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1 Abstract

The objective of this project is to develop and analyze stable time discretizations suitable for the
simulation of hyperbolic time-dependent partial differential equations. Implicit and explicit multi-
step multi-stage time discretizations with optimal time-step restrictions have been developed, as well
as implicit Runge–Kutta methods with downwinding and unconditional stability. New directions
have been explored for implicit-explicit methods, which are useful for problems with convection
and diffusion. Finally, novel provably stable multi-step time discretizations for use with Fourier
pseudo-spectral spatial approximations of the three dimensional viscous Burgers equations and
Navier-Stokes equations have been developed.

2 Summary

In this second year of the grant, I have made progress in three directions. First, we developed
optimization codes that search for implicit and explicit multi-stage multistep methods of more than
two steps. These codes are now being utilized to find three step Runge–Kutta methods with optimal
SSP coefficients. Next, we have made significant progress in developing Runge–Kutta methods with
downwinding and unlimited time-step, as well as testing appropriate boundary conditions for such
methods. We investigated implicit-explicit methods with interesting SSP properties, a promising
direction we intend to continue to develop. Finally, we have developed a series of multistep methods
which are provably stable for use with Fourier pseudospectral spatial discretizations of 3D viscous
Burgers’ equation and the 3D Navier-Stokes equations. Also in this year, we published a book on
SSP time discretization methods.

3 Objectives and accomplishments

1. Objective: Study the class of high order implicit and explicit SSP Runge-Kutta
methods with downwinding to allow for higher order SSP methods.

Motivation: To more easily analyze SSP methods, we rewrite Runge–Kutta methods in the
form:

u(0) = un,

u(i) =
i−1∑
k=0

(
αi,ku

(k) + ∆tβi,kF (u(k))
)
, αi,k ≥ 0, i = 1, ...,m (3.1)
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un+1 = u(m).

Explicit SSP Runge-Kutta methods are known to be limited to fourth order and implicit SSP
Runge-Kutta methods are limited to sixth order. However, if we allow the use of negative co-
efficients βi,k it is possible to overcome this order barrier. The presence of negative coefficients
requires the use of a modified spatial discretization for these instances. When βi,k is negative,
βi,kF (u(k)) is replaced by βi,kF̃ (u(k)), where F̃ approximates the same spatial derivative(s) as
F , but the strong stability property holds for the first order Euler scheme, solved backward
in time. Numerically, the only difference is the change of the upwind direction.

The order barrier on explicit SSP Runge–Kutta methods, and the bounds on the SSP coeffi-
cient for implicit SSP Runge–Kutta methods, leave no efficient options for methods of order
five and above. This gap may be filled by explicit and implicit SSP Runge–Kutta methods
with downwinding.

Accomplishments:

(a) I have created an optimization code in MATLAB which seeks implicit methods with
downwinding with a large allowable SSP coefficient.

(b) The code has been re-written in Python to facilitate open source reproduction of results

(c) This code has produced results for implicit methods of orders 2-4, and in future will
produce higher order methods

(d) A similar optimization code has been developed for explicit methods and for diagonally
implicit methods.

(e) These methods have been tested on a test suite of specially selected of problems.

2. Objective: Study classes of high order implicit and explicit general linear methods
to find SSP methods with optimal time-step restrictions.

Motivation: Without the use of downwinding, explicit SSP Runge-Kutta methods are limited
to fourth order and implicit SSP Runge-Kutta methods are limited to sixth order. SSP multi-
step methods do not suffer from this order barrier, but have very restrictive SSP coefficients.
Efficient explicit SSP methods of order greater than four are frequently desirable, particularly
when dealing with high order spatial discretizations. General linear methods, which have
multiple steps and multiple stages have the potential to combine the properties of multistep
and Runge–Kutta methods, and so provide an advantage over these methods by allowing a
larger step-size [4, 3]. We have shown [1] that explicit general linear methods have a bound
on the SSP coefficient which is equal to the number of stages. Even considering this bound,
explicit general linear methods may be found that have order p > 4 and larger SSP coefficient
than the multistep methods. A first effort in this direction has been made by [2], which
considered a subset of general linear methods.

Multistep Runge-Kutta methods are a straightforward generalization of Runge-Kutta and
linear multistep methods, and take the form

yni =
∑k

j=1 diju
n+1−j + ∆t

∑s
j=1 aijf(ynj ), 1 ≤ i ≤ s,

un+1 =
∑k

j=1 θju
n+1−j + ∆t

∑s
j=1 bjf(ynj ).

Here the values un denote solution values at the times t = n∆t, while the values ynj are
intermediate stages used to compute the next solution value. We will also consider a simple
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generalization of these methods, based on the following reasoning. For some methods, it may
happen that the row i of A is identically zero and row i of D is (1, 0, . . . , 0), so that yn1 = un.
Then the method involves f(un), and at any step we will have computed already f(un+1−j)
for j = 1, . . . , k, so these values may as well be used in computing the next step. This leads
to methods of the form

yn1 = un,

yni =
∑k

j=1 diju
n+1−j + ∆t

∑k
j=2 âijf(un+1−j) + ∆t

∑s
j=1 aijf(ynj ), 2 ≤ i ≤ s,

un+1 =
∑k

j=1 θju
n+1−j + ∆t

∑k
j=2 b̂jf(un+1−j) + ∆t

∑s
j=1 bjf(ynj ).

This form is more suitable for finding explicit methods.

Accomplishments:

(a) We have found high order (up to 9th) explicit SSP RK methods with large effective SSP
coefficients among the class of 2-step RK methods. The paper has been published.

(b) We currently have a code running to numerically find optimal high order implicit SSP
multistep RK methods with more than 2 steps. We have verified numerically that the
optimal methods are all one-step diagonally implicit methods with c = 2. The paper is
in preparation.

(c) We modified the above code running for diagonally implicit SSP multistep RK methods
with more than 2 steps, and will be running it next.

(d) We modified the above code running for explicit SSP multistep RK methods with more
than 2 steps using second form above. The code has produced optimal methods up to
order 6 and is currently working on methods of orders 7-10. The paper is in preparation.

3. Objective: Study possibilities for efficient implicit-explicit SSP methods. Fre-
quently we are faced with problems of the type

un+1 = un + ∆tF (un) + ∆tG(un+1)

which are unconditionally stable, but only first order. Because higher order implicit methods
(without downwinding) cannot be unconditionally unstable, we cannot extend this to higher
order.

However, if we are given a different type of method, one for which

un+1 = un + ∆tF (un) + ∆tkG(un+1)

is provably unconditionally stable, then we can develop SSP methods which are higher order
and unconditionally SSP.

Accomplishments:

(a) The observation above is an accomplishment – it changes the usual paradigm for looking
at IMEX methods.

(b) We have applied this idea to problems with artificial viscosity in spectral methods

4. Objective: Tailor semi-implicit methods for the stable solution of the 3D viscous
Burgers’ equation and the Navier-Stokes equations
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Motivation: We consider the three-dimensional viscous Burgers’ equation with periodic bound-
ary conditions,

∂tu + u·∇u = ν∆u, (3.2)

where u = (u, v, w)T is the velocity field in the x, y, and z directions, and ν > 0 is the viscosity.
We discretize the spatial terms using a Fourier collocation (pseudospectral) method, and the
time-derivative using a variety of suitably chosen semi-implicit multistep methods. Although
this method has been widely applied to this problem (and the similar problem of the Navier-
Stokes equations), a fully-discrete stability analysis has not been performed. Moreover, it is
not clear what time-stepping is stable.

We begin with a first-order in time method which treats the nonlinear convection term ex-
plicitly for the sake of numerical convenience, and the diffusion term implicitly to avoid a
severe time-step restriction:

un+1 − un

∆t
+ un ·∇Nun = ν∆Nun+1, (3.3)

where, for example, the first component of the nonlinear convection is

un ·∇Nu
n = unDNxu

n + vnDNyu
n + wnDNzu

n.

In our recent paper, we performed a fully-discrete analysis and found that this method is
unconditionally stable for any final time T ∗ provided that the time step ∆t and the space
grid size h are bounded by given constants

∆t ≤ L1(T
∗, ν), h ≤ L2(T

∗, ν).

These convergence constants depend on the exact solution, as well as T ∗ and ν.

If desired, we could use a fully explicit method and prove stability for a time-step restriction
of the form ∆t ≤ C∆x2, at which point we could apply an SSP method up to fourth order
and maintain the stability of this method. However, if we wish to avoid this approach we
need to tailor the time-discretizations. (This is due to the problem that IMEX methods do
not maintain the SSP property, as mentioned above).

Accomplishments:

(a) We derived a provably stable second order scheme for the 3D Burgers’ equation. For
the convection term we use a standard second order Adams-Bashforth extrapolation
formula, which involves the numerical solutions at time node points tn, tn−1, with well-
known coefficients 3/2 and −1/2, respectively. The diffusion term is treated implicitly,
using a second order Adams-Moulton interpolation. Treating the diffusion term with a
standard second order Adams-Moulton formula leads to a Crank-Nicolson scheme, which
gives us difficulties in the stability analysis.

Instead, we look for an Adams-Moulton interpolation such that the diffusion term is more
focused on the time step tn+1, i.e., the coefficient at time step tn+1 dominates the sum
of all other diffusion coefficients. We discovered that the Adams-Moulton interpolation
which involves the time node points tn+1 and tn−1 gives the corresponding coefficients as
3/4, 1/4, respectively, which satisfies the unconditional stability condition. Therefore,
we formulate the fully discrete scheme:

un+1 − un

∆t
+

3

2
un ·∇Nun − 1

2
un−1 ·∇Nun−1 = ν∆N

(
3

4
un+1 +

1

4
un−1

)
. (3.4)

This scheme is provably stable in the same way as the first order scheme.
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(b) We derived provably stable third and fourth order schemes for the 3D Burgers’ equation.
Using similar ideas we derived third and fourth order in time schemes for (3.2). The
nonlinear convection term is updated by an explicit Adams-Bashforth extrapolation
formula, with the time node points tn, tn−1, ..., tn−k+1 involved and an order of accuracy
k. The diffusion term is computed by an implicit Adams-Moulton interpolation with the
given accuracy order in time. To ensure unconditional numerical stability for a fixed
time, we have to derive an Adams-Moulton formula such that the coefficient at time
step tn+1 dominates the sum of the other diffusion coefficients. In more detail, a k-th
order (in time) scheme takes the form of

un+1 − un

∆t
+

k−1∑
i=0

Biu
n ·∇Nun−i = ν∆N

(
D0u

n+1 +
k−1∑
i=0

Dj(i)u
n−j(i)

)
. (3.5)

in which Bi |k−1
i=0 are the standard Adams-Bashforth coefficients with extrapolation points

tn, tn−1, ..., tn−k+1, j(i) |k−1
i=0 are a set of (distinct) indices with j(i) ≥ 0, and D0,

Dj(i) |k−1
i=0 correspond to the Adams-Moulton coefficients to achieve the k-th order ac-

curacy. Moreover, a necessary condition for unconditional numerical stability is given
by

D0 >
k−1∑
i=0

∣∣∣Dj(i)

∣∣∣ . (3.6)

To derive an Adams-Moulton formula for the diffusion term, whose coefficients satisfy
the condition (3.6), we require a stretched stencil. In particular, for the third order
scheme, it can be shown that a stencil comprised of the node points tn+1, tn−1 and tn−3

is adequate. The fully discrete scheme can be formulated as:

un+1 − un

∆t
+

23

12
un ·∇Nun − 4

3
un−1 ·∇Nun−1 +

5

12
un−2 ·∇Nun−2

= ν∆N

(
2

3
un+1 +

5

12
un−1 − 1

12
un−3

)
. (3.7)

For the fourth order scheme, we use an Adams-Moulton interpolation at node points
tn+1, tn−1, tn−5 and tn−7 for the diffusion term. Combined with the Adams-Bashforth
extrapolation for the nonlinear convection term, the scheme is given by

un+1 − un

∆t
+

55

24
un ·∇Nun − 59

24
un−1 ·∇Nun−1 +

37

24
un−2 ·∇Nun−2 − 3

8
un−3 ·∇Nun−3

= ν∆N

(
757

1152
un+1 +

470

1152
un−1 − 118

1152
un−5 +

43

1152
un−7

)
. (3.8)

In the third order case, we observe that a direct application of the Adams-Moulton
formula at the nodes tn+1, tn and tn−1 (corresponding to j(i) = i in the general form
(3.5)) does not give a formula with the stated stability property. For example, a “naive”
combination of 3rd order Adams-Bashforth for the nonlinear convection and Adams-
Moulton for the diffusion term results in the following scheme

un+1 − un

∆t
+

23

12
un ·∇Nun − 4

3
un−1 ·∇Nun−1 +

5

12
un−2 ·∇Nun−2

= ν∆N

(
5

12
un+1 +

2

3
un − 1

12
un−1

)
,
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which violates the stability condition (3.6). Moreover, numerical experiments also
showed that this method is in fact unstable. This case highlights the need to
choose an appropriate time-discretization to couple with the pseudospectral method.

4 Dissemination

We continue to update our SSP RK web-site to disseminate the results of the study. This site
serves as an online catalog of all the methods studied, noting which are most successful, and
commenting on the theoretical properties of each, and on which performed best with which spatial
approximation.

In Summer 2010, I organized two minisymposium sessions on SSP methods at the SIAM annual
meeting in Pittsburgh.

A book on SSP methods, written with colleagues David Ketcheson and Chi-Wang Shu was
published by World Scientific Press.
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