transition-temperature cuprates [1] and layered or-
ganic conductors [2]. Experiments on ultracold gases of
fermionic atoms have allowed access to the crossover from
Bose-Einstein condensation (BEC) of tightly bound fer-
mion pairs to Bardeen-Cooper-Schrieffer (BCS) superflu-
idity of long-range Cooper pairs in three spatial
dimensions [3,4] and, more recently, the confinement of
interacting Fermi gases to two spatial dimensions [5–9]. A
fermionic superfluid loaded into a periodic potential should
form stacks of two-dimensional superfluids with tunable
interlayer coupling [10–13], an ideal model for Josephson-
coupled quasi-2D superconductors [1,14]. For deep poten-
tials in the regime of uncoupled 2D layers, increasing the
temperature of the gas is expected to destroy superfluidity
through the Berezinskii-Kosterlitz-Thouless mechanism
[15–17], while more exotic multiplane vortex loop excita-
tions are predicted for a three-dimensional (3D) aniso-
tropic BCS superfluid near the critical point [18].

In this Letter, we study fermion pairing across the cross-
over from 3D to 2D in a periodic potential of increasing
depth. To form a bound state in 3D, the attraction between
two particles in a vacuum must exceed a certain threshold.
However, if the two particles interact in the presence of a
Fermi sea, the Cooper mechanism allows pairing for arbi-
trarily weak interactions [19]. In 2D, even two particles in a
vacuum can bind for arbitrarily weak interactions.
Surprisingly, the mean-field theory of the BEC-BCS cross-
over in 2D predicts that the binding energy of fermion pairs
in the many-body system is identical to the two-body
binding energy Eb [20]. Indeed, to break a pair and remove
one pairing partner from the system costs an energy [21]

Eb;MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p �� within mean-field theory, where

� is the chemical potential and � is the pairing gap. In 2D,
one finds [20] � ¼ EF � Eb=2 and �2 ¼ 2EFEb, where
EF is the Fermi energy, and thus Eb;MF ¼ Eb; i.e., the

many-body and two-body binding energies are predicted
to be identical throughout the BEC-BCS crossover.
We realize a system that is tunable from 3D to 2D with a

gas of ultracold fermionic 6Li atoms trapped in an optical
trap and a standing-wave optical lattice. The lattice pro-
duces a periodic potential along the z direction,

VðzÞ ¼ V0sin
2ð�z=dÞ; (1)

with depth V0 and lattice spacing d ¼ 532 nm. Together
with the optical trap, the lattice interpolates between the
3D and 2D limits. It gradually freezes out motion along one
dimension and confines particles in increasingly uncoupled
layers. Features characteristic of the 2D system appear as
the strength of the periodic potential is increased. The
threshold for pairing is reduced, allowing pairs to form
for weaker attractive interactions than in the 3D system.
The effective mass of particles increases along the confined
direction, and the center of mass and relative degrees of
freedom of an atom pair become coupled [11]. For a deep
potential that suppresses interlayer tunneling, the system
is an array of uncoupled two-dimensional layers. Here,
the center of mass and relative motion decouple and fer-
mion pairs form for the weakest interatomic attraction
[11,22,23].
In the experiment, the appearance of bound fermion

pairs is revealed using radio-frequency (rf) spectroscopy.
The atomic gas consists of an equal mixture of 6Li atoms in
the first and third hyperfine states (denoted as j1i and j3i),
chosen to minimize final-state interaction effects in the rf
spectra [24]. Interactions between atoms in states j1i and
j3i are greatly enhanced by a broad Feshbach resonance at
690.4(5) G [25]. An rf pulse is applied to transfer atoms
from one of the initial hyperfine states to the unoccupied
second hyperfine state (denoted as j2i). In previous work
on rf spectroscopy of 40K fermions in a deep one-
dimensional (1D) lattice [8], an rf pulse transferred atoms
from an initially weakly interacting state into a strongly
interacting spin state, likely producing polarons [26]. In
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our Letter, the initial state is the strongly interacting,
largely paired Fermi gas in equilibrium, and the final state
is weakly interacting.

An asymmetric dissociation peak (the bound-to-free
transition) in the rf spectrum indicates the presence of
fermion pairs. For two-particle binding, the pair dissocia-
tion line shape in the 3D and 2D limits is proportional to
�ðh�� EbÞ=�2, with � the free-particle density of states
and � ¼ �ð�rf � �hfÞ the offset of the rf frequency �rf

from the hyperfine splitting �hf (plus symbol: j1i ! j2i
transition; minus symbol: j3i ! j2i transition). This form
can be obtained from Fermi’s golden rule and the bound-
state wave function in momentum space; see also
Refs. [21,27]. In 2D, the expected dissociation line shape
is then proportional to

Ið�Þ / �ðh�� EbÞ
�2

: (2)

In addition to the pairing peak, at finite temperature one
expects a peak in the rf spectrum due to unbound atoms
(the free-to-free transition). A narrow bound-to-bound
transition can also be driven at an offset frequency �bb ¼
ðEb � E0

bÞ=h that transfers one spin state of the initial

bound pair with binding energy Eb into a bound state of
j2i with j1i or j3i, of binding energy E0

b. For a j1i � j3i
mixture near the Feshbach resonance, Eb � E0

b [24], so

the bound-to-bound peak is well-separated from the
bound-to-free and free-to-free peaks. As very recently
calculated [28], final-state interactions and the anomalous
nature of scattering in 2D introduce an additional factor of

ln2ðEb=E
0
b
Þ

ln2½ðh��EbÞ=E0
b
�þ�2 into Eq. (2), causing a rounding off of the

sharp peak expected from the step function.
In a 1D lattice, the binding energy for two-body pairs is

determined by the lattice spacing d, the depth V0, and the
3D scattering length a. In the 2D limit V0 � ER, with

recoil energy ER ¼ @
2�2

2md2
, the scattering properties of the

gas are completely determined by Eb [22,23]. In that limit,
the lattice wells can be approximated as harmonic traps
with level spacing @!z ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
V0ER

p
and harmonic oscillator

length lz ¼
ffiffiffiffiffiffiffi
@

m!z

q
. In a many-particle system in 2D, the

ratio of the binding energy to the Fermi energy determines
the strength of interactions. The 2D scattering amplitude
fðEFÞ ¼ 2�

� lnðkFa2DÞþi�=2 for collisions with energy EF is

parametrized by lnðkFa2DÞ, where kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mEF

p
=@ and

a2D ¼ @=
ffiffiffiffiffiffiffiffiffiffi
mEb

p
. It is large when j lnðkFa2DÞj & 1

[22,23], corresponding to the strong-coupling regime
[28,29]. The BEC side of the BEC-BCS crossover corre-
sponds to negative values of lnðkFa2DÞ, while the BCS side
corresponds to positive values [20].

The experimental sequence proceeds as follows. An
ultracold gas of 6Li is produced by sympathetic cooling
with 23Na as described previously [21]. The 6Li atoms are
transferred from a magnetic trap to an optical dipole trap
(wavelength 1064 nm, waist 120 �m), with axial harmonic

confinement (frequency 22.8 Hz) provided by magnetic
field curvature. With 6Li polarized in state j1i, the mag-
netic bias field is raised to 568 G, and an equal mixture of
hyperfine states j1i and j3i is created using a 50% rf
transfer from j1i to j2i followed by a full transfer from
j2i to j3i. The field is then raised to the final value, and
evaporative cooling is applied by lowering the depth of the
optical dipole trap, resulting in a fermion pair condensate
with typically 5� 105 atoms per spin state. The lattice is
then ramped up over 100 ms. The retro-reflected lattice
beam (wavelength 1064 nm) is at an angle of 0.5 degrees
from the optical dipole trap beam, enough to selectively
reflect only the lattice beam. The depth of the lattice is
calibrated using Kapitza-Dirac diffraction of a 23Na BEC
and a 6Li2 molecular BEC and by lattice modulation

spectroscopy on the 6Li cloud. The magnetic field and
hyperfine splitting are calibrated using rf spectroscopy on
spin-polarized clouds. After loading the lattice, the rf pulse
is applied for a duration of typically 1 ms. Images of state
j2i and either j1i or j3i are recorded in each run of the
experiment.
To ensure loading into the first Bloch band, the Fermi

energy and temperature of the cloud are kept below the

second band. The 2D Fermi energy E2D
F ¼ 2�@2n

m , with n the

2D density per spin state, is typically h� 10 kHz. The
bottom of the second band is at least one recoil energy
ER ¼ h� 29:3 kHz above the bottom of the first band in
shallow lattices and up to about h� 300 kHz for the deep-
est lattices. The temperature is estimated to be on the order
of the Fermi energy.
rf spectra are recorded for various lattice depths and

interaction strengths. Figure 1 shows examples of spectra
over a range of lattice depths at the 3D Feshbach resonance
and on the BCS side of the resonance at 721 G, where
fermion pairing in 3D is a purely many-body effect. At the
lowest lattice depths, the spectra show only a single peak,
shifted to positive offset frequencies due to many-body
interactions. This is similar to the case without a lattice
[24,30]; to discern a peak due to fermion pairs from a peak
due to unbound atoms would require locally resolved rf
spectroscopy of imbalanced Fermi gases [30]. However, as
the lattice depth is raised, the single peak splits into two
and a clear pairing gap emerges. The narrow peak at zero
offset is the free-to-free transition, and the asymmetric
peak at positive offset is the pair dissociation spectrum.
The pair spectrum, especially on resonance, shows a sharp
threshold and a long tail corresponding to dissociation of
fermion pairs into free atoms with nonzero kinetic energy.
Binding energies are determined from the offset fre-

quency of the pairing threshold. Although the line shape
in Eq. (2) jumps discontinuously from zero to its maximum
value, the spectra are observed to be broadened. This is to a
large part due to the logarithmic corrections [28] noted
above, which predict a gradual rise at the threshold
h� ¼ Eb, and a spectral peak that is slightly shifted from
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Eb. We include possible additional broadening by convolv-
ing the theoretical line shape, including the logarithmic
correction, with a Gaussian function of width wm. The
parameters Eb and wm are determined by a least-squares
fit to the measured spectrum. Typical spectra have wm of
5 kHz, consistent with our estimates of broadening based
on collisions and three-body losses. The Fourier broad-
ening is 1 kHz. Power broadening is about 5 kHz on the
free-to-free transition and less than 1 kHz on the bound-to-
free transition due to the reduced wave function overlap.
Inclusion of the logarithmic correction is found to be
necessary in order for the fit function to reproduce the
observed behavior of the high-frequency tail. The final-
state binding energy used in the logarithmic correction for
fitting is obtained from spectra where both a bound-to-
bound and a bound-to-free peak were measured. At low
lattice depths, the 2D form for the paired spectrum should
differ from the exact shape that interpolates between the
3D and 2D limits. In the case where the shape of the
spectrum is given by the 3D limit, fitting to the 2D form
overestimates the binding energy by 8%.

Figure 2 shows the measured binding energies as func-
tion of V0=ER for several interaction strengths. The binding

energies are normalized by @!z � 2
ffiffiffiffiffiffiffiffiffiffiffiffi
V0ER

p
, which equals

the level spacing in the harmonic approximation to the
lattice potential. The measured binding energies grow
with increasing lattice depth and agree reasonably well
with theoretical predictions for two-body bound pairs in
a 1D lattice [11]. The binding energy at the 3D resonance
approaches a constant multiple of @!z as the lattice
depth increases, as expected from the 2D limit [22,23].
Figure 3(a) compares the binding energies measured in
lattices deeper than 17ER to predictions in the harmonic
quasi-2D limit [22,23]. At the 3D Feshbach resonance, we
find Eb ¼ 0:232ð16Þ@!z for deep lattices. The error bar
refers to the standard error on the mean. This value is close
to the harmonic confinement result of 0:244@!z [23]. The
exact calculation [11] predicts a constant downward shift
of the binding energy by 0:2ER for deep lattices due to the
anharmonicity of the sinusoidal potential. For V0 of about
20ER, this gives a prediction of 0:22@!z, also close to the
measured value.
Figure 3(b) shows the binding energy measured in

deep lattices normalized by the exact two-body result
[11] versus the many-body interaction parameter
lnðkFa2DÞ. Overall, the binding energies are close to the
two-body value, even in the strong-coupling regime for
j lnðkFa2DÞj< 1, as predicted by zero-temperature mean-
field theory [20]. The data show a slight downward
deviation for the strongest coupling. At fixed reduced
temperature T=TF, the relationship should be universal. It
will thus be interesting to see in future work whether the
binding energy depends significantly on temperature.
The bound-to-bound transition is seen in Fig. 4 as a

narrow peak at negative offset frequencies. In the regime
whereEb can be found from the pair dissociation spectrum,
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FIG. 2 (color online). Binding energy Eb versus lattice depth
V0 at several values of the 3D scattering length a. Eb is
normalized via the lattice frequency !z. Red circles: results
from spectra at 690.7(1) G and d=a ¼ �0:01ð4Þ. Green
triangles: 720.7(1) G, d=a ¼ �1:15ð2Þ. Blue squares:
800.1(1) G, d=a ¼ �2:69ð1Þ. Curves show predictions from
Orso et al. [11]. Horizontal black dashed line: harmonic ap-
proximation result for 1=a ¼ 0.
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FIG. 1 (color online). Evolution of fermion pairing in the
3D-to-2D crossover in a one-dimensional optical lattice, ob-
served via rf spectroscopy. Shown is the transferred atom num-
ber versus rf offset frequency relative to the atomic hyperfine
splitting. (a) Spectra at the Feshbach resonance at 690.7(1) G
with d=a ¼ �0:01ð4Þ. Lattice depths from top to bottom in units
of ER: 1.84(3), 4.8(2), 6.1(2), 9.9(4), 12.2(4), 18.6(7), and 19.5
(7). (b) Spectra on the BCS side at 720.7(1) G, d=a ¼ �1:15ð2Þ.
Lattice depths in units of ER: 2.75(5), 4.13(7), 4.8(1), 6.0(2), 10.3
(2), and 18.1(4).
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the bound-to-bound peak position directly yields the bind-
ing energy in the final state E0

b. For example, the spectrum

in Fig. 4(a), taken at the 3D j1i � j3i resonance at
690.7(1) G and V0=ER ¼ 9:59ð7Þ, gives E0

b=ER ¼ 18:0ð1Þ
at a final-state interaction of d=a0 ¼ 8:41ð2Þ. Likewise, the
spectrum in Fig. 4(b) at V0=ER ¼ 26:1ð4Þ and a magnetic
field of 751.1(1) G, where d=a0 ¼ 2:55ð1Þ, gives E0

b=ER ¼
5:3ð1Þ. An independent measurement for d=a ¼ 2:55ð2Þ
using the bound-to-free spectrum at 653.55 G yields
Eb=ER ¼ 5:25ð2Þ, showing that bound-to-bound transi-
tions correctly indicate binding energies.

The BCS side of the 2D BEC-BCS crossover is reached
in Fig. 4(c) by increasing the number of atoms to increase
EF and increasing the magnetic field to reach a lower
binding energy. In Fig. 4(c), the central Fermi energy is
h� 43ð6Þ kHz and T=TF ¼ 0:5ð2Þ. The magnetic field is
set to 834.4(1) G, where d=a ¼ �3:06ð1Þ, and the final-
state interactions between j1i and j2i are resonant, with
d=a0 ¼ �0:01ð3Þ. The lattice depth is V0=ER ¼ 26:4ð3Þ.
Thus, we know that E0

b ¼ 0:232ð16Þ@!z ¼ 2:4ð2ÞER at

this lattice depth. From the bound-to-bound transition in
Fig. 4(c), we can then directly determine the binding
energy of j1i � j3i fermion pairs to be Eb=ER ¼ 0:9ð2Þ.
The theoretical prediction [11] for two-body binding gives
Eb=ER ¼ 0:82ð1Þ. The measured binding energy gives a
many-body interaction parameter of lnðkFa2DÞ ¼ 0:6ð1Þ,
on the BCS side but within the strongly interacting regime,
where one expects many-body effects beyond mean-field

BEC-BCS theory [26,29]. It is therefore interesting that the
measured binding energy is close to the expected two-body
binding energy to much better than the Fermi energy, as
predicted by mean-field theory [20].
In conclusion, we have measured the binding energy of

fermion pairs along the crossover from 3D to 2D in a one-
dimensional optical lattice. Measurements were performed
at several lattice depths and scattering lengths, allowing
quantitative comparison with theoretical predictions.
Considering the fact that the gas is a strongly interacting
many-body system, the close agreement with two-body
theory is surprising, especially in the strong-coupling re-
gime. While mean-field BEC-BCS theory in 2D predicts
this behavior [20], it misses other important features of the
many-body system, most strikingly the interaction between
fermion pairs [13]. Superfluidity in a one-dimensional
lattice will be an exciting topic for future studies. Stacks
of weakly coupled, superfluid 2D layers would constitute a
basic model of the geometry found in high-temperature
superconductors.
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FIG. 4 (color online). Spectra including the bound-to-bound
transition, a narrow peak at negative rf offset. Shown are spectra
at magnetic fields of (a) 690.7(1) G, (b) 751.1(1) G, and
(c) 834.4(1). The interaction parameters d=a are (a) �0:01ð4Þ,
(b) �1:91ð1Þ, and (c) �3:06ð1Þ. Lattice depths in units of ER are
(a) 9.59(7), (b) 26.1(4), and (c) 26.4(3). The bound-to-free
transition is not visible in (c). The transfer is from j1i to j2i
in (a) and (b) and from j3i to j2i in (c).

FIG. 3 (color online). (a) Binding energy of fermion pairs
versus interaction strength lz=a for deep lattices (V0 > 17ER).
Solid curve: theoretical prediction in the 2D harmonic limit
[22,23]. (b) Ratio of the measured binding energy to the two-
body result [11] versus lnðkFa2DÞ for V0 > 17ER. Black dia-
monds: binding energy determined from the bound-to-bound
transition with resonant final-state interactions. Other data sym-
bols: see Fig. 2. Horizontal line: zero-temperature mean-field
theory [20].
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Feynman diagrams versus Fermi-gas
Feynman emulator
K. Van Houcke1,2*, F. Werner1,3, E. Kozik4,5, N. Prokof’ev1,6, B. Svistunov1,6, M. J. H. Ku7,
A. T. Sommer7, L. W. Cheuk7, A. Schirotzek8 and M.W. Zwierlein7

Precise understanding of strongly interacting fermions, from
electrons in modern materials to nuclear matter, presents
a major goal in modern physics. However, the theoretical
description of interacting Fermi systems is usually plagued
by the intricate quantum statistics at play. Here we present
a cross-validation between a new theoretical approach, bold
diagrammatic Monte Carlo1–3, and precision experiments on
ultracold atoms. Specifically, we compute and measure, with
unprecedented precision, the normal-state equation of state of
the unitary gas, a prototypical example of a strongly correlated
fermionic system4–6. Excellent agreement demonstrates that a
series of Feynman diagrams can be controllably resummed in a
non-perturbative regime using bold diagrammatic Monte Carlo.

In his seminal 1981 lecture7, Richard Feynman argued that
an arbitrary quantum system cannot be efficiently simulated
with a classical universal computer, because generally, quantum
statistics can only be imitated with a classical theory if probabilities
are replaced with negative (or complex) weighting factors. For
the majority of many-particle models this indeed leads to the
so-called sign problem, which has remained an insurmountable
obstacle. According to Feynman, the only way out is to employ
computersmade out of quantum-mechanical elements7. The recent
experimental breakthroughs in cooling, probing and controlling
strongly interacting quantum gases prompted a challenging
effort to use this new form of quantum matter to realize
Feynman’s emulators of fundamental microscopic models7,8.
Somewhat ironically, Feynman’s arguments, which led him to the
idea of emulators, may be defied by a theoretical method that
he himself devised, namely Feynman diagrams. This technique
organizes the calculation of a given physical quantity as a series of
diagrams representing all the possible ways particles can propagate
and interact (for example, ref. 9). For the many-body problem, this
diagrammatic expansion is commonly used either in perturbative
regimes or within uncontrolled approximations. However, the
introduction of diagrammatic Monte Carlo recently allowed one to
go well beyond the first few diagrams, and even reach convergence
of the series in amoderately correlated regime1,10.

In this Letter we show that for a strongly correlated system and
down to a phase transition, the diagrammatic series can still be
given a mathematical meaning and leads to controllable results
within bold diagrammatic Monte Carlo (BDMC). This approach,
proposed in refs 1–3, is first implemented here for the many-body
problem. We focus on the unitary gas, that is, spin-1/2 fermions

1Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA, 2Department of Physics and Astronomy, Ghent University,
Proeftuinstraat 86, B-9000 Ghent, Belgium, 3Laboratoire Kastler Brossel, Ecole Normale Supérieure, UPMC-Paris 6, CNRS, 24 rue Lhomond, 75005 Paris,
France, 4Theoretische Physik, ETH Zürich, CH-8093, Zürich, 5Centre de Physique Théorique, Ecole Polytechnique, 91128 Palaiseau Cedex, France, 6Russian
Research Center “Kurchatov Institute”, 123182 Moscow, Russia, 7Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research
Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA, 8Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley,
California 94720, USA. *e-mail: kris.vanhoucke@ugent.be.

with zero-range interactions at infinite scattering length4–6. This
system offers the unique possibility to stringently test our theory
against a quantum emulator realized here with trapped ultracold
6Li atoms at a broad Feshbach resonance4–6. This experimental
validation is indispensable for our theory, based on resummation of
a possibly divergent series: although the physical answer is shown to
be independent of the applied resummation technique—suggesting
that the procedure is adequate—its mathematical validity remains
to be proven. In essence, nature provides the ‘proof’. This presents
the first—although long-anticipated—compelling example of how
ultracold atoms can guide new microscopic theories for strongly
interacting quantummatter.

At unitarity, the disappearance of an interaction-imposed length
scale leads to scale invariance. This property renders the model
relevant for other physical systems such as neutron matter. It
also makes the balanced (that is, spin-unpolarized) unitary gas
ideally suited for the experimental high-precision determination
of the equation of state (EOS) described below. Finally, it
implies the absence of a small parameter, making the problem
notoriously difficult to solve.

In traditional Monte Carlo approaches, which simulate a
finite piece of matter, the sign problem causes an exponential
increase of the computing time with system size and inverse
temperature. In contrast, BDMC simulates a mathematical answer
in the thermodynamic limit. This radically changes the role of the
fermionic sign. Diagrammatic contributions are sign-alternating
with order, topology and values of internal variables. Because
the number of graphs grows factorially with diagram order, a
near-cancellation between these contributions is actually necessary
for the series to be resummable by techniques requiring a
finite radius of convergence. We find that this ‘sign blessing’
indeed takes place.

In essence, BDMC solves the full quantum many-body problem
by stochastically summing all the skeleton diagrams for irreducible
single-particle self-energy Σ and pair self-energy Π , expressed
in terms of bold (that is, fully dressed) single-particle and pair
propagators G and Γ which are determined self-consistently
(Fig. 1). The density EOS (that is, the relation between total density
n, chemical potential µ and temperature T ) is given by G at
zero distance and imaginary time, n(µ,T ) = 2G(r = 0,τ = 0−).
The thermodynamic limit can be taken analytically. The sum of
ladder diagrams built on the bare single-particle propagator defines
a partially dressed pair propagator Γ 0. As Γ 0 is well defined
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Figure 1 | Bold diagrammatic Monte Carlo The skeleton diagrammatic
series for the self-energy Σ and the pair self-energy Π is evaluated
stochastically (lower box). The diagrams are built on dressed one-body
propagators G and pair propagators Γ , which themselves are the solution
of the Dyson and Bethe-Salpeter equations (upper box). This cycle is
repeated until convergence is reached. G0 is the non-interacting propagator
and Γ0 is the partially dressed pair propagator obtained by summing the
bare ladder diagrams.

for the zero-range continuous-space interaction, the zero-range
limit can also be taken analytically. This is in sharp contrast with
other numerical methods11–13, where taking the thermodynamic
and zero-range limits is computationally very expensive. BDMC
performs a random walk in the space of irreducible diagrams using
local updates. The simulation is run in a self-consistent cycle (along
the lines of ref. 2) until convergence is reached. Full details will
be presented elsewhere. In essence, our approach upgrades the
standard many-body theories based on one lowest-order diagram
(for example, refs 14,15) to millions of graphs.

In the quantum degenerate regime, we do not observe
convergence of the diagrammatic series for Σ and Π evaluated
up to order 9. Here, order N means Σ -diagrams with N vertices
(that is, N Γ -lines) and Π -diagrams with N − 1 vertices. To
extract the infinite-order result, we apply the following Abelian
resummation methods16. The contribution of all diagrams of order
N is multiplied by e−ελN−1 , where λn depends on the resummation
method: (1) λn=n logn (with λ0=0) for Lindelöf16, (2) λn= (n−1)
log(n−1) (with λ0= λ1= 0) for ‘shifted Lindelöf’, or (3) λn=n2 for
Gaussian17. A full simulation is performed for each ε, and the final
result is obtained by extrapolating to ε=0 (Fig. 2).

This protocol relies on the following crucial mathematical
assumptions: (1) the N th order contribution of the diagrammatic
expansion for Σ (for fixed external variables) is the N th coefficient
of the Taylor series at z = 0 of a function g (z) which has a non-zero
convergence radius, (2) the analytic continuation g (1), performed
by the above resummation methods16,17, is the physically correct
value ofΣ . The same assumptions should hold forΠ .

Proving these assumptions is an open mathematical challenge.
Note that Dyson’s collapse argument18 is not applicable to immedi-
ately disprove the assumption (1) of a non-zero convergence radius:
indeed, unlike QED, our skeleton series is not an expansion in
powers of a coupling constant whose sign change would lead to
an instability. The first important evidence for the validity of our
mathematical assumptions is that the three different resummation
methods yield consistent results. For an independent test, we
turn to experiments.

The present experiment furnishes high-precision data for the
density n as a function of the local value V of the trapping potential
(Fig. 3 and Methods). We start the process by obtaining the EOS at
high temperatures in the non-degenerate wings of the atom cloud,

n
  3

(  
   

    
=

  1)

8.5

8.0

7.5

7.0

6.5
1.41.21.00.80.60.40.20

λ
μ β

Figure 2 | Cross-validation between resummation procedure and
experiment at βµ = +1. Bold diagrammatic Monte Carlo data for the
dimensionless density nλ3, as a function of the parameter ε controlling the
resummation procedure, for three different resummation methods: Lindelöf
(blue circles), shifted Lindelöf (black diamonds), and Gauss (open green
squares). The solid lines are linear fits to the Monte Carlo data, their ε→0
extrapolation agrees within error bars with the experimental data point
(filled red square). (In the opposite limit ε→∞, the Lindelöf (resp. shifted
Lindelöf) curves will asymptote to the first15,21 (resp. third) order results,
shown by the dashed (resp. dash–dotted) line.) Error bars for each ε
represent the statistical error, together with the estimated systematic error
coming from not sampling diagrams of order>9.

where the virial expansion is applicable. Once the temperature
and the chemical potential have been determined from fits to the
wings of the cloud, the data closer to the cloud centre provides
a new prediction of the EOS. The process is iterated to access
lower temperatures.

Scale invariance allows one to write the density EOS as
n(µ,T )λ3= f (βµ), with λ=

√
2π h̄2/(mkBT ) the thermal de Broglie

wavelength, β= 1/(kBT ) the inverse temperature and f a universal
function. A convenient normalization of the data is provided
by the EOS of a non-interacting Fermi gas, n0λ3 = f0(βµ). In
Fig. 4a, we thus report the ratio n(µ,T )/n0(µ,T )= f (βµ)/f0(βµ),
bringing out the difference between the ideal and the strongly
interacting Fermi gas. The Gibbs–Duhem relation allows us to also
calculate the pressure at a given chemical potential, P(µ0,T ) =∫ µ0

−∞
dµ n(µ,T )= 1/(βλ3)F(βµ0), where F(x)=

∫ x
−∞

dx ′f (x ′). We
normalize it by the pressure of the ideal Fermi gas and show
F(βµ)/F0(βµ) (Fig. 4b). The agreement between BDMC and
experiment is excellent. The comparison is sufficiently sensitive to
validate the procedure of resumming and extrapolating (Fig. 2).
The result was checked to be independent of the maximal sampled
diagram order Nmax ∈ {7;8;9} within the error bars shown in
Fig. 2 for each ε. The BDMC final error bar in Fig. 4 is the
sum of the conservatively estimated systematic errors from the
uncertainty of the ε→ 0 extrapolation and from the dependence
on numerical grids and cutoffs, the latter being reduced by
analytically treating high-momentum short-time singular parts.
The systematic error in the experiment is determined to be
about 1% by the independent determination of the EOS of
the non-interacting Fermi gas. The experimental error bars of
Fig. 4 also include the statistical error, which is <0.5%, thanks
to the scale invariance of the balanced unitary gas: irrespective
of shot-to-shot fluctuations of atom number and temperature,
all experimental profiles contribute to the same scaled EOS-
function f . The dominant uncertainty on the experimental EOS
stems from the uncertainty in the position of the 6Li Feshbach
resonance, known to be at 834.15 ± 1.5G from spectroscopic
measurements19. The change in energy, pressure and density with
respect to the interaction strength is controlled by the so-called
contact20 that is obtained from Γ in the BDMC calculation.
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This allows us to define the uncertainty margins above and below
the experimental data (Fig. 4) that give the prediction for the unitary
EOS if the true Feshbach resonance lies 1.5 G below or above
834.15G, respectively.

Our results clearly differ from previous theoretical and ex-
perimental results. Deviations from the theory based on the
first-order Feynman diagrams15,21 are expected, and rather re-
markably moderate. Differences with lattice Monte Carlo data11,13
may seem more surprising, as in the particular case of the bal-
anced system these algorithms are free of the sign problem, al-
lowing one in principle to approach the balanced unitary gas
model in an unbiased way. However, eliminating systematic er-
rors from lattice-discretization and finite volume requires extrap-
olations which are either not done11 or difficult to control12,13.
The ENS experimental pressure EOS (ref. 22) lies systemati-
cally below ours, slightly outside the reported error bar. The
experimental results from Tokyo23 do not agree with the virial
expansion at high temperature. The BDMC results agree well
with the present experimental data all the way down to the
critical temperature for superfluidity (Fig. 4). On approaching
(βµ)c , we observe the growth of the correlation length in the
BDMC pair correlation function Γ . A protocol for extracting
the critical temperature itself from the BDMC simulation will
be presented elsewhere.

We are not aware of any system of strongly correlated fermions
in nature where experimental and unbiased theoretical results
were compared at the same level of accuracy. Even for bosons,
the only analogue is liquid 4He. This promotes the unitary gas
to the major testing ground for unbiased theoretical treatments.
The present BDMC implementation should remain applicable at
finite polarization and/or finite scattering length, opening the
way to rich physics which was already addressed by cold atoms
experiments6,24–27. We also plan to extend BDMC to superfluid
phases by introducing anomalous propagators. Moreover, as
the method is generic, we expect numerous other important
applications to long-standing problems acrossmany fields.

Note added in proof: After a preprint of this work became available,
new auxiliary-field quantum Monte Carlo data were presented28,
with undetermined systematic errors whose evaluation in future
work is called for by the authors of ref. 28.

Methods
The experimental set-up has been described previously24. In short, ultracold
fermionic 6Li is brought to degeneracy by sympathetic cooling with 23Na. A
two-state mixture of the two lowest hyperfine states of 6Li is further cooled in a
hybrid magnetic and optical trap at the broad Feshbach resonance at 834G. We
employ high-resolution in situ absorption imaging to obtain the column density of
the gas, that is converted into the full 3D density using the inverse Abel transform29.
Equidensity lines provide equipotential lines that are precisely calibrated using
the known axial, harmonic potential (axial frequency νz = 22.83±0.05Hz).
Equipotential averaging yields low-noise profiles of density n versus potential V .
Density is absolutely calibrated by imaging a highly degenerate, highly imbalanced
Fermi mixture, and fitting the majority density profile to the ideal Fermi gas EOS
(ref. 24). In contrast to previous studies22,23, our analysis does not rely on the
assumption of harmonic trapping.

Thermometry is performed by fitting the density profile to the EOS
constructed thus far, restricting the fit to the portion of the density profile
where the EOS is valid. In the high-temperature regime, the EOS is given by
the virial expansion

nλ3= eβµ+2b2e2βµ+3b3e3βµ+··· (1)

where the virial coefficients are b2 = 3
√
2/8 (ref. 30), and b3 =−0.29095295

(ref. 31). Fitting a high-temperature cloud to the virial expansion gives the
temperature T and the chemical potentialµ of the cloud, and the EOS nλ3= f (βµ)
can be constructed. We have used equation (1) for βµ< (βµ)max =−1.25 and we
checked that our EOS did not change within statistical noise if we instead used
(βµ)max=−0.85. Once a new patch of EOS has been produced, it can then in turn
be used to fit colder clouds. Iteration of this method allows us to construct the EOS
to arbitrarily low temperature. A total of ∼1,000 profiles were used, with 10–100
profiles (50 on average) contributing at any given βµ.

Received 14 October 2011; accepted 17 February 2012;
published online 18 March 2012

References
1. Van Houcke, K., Kozik, E., Prokof’ev, N. & Svistunov, B. in Computer

Simulation Studies in Condensed Matter Physics XXI (eds Landau, D. P., Lewis,
S. P. & Schuttler, H. B.) (Springer, 2008).

2. Prokof’ev, N. & Svistunov, B. Bold diagrammatic Monte Carlo technique:
When the sign problem is welcome. Phys. Rev. Lett. 99, 250201 (2007).

3. Prokof’ev, N. V. & Svistunov, B. V. Bold diagrammatic Monte Carlo: A generic
sign-problem tolerant technique for polaron models and possibly interacting
many-body problems. Phys. Rev. B 77, 125101 (2008).

4. Inguscio M., Ketterle, W. & Salomon, C. (eds) Proc. Int. School of Physics Enrico
Fermi, Course CLXIV, Varenna, 20–30 June 2006 (IOS Press, 2008).

5. Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi
gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

6. Zwerger, W. (ed.) in BCS–BEC Crossover and the Unitary Fermi Gas (Lecture
Notes in Physics, Springer, 2012).

7. Feynman, R. Simulating physics with computers. Int. J. Theoret. Phys. 21,
467–488 (1982).

8. Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases.
Rev. Mod. Phys. 80, 885–964 (2008).

9. Fetter, A. & Walecka, J. Quantum Theory of Many-Particle Systems
(McGraw-Hill, 1971).

10. Kozik, E. et al. Diagrammatic Monte Carlo for correlated fermions.
Europhys. Lett. 90, 10004 (2010).

11. Bulgac, A., Drut, J. E. & Magierski, P. Spin 1/2 fermions in the unitary regime
at finite temperature. Phys. Rev. Lett. 96, 090404 (2006).

12. Burovski, E., Prokof’ev, N., Svistunov, B. & Troyer, M. Critical temperature
and thermodynamics of attractive fermions at unitarity. Phys. Rev. Lett. 96,
160402 (2006).

13. Goulko, O. & Wingate, M. Thermodynamics of balanced and slightly
spin-imbalanced Fermi gases at unitarity. Phys. Rev. A 82, 053621 (2010).

14. Strinati, G. C. in BCS–BEC Crossover and the Unitary Fermi Gas
(ed. Zwerger, W.) (Lecture Notes in Physics, Springer, 2012).

15. Haussmann, R. Properties of a Fermi liquid at the superfluid transition in
the crossover region between BCS superconductivity and Bose–Einstein
condensation. Phys. Rev. B 49, 12975–12983 (1994).

16. Hardy, G. Divergent Series (Oxford Univ. Press, 1949).
17. Fruchard, A. Prolongement analytique et systèmes dynamiques discrets.

Collect. Math. 43, 71–82 (1992).
18. Dyson, F. J. Divergence of perturbation theory in quantum electrodynamics.

Phys. Rev. 85, 631–632 (1952).
19. Bartenstein, M. et al. Precise determination of 6Li cold collision parameters by

radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett. 94,
103201 (2004).

20. Braaten, E. in BCS–BEC Crossover and the Unitary Fermi Gas (ed. Zwerger, W.)
(Lecture Notes in Physics, Springer, 2012).

21. Haussmann, R., Rantner, W., Cerrito, S. & Zwerger, W. Thermodynamics of
the BCS–BEC crossover. Phys. Rev. A 75, 023610 (2007).

22. Nascimbène, S., Navon, N., Jiang, K. J., Chevy, F. & Salomon, C. Exploring the
thermodynamics of a universal Fermi gas. Nature 463, 1057–1060 (2010).

23. Horikoshi, M., Nakajima, S., Ueda, M. & Mukaiyama, T. Measurement of
universal thermodynamic functions for a unitary Fermi gas. Science 327,
442–445 (2010).

24. Ketterle, W. & Zwierlein, M. Making, probing and understanding ultracold
Fermi gases. Rivista del Nuovo Cimento 31, 247–422 (2008).

25. Shin, Y., Schunck, C., Schirotzek, A. & Ketterle, W. Phase diagram of
a two-component Fermi gas with resonant interactions. Nature 451,
689–693 (2007).

26. Shin, Y. Determination of the equation of state of a polarized Fermi gas at
unitarity. Phys. Rev. A 77, 041603(R) (2008).

27. Navon, N., Nascimbène, S., Chevy, F. & Salomon, C. The equation of state
of a low-temperature Fermi gas with tunable interactions. Science 328,
729–732 (2010).

28. Drut, J. E., Lähde, T. A., Wlazłowski, G. & Magierski, P. The equation of
state of the unitary Fermi gas: An update on lattice calculations. Preprint at
http://arxiv.org/abs/1111.5079v1 (2011).

29. Shin, Y., Zwierlein, M., Schunck, C., Schirotzek, A. & Ketterle, W. Observation
of phase separation in a strongly interacting imbalanced Fermi gas. Phys. Rev.
Lett. 97, 030401 (2006).

30. Ho, T-L. &Mueller, E. J. High temperature expansion applied to fermions near
Feshbach resonance. Phys. Rev. Lett. 92, 160404 (2004).

31. Liu, X-J., Hu, H. & Drummond, P. D. Virial expansion for a strongly correlated
Fermi gas. Phys. Rev. Lett. 102, 160401 (2009).

NATURE PHYSICS | VOL 8 | MAY 2012 | www.nature.com/naturephysics 369
© 2012 Macmillan Publishers Limited.  All rights reserved. 

 



LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS2273

Acknowledgements
We thank R. Haussmann for providing propagator data from refs 15,21 for comparison,
and the authors of refs 11,13,22,23 for sending us their data. This collaboration was
supported by a grant from the Army Research Office with funding from the Defense Ad-
vanced Research Projects Agency (DARPA) Optical Lattice Emulator program. Theorists
acknowledge the financial support of the Research Foundation Flanders (FWO) (K.V.H.),
National Science Foundation (NSF) grant PHY-1005543 (University of Massachusetts
group), Swiss National Science Foundation (SNF) Fellowship for Advanced Researchers
(E.K.), and l’Institut Francilien de Recherche sur les Atomes Froids (IFRAF) (F.W.). Simu-
lations ran on the clusters CM at UMass and Brutus at ETH. TheMITwork was supported
by theNSF, AFOSR-MURI, ARO-MURI,Office ofNaval Research (ONR),DARPAYoung
Faculty Award, an AFOSR Presidential Early Career Award for Scientists and Engineers
(PECASE), theDavid andLucile Packard Foundation, and theAlfred P. Sloan Foundation.

Author contributions
K.V.H. (theory) and M.J.H.K. (experiment) contributed equally to this work. K.V.H.,
F.W., E.K., N.P. and B.S. developed the BDMC approach for unitary fermions;
the computer code was written by K.V.H. assisted by F.W.; simulation data were
produced by F.W., E.K. and K.V.H.; M.J.H.K., A.T.S., L.W.C., A.S. and M.W.Z. all
contributed to the experimental work and the analysis. All authors participated in the
manuscript preparation.

Additional information
The authors declare no competing financial interests. Reprints and permissions
information is available online at www.nature.com/reprints. Correspondence and
requests for materials should be addressed to K.V.H.

370 NATURE PHYSICS | VOL 8 | MAY 2012 | www.nature.com/naturephysics

© 2012 Macmillan Publishers Limited.  All rights reserved. 

 


	Zwierlein ONR SF298 2012.pdf
	Zwierlein ONR 06;2011-05;2012.pdf
	Cheuk Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas arXiv 1205 3483.pdf
	Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas
	Abstract
	 Acknowledgments
	 Supplemental Materials
	 System preparation and Raman setup
	 Experimental procedure
	 Hamiltonian for Raman-coupled system
	 Reconstructing the spinful dispersion for the Raman-coupled system
	 Hamiltonian for the Raman/RF system
	 Spin-injection spectrum for the Raman/RF system
	 Reconstructing the spinful band structure for the Raman/RF System

	 References


	VanHoucke Feynman Diagrams vs Feynman Quantum Emulator Nature Physics 8.pdf
	Feynman diagrams versus Fermi-gas Feynman emulator
	Methods
	Figure 1 Bold diagrammatic Monte Carlo
	Figure 2 Cross-validation between resummation procedure and experiment at β μ = +1.
	Figure 3 Constructing the EOS from in situ imaging.
	Figure 4 Equation of state of the unitary Fermi gas in the normal phase.
	References
	Acknowledgements
	Author contributions
	Additional information




