
Continuous Graph Partitioning
for Camera Network Surveillance

D. Borra a, F. Pasqualetti b, F. Bullo b

aDipartimento di Scienze Matematiche, Politecnico di Torino, Italy

bCenter for Control, Dynamical Systems, and Computation, University of California, Santa Barbara, USA

Abstract

In this work we design surveillance trajectories for a network of autonomous cameras to detect intruders in an environment.
Intruders, which appear at arbitrary times and locations, are classified as static or dynamic. While static intruders remain
stationary, dynamic intruders are aware of the cameras configuration and move to avoid detection, if possible. As performance
criteria we consider the worst-case detection time of static and dynamic intruders. We model the environment and the camera
network by means of a robotic roadmap. We show that optimal cameras trajectories against static intruders are obtained by
solving a continuous graph partitioning problem. We design centralized and distributed algorithms to solve this continuous
graph partitioning problem. Our centralized solution relies on tools from convex optimization. For the distributed case,
we consider three distinct cameras communication models and propose a corresponding algorithm for each of the models.
Regarding dynamic intruders, we identify necessary and sufficient conditions on the cameras locations to detect dynamic
intruders in finite time. Additionally, we construct constant-factor optimal trajectories for the case of ring and tree roadmaps.

Key words: Graph partitioning, Convex constrained optimization, Camera network, Remote and distributed control.

1 Introduction

Remote surveillance of human activities for civil and military applications is receiving considerable attention from
the research community. Public areas such as banks, art galleries, private houses, prisons, department stores, and
parking lots, are now equipped with camera networks to detect important activities, [18, 22]. From a technological
perspective, one of the main challenges consists of developing efficient algorithms for the cameras to autonomously
and distributively complete tracking, surveillance, and recognition tasks.

In this work we focus on the problem of detecting intruders by means of a network of autonomous cameras. In
particular, we consider Pan-Tilt-Zoom (PTZ) cameras installed at important locations. We assume the cameras
to move their field of view (f.o.v.) to cooperatively surveil the whole environment. We develop algorithms for the
cameras to self-organize and to detect intruders in the environment, that appear at arbitrary locations and times.
We consider static intruders, which remain stationary, and dynamic intruders, which move to avoid detection, if
possible. As performance criteria we consider the worst-case detection time, that is the longest time needed for the
cameras to detect intruders.

Related work. Works related to our camera surveillance problem can be found in the mobile robotics and com-
puter science literatures. In mobile robotics, the patrolling problem consists of scheduling the motion of a team of
autonomous agents in order to detect intruders or important events, e.g., see [1, 4, 17, 20]. It should be observed

? This work was supported by NSF grants IIS-0904501 and CNS-1035917, and by ARO grant W911NF-11-1-0092.

Email addresses: domenica.borra@polito.it (D. Borra), fabiopas@engineering.ucsb.edu (F. Pasqualetti),
bullo@engineering.ucsb.edu (F. Bullo).

Preprint submitted to Automatica 23 July 2012

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 JUL 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Continuous Graph Partitioning for Camera Network Surveillance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Barbara,Center for Control, Dynamical
Systems and Computation,Santa Barbara,CA,93106

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this work we design surveillance trajectories for a network of autonomous cameras to detect intruders
in an environment. Intruders, which appear at arbitrary times and locations, are classi ed as static or
dynamic. While static intruders remain stationary, dynamic intruders are aware of the cameras
con guration and move to avoid detection, if possible. As performance criteria we consider the worst-case
detection time of static and dynamic intruders. We model the environment and the camera network by
means of a robotic roadmap. We show that optimal cameras trajectories against static intruders are
obtained by solving a continuous graph partitioning problem. We design centralized and distributed
algorithms to solve this continuous graph partitioning problem. Our centralized solution relies on tools
from convex optimization. For the distributed case we consider three distinct cameras communication
models and propose a corresponding algorithm for each of the models. Regarding dynamic intruders, we
identify necessary and su cient conditions on the cameras locations to detect dynamic intruders in nite
time. Additionally, we construct constant-factor optimal trajectories for the case of ring and tree
roadmaps.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

16

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

that the patrolling problem and the problem considered in this paper significantly differ. Indeed, cameras are fixed
at predetermined locations, and their f.o.v.s must lie within the cameras visibility constraints. On the other hand,
robots are usually allowed to travel the whole environment, and are usually not subject to visibility constraints. Con-
sequently, algorithms developed for teams of robots are, in general, not applicable in our setup. Similarly, algorithms
for graph-clearing and graph-search do not extend to our scenario [13, 14, 19].

In the context of camera networks, the perimeter patrolling problem has recently been studied in [4, 8, 21]. In these
works, distributed algorithms are proposed for the cameras to partition a one-dimensional environment, and to
synchronize along a trajectory with minimum worst-case detection time of intruders. We improve the results along
these directions by, for instance, developing cameras trajectories and partitioning methods for general environment
topologies.

In this work we present algorithms for graph partitioning. It is worth noting that our graph partitioning problem
differs from classical setups, e.g., see [2, 3, 11, 12]. Indeed, in these works the graph partitioning problem is usually
combinatorial, and it consists of partitioning the vertices or the edges as to optimize a certain performance function.
Instead, we formulate continuous graph partitioning problems, in which the graph is a physical entity, and the
partition is obtained by splitting the edges. As it will be clear in the sequel, our results on graph partitioning
are general and applicable to different problems. For instance, if each edge of the graph represents a task to be
accomplished by the processors at its endpoints, then our algorithms can be used for dynamic load balancing for
multiprocessor networks [9, 16].

A preliminary version of this work appeared in [6]. Extensions with this work include (i) the design of trajectories
against static intruders for cyclic roadmaps, (ii) the design of trajectories against dynamic intruders, and (iii) a
characterization of necessary and sufficient conditions for finite detection time of dynamic intruders.

Paper contributions. The main contributions of this work are as follows. First, we propose the continuous graph
partitioning problem, in which a partition of a weighted graph is obtained by splitting the graph edges, and the cost
of a partition equals the longest length of its parts (Section 2). We show that the continuous graph partitioning
problem is convex and non-differentiable, and we characterize its solutions. Then, we derive an equivalent convex
and differentiable partitioning problem, which is amenable to distributed implementation.

Second, we define the camera surveillance problem for the detection of static and dynamic intruders (Section 3). We
model the environment and the camera network by means of a robotic roadmap, and we formalize the worst-case
detection time of static and dynamic intruders.

Third, we exhaustively discuss the case of static intruders (Section 4). We show that, for tree and ring roadmaps,
cameras trajectories with minimum worst-case detection time can be designed by solving a continuous graph par-
titioning problem. For general cyclic roadmaps, our trajectories based on continuous partitions are proved to be
optimal up to a factor 2. However, we conjecture that optimality is achieved also in this case.

Fourth, for the case of dynamic intruders, we derive a necessary and sufficient condition on the cameras locations
for the existence of a trajectory with finite detection time (Section 5). We focus on ring and tree roadmaps. In
particular, for the case of ring roadmaps we design a trajectory with detection time within a factor 3/2 of optimal.
Instead, for tree roadmaps, the performance of our trajectory is within a factor 2 of optimal.

Fifth and finally, we consider three different communication models, and we propose distributed algorithms for
the cameras for continuous graph partitioning in all these scenarios (Section 6). In particular: our first algorithm
assumes a synchronous mode of operation of the cameras; our second algorithm assumes an asymmetric broadcast
communication model and extends the class of block-coordinate descent algorithms to the constrained case; and our
third algorithm only requires gossip communication. We prove convergence of all these algorithms, and we analyze
their performance in a simulation study.

2 Continuous Partitions of Weighted Graphs

In this section we introduce the problem of continuous graph partitioning. A solution to this problem will be used
to design optimal cameras trajectories.

2

Let G = (V, E) be an undirected weighted graph, where V and E denote the vertex and edge sets, respectively. Let
`ij ∈ R>0 be the weight associated with the edge {vi, vj} ∈ E . For a subset of vertices Vc ⊆ V, define the i-th set of
neighbors as Ni = N in

i ∪N out
i , where

N in
i = {vj ∈ Vc : {vi, vj} ∈ E},

N out
i = {vj ∈ V \ Vc : {vi, vj} ∈ E}.

(1)

A continuous partition of the weighted graph G is a set P = {P1, . . . ,Pn}, where (see Fig. 1)

Pi =
⋃

vj∈Ni

[vi, vij], (2)

and vij ∈ [vi, vj] is defined by some αij ∈ [0, 1] as 1

vij =


vi + αij(vj − vi), if j ∈ Ni

in, i < j,

vi + (1− αji)(vj − vi), if j ∈ Ni
in, i > j,

vj , if j ∈ Ni
out.

(3)

The dimension of a continuous partition equals L(P) = max{L1, . . . , Ln}, where Li is the sum of the lengths of the
segments in Pi, i = 1, . . . , n. In other words

Li =
∑

vj∈N in
i

,i<j

αij`ij +
∑

vj∈N in
i

,i>j

(1− αji)`ij +
∑

vj∈N out
i

`ij . (4)

Let L and α be the vectors of Li and αij , respectively. Notice that a continuous partition is entirely specified by a
parameters vector α.

Let G(Vc) = (Vc, Ec) be the subgraph of G induced by the vertices Vc, where Ec = (Vc×Vc)∩ E . Define the weighted
incidence matrix A ∈ R|Vc|×|Ec| as

Ai,e =


`ij , if e = {vi, vj} ∈ Ec, i < j,

−`ij , if e = {vi, vj} ∈ Ec, i < j,

0, otherwise,

(5)

and the weighted incidence vector b ∈ R|Vc| as

bi =
∑

vj∈N in
i

,i>j

`ij +
∑

vj∈N out
i

`ij . (6)

Notice that L = Aα+ b, and that for every α ∈ R|Ec| it holds

‖Aα+ b‖1 =
∑

{vi,vj}∈E
`ij .

Let 0 and 1 be the vectors of all zeros and ones, respectively. We address the following minimization problem.

Problem 1 (Continuous min-max partition) Given a weighted graph G = (V, E) and a subset of vertices Vc ⊆ V,
let A and b be as in (5) and (6), respectively. Determine a continuous partition α∗∞ satisfying

‖Aα∗∞ + b‖∞ = min
α≤α≤α

‖Aα+ b‖∞, (7)

1 Given any two points xi, xj ∈ Rm for some m ∈ N, we let [xi, xj] = {txi + (1− t)xj : t ∈ [0, 1]}.

3

for some constraints vectors α, α with 0 ≤ α ≤ α ≤ 1.

Notice that (7) is a convex minimization problem, for which efficient centralized solvers exist [7]. On the other
hand, since (7) is not differentiable, distributed solvers may be difficult to implement. We next derive an equivalent
differentiable minimization problem, which is instead amenable to distributed implementation.

Problem 2 (Continuous min partition) Given a weighted graph G = (V, E) and a subset of vertices Vc ⊆ V, let
A and b be as in (5) and (6), respectively. Determine a continuous partition α∗2 satisfying

‖Aα∗2 + b‖2 = min
α≤α≤α

‖Aα+ b‖2. (8)

for some constraints vectors α, α with 0 ≤ α ≤ α ≤ 1.

Remark 3 (Uniqueness of partitions) Since the minimization problem (8) is strictly convex, the continuous min
partitioning problem admits a unique minimum value, and the set of minimizers is a singleton if and only if the
matrix A has a trivial null space. It can be shown that A has a trivial null space if and only if the induced graph G(Vc)
is a tree. In particular, if the graph G(Vc) is connected, then the dimension of the null space of A equals |Ec|−|Vc|+1.

Remark 4 (Unconstrained partitions) Consider the (unconstrained) partitioning problems (7) and (8) with
α,α ∈ R|Ec|. It can be verified that α∗ is a minimizer of Problem (7) if and only if it is a minimizer of Problem

(8). Moreover, every minimizer can be written as α∗ = A† (v − b) +w, where v =
(∑

{vi,vj}∈E `ij/n
)
1, A† is the

pseudoinverse of A, w satisfies Aw = 0 and 0 ≤ α∗ ≤ 1.

We next show a relation between min-max partitions and min partitions.

Theorem 5 (Min-max and min partitions) Let α∗2 be a min partition solution to Problem 2. Then, α∗2 is also
a solution to Problem 1, that is,

‖Aα∗2 + b‖∞ = min
α≤α≤α

‖Aα+ b‖∞.

In order to prove Theorem 5, we introduce the following definitions and results. Given a partition P = {P1, . . . ,Pn}
defined by α, the maximal graph associated with α is Gmax = (Vmax

c , Emax
c), where Vmax

c = {vi ∈ Vc : Li =
max{L1, . . . , Ln}}, and Emax

c = (Vmax
c × Vmax

c) ∩ E .

Lemma 6 (Maximal graph) Let α∗ be a min partition of the graph G = (V, E), and let Gmax = (Vmax
c , Emax

c) be
the maximal graph associated with α∗. Then, for each vi ∈ Vmax

c , vj ∈ Vc \Vmax
c with {vi, vj} ∈ Ec, it holds α∗ij = αij

if i < j, and α∗ij = αij if i > j.

PROOF. Let α∗ be a min partition, and let L∗ = Aα∗ + b. By definition, Vc
max is the set of vertices vi such

that L∗i = ‖L∗‖∞. Let vi ∈ Vc
max, and partition its neighbor set as N in

i = N 1
i ∪ N 2

i , where N 2
i = N in

i ∩ Vc
max

and N 1
i = N in

i \ N 2
i . Suppose by contradiction that α∗ij > αij for some vj ∈ N 1

i with i < j. Define α̂ from α∗ by

modifying only the entry α̂ij = α∗ij− ε, with ε ∈ R>0. Let L̂ = Aα̂+b, and let ε be such that α̂ij ≥ αij and L̂i > L̂j .

An equivalent condition for L̂i > L̂j is c1 − c2 > `ij(α
∗
ji − α∗ij + 2ε), where c1 = L∗i − α∗ij`ij , c2 = L∗j − α∗ji`ij , and

αij = 1− αji for i > j. It follows that

‖L∗‖22 − ‖L̂‖22 = (L∗i)2 − L̂2
i + (L∗j)2 − L̂2

j = (c1 + α∗ij`ij)
2 − (c1 + α̂ij`ij)

2 + (c2 + α∗ji`ij)
2 − (c2 + α̂ji`ij)

2

= 2ε`ij(c1 − c2 + `ij(α
∗
ij − α∗ji − ε)) > 2ε2`2ij > 0,

which contradicts our assumption of α∗ being a min partition. We conclude that αij = αij . The case of α∗ij = αij is
treated analogously, and the theorem follows. �

4

We are now ready to prove Theorem 5.

PROOF. Let α∗ be a min partition. Recall from Lemma 6 that there exists a set of cameras Vc
max such that (i)

L∗i = ‖L∗‖∞ for all vi ∈ Vc
max, and (ii) α∗ij = αij (resp. α∗ij = αij) if i < j (resp. i > j) for all {vi, vj} ∈ Ec with

vi ∈ Vc
max and vj ∈ Vc \ Vc

max. Notice also that, because of the cameras constraints and property (ii), it holds

min
α≤α≤α

∑
vi∈Vcmax

(Aα+ b)i ≥ |Vc
max|‖L∗‖∞.

Let α̂ be such that ‖L̂‖∞ < ‖L∗‖∞. Then L̂i < L∗i for all vi ∈ Vc
max. It follows that∑

vi∈Vcmax

(Aα̂+ b)i < |Vc
max|‖L∗‖∞,

which contradicts our hypothesis. �

Distributed algorithms to compute continuous graphs partitions are presented in Section 6. In the next section
we discuss the relationship between continuous graph partitions and the design of trajectories for camera network
surveillance.

3 Setup for Camera Surveillance

In this section we describe our setup and we introduce some concepts which will be extensively used to state our
results.

3.1 Problem Setup

We consider the problem of surveilling an environment of interest by means of a camera network. We represent
the environment with an undirected weighted roadmap G = (V, E), where V and E denote the vertex and the
edge sets, respectively [15]. In particular, each vertex vi ∈ V corresponds to a location in the environment, and
{vi, vj} ∈ E if and only if the segment [vi, vj] joining vertices vi and vj belongs to the environment (vertices vi
and vj are within line of sight). Finally, the weight of the edge {vi, vj} ∈ E equals the length `ij = ‖vi − vj‖2, and
`max = max{`ij : {vi, vj} ∈ E}.

Cameras are placed at the locations Vc ⊆ V. Define the set of neighboring cameras Ni as in (1). The concept of
neighboring cameras will be exploited in Section 6 to design distributed algorithms for the cameras.

Let xi(t) denote the position at time t of the f.o.v. of the i-th camera. We assume that each camera has a limited
visibility range along each adjacent edge. In particular,

(A1) at all times t, the i-th f.o.v. is a point along the segment [vi, vj] for some vj ∈ Ni;
(A2) the speed of the i-th f.o.v. belongs to the set {0, 1}, that is, the f.o.v. of camera ci either is stationary at some

point or it moves at maximum (unitary) speed;
(A3) for each vj ∈ Ni, a point vij ∈ [vi, vj] is given such that xi(t) ∈ [vi, vij] at all times t;
(A4) the cameras locations set Vc satisfies ⋃

vi∈Vc
{{vi, vj} ∈ E : vj ∈ V} = E ,

so that the roadmap G is jointly visible by the cameras.

Our setup is illustrated in Fig. 1.

5

v1 v2

v4v3 v5 v6

v7

α24

α24

α45 α45 α56 α56

α67

α67

α12 α12

α34 α34

α13

α13

α24

α45 α56

α67

α34
α13

α12

v9

v11

v12

v13

v14

v8

v3

v10

v3

Fig. 1. This figure shows an environment to be surveilled by a camera network. The environment is represented by a roadmap
G = (V, E) with V = {v1, . . . , v14}. Edges E are denoted with solid black lines. Cameras are installed at the locations
Vc = {v1, . . . , v7}. White rectangles along the edges represent cameras visibility constraints, and the parameters α define a
continuous partition of G. Finally, the DF-Trajectory associated with the partition given by α is identified by the closed paths
around the cameras.

3.2 Cameras trajectory

A cameras trajectory is a set of n continuous functions X = {x1, . . . , xn}, where xi : R≥0 → E describes the position
of the i-th f.o.v. along the roadmap G. We focus on periodic cameras trajectories, for which there exists a finite time
T ∈ R≥0 satisfying X(t+ T) = X(t) for all t ∈ R≥0. Define the image of the i-th camera as the set of points visited
by the i-th f.o.v. in any period of length T , i.e.,

Im(xi) = ∪t∈[0,T] xi(t),

and the cameras image set as IX = {Im(x1), . . . , Im(xn)}.

Trajectory 1 DF-Trajectory for i-th camera

Input: Parameters αij and set of neighbors Ni;

Set si(t) = (tvij + (αij`ij − t)vi)/αij`ij , for t ∈ [0, αij`ij];
Set t0 = 0;
for vj ∈ Ni do

Set vij as in Eq. (3);
xi(t) = si(t− t0), for t ∈ [t0, t0 + αij`ij];
xi(t) = si(2αij`ij − (t− t0)), for t ∈ [t0 + αij`ij , t0 + 2αij`ij];
t0 = t0 + 2αij`ij ;

end for

We now define a particular cameras trajectory associated with a continuous roadmap partition. The optimality
properties of this trajectory will be shown in the subsequent sections. Let αdf define the continuous partition Pdf

as in (2). The DF-Trajectory Xdf with image set Pdf is obtained by letting each camera sweep its subroadmap in a
depth-first order [10], and it is formally described in Trajectory 1. See Fig. 1 for a graphical illustration.

3.3 Performance criteria

In this work we design cameras trajectories to detect intruders along the roadmap. We consider both static, and
dynamic intruders. The trajectory of an intruder is a continuous function p : R≥0 → E . Let Πd be the set of all
possible intruder trajectories, and let Πs the set of static intruder trajectories (p(t) = p0 for all t ≥ t0 and for some
p0 ∈ E).

An intruder is detected as soon as its position coincides with the f.o.v. of a camera. We define the worst-case
detection time of a cameras trajectory as the longest time for the detection of an intruder. In particular, for an
intruder appearing at time t0 and moving with trajectory p, and a cameras trajectory X, let

t∗(t0, p,X) = min {{t− t0 : t > t0, p(t) ∈ X(t)} ∪ {∞}} .

6

We define the static worst-case detection time as

WDTs(X) := sup
p∈Πs, t0∈[0,T]

t∗(t0, p,X), (9)

and the dynamic worst-case detection time as

WDTd(X) := sup
p∈Πd, t0∈[0,T]

t∗(t0, p,X). (10)

For the ease of notation we define

WDT∗s = inf
X∈Ω

WDTs(X), WDT∗d = inf
X∈Ω

WDTd(X).

We conclude this section by observing that WDTs(X) ≤WDTd(X) for any cameras trajectory X, and that for any
periodic cameras trajectory X, WDTs(X) < ∞ if and only if the entire roadmap is persistently surveilled by the
cameras, i.e., E ⊆ Im(X). Necessary and sufficient conditions for a trajectory to have finite dynamic detection time
are discussed in Section 5.

4 Camera Trajectory for Static Intruders

This section contains our results for the detection of static intruders.

4.1 Main results for static intruders

Consider a roadmap G = (V, E) with cameras locations Vc. Let P∗ = {P∗1 , . . . ,P∗n} be a continuous partition of G of
cardinality |Vc| = n with smallest dimension, that is

max
i∈{1,...,n}

L∗i = min
P

max
i∈{1,...,n}

Li, (11)

where P = {P1, . . . ,Pn} is a continuous partition of G. Let X* be the DF-Trajectory associated with the partition
P∗. Recall that the roadmap G with cameras locations Vc is a tree if the induced graph G(Vc) contains no cycles,
and it is a ring if G(Vc) consists of a single cycle [10].

Theorem 7 (Static worst-case detection for DF-Trajectory) Consider a roadmap G = (V, E) with cameras
locations Vc and |Vc| = n. Let X* be the DF-Trajectory associated with a continuous partition P∗ of G with smallest
dimension. Then,

(i) WDTs(X
*) = 2L(P∗) , and

(ii) WDTs(X
*) ≤ 2 WDT∗s .

Moreover, if G is a tree or a ring, then WDTs(X
*) = WDT∗s .

In Theorem 7 we show that cameras trajectories designed from a continuous roadmap partition achieve detection
performance within a constant factor of optimal. Since optimality is guaranteed for tree and ring roadmaps, we state
the following conjecture.

Conjecture 8 (Optimality for cyclic roadmaps) Motivated by our results in Theorem 7, we conjecture that
WDTs(X

*) = WDT∗s also for cyclic roadmaps.

7

4.2 Proof of Theorem 7

In this section we derive a proof of Theorem 7. We start by introducing the necessary notation and some preliminary
results. We define a relative order among the cameras as follows. Let {c1, . . . , cn} be the set of cameras. For the
neighboring cameras ci and cj let the time t be such that the i-th f.o.v. and the j-th f.o.v. lie on the edge {vi, vj}.
Then we say that ci ≤ cj if ‖xi(t) − vi‖2 ≤ ‖xj(t) − vi‖2. If xi(t) and xj(t) lie on different edges at time t, our
convention is xi(t) ≤ xj(t) for i < j. A camera trajectory is order-invariant if the relative order of the cameras is
preserved over time.

Theorem 9 (Order-invariant cameras trajectory) Given a roadmap G = (V, E) with cameras locations Vc and
a cameras trajectory X, there exists an order-invariant cameras trajectory X̄ with WDTs(X) = WDTs(X̄).

PROOF. Let ci and cj be adjacent cameras, and assume the existence of t ≥ 0 such that xi(t) = xj(t). Define

t0ij = min{t ≥ 0 : xi(t) = xj(t)} and, recursively, tnij = min{t > tn−1
ij : xi(t) = xj(t)}, n ∈ N. An order-invariant

trajectory can be derived from X permuting the cameras labels as follows (k = 0, 1, . . .):

x̄i(t) = xj(t) and x̄j(t) = xi(t) if t2kij ≤ t ≤ t2k+1
ij ,

x̄i(t) = xi(t) and x̄j(t) = xj(t) otherwise.

Each point along the roadmap is visited at the same times in X and X̄, thus WDTs(X̄) = WDTs(X). �

In general, the images of neighboring cameras may overlap. A camera trajectory is called non-overlapping if for
every pair ci and cj , it holds Int(Im(xi)) ∩ Int(Im(xj)) = ∅, where Int denotes the interior of a set.

Theorem 10 (Non-overlapping cameras trajectory for tree and ring roadmaps) Given a tree (resp. ring)
roadmap G = (V, E) with cameras locations Vc and a cameras trajectory X, there exists an order-invariant and
non-overlapping cameras trajectory X̄ with WDTs(X̄) ≤WDTs(X).

PROOF. Without affecting generality, we assume that the trajectory X is order-invariant (cf. Theorem 9). We
start by considering tree roadmaps, and we define the trajectory X̄ from X as follows.

Let a0
1 =

∣∣N1
in
∣∣ + 1, a0

i =
∣∣Ni

in
∣∣ for i = 2, . . . , n and let P0

i = ∅ for every i = 1, . . . , n. Iteratively perform the
following operations:

Sk = {vi ∈ Vc : ak−1
i = 1},

Pk
i = Cl(Im(xi) \

(
∪vj∈Ni

inPk−1
j

)
), for each vi ∈ Sk,

akj = ak−1
j − 1, for each vj ∈ Ni

in ∪ {vi} ,

where Cl(·) denotes the closure of a set, and k = 1, 2, After a finite number kf of iterations, the set Pkf =

{Pkf
1 , . . . ,Pkf

n } is a continuous partition of G. Finally, define the trajectory X̄ as the DF-Trajectory on the partition
Pkf . In the interest of space, we do not prove the convergence of the above procedure, and we provide instead an
illustration of the final partition in Fig. 2.

We now show that WDTs(X̄) ≤WDTs(X). Consider camera ci, let |Ni
in| = ni, and let ∂(Pkf

i) = {vi1, . . . , vi ni} be

the boundary points of Pkf
i . By construction, there is only one boundary point, say vi2, such that some points in

the interior of [vi, vi2] may be visited by a camera adjacent to ci with reference to trajectory X (cf. Fig. 2). Notice
that every boundary point is visited by ci. Without affecting generality, and possibly after relabeling the boundary
points, let t1 be such that xi(t1) = vi1, and t2 such that xi(t2) = vi2 and no other boundary point is visited in
Int([t1, t2]). Notice that t2 − t1 ≥ ‖vi − vi1‖2 + ‖vi − vi2‖2, and that every boundary point must be visited in the
interval [t2, t1 +WDTs(X)]. It follows WDTs(X) ≥ 2

∑ni

j=1 ‖vi−vij‖2, and this must hold for each camera ci. Finally

notice that WDTs(X̄) = maxi∈{1,...,n} 2
∑ni

j=1 ‖vi− vij‖2, so that the statement follows. The case of a ring roadmap
can be treated analogously. �

8

α24

α45 α56

α67

α34

α13

v3

v1 v2

v4 v5 v6

v7

v9

v10

v8

v11

v12

v13

v14

Fig. 2. This figure shows a tree roadmap, and it illustrates the partitioning procedure in the proof of Theorem 10.

We now prove Theorem 7.

PROOF. Statement (i) follows from the definition of DF-Trajectory, because each camera sweeps its assigned
subroadmap at maximum speed along a depth-first tour.

Regarding statement (ii), consider a min partition α, and let Gmax = (Vc
max, Ecmax) be its associated maximal graph

(see Lemma 6). Define Length(Gmax) =
∑
{vi,vj}∈Ec ‖vi − vj‖2, and notice that

WDT∗s|Gmax ≥ Length(Gmax)

|Vc
max| ,

where WDT∗s|Gmax denotes the smallest static worst-case detection time for Gmax. Indeed, since Li = Lj for each

vi, vj ∈ Vmax, each camera needs to sweep (at unitary speed) an image of length Length(Gmax)
|Vcmax| for Gmax to be covered.

Moreover, due to Lemma 6, cameras outside Gmax cannot visit any point in the interior of Gmax. It follows that

WDT∗s ≥WDT∗s|Gmax .

Finally, since WDTs(X
*) = 2Length(Gmax)

|Vcmax| , we conclude that WDTs(X
*) ≤ 2WDT∗s .

Consider a tree (resp. ring) roadmap. Due to Theorem 10, there exists an order-invariant and non-overlapping
trajectory X with WDTs(X) = WDT∗s . To conclude the proof, we have WDTs(X

*) ≤ WDTs(X) since IX is a
continuous partition. �

5 Cameras trajectories for dynamic intruders

In this section we design cameras trajectories for the detection of dynamic intruders. We start by characterizing
a necessary and sufficient condition on the cameras locations for the existence of trajectories with finite dynamic
detection time.

Theorem 11 (Existence of trajectories with finite dynamic detection time) Given a roadmap G = (V, E)
with cameras locations Vc, the following statements are equivalent:

(i) There exists a cameras trajectory X satisfying WDTd(X) <∞;
(ii) For every vi ∈ Vc with |Ni| ≥ 3, there exists vj ∈ N in

i with αij = 0 if i < j and αij = 1 if i > j.

The following result is useful to prove Theorem 11.

Lemma 12 (Finite dynamic detection time for single camera) Given a roadmap G = (V, E) with cameras
locations Vc = {v1}, there exists a cameras trajectory X with WDTd(X) <∞ if and only if |N1| ≤ 2.

9

PROOF. To show sufficiency, let |N1| ≤ 2, and note that G(Vc) is a chain. Let x1 be such that camera c1 continuously
sweeps the chain, and note that WDTd(X) <∞.

To show necessity of the statement, notice that if |N1| > 2, an intruder may choose its trajectory p so that p(t) 6= v1

and p(t+ ε) ∈ [v1, vj] whenever x1(t) = v1 and x1(t+ ε) ∈ [v1, vk], for ε ∈ R>0, vj , vk ∈ N out
1 , and j 6= k. �

We are now ready to prove Theorem 11.

PROOF. In order to show that (ii) is a necessary condition for (i), suppose that (ii) does not hold. Then camera
ci needs to surveil a subroadmap in which |Ni| ≥ 3. The statement follows from Lemma 12.

We now show that (ii) is also a sufficient condition for (i) by proposing a procedure to clear every subroadmap from
intruders appearing at time 0. By periodically repeating this procedure, intruders appearing at different times are
also detected. Notice that intruders appearing along the edge [vi, vj] can be detected by moving the cameras ci and cj
towards each other in a way that xi(t) = xj(t) for some time t. Starting from v1, if |N1| ≤ 2, then sweep the adjacent
edges by synchronizing the motion of v1 and its neighboring cameras in any order. If |N1| > 2, suppose {v1, v2} ∈ Vc,
then let α12 = 0 from condition (ii). Let camera c2 sweep the entire edge {v1, v2} and stop at v1, and let the other

neighboring cameras cj ∈ N1
in stop at their vertices vj . Then camera c1 sequentially sweeps its assigned adjacent

segments [v1, v1j], with {v1, vj} ∈ Ec, j 6= 2 by synchronizing its motion and those of the neighboring cameras, while
keeping the f.o.v. of c2 at vertex v1. Notice that any intruder appearing in an edge adjacent to v1 at time 0 is detected
by this procedure. Then let c1 and its neighboring cameras return to their vertices. Finally iterate the procedure for
subsequent cameras in increasing order, and repeat over time. �

In the remainder of this section we design cameras trajectories for the special cases of ring and tree roadmaps. We
refer the reader to [21] for a solution to the case of chain roadmaps (cf. Equal-Waiting trajectory).

5.1 Ring roadmap

Consider a ring roadmap G = (V, E) with cameras locations Vc, and visibility constraints α,α. Let P∗ = {P∗1 , . . . ,P∗n}
be a min-max partition of G, and let L̄ = L(P∗) = max {L1, . . . , Ln}, where Li is defined in (4). Notice that
|N in

i | = 2 for all vi ∈ Vc, and that each subroadmap P∗i can be written as a segment, parametrized by si : [0, Li]→
[vi−1,i, vi,i+1], such that si(t) = (tvi,i+1 + (Li − t)vi−1,i)/Li.

Trajectory 2 Ring-Sync-Trajectory for camera ci
Camera ci surveils P∗i = [vi−1,i, vi] ∪ [vi, vi,i+1];
Set In = [L̄, 2L̄], Tn = L̄, if n is odd;

In = ∅, Tn = 0, if n even;
if i is even then

xi(t) = vi−1,i, for t ∈ [0, L̄− Li];
xi(t) = si(t− (L̄− Li)), for t ∈ [L̄− Li, L̄];
xi(t) = vi,i+1, for t ∈ In ∪ [L̄+ Tn, 2L̄− Li + Tn];
xi(t) = si(2L̄+ Tn − t), for t ∈ [2L̄− Li + Tn, 2L̄+ Tn];

else if i is odd then
xi(t) = vi,i+1, for t ∈ [0, L̄− Li];
xi(t) = si(L̄− t), for t ∈ [L̄− Li, L̄];
xi(t) = vi−1,i, for t ∈ In ∪ [L̄+ Tn, 2L̄− Li + Tn];
xi(t) = si(t− (2L̄− Li + Tn)), for t ∈ [2L̄− Li + Tn, 2L̄+ Tn];
if i = n then

xi(t) = vi,i+1, for t ∈ [0, 2L̄− Li];
xi(t) = si(2L̄− t), for t ∈ [2L̄− Li, 2L̄];
xi(t) = vi−1,i, for t ∈ [2L̄, 3L̄− Li];
xi(t) = si(t− (3L̄− Li)), for t ∈ [3L̄− Li, 3L̄];

end if
end if

We propose the Ring-Sync-Trajectory in Algorithm 2; see Fig. 3 for a graphical illustration. We next provide an
informal description of the Ring-Sync-Trajectory within its period for the case of an even number of cameras:

10

v2

v3

v5

v5 v1

x2

x4

x5

x3

v4

x1

(a) (b)

Fig. 3. Consider the ring roadmap G = (V, E) with cameras locations Vc and n = 5. Its associated optimal partition P depicted
in Fig. 3(a). The corresponding 3L̄- periodic Ring-Sync-Trajectory described in Trajectory 2 is shown in Fig. 3(b).

(i) the f.o.v. of camera ci is set at its right (left) boundary point if i is odd (even), so that all the cameras are
pairwise synchronized;

(ii) each camera sweeps its subroadmap at maximum speed, and
(iii) each camera stops for L̄− Li at each boundary point.

If the number of cameras is odd, the algorithm is more involved and it is formally described in Trajectory 2. Notice
that, (i) the i-th camera surveils only P∗i , (ii) the trajectory of each camera is 3L̄-periodic if n odd, and 2L̄-periodic
if n even, and (iii) the f.o.v.s of each pair of neighboring cameras coincide at some times within the period.

Theorem 13 (Dynamic worst-case detection for Ring-Sync-Trajectory) Given a ring roadmap G = (V, E)
with cameras locations Vc, let Xs be the Ring-Sync-Trajectory in Algorithm 2. Then

(i) if n is even,
WDTd(Xs) = WDTs(X

s) = WDT∗d;

(ii) if n is odd,

WDTd(Xs) = WDTs(X
s) ≤ 3

2
WDT∗d.

PROOF. In order to prove statement (i), consider a ring roadmap with n even, and compute the optimal partition
P∗ with dimension L̄ (see Section 6). Once we synchronize the cameras according to Trajectory 3, the minimum
dynamic worst-case detection time is achieved. In order to prove (ii), notice that the Ring-Sync-Trajectory Xs is
3L̄-periodic when n is odd, and that each camera surveils the corresponding subroadmap P∗i . The thesis is proved
observing that WDT∗d ≥WDT∗s = 2L̄. �

5.2 Tree roadmap

Consider a tree roadmap G = (V, E) with cameras locations Vc = V \ {v1}, where node v1 is labeled as root. Assume
that each camera can entirely surveil each adjacent edge, that is, α = 0 and α = 1. We now design a cameras
trajectory for dynamic intruders, and we show that the performance of our trajectory is within a constant factor of
optimality. We start by recalling some definitions [10]. Then, vertex vi ∈ Vc is a parent of vertex vj ∈ Vc (vi is a
child of vj) if {vi, vj} ∈ Ec and vi lies on the unique shortest path from vj to v1. Let vp

i denote the parent of vi, and
let `pi denote the length of the segment [vi, v

p
i]. Recall that `max is the length of the longest edge. Let us parametrize

the segment [vi, v
p
i] as si : [0, `pi] → [vi, v

p
i], si(t) = (tvp

i + (`pi − t)vi)/`pi . We divide the vertices into two groups
according to the parity of their distance to the root. In particular, we define dist-r(vi) as the number of edges in the
shortest path from vi to the root v1.

We propose the Tree-Sync-Trajectory in Trajectory 3 (see Fig. 4 for an example). An informal description of the
Tree-Sync-Trajectory follows:

11

v2

v1

v4

v5

v3 v1

x2

x5

x3

x4

(a) (b)

Fig. 4. Fig. 4(a) show a tree roadmap where v1 is labeled as root vertex. In Fig. 4(b) we report the Tree-Sync-Trajectory
described in Trajectory 3. Note that cameras are synchronized, that is, for each pair of adjacent cameras {vi, vj} ∈ Ec, there
exists t ∈ [0, 2`max] such that xi(t) = xj(t).

Trajectory 3 Tree-Sync-Trajectory for camera ci
Camera ci surveils only the segment [vi, vi

p];
if dist-r(vi) is odd then

xi(t) = vi
p, for t ∈ [0, `max − `pi];

xi(t) = si(`
max − t), for t ∈ [`max − `pi , `

max];
xi(t) = vi, for t ∈ [`max, 2`max − `pi];
xi(t) = si(t− (2`max − `pi)), for t ∈ [2`max − `pi , 2`

max];
else if dist-r(vi) is even then

xi(t) = vi, for t ∈ [0, `max − `pi];
xi(t) = si(t− (`max − `pi)), for t ∈ [`max − `pi , `

max];
xi(t) = vi

p, for t ∈ [`max, 2`max − `pi];
xi(t) = si(2`

max − t), for t ∈ [2`max − `pi , 2`
max];

end if

(i) the f.o.v. of camera ci is set at the vertex vp
i (resp. vi) if dist-r(vi) is odd (resp. even),

(ii) camera ci sweeps the segment [vi, v
p
i], and

(iii) camera ci stops for `max − `pi at each boundary point.

Notice that, (i) camera ci surveils only the segment [vi, v
p
i], (ii) the trajectory of each camera is 2`max-periodic, (iii)

cameras are synchronized, that is xi(tk) = xp
i (tk) for tk = k`max, with k ∈ N even (resp. odd) if dist-r(vi) is even

(resp. odd). Our Tree-Sync-Trajectory in Trajectory 3 extends the concept of Equal-waiting trajectory to the case
of tree roadmap [21].

Theorem 14 (Dynamic worst-case detection for Sync-Trajectory) Given a tree roadmap G = (V, E) with
cameras locations Vc = V \ {v1} and α = 0, α = 1, let Xs be the Tree-Sync-Trajectory in Trajectory 3. Then,

WDTd(Xs) = WDTs(X
s) ≤ 2WDT∗d.

PROOF. Consider the Tree-Sync-Trajectory Xs. Notice that Xs is 2`max-periodic, that each camera surveils a single
edge, and that each edge is surveilled by a different camera. Let an intruder appear at time t0 along [vi, vi

p], with
‖vi−p(t0)‖2 ≤ ‖vi−xi(t0)‖2. Then, such intruder is confined in [vi, vi

p]∪
(
∪vj [vi, vj]

)
to avoid detection, where vj is a

child of vi. Since vi and all its children synchronize at most every 2`max, we have WDTd(Xs) = WDTs(X
s) = 2`max.

Notice that the case ‖vi − p(0)‖2 > ‖vi − xi(t0)‖2 yields the same conclusion. On the other hand, since each edge
can be surveilled by at most two cameras, it holds WDT∗d ≥WDT∗s ≥ `max, which concludes the proof. �

6 Distributed Partitioning Algorithms

In what follows we design three distributed algorithms for the continuous min-max partitioning problem. Given an
optimal partition, cameras organize along a DF-Trajectory as in Trajectory 1.

12

Algorithm 4 Synchronous Gradient Partitioning

for vi ∈ Vc do
Camera ci receives St

j from cj , for all vj ∈ N in
i ;

Set αt+1
ij ← αt

ij − ε`ij(Lt
i − Lt

j);

if αt+1
ij < αij then αt+1

ij = αij ;

else if αt+1
ij > αij then αt+1

ij = αij ;
end if
Camera ci transmits St+1

i to cj , for all vj ∈ N in
i .

end for

The algorithms we present rely upon different cameras communication assumptions. We assume each camera to be
equipped with a wireless sensor device. In all our algorithms, cameras perform the following operations: (i) receive
parameters from (some) neighboring cameras, (ii) update the parameters corresponding to (some) adjacent edges,
and (iii) transmit the new values to (some) neighboring cameras. These operations are detailed in the next sections.
For convenience, let St

i = {αt
ij : vj ∈ N in

i } be the state of camera ci at iteration t ∈ N. Finally, we initialize

α0
ij = αij for all {vi, vj} ∈ Ec with i < j.

6.1 Synchronous Gradient Partitioning algorithm

The distributed algorithm presented in this section assumes a synchronous mode of operation of the cameras, and
it is inspired by the classical gradient projection method [5]. In particular, every camera performs operations at
uniform time instants. The t-th iteration of this algorithm is detailed in Algorithm 4.

Theorem 15 (Synchronous Gradient Partitioning) For a roadmap G with cameras locations Vc, let A and
b be as in (5) and (6), respectively. Let 0 < ε < (dmax`max)−1, where dmax = max

{
|N in

i | : vi ∈ Vc

}
. Then, the

Synchronous Gradient Partitioning algorithm in Algorithm 4 asymptotically converges to α∗SGD = limt→∞αt, and

min
α≤α≤α

‖Aα+ b‖2∞ = ‖Aα∗SGD + b‖2∞,

where α and α denote the cameras constraints.

PROOF. Note that the update step can be expressed in vector form as

αt+1 ← αt − εAT(Aαt + b),

and that ATAα+ATb is the gradient of the quadratic function 1
2‖Aα+b‖22. Therefore the Synchronous Partitioning

algorithm coincides with the gradient projection method [5]. To conclude the proof note that the gradient of 1
2‖Aα+

b‖22 is Lipschitz-continuous with some Lipschitz constant K ∈ R>0. Thus, for a sufficiently small step size ε, precisely
if 0 < ε < 2/K, the convergence of αt to a min partition is guaranteed by [5, Proposition 3.4]. In order to compute
the stated upper bound for the stepsize ε, it can be shown that K ≤ 2dmax(`max)2. Finally, the claimed statement
follows from Theorem 5. See [5] for further details. �

6.2 Asymmetric Broadcast Partitioning algorithm

The distributed algorithm presented in this section assumes an asymmetric broadcast communication protocol. In
particular, at each iteration only one camera updates its state by using local information from its neighboring
cameras. In order to guarantee the convergence of the algorithm, we assume the existence of a finite duration
τ ∈ R>0 such that, for all t ∈ R≥0, every camera in Vc is selected at least once in the time interval [t, t+ τ) (partial
asynchronism assumption). The t-th iteration of this algorithm is detailed in Algorithm 5.

Theorem 16 (Asymmetric Broadcast Partitioning) For a roadmap G with cameras locations Vc and cameras
edges Ec, let A and b be as in (5) and (6), respectively. Let τ be the partial asynchronism constant, and let 0 <

13

Algorithm 5 Asymmetric Broadcast Partitioning

Camera ci is randomly selected;
Camera ci receives St

j from camera cj , for all vj ∈ N in
i ;

for vj ∈ N in
i do

αt+1
ij ← αt

ij − ε`ij(Lt
i − Lt

j);

if αt+1
ij < αij then αt+1

ij = αij ;

else if αt+1
ij > αij then αt+1

ij = αij ;
end if

end for
Camera ci transmits St+1

i to camera cj , for all vj ∈ N in
i .

Algorithm 6 Symmetric Gossip Partitioning

Neighboring cameras ci and cj are randomly selected;
Camera ci (cj) receives St

j (St
i) from cj (ci);

L∗ = (Lt
i + Lt

j)/2;

αt+1
ij =

(
L∗ −

∑
vk∈N in

i ,k 6=j α
t
ik`ik

)
/`ij ;

if αt+1
ij < αij then αt+1

ij = αij ;

else if αt+1
ij > αij then αt+1

ij = αij ;
end if
Camera ci transmits St+1

i to ck, for all vk ∈ N in
i ;

Camera cj transmits St+1
j to ck, for all vk ∈ N in

j .

ε < (K(1 + τ + τ |Ec|))−1, where K ∈ R>0 is the Lipschitz constant of α → AT (Aα + b). Then, the Asymmetric
Broadcast Partitioning algorithm in Algorithm 5 asymptotically converges to α∗AB = limt→∞αt. Moreover,

min
α≤α≤α

‖Aα+ b‖2∞ = ‖Aα∗AB + b‖2∞,

where α and α denote the cameras constraints.

PROOF. As in Theorem 15, the algorithm update follows the gradient of α→ 1
2‖Aα+ b‖22. Because of the partial

asynchronism assumption and the fact that αt ∈ [0, 1]Ec is such that α ≤ αt ≤ α for all t ∈ N, the statement follows
from [5, Section 7, Proposition 5.3] and Theorem 5. Note that the bound for the stepsize ε depends on the Lipschitz
constant K, the time horizon τ and the number of edges connecting cameras |Ec|. See [5] for further details. �

6.3 Symmetric Gossip partitioning algorithm

The distributed algorithm presented in this section assumes a symmetric gossip-type communication protocol. In
particular, at each time iteration only one component of a camera state is updated, and only two adjacent cameras
are involved in the computation. The t-th iteration of this algorithm is detailed in Algorithm 6.

Theorem 17 (Symmetric Gossip Partitioning) For a roadmap G with cameras locations Vc, let A and b be as
in (5) and (6), respectively. Let the partial asynchronism assumption hold. Then, the Symmetric Gossip Partitioning
algorithm in Algorithm 6 asymptotically converges to α∗SG = limt→∞αt. Moreover,

min
α≤α≤α

‖Aα+ b‖2∞ = ‖Aα∗SG + b‖2∞,

where α and α denote the cameras constraints.

PROOF. Define U(α) =
∑
{vi,vj}∈Ec(Li − Lj)

2 as energy storage function. The convergence of the algorithm can

be retrieved reasoning along the lines of [1, Theorem IV.1], and by applying Theorem 5. �

14

0 50 100 150 200 250 300
1

1.2

1.4

1.6

1.8

*

SGD Alg.
AB Alg.
SG Alg.

Time

�A
α
(t

)
+

b
� ∞

Fig. 5. This figure shows the convergence of the Synchronous Gradient Partitioning (SGD, blue solid line), the Asymmetric
Broadcast Partitioning (AB, black dash-dot line), and the Symmetric Gossip Partitioning algorithms (SG, green dashed line)
towards a solution of the continuous min-max partitioning problem. For the simulation we use the configuration in Fig. 2,
with α = 0,α = 1 and α0 = 0.

To conclude this section, we validate our distributed algorithms through a numerical study. The tree roadmap
considered for the simulations is in Fig. 2. Notice that |Ec| = 6, n = |Vc| = 7, and the number of locations is given
by |V| = 14. The stepsizes for Algorithm 5 and Algorithm 6 are chosen sharp, up to a constant ε = .01, to their
upper bounds stated in Theorem 15 and Theorem 16, respectively. The results of our simulation study are in Fig.
5. Notice that all the proposed algorithms converge to the desired value.

7 Conclusion

In this work we design surveillance trajectories for a network of autonomous cameras. We consider both static and
dynamic intruders in the environment to be surveilled. As performance criteria we consider the worst-case detection
time of intruders. For the case of static intruders, we derive optimal trajectories for ring and tree roadmaps, and
constant-factor suboptimal trajectories for general roadmaps. For the case of dynamics intruders, we derive constant-
factor suboptimal trajectories for chain, ring, and tree roadmaps. As a complementary result, we introduce the
continuous partitioning problem of a weighted graph, and we propose distributed algorithms for its solution.

References

[1] R. Alberton, R. Carli, A. Cenedese, and L. Schenato. Multi-agent perimeter patrolling subject to mobility
constraints. In American Control Conference, pages 4498–4503, Montréal, Canada, June 2012.

[2] K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing Systems, 39:929–939, 2006.
[3] E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max vehicle routing problems.

Journal of Algorithms, 59(1):1–18, 2006.
[4] M. Baseggio, A. Cenedese, P. Merlo, M. Pozzi, and L. Schenato. Distributed perimeter patrolling and tracking

for camera networks. In IEEE Conf. on Decision and Control, pages 2093–2098, Atlanta, GA, USA, December
2010.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods. Athena Scien-
tific, 1997.

[6] D. Borra, F. Pasqualetti, and F. Bullo. Continuous graph partitioning for camera network surveillance. In IFAC
Workshop on Distributed Estimation and Control in Networked Systems, Santa Barbara, CA, USA, September
2012. To appear.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
[8] R. Carli, A. Cenedese, and L. Schenato. Distributed partitioning strategies for perimeter patrolling. In American

Control Conference, pages 4026–4031, San Francisco, CA, USA, June 2011.
[9] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Dis-

tributed Computing, 7(2):279–301, 1989.
[10] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 2 edition, 2000.
[11] G. Even, N. Garg, J. Könemann, R. Ravi, and A. Sinha. Min–max tree covers of graphs. Operations Research

Letters, 32(4):309–315, 2004.
[12] G. Even, J. Naor, S. Rao, and B. Schieber. Fast approximate graph partitioning algorithms. In ACM-SIAM

Symposium on Discrete Algorithms, pages 639–648, New Orleans, LA, USA, January 1997.

15

[13] A. Kehagias, G. Hollinger, and S. Singh. A graph search algorithm for indoor pursuit/evasion. Mathematical
and Computer Modelling, 50(9-10):1305–1317, 2009.

[14] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams. IEEE Transactions on Robotics, 26(1):32–47,
2010.

[15] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006. Available at
http://planning.cs.uiuc.edu.

[16] R. Lüling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. In IEEE
Symposium on Parallel and Distributed Processing, pages 686–689, Dallas, TX, USA, December 1991.

[17] A. Machado, G. Ramalho, J. D. Zucker, and A. Drogoul. Multi-agent patrolling: An empirical analysis of
alternative architectures. In Multi-Agent-Based Simulation II, Lecture Notes in Computer Science, pages 155–
170. Springer, 2003.

[18] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University Press, 1987.
[19] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. Lick, editors, Theory and Applications of Graphs,

volume 642 of Lecture Notes in Mathematics, pages 426–441. Springer, 1978.
[20] F. Pasqualetti, A. Franchi, and F. Bullo. On cooperative patrolling: Optimal trajectories, complexity analysis

and approximation algorithms. IEEE Transactions on Robotics, 28(3):592–606, 2012.
[21] M. Spindler, F. Pasqualetti, and F. Bullo. Distributed multi-camera synchronization for smart-intruder detec-

tion. In American Control Conference, pages 5120–5125, Montréal, Canada, June 2012.
[22] S. Susca, S. Mart́ınez, and F. Bullo. Monitoring environmental boundaries with a robotic sensor network. IEEE

Transactions on Control Systems Technology, 16(2):288–296, 2008.

16

