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INTRODUCTION TO THE LECTURE SERIES AVT-167

STRATEGIES FOR OPTIMIZATION AND AUTOMATED DESIGN OF GAS TURBINE ENGINES (COMPLEX SYSTEMS)


Dr. Alexander Karl

2001 South Tibbs Avenue

Indianapolis, IN, 46241

USA

Alexander.h.karl@rolls-royce.com

Abstract

This short section gives a brief introduction to the Lecture Series AVT-167 Strategies for Optimization and Automated Design of Gas Turbine Engines (Complex Systems). The technical and business needs for optimization and automated design are discussed together with the aim and goals of the lecture series. Finally the agenda will be discussed and links to the individual papers and presentations are given.

1.0
Introduction to the Lecture Series

1.1
Why do we need optimization and automated design processes?

The main focus of the lecture series is the application of optimization and automated design processes for gas turbines. The gas turbine here is chosen as an example of a complex system but the tools, methods and techniques presented in this lecture series are not gas turbine specific. The described methodologies are equally applicable to any other complex systems. 

Gas turbines are complex systems characterized by strong interactions between the parts of the gas turbine. A typical gas turbine cross section is given in Figure 1. There are about 30000 parts in a gas turbine engine and the rotating parts are in close proximity to the static components of the engine. For increased efficiency the clearances between rotating and static parts are reduced more and more. At the same time these tight clearances need to be maintained in service for various operating conditions of the gas turbine. 

Some of the gas turbine parts are operating in a very challenging environment. A typical high pressure (HP) turbine blade of a large gas turbine can produce a few hundred horse power comparable to a Formula 1 racing car engine but at the same time is much smaller. The gas temperature these blade are operating in is typically above the melting temperature of the blade material and the turbine blade is protected by a thin film of cooling air. The blade is hold in place by a turbine disc. An analogy for the load a HP turbine blade puts on the turbine disc is illustrated in Figure 2. Under maximum operating conditions one HP turbine blade puts a load on the turbine disc equivalent to the weight of a London double decker bus. With a typical number of about 90 blades the centrifugal loads such a turbine disc needs to withstand is equivalent to 90 double decker buses carrying approximately 1000 people. At the same time the turbine disc itself is operating in a very hot environment.
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Figure 1: Typical gas turbine cross section.
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Figure 2: Analogy of the load a single HP turbine blade puts on the turbine disc during operation.


The turbine discs in gas turbine engines are designed NOT to fail as the consequences of a failure of a disc would be catastrophic for the gas turbine. The consequences of the failure of a turbine disc are illustrated in Figure 3.


[image: image3]

Figure 3: Analogy of energy contained in failed turbine disc parts.


A HP turbine disc under maximum rotational speed contains a large amount of energy. If such a turbine disc would fail it will typically break up in 3 main pieces. Each of the pieces contains the energy equivalent to a sedan car going at 100 mph. In another way this energy would be enough to throw the sedan around 300 feet into the air. The energy contained in one piece of the failed turbine disc would be enough to throw that piece approximately 1.5 miles. Now it is understandable that these parts are never allowed to fail. To achieve this, a very thorough understanding of the behaviour of such parts under all operating conditions and circumstances is required. The methods, tools and processes described in this lecture series are an essential part of gaining this understanding.

Finally, the development of a new gas turbine engine is a very expensive task and the market driven development times for a gas turbine are shortened more and more. Historically it took as long as a decade to develop a gas turbine engine whereas nowadays the essential development activities should be done within 24 month. At the same time the pressure on reducing the development costs of a gas turbine are ever increasing. The automated design processes described in this lecture series are essential to cope with these increasing business pressures and be successful in a competitive market place. 


1.2 
Aim and goal for the lecture series

The main emphasis of the lecture series is on the practical application to real world problems of the presented tools, methods and processes. There are already various classes, short courses and trainings dealing with optimisation methods and the theoretical aspects of these methods available [1, 2]. The lecture series is set-up in such a way to allow for interaction between the participants and between the participants and the presenters. The key focus for the lecture series is to start a dialogue between the participants and use some time to network with people interested in the same methods, tools and processes.

The lecture series has the following main goals:


· define terminology and present optimization techniques

· outline practical approaches to the formulation of automated gas turbine engines (complex systems) design tasks


· teach the methodology and the processes and NOT the tools

· present practical examples of component, subsystem and system level design and optimization tasks

· address key technical and human barriers.

1.3
Outline of the lecture series


This section gives you an overview of the presentations for the lecture series and also allows access to the papers and presentations via hyperlinks.

Table 1: Outline of the first day of the lecture series.


		Welcome and Coffee

		 

		 



		Introduction to the lecture series

		 

		presentation



		Introduction & Terminology

		paper

		presentation



		Global Optimisation

		paper

		presentation



		Coffee

		

		



		Local Optimisation

		paper

		presentation



		Complements on Surrogate Based Optimization for Engineering Design

		paper

		presentation



		Lunch

		 

		 



		Introduction for the section

		 

		 



		Case Study 1: High Pressure Compressor Blade (Montreal)

		not available

		presentation



		Case Study 1a: Concurrent Blade optimization with Component Interaction (Berlin)

		paper

		presentation



		Case Study 2: High Pressure Compressor Endwalls

		paper

		presentation



		Coffee

		 

		 



		Case Study 3: Component Level

		paper

		presentation



		Introduction for the section

		 

		 



		Case Study 4: Sub-system Level

		paper

		presentation



		Close of Day 1

		 

		 





Table 2: Outline of the second day of the lecture series.

		Welcome and Coffee

		 

		 



		Case Study 5: Long Term Advanced Propulsion Concept and Technologies (LAPCAT)

		paper

		presentation



		Case Study 6: System Level

		paper

		presentation



		Coffee

		 

		 



		Introduction for the section

		 

		 



		Case Study 7: PMDO Whole Engine Example

		paper

		presentation



		Case study 8: Honeywell Aerospace Improves Efficiency and Drives Innovation

		not available

		presentation



		Lunch

		 

		 



		Introduction for the section

		 

		 



		Geometry Parameterization

		paper

		presentation



		Tuning of optimization strategies

		paper

		presentation



		Coffee

		 

		 



		Cultural issues (e.g. Aero v Mechanical)

		paper

		presentation



		Future Developments

		

		presentation



		Discussion & Close

		

		presentation





Table 1 and 2 are listing the agenda of day 1 and 2 of the lecture series, respectively. Due to conflicts in the schedule the presentation of “Case Study 1: High Pressure Compressor Blade” delivered in Montreal (26th and 27th October 2009) was replaced by the presentation “Case Study 1a: Concurrent Blade optimization with Component Interaction” for the delivery of the lecture series in Berlin (9th and 10th September 2010). 

All the presentations and papers will also be available via a NATO RTO hosted web site.


2.0
References
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Agenda

Introduction to Lecture Series



Aim and Goal for the Lecture Series



Organizational topics
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Why do we  need optimization and automated design processes?



Gas Turbines are complex products which have …

Lots of interactions between their parts

Parts operating in a very demanding environment

Far reaching failure consequences
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Typical Gas Turbine as an 
Example for a Complex System
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Typical loading environment

The forces on one HP Turbine blade are equivalent to one fully laden double decker bus. Typical Trent HP Turbine discs have 92 blades.   Therefore, the total force on a single disc is equivalent to a fleet of 92 buses carrying approximately 1000 people. 
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Consequences of failure



A disc burst has similar energy to a family saloon car hitting a brick wall at 100 mph or is equivalent to throwing a car 300 feet into the air. 

A failure of a such a part during flight would result in disc sections being thrown approximately 1½ miles from the aircraft.  A failed part would not be contained within the engine and if travelling in a disadvantageous direction would rip through the aircraft fuselage.
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Business drivers



FROM: 



Strengthening

Simulation’s Business Impact:

New Strategies in Aircraft Engines

July 13, 2009

By Bruce Jenkins, Principal Analyst, Ora Research LLC

Ora Research LLC

P.O. Box 391227

Cambridge, MA 02139-0013

USA

tel. +1 617 875 9598

www.oraresearch.com
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Aim and Goals for this Lecture Series

To define terminology and present optimization techniques;



To outline practical approaches to the formulation of automated gas turbine engines (complex systems) design tasks;



To teach the methodology and the processes and NOT the tools;



To present practical examples of component, subsystem and system level designs and optimizations;



To address key technical and human barriers.
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Agenda for the LS – Day 1

		Welcome Day 1		Welcome and Coffee		8:00

		Introduction  to Lecture Series		Introduction to the lecture series		8:30

		Terminology & Optimization Techniques		Introduction & Terminology		8:50

		 		Global Optimisation		9:20

		 		Coffee		10:30

		 		Local Optimisation		11:00

		 		Complements on Surrogate Based Optimization for Engineering Design		12:00

		 		Lunch		12:30

		Practical Examples: part & component applications		Introduction for the section		14:00

		 		Case Study 1: High Pressure Compressor Blade		14:20

		 		Case Study 2: High Pressure Compressor Endwalls		15:00

		 		Coffee		15:40

		 		Case Study 3: Component Level		16:10

		Practical Examples: Sub-systems		Introduction for the section		16:50

		 		Case Study 4: Sub-system Level		17:10

		Day 1 Close		Close of Day 1		17:50
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Agenda for the LS – Day 2

		Welcome Day 2		Welcome and Coffee		8:00

		Practical Examples: Sub-systems (cont.)		Case Study 5: Long Term Advanced Propulsion Concept and Technologies (LAPCAT)		8:30

		 		Case Study 6: System Level		9:10

		 		Coffee		9:50

		Practical Examples: System Optimization		Introduction for the section		10:20

		 		Case Study 7: PMDO Whole Engine Example		10:40

		 		Case study 8: Honeywell Aerospace Improves Efficiency and Drives Innovation		11:20

		 		Lunch		12:00

		Key Resources and Show Stoppers		Introduction for the section		13:30

		 		Geometry Parameterization		13:50

		 		Tuning of optimisation strategies		14:10

		 		Coffee		14:40

		 		Cultural issues (e.g. Aero v Mechanical)		15:10

		 		Future Developments		15:40

		Discussion & Close		Discussion & Close		16:10
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Organizational topics I

Each section has

A short intro to the sections

2- 4 presentations or case studies

Typically the presentation (except the methods presentations) is scheduled for 40 min including at least 10 min discussion time.

Coffee Breaks have been organized to foster discussion with the participants and the presenters

There is no lunch provided but there are ample of restaurants in proximity of the venue
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Organizational topics II

Copies of the presentation materials will be provided

Your feedback will be used to improve the material and to create Educational Notes

These notes will contain the presentation material and papers and will be provided via the NATO web site (within the next 6 month)
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Have Fun
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This report offers a practical, action-oriented analysis of new directions and emerging best
practices for getting more value than ever before from digital simulation and analysis.
Program managers, discipline leads and practitioners will find first-hand advice and lessons
of experience for planning new and ongoing investments in simulation technology, and for
managing these tools to exploit their organizations’ simulation competencies to the fullest.

Digital Simulation and Analysis Investments: Business Drivers

Aircraft engine manufacturers are among the industrial world's most advanced and
sophisticated users of digital simulation and analysis. Why? What drives investment in these
tools and in the methods and work processes around them?

One reason is that products of today’s complexity, performance and efficiency simply can’t be
developed in a timely way without simulation:

“What we're striving for is more robust designs. And the only way to achieve that is by
using simulation — you cannot examine all the possible variations using physical test
alone.” — Alexander Karl, Robust Design, Rolls-Royce

Further, developing a new aircraft propulsion system is a massively complex undertaking that
can cost hundreds of millions of dollars, and historically took as long as a decade. By helping
reduce development costs and cycle time, simulation and analysis confers competitive
advantage out of all proportion to its direct cost.

Commercial aviation business crisis Simulation and analysis technology holds the
key to competitive advantage in other ways as well. With the commercial air travel industry
under intense cost pressure even as fuel prices soar, every increment of improved engine
Z efficiency translates into significant savings for airlines. Major aircraft manufacturers also face
growing competition from regional jet makers now developing larger and more capable
planes. As a result, these companies face unprecedented challenges to deliver products that
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Introduction and Terminology
Lecture Series AVT-167


Strategies for Optimization and Automated Design
of Gas Turbine Engines


Ingrid Lepot
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October 26, 2009







Outline


What is optimization ?


A taxonomy of optimization, to classify
I the problems
I the techniques that have been developed to solve them


Engineering design via surrogate modeling


AVT167 - Introduction (Lecture 1) copyright@cenaero 2009 2 / 36







Optimization may be defined as


The search for a set of inputs X (not necessarily numerical)
that minimize (or maximize) the outputs of a function f(x)
subject to inequality and equality constraints


The functions may be represented by simple expressions, complex computer
simulations, analog devices or even large-scale experimental facilities


What do we know ? → data
What do we want to achieve ? → objective function(s)
What do we need to decide ? → variables
What limits our ability to decide ? → bounds and constraints
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Definition of an optimization problem


minimize f (x)
subject to gi (x) ≥ 0 for i = 1, . . . , p


hj(x) = 0 for j = 1, . . . , q
xl ≤ x ≤ xu


x = {x1, x2, . . . , xn}T : a decision variable ∈ IRn


f : the objective


gi and hj : inequality and equality constraints


xl and xu : the explicit bounds on the variables (may be infinite)


We want to find an optimal solution : an x∗ such that


f (x∗) ≤ f (x) ∀ x
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Definition of an optimization problem


maximize f (x)
subject to gi (x) ≥ 0 for i = 1, . . . p


hj(x) = 0 for j = 1, . . . q
xl ≤ x ≤ xu


x = {x1, x2, . . . , xn}T : a decision variable ∈ IRn


f : the objective


gi and hj : inequality and equality constraints


xl and xu : the explicit bounds on the variables (may be infinite)


We want to find an optimal solution : an x∗ such that


f (x∗) ≤ f (x) ∀ x
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Definition of an optimization problem


−minimize −f (x)
subject to gi (x) ≥ 0 for i = 1, . . . p


hj(x) = 0 for j = 1, . . . q
xl ≤ x ≤ xu


x = {x1, x2, . . . , xn}T : a decision variable ∈ IRn


f : the objective


gi and hj : inequality and equality constraints


xl and xu : the explicit bounds on the variables (may be infinite)


We want to find an optimal solution : an x∗ such that


f (x∗) ≤ f (x) ∀ x
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Problem classification


Inputs: Some or all inputs are nonnumeric ⇒ optimal selection is the
subject of an entirely distinct set of approaches


All inputs numeric: continuous and/or discrete variables


Outputs:
I Single goal to be minimized/maximized
I Multiple goals
I Presence or absence of constraints, from simple bounds to extremely


complex relationships with the inputs


Type of functional relationship between inputs/outputs:
I Linear, nonlinear, discontinuous
I Stationary, time dependent or stochastic in nature
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Multiobjective Optimization (MOO)


Most realistic optimization problems (particularly those in design
optimization) require the simultaneous optimization of more than one
objective.


“Minimize” F (x) =



f1(x)
f2(x)


...
fm(x)


 m = 1 → Mono-objective
m ≥ 2 → Multi-objective


subject to g(x) ≥ 0
h(x) = 0
xl ≤ x ≤ xu


Generally conflicting with each other


“Minimize” means finding a solution which would give the values of all the
objective functions acceptable to the decision maker.
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Multiobjective optimization


Aggregate technique


Most intuitive approach


Combine all the objectives into a single one, usually by using weighted
sum


Objective ; min
∑m


i=1 ωi fi (x)


where ωi ≥ 0 and
∑m


i=1 ωi = 1.


ωi : weighting coefficients representing the relative importance of the
m objectives
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Multiobjective optimization


True multiobjective optimization techniques


Keep the objectives separate during the optimization process


More appropriate with competing and conflicting objectives that are
hard to balance


No single optimum solution, any solution will be a compromise


Role is to identify the solutions which lie on the trade-off curve,
known as the Pareto Front (none of the objectives can be improved
without prejudicing another)


Provide a range of solutions, from which users can choose the better
compromise
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Multiobjective optimization


x∗ is Pareto optimal or a non-dominated solution if there exists no
other solution x such that


fi (x) ≤ fi (x
∗) for all i = 1, . . . ,m and


fj(x)<fj(x
∗) for at least one j


The set of all Pareto optima (x) = Pareto optimal set


The set of all nondominated objective vectors (f )= Pareto front
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Search methods classification


Search methods may be classified in a number of ways ...


Optimal selection (Operational Research), requires sufficiently fast
analysis methods are used to model the problem and generally work
by some sort of exchange algorithm or list-sorting process


Solution of linear problems, almost universally solved using linear
programming and the so-called simplex of revised simplex method


The “rest”, i.e. dealing with nonlinear numeric problems, form
much the largest collection of approaches


I Local optimization


I Global optimization
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Dealing with nonlinear numeric problems


Distinction between:


Search methods that need information on the local gradient


Those that do not, typically termed zeroth order


Further distinction between:


Approaches that can deal with constraints


Those that cannot


Those that just need feasible starting points


Methods that can not deal with constraints directly can be augmented by
the addition of penalty functions to the objective(s) being optimized that
aim to force designs towards feasibility as the search progresses by
modifying the goal functions


AVT167 - Introduction (Lecture 1) copyright@cenaero 2009 11 / 36







Dealing with nonlinear numeric problems


Other categorization:


Deterministic in nature


Have some stochastic element


Further distinction:


Searches that work with one design at a time


Those that seek to manipulate populations or sets of designs
Population based search has gained much ground with the advent of
cluster and parallel-based computing since the evaluation of groups of
designs may be readily parallelized.
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Local and Global Optimization


Fastest optimization algorithms seek only a local solution, a point at which
the objective function is smaller than at all other points in its vicinity.


I Local Optimization


But not always find the best of all minima → depends on the starting
point. See figure


Global solutions are highly desirable in some situations.


I Global Optimization


Global optimization thus aims at determining not just a local minimum
but the smallest local minimum (or at least an estimate of it).


But global solutions are usually more difficult to identify than local ones.
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Local and Global Optimization
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Convergence towards different local minima with respect to starting points
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Local and Global Optimization


Fastest optimization algorithms seek only a local solution, a point at which
the objective function is smaller than at all other points in its vicinity.


I Local Optimization


But not always find the best of all minima → depends of the starting point.


Global solutions are highly desirable in some situations.


I Global Optimization


Global optimization thus aims at determining not just a local minimum
but the smallest local minimum (or at least an estimate of it).


But global solutions are usually more difficult to identify than local ones.
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Local Optimization


Only information about points from the immediate neighbourhood of
the current point is used in updating the solution.


Such methods are expected to converge to a local minimum close to
the starting point.


I Global structure of an objective function is unknown to a local method.
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Local Optimization


In general, a local optimization method is iterative and is designed to
generate a sequence of points


x0, x1, . . . , xk , . . .


beginning at x0 and hoping that this sequence converges to a solution.
In deciding how to move form one point xk to the next xk+1, a local
method uses information about the function f at xk and possibly also
information from earlier iterates x0, . . . , xk−1.


Stop when


no progress can be made


a solution has been approximated with sufficient accuracy
(‖∇x f ‖ small because theoretically at a local minimum it is zero).
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Local Optimization


Local searches deal with:


establishing the direction in which to move


establishing the step size to take (line-search or trust-region
techniques)


Iteratively improve the initial guess x0 to find (local) optimal x∗ by using


xk+1 = xk + α sk


where


sk is the search direction


α is the length of the step


AVT167 - Introduction (Lecture 1) copyright@cenaero 2009 18 / 36







Local Optimization : Gradient-based methods


First-order methods (gradients) :


I Steepest-descent method


I Conjugate-gradient method


Take second-order information into account
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Local Optimization : Second-order methods


Newton method uses curvature information
to take a more direct route than steepest descent method
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Local Optimization : Second-order methods


Advantage


rapidly converge


Disadvantages


lack of global convergence


require second-order derivatives


Advanced local methods


Quasi-Newton methods (create and update approximations to the
second derivatives)


Sequential Quadratic Programming (SQP) method


Augmented Lagrangian method


Interior point method


→ designed to handle constraints
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Local Optimization


Advantage


used on the right kinds of problems (e.g. convex, unimodal), can be
very computationally efficient


Disadvantages


starting point within a neighbourhood of the global minimum,
otherwise might get stuck at a local optimum (good initial point not
easy to find)


need to compute derivatives (or approximations to them)
I Adjoint Method is an efficient way for calculating gradients even
for very large dimensional design space.


ill-suited for discrete variables or noisy objective functions


not effective for problems where design space is highly discontinuous


furnish a single optimal solution while engineers often prefer multiple
design alternatives


very difficult to parallelize
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Local Optimization : Zeroth-order methods


Use only comparisons of values of objective function


Pattern/direct search methods


Seek to improve a solution based on points in the vicinity of the
current point by


I making a trial step in some direction
I seeing if it is better or not


Nelder-Mead algorithm or downhill simplex method
Advantages


I no derivatives ; can deal with discrete variables and non-continuous
functions


I simple to understand and easy to implement


Disadvantages
I not guaranteed to converge towards the global minimum
I less reliable than gradient-based methods
I may be slow
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Global Optimization


The whole design space is to be explored so as to aim for the global
optimum.


Global optimizers


do not require first or second-order derivatives;


attempt to find the global optimum, typically by allowing decrease as
well as increase of the objective function.


I generally much more expensive than local methods
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Global Optimization


Global Optimization techniques


↙ ↘


Deterministic Probabilistic
Branch and Bound Genetic algorithms


Outer approximations Simulated annealing
Particle Swarm


Multistart methods
Hybrid methods
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Global Optimization : Branch and Bound


Systematic enumeration of all
candidate solutions


Especially appropriate for
combinatorial (finite but usually
large number of feasible solutions)
optimization


General idea:
A relaxation of the original problem is
constructed, solved and refined by
partitioning the feasible domain.
Subproblems are built on the
sub-domains and are successively
refined until the sub-domain under
study is guaranteed not to contain a
global optimum or a better optimum
than the one found so far.
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Global Optimization : Genetic Algorithms


Survival of the fittest


Starting from a random population
→ each individual is assigned a fitness via the objective function.


In the selection step, certain individuals are chosen to proliferate and
to form a new population.


Operators like Crossover and Mutation are applied to individuals of
the population with prescribed probabilities.


Evaluate the new population.


New generations are formed until the population has converged or a
terminal criterion is reached.


I Many alternatives for every step exist
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Global Optimization : Genetic Algorithms


Advantages


very useful for engineering problems with
I multiple optima
I a noisy objective function
I multiple objectives
I discrete design variables and mixed-discrete variables
I discontinuous function
I high-dimensional parameter space


able to quickly find promising regions in the search space


easy to parallelize


Disadvantages


require more evaluations to converge, compared to gradient-based
methods


tuning of parameters


inefficient in fine tuning the solution
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Multiobjective Optimization


Why are GAs appropriate for multiobjective optimization ?


In MOO, we seek a set of possible solutions.
I at the end of the GA optimization, each individual of the population


can represent a different trade-off between the objectives
I find several members of the Pareto optimal set in a single run
I with gradient-based methods, lots of runs are needed


Less sensitive to the shape of the Pareto front (discontinuous or
concave Pareto fronts)


Same advantages than for mono-objective optimization
(parallelization, multi-disciplinarity, uncomputable functions, handling
of noisy functions, . . . )
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Multiobjective Optimization


Multiobjective Optimization techniques


↙ ↘


Non-Pareto techniques Pareto-based techniques
Aggregating approach MOGA
ε-constraint method NSGA - NSGA-II


VEGA NPGA - NPGA2
Target-vector approaches SPEA - SPEA2


PAES
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Global Optimization : Hybrid methods


Global explorer + Local exploiter


General idea:


Starting with a global method → evolution
I able to explore large and entire design space
I but inefficient in finding accurate solution


→ Combination with local optimization procedure


Fine-tuning with a local method → individual learning
I The local search is applied to find a better solution in the
convergence region e.g. after the GA loop or within the GA loop.


GA + local search = Memetic algorithms
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Surrogate based optimization


What is a surrogate model ?


Low cost replacement of the original function for a wide variety of
purposes


Educated guess as to what an engineering function might look like,
based on a few points in space where one can afford to measure the
function values


Basic idea: Avoid the temptation to invest one’s computation budget in
answering the question at hand and, instead, invest in developing fast
mathematical approximations to the long running computer codes
⇒ trade-offs exploration and insights gain
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Surrogate based optimization


minimize f (x)
subject to g(x) ≥ 0


h(x) = 0
xl ≤ x ≤ xu


→


minimize f̃ (x)
subject to g̃(x) ≥ 0


h̃(x) = 0
xl ≤ x ≤ xu


f̃ , g̃ and h̃ are computationally cheaper to run.


Surrogate models f̃ , g̃ and h̃ are constructed based on modeling the
responses of the accurate functions f , g and h to a limited number of
carefully chosen data points.


I Importance of Sampling / Design of Experiments and Infill criteria
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Surrogate based optimization
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Surrogate based optimization
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Robust Optimization


Aims at dealing with uncertainty


Seek designs that are less sensitive to the presence of uncertainty in
the system, without removing the source of uncertainty.


Reduce the variability in the performance of a system, along with
seeking improvement in the mean performance.


Main aspects:


Identification, modeling and representation of uncertainties
I probability theory
I nonprobabilistic approaches


Propagating uncertainties to quantify their impact on system
performance


Formulation and solution of an optimization problem with appropriate
objective and constraint functions that ensure the optimum solution
obtained is robust
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Abstract

An optimization problem begins with a set of independent variables or parameters, and often includes conditions or restrictions that define acceptable values of the variables. Such restrictions are termed the constraints of the problem. The other essential component of an optimization problem is a single measure of “goodness” or “fitness”, the objective function, which depends in some way on the variables. The solution of an optimization problem is a set of allowed values of the variables for which the objective function assumes an “optimal” value. In mathematical terms, optimization usually involves maximizing or minimizing. 

Problems in all areas of mathematics, applied science, engineering, economics, medicine and statistics can be posed in terms of optimization. In particular, mathematical models are often developed in order to analyze and understand complex phenomena. Optimization may be used in this context to determine the form and characteristics of the model that corresponds most closely to reality. Furthermore, most decision-making procedures involve explicit solution of an optimization problem to make the “best” choice. 


The present lecture briefly introduces both problem classification and search methods classification in order to define the taxonomy and the global context for the subsequent dedicated local optimization and global optimization lectures 

Introduction

Before briefly reviewing the field of optimization and setting pointers to the more detailed lectures focusing on local and global optimization methods, it is useful to set out a taxonomy that may be used to classify the problems to be tackled and the techniques that have been developed to solve them. An excellent practical reference to be consulted for further details is reference 
, providing a complete outline of modern computationally based design optimization.

In its most general form, optimization may be defined as the search for a set of inputs x, not necessarily numerical, that minimize (or maximize) the outputs of an objective function f(x) subject to inequality constraints g(x)≥0 and equality constraints h(x)=0. The functions f(x), g(x), and h(x) may be represented by simple expressions, complex computer simulations or even large-scale experimental results.


1. PROBLEM CLASSIFICATION

A first distinction that can be made between problems in which some or all of the inputs are nonnumeric and those in which they are not: in the former case, the process requires optimal selection rather than optimization. Such cases occur quite commonly in design (e.g. selection of a compressor type as being either axial or centrifugal) but are the subject of an entirely distinct set of approaches which are not discussed in the frame of the present lecture series.

If all inputs are numeric, which is the framework considered here, a series of divisions can be further performed:


· One can distinguish between the problems with continuous variable inputs (or parameters, e.g. blade sections thicknesses or fan blade length) and the problems involving parameters that can take discrete values (including the integers, e.g. number of blades of a compressor disk). 


· One can also distinguish the problems following their outputs. If there is one single goal to be maximized or minimized (the so-called objective function), the problem is said to be mono-objective. If there are multiple goals, a solution will be a compromise and the problem resolution will lead to what is termed a Pareto front, i.e. a set of solutions that are all equally valid until some weight or preference is expressed between the goals. This particular point is more specifically discussed in Section 1.1 hereafter. For example, if it is desired to improve the efficiency and surge margin of a compressor, these aims may pull the design in opposite directions. Until it is known which is more important or some weighting between efficiency and stability is chosen, it will not be possible to decide on the best design.


· One may also categorize the optimization problems following the presence or absence of constraints. The latter may simply apply to the upper and lower values the input variables may take (in this case, these upper and lower values are commonly known as bounds) or they may involve extremely complex relationships with the input parameters (e.g. as the limits to be imposed on stress levels in the blade). If equality constraints are present, they should ideally be exploited at best so as to reduce the number of free variables. However, this is often not possible in practice and sometimes all that can be done is then to substitute a pair of opposed inequality constraints to try and hold outputs close to the desired equality.

· A final and key type of categorization concerns the type of functional relationship between the inputs (parameters) and outputs (objective functions). This relationship can be linear, nonlinear or even discontinuous; it can be steady, time dependent or even stochastic in nature. Clearly, discontinuous functions make optimization most difficult while linear relationships may lead to some very efficient solutions. Unfortunately, in most practical design work, which is driven through with decision taking, discontinuous relationships are to be dealt with on a regular basis. Moreover, most gas turbine engine components are subject to variability in manufacture and many must also lead with changing loads. Nonetheless, in most current optimization work, the function being dealt with are usually taken to be steady and deterministic so as to simplify the problem being studied, although this is now beginning to change as computing facilities become more powerful. 

1.1 Multiple Design Objectives – Pareto Optimization

Engineering design is almost always concerned with problems that have multiple, often conflicting goals and a series of demanding constraints. In some cases, the designer may be able to reduce problems with multiple goals to single objective problems by aggregating some suitable weighted objective function that combines the goals of interest. A typical example could be something like weight and cost, provided suitable conversions to a common form can be devised. When such an approach can be taken, the problem reverts to a single objective search and the full range of local and global mono-objective search methods is applicable (see Section 2 hereafter for a summary, and the dedicated local and global optimization lectures for more details). Sometimes, however, the correct weighting to apply between goals is not obvious or the designer does not wish to commit to a fixed weighting while carrying out design searches. For example, it is common in gas turbine design to aim for light weight, low cost, robust, high performance components. These aspirations are typically clearly in tension with each other and so compromise solutions have to be sought. 


This leads to the concept of Pareto optimality. Multi-objective problems in fact give rise not to one but to a set of solutions, a priori equally good, termed Pareto optimal set. The final selection between such compromises then inevitably involves deciding on some form of weighting between the goals. In this respect, a Pareto set of designs is one whose members are all optimal in some sense, but the relative weighting between the competing goals is yet to be finally fixed. More formally finally, a Pareto set of designs contains systems that are sufficiently optimized that, to improve the performance of any set member in any of the goal functions, its performance in at least one of the other goal functions must be made worse. Moreover, the designs in the set are said to be non-dominated in that no other set member exceeds a given design’s performance in all goals. 


With respect to mono-objective optimization, a number of technical difficulties are additionally associated with constructing Pareto sets. First, the set members need to be optimal in some sense. Since it is desirable to have a good range of designs in the set, this means an order of magnitude more optimization effort is usually required to produce such a set than to find a single design that is optimal against just one specific goal. Second, it is usually necessary to provide a wide and even coverage in the set in terms of the goal function space. As the mapping between design parameters and goal functions if usually highly nonlinear, gaining such coverage is far from being simple. 

Currently, essentially two popular ways of constructing Pareto sets appear. First, and most simply, one chooses a weighting function to combine all the goals in the problem of interest into a single quantity and carries out a single objective optimization. The weighting function is then modified and the process repeated. By progressively working through a range of weightings, it is possible to build up a Pareto set of designs. As has already been mentioned, such an approach would allow the full panoply of single objective search methods to be applied. However it does suffer from a major drawback: it is typically by no means evident what weighting function to use and how to alter it so as to be able to reach the different parts of the potential design output space. In many practical cases, the nonlinear nature of the design problem will make it very difficult to ensure that the designs achieved are reasonable evenly spaced through the design space. The other way of constructing Pareto sets is via the use of evolutionary algorithms (see Section 2). The latter seem to be the most attractive approaches for this class of problems, because they are typically population based techniques that can find multiple compromise solutions in a single run, and they do not require any hypotheses on the objective functions (e.g. unimodality and convexity). In such schemes, a set of designs is worked on concurrently and evolved towards the final Pareto set in one process. In doing this, designs are compared against each other and progressed if they are of high quality and if they are widely spaced apart from other competing designs.


Elitism
, aiming at selecting and copying the best solutions into the next population, has been clearly shown to help achieving better convergence in multi-objective evolutionary algorithms. Among modern elitist methods, it is worth pointing out the well known SPEA II (Strength Pareto Evolutionary Algorithm II) method
 and the NSGA II (Non-dominated Sorting Genetic Algorithm II) algorithm 
, superior to other modern elitist methods in terms of better distribution of points along the Pareto front.


Design of algorithms aiming for enhanced selection mechanism based on Pareto optimality and diversity preservation mechanism is still an active area of research, as is the development of alternative biologically-inspired metaheuristics (see e.g. reference
  for a review and reference 
 for a state-of-the-art of the critical exploitation of such techniques in a surrogate-based framework). For example, Multi-Objective Artificial Immune Systems (MOAIS) is a hot topic of development as such methods are inherently able to maintain population diversity, ensuring a good exploration of the search space. The most recent implementations of MOAIS algorithms have also the capability of automatically adapting the size of the population at each iteration, according to the demand of the application. This could prove an asset for real world, computationally expensive optimizations. MOAIS inherent memory mechanism also naturally guarantees elitism and  the dynamicity of the immune system, which is able to cope with always changing intruders, is a particularly desired characteristic in multi-objective optimization since in these problems, the fitness landscape is based on Pareto dominance, thus it has to be recomputed at each time the population involved in the optimization process changes. Despite these promising qualitative considerations, comparisons carried out versus more classical evolutionary elitist methods algorithms have proved neither MOAIS performances better nor they inferiority for any class of problems up to now 
.

To our opinion, one of the most interesting and recent open fields of investigation in multi-objective optimization
 
 lies in the incorporation of the user’s preferences. In practical applications of multi-objective evolutionary algorithms users are normally not interested in a large number of nondominated solutions. Instead, they are usually interested in a few types of trade-offs among the objectives. For efficient multi-objective optimization in real world applications, zooming in certain regions of interest and only evolving the population only towards the area(s) of interest appears key. 

2. SEARCH METHODS CLASSIFICATION


Search methods themselves may be also classified in a number of ways. A first major division that can be made is between methods dealing with optimal selection, those that solve linear problems and the rest.

Optimal selection routines commonly stem from the Operational Research (OR) community and typically are set up to deal with idealized travelling salesman of knapsack problems. Such methods are not in the focus of the present lecture series.


Linear problems are nowadays almost universally solved using linear programming and the so-called simplex method, which can efficiently deal with thousands of variables. Optimal selection and linear programming, while valuable, essentially lie outside the scope of the present lecture series, as they do not find much practical application in gas turbine engine design, and in aerospace design more broadly speaking, which are dominated by large scale CFD and CSM models.

The remaining methods that deal with nonlinear numeric problems form much the largest collection of approaches and are more particularly considered here. At the most basic level, such searches may be divided between those that need information on the local gradient of the function being searched and those that do not. Searches that will work without any gradient information may be termed zeroth order while those needing the first derivatives are first order, and so on. 

Among these methods, a further distinction may be made between approaches that can deal with constraints, those than cannot, and those that just need feasible starting points. Methods that cannot deal with constraints directly can be augmented by the addition of penalty functions to the objectives being optimized that aim to force designs toward feasibility as the search progresses by modifying the goal functions. 


Methods may also be categorized by whether they are deterministic in nature or have some stochastic element. Deterministic searches will always yield the same answers if started from the same initial conditions on a given problem; stochastic methods make no such guarantees. They indeed all typically make use of random number sequences in some way, so that if a search is repeated from the same starting point with all parameters set the same, but with different random number sequence, it will follow a different trajectory over the fitness landscape in the attempt to located an optimal design.

While it might be thought that results that vary from run to run ought to be avoided, it turns out that stochastic search methods are often very robust in nature: a straightforward random walk over the inputs is clearly no repeatable if a truly random sequences are used, nonetheless, such a very simple search is the only rational approach to take if absolutely no information is available on the functions to be dealt with. A random search is completely unbiased and therefore cannot be misled by features in the problem. Although it is almost always the case in design that some prior information is available on the functions being dealt with, the pure random search can be surprisingly powerful and it also forms a benchmark against which other methods can be measured: if a search cannot improve on a random walk, few would argue that it was a very appropriate method …

An essential distinction may further be made between searches that work with one design at a time, that will be covered in more details in the dedicated local optimization lecture, and those that seek to manipulate populations or sets of designs, that will be further detailed in the dedicated global optimization lecture. 

Population-based search has gained much ground with the advent of cluster and parallel-based computing architectures since the evaluation of groups of designs may be readily parallelized on such systems. Perhaps, the most well known of such methods are those based on the so-called evolutionary methods  and those that use groups of calculations to construct approximations to the real objectives and constraints, namely surrogate-based optimization (SBO) exploiting so-called Design of Experiments (DoE) and Response Surface Methods (RSM). 

Evolutionary methods have a number of distinct origins and development histories but can nevertheless be classified by a single taxonomy. Many well known methods exist, let us cite simulated annealing (SA), genetic algorithms (GA), evolutionary strategies (ES) among which the more recent swarm intelligence algorithms and artificial immune systems (AIS).

It must be underlined that DoE and RSM methods are not optimizers per se : they are rather techniques that allow complex and computationally expensive optimization problems to be transformed into simpler tasks that can be tackled by the methods outlined in the previous two paragraphs. Essentially, these are curve fitting techniques that allow the designer to replace calls to an expensive analysis code by calls to a curve fit that aims to mimic the real code. Such methods all work in two phases: first, data is gathered on the nature of the function being represented by making a judiciously selected series of calls to the full code, usually in parallel and the placing of these calls in the design space is often best achieved using formal DoE methods, which aim to cover the search space in some statistically acceptable fashion. Then, when the data is available, the second phase consists in constructing a curve fit through or near the data, such curve fits being often termed “Response Surfaces”. The choice of the RSMs that may be used is quite wide and will depend on the nature of the problem being tackled and the quantities of data available.  Sometimes, the initial RSM will not be sufficiently accurate in all the areas of interest and so an iterative updating scheme may then be used where fresh calls to the full analysis code are used to provide additional information, aiming for the Graal quest of exploration/exploitation balance. These important topics will be further discussed in the lecture providing complements on surrogate based optimization for engineering design.  


Because establishing the gradient of the objective function in all directions during a search can prove difficult, time consuming and sensitive to noise, a variety of search methods have been developed that work without explicit knowledge of the gradients. These methods may be grouped in a variety of ways and are known by a range of names. As has already been mentioned, perhaps the best term for them collectively is zeroth order methods (as opposed to first-order methods, which draw on the first differential of the function) but the term direct search is also often used. The most common distinction within these methods is then between pattern/direct searches and the above cited stochastic/evolutionary algorithms. This distinction is both historical, in that pattern/direct search methods were developed first, and also functional since the stochastic and evolutionary methods are generally aimed at finding multiple optima in the landscape (such methods will be covered in the dedicated global optimization lecture), while pattern/direct search methods tend simply to be trying to find the location of the nearest optimum without recourse to gradient calculations. In either case, it is clear that the problems of obtaining gradients by finite differencing in a noisy landscape are immediately overcome by simply not carrying out this step. It is also the case that these methods are often capable of working directly with discrete variable problems since at most stages all that they need to be able to do is to rank alternative designs. If, however, the problem at hand is not noisy, gradients can be found relatively easily and only a local search is required, it is always better to use gradient-based methods such as the conjugate or quasi-Newton-based approaches, to be covered in the dedicated local optimization lecture. When there are modest amounts of noise or the gradients are modestly expensive to compute, no clear-cut guidance can be offered and experimentation with the various alternatives is then well worthwile. Many hybrid approaches try and combine methods from the different classes.

2.1
Surrogate-based optimization


As has been mentioned here above, an adequate and general answer to optimization based on long running and computationally intensive analysis lies in the exploitation of surrogate models. Recent advances in Surrogate-Based Optimization (SBO) indeed bring the promise of efficient global optimization to reality.  A review of the state-of-the-art constructing surrogate models and their use in optimization strategies is to be found in references 
 
 
.

SBO uses surrogates or approximations in lieu of the expensive analysis results to contain the computational time within affordable limits. Engineering design is indeed concerned with the making of decisions based a.o. on computationally intensive analysis, which directly impact the product or service being designed. A great deal of analysis is invested to understand the physical background to the decisions to be taken. In modern gas turbine design offices, the computational power needed to support advanced decision making can be prodigious and, even with the latest and most powerful computers, designers still wish for a greater understanding that can be gained by straightforward use of the familiar analysis tools such as those coming from the fields of Computational Fluid Dynamics (CFD) or Computational Structural Mechanics (CSM). And one way to gaining this desirable increased insight into the problems being studied and their conception space is via the use of surrogate models, also often termed meta-models. This topic will be further discussed in the lecture dedicated to complements on surrogate based optimization for engineering design.

[image: image3.jpg]}
A NATO
\4% OTAN













































� A.J. Keane and P.B. Nair, Computational Approaches for Aerospace Design, The Pursuit of Excellence, John Wiley and Sons, Ltd, 2005, ISBN-13 978-0-470-85540-9.


� Zitzler E., Deb K. and Thiele L., Comparison of multi-objective evolutionary algorithms: Empirical results, Evolutionary Computation, 8, Number 2, 2000.


� E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the Strength Pareto Evolutionary Algorithm, In Giannakoglou K., Tsahalis D., Périaux J., Papailou P., Fogarty T. Eds, Proceedings of the EUROGEN-2001 Conference (Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems), 2002, pp. 95-100.


� .K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA II, Evolutionary Computation, IEEE Transactions on In Evolutionary Computation, IEEE Transactions on, Vol. 6, No. 2. (07 August 2002), pp. 182-197.


� Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan (editors), Advances in Multi-Objective Nature Inspired Computing, Springer, 2010.


� Luis V. Santana-Quintero, Alfredo Arias Montaño and Carlos A. Coello Coello, A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization, in Yoel Tenne and Chi-Keong Goh (editors), Computational Intelligence in Expensive Optimization Problems, Springer, 2010.


� Fabio Freschi, Carlos A. Coello Coello and Maurizio Repetto, Multiobjective Optimization and Artificial Immune Systems: a Review, in Hongwei Mo (editor), Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies, pp. 1--21, Medical Information Science Reference, Hershey, New York, 2009


� L.T. Bui, K. Deb, H.A. Abbass, D. Essam, Interleaving guidance in evolutionary multi-objective optimization, Journal of Computer Science and Technology, Volume 23, No 1, pp. 44-63, 2008.


� Carlos A. Coello Coello, Evolutionary Multi-Objective Optimization: Some Current Research Trends and Topics that Remain to be explored, Frontiers of Computer Science in China, Vol. 3, No. 1, pp. 18--30, 2009


� .J. Forrester and A.J. Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, Volume 45, Issues 1-3, January-April 2009, pp. 50-79.


� N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker, Surrogate-based analysis and optimization, Progress in Aerospace Sciences, Volume 41, Issue 1, pp. 1-28, 2005.


� Forrester, A., Sobester A., Keane A., Engineering Design via Surrogate Modelling, A Practical Guide, John Wiley & Sons Ltd, 2008





RTO-EN-AVT-167
2 - 1

2 - 8
RTO-EN-AVT-167

RTO-EN-AVT-167
2 - 7






Introduction and Terminology
Lecture Series AVT-167


Strategies for Optimization and Automated Design
of Gas Turbine Engines


Ingrid Lepot


Cenaero


October 26, 2009







Outline


What is optimization ?


A taxonomy of optimization, to classify
I the problems
I the techniques that have been developed to solve them


Engineering design via surrogate modeling


AVT167 - Introduction (Lecture 1) copyright@cenaero 2009 2 / 36







Optimization may be defined as


The search for a set of inputs X (not necessarily numerical)
that minimize (or maximize) the outputs of a function f(x)
subject to inequality and equality constraints


The functions may be represented by simple expressions, complex computer
simulations, analog devices or even large-scale experimental facilities


What do we know ? → data
What do we want to achieve ? → objective function(s)
What do we need to decide ? → variables
What limits our ability to decide ? → bounds and constraints
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Definition of an optimization problem


minimize f (x)
subject to gi (x) ≥ 0 for i = 1, . . . , p


hj(x) = 0 for j = 1, . . . , q
xl ≤ x ≤ xu


x = {x1, x2, . . . , xn}T : a decision variable ∈ IRn


f : the objective


gi and hj : inequality and equality constraints


xl and xu : the explicit bounds on the variables (may be infinite)


We want to find an optimal solution : an x∗ such that


f (x∗) ≤ f (x) ∀ x
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Definition of an optimization problem


maximize f (x)
subject to gi (x) ≥ 0 for i = 1, . . . p
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Definition of an optimization problem


−minimize −f (x)
subject to gi (x) ≥ 0 for i = 1, . . . p
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Problem classification


Inputs: Some or all inputs are nonnumeric ⇒ optimal selection is the
subject of an entirely distinct set of approaches


All inputs numeric: continuous and/or discrete variables


Outputs:
I Single goal to be minimized/maximized
I Multiple goals
I Presence or absence of constraints, from simple bounds to extremely


complex relationships with the inputs


Type of functional relationship between inputs/outputs:
I Linear, nonlinear, discontinuous
I Stationary, time dependent or stochastic in nature
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Multiobjective Optimization (MOO)


Most realistic optimization problems (particularly those in design
optimization) require the simultaneous optimization of more than one
objective.


“Minimize” F (x) =



f1(x)
f2(x)


...
fm(x)


 m = 1 → Mono-objective
m ≥ 2 → Multi-objective


subject to g(x) ≥ 0
h(x) = 0
xl ≤ x ≤ xu


Generally conflicting with each other


“Minimize” means finding a solution which would give the values of all the
objective functions acceptable to the decision maker.
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Multiobjective optimization


Aggregate technique


Most intuitive approach


Combine all the objectives into a single one, usually by using weighted
sum


Objective ; min
∑m


i=1 ωi fi (x)


where ωi ≥ 0 and
∑m


i=1 ωi = 1.


ωi : weighting coefficients representing the relative importance of the
m objectives
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Multiobjective optimization


True multiobjective optimization techniques


Keep the objectives separate during the optimization process


More appropriate with competing and conflicting objectives that are
hard to balance


No single optimum solution, any solution will be a compromise


Role is to identify the solutions which lie on the trade-off curve,
known as the Pareto Front (none of the objectives can be improved
without prejudicing another)


Provide a range of solutions, from which users can choose the better
compromise
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Multiobjective optimization


x∗ is Pareto optimal or a non-dominated solution if there exists no
other solution x such that


fi (x) ≤ fi (x
∗) for all i = 1, . . . ,m and


fj(x)<fj(x
∗) for at least one j


The set of all Pareto optima (x) = Pareto optimal set


The set of all nondominated objective vectors (f )= Pareto front
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Search methods classification


Search methods may be classified in a number of ways ...


Optimal selection (Operational Research), requires sufficiently fast
analysis methods are used to model the problem and generally work
by some sort of exchange algorithm or list-sorting process


Solution of linear problems, almost universally solved using linear
programming and the so-called simplex of revised simplex method


The “rest”, i.e. dealing with nonlinear numeric problems, form
much the largest collection of approaches


I Local optimization


I Global optimization
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Dealing with nonlinear numeric problems


Distinction between:


Search methods that need information on the local gradient


Those that do not, typically termed zeroth order


Further distinction between:


Approaches that can deal with constraints


Those that cannot


Those that just need feasible starting points


Methods that can not deal with constraints directly can be augmented by
the addition of penalty functions to the objective(s) being optimized that
aim to force designs towards feasibility as the search progresses by
modifying the goal functions
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Dealing with nonlinear numeric problems


Other categorization:


Deterministic in nature


Have some stochastic element


Further distinction:


Searches that work with one design at a time


Those that seek to manipulate populations or sets of designs
Population based search has gained much ground with the advent of
cluster and parallel-based computing since the evaluation of groups of
designs may be readily parallelized.
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Local and Global Optimization


Fastest optimization algorithms seek only a local solution, a point at which
the objective function is smaller than at all other points in its vicinity.


I Local Optimization


But not always find the best of all minima → depends on the starting
point. See figure


Global solutions are highly desirable in some situations.


I Global Optimization


Global optimization thus aims at determining not just a local minimum
but the smallest local minimum (or at least an estimate of it).


But global solutions are usually more difficult to identify than local ones.
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Local and Global Optimization
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Convergence towards different local minima with respect to starting points
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Local and Global Optimization


Fastest optimization algorithms seek only a local solution, a point at which
the objective function is smaller than at all other points in its vicinity.


I Local Optimization


But not always find the best of all minima → depends of the starting point.


Global solutions are highly desirable in some situations.


I Global Optimization


Global optimization thus aims at determining not just a local minimum
but the smallest local minimum (or at least an estimate of it).


But global solutions are usually more difficult to identify than local ones.
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Local Optimization


Only information about points from the immediate neighbourhood of
the current point is used in updating the solution.


Such methods are expected to converge to a local minimum close to
the starting point.


I Global structure of an objective function is unknown to a local method.
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Local Optimization


In general, a local optimization method is iterative and is designed to
generate a sequence of points


x0, x1, . . . , xk , . . .


beginning at x0 and hoping that this sequence converges to a solution.
In deciding how to move form one point xk to the next xk+1, a local
method uses information about the function f at xk and possibly also
information from earlier iterates x0, . . . , xk−1.


Stop when


no progress can be made


a solution has been approximated with sufficient accuracy
(‖∇x f ‖ small because theoretically at a local minimum it is zero).
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Local Optimization


Local searches deal with:


establishing the direction in which to move


establishing the step size to take (line-search or trust-region
techniques)


Iteratively improve the initial guess x0 to find (local) optimal x∗ by using


xk+1 = xk + α sk


where


sk is the search direction


α is the length of the step
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Local Optimization : Gradient-based methods


First-order methods (gradients) :


I Steepest-descent method


I Conjugate-gradient method


Take second-order information into account
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Local Optimization : Second-order methods


Newton method uses curvature information
to take a more direct route than steepest descent method
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Local Optimization : Second-order methods


Advantage


rapidly converge


Disadvantages


lack of global convergence


require second-order derivatives


Advanced local methods


Quasi-Newton methods (create and update approximations to the
second derivatives)


Sequential Quadratic Programming (SQP) method


Augmented Lagrangian method


Interior point method


→ designed to handle constraints
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Local Optimization


Advantage


used on the right kinds of problems (e.g. convex, unimodal), can be
very computationally efficient


Disadvantages


starting point within a neighbourhood of the global minimum,
otherwise might get stuck at a local optimum (good initial point not
easy to find)


need to compute derivatives (or approximations to them)
I Adjoint Method is an efficient way for calculating gradients even
for very large dimensional design space.


ill-suited for discrete variables or noisy objective functions


not effective for problems where design space is highly discontinuous


furnish a single optimal solution while engineers often prefer multiple
design alternatives


very difficult to parallelize
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Local Optimization : Zeroth-order methods


Use only comparisons of values of objective function


Pattern/direct search methods


Seek to improve a solution based on points in the vicinity of the
current point by


I making a trial step in some direction
I seeing if it is better or not


Nelder-Mead algorithm or downhill simplex method
Advantages


I no derivatives ; can deal with discrete variables and non-continuous
functions


I simple to understand and easy to implement


Disadvantages
I not guaranteed to converge towards the global minimum
I less reliable than gradient-based methods
I may be slow
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Global Optimization


The whole design space is to be explored so as to aim for the global
optimum.


Global optimizers


do not require first or second-order derivatives;


attempt to find the global optimum, typically by allowing decrease as
well as increase of the objective function.


I generally much more expensive than local methods
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Global Optimization


Global Optimization techniques


↙ ↘


Deterministic Probabilistic
Branch and Bound Genetic algorithms


Outer approximations Simulated annealing
Particle Swarm


Multistart methods
Hybrid methods
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Global Optimization : Branch and Bound


Systematic enumeration of all
candidate solutions


Especially appropriate for
combinatorial (finite but usually
large number of feasible solutions)
optimization


General idea:
A relaxation of the original problem is
constructed, solved and refined by
partitioning the feasible domain.
Subproblems are built on the
sub-domains and are successively
refined until the sub-domain under
study is guaranteed not to contain a
global optimum or a better optimum
than the one found so far.
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Global Optimization : Genetic Algorithms


Survival of the fittest


Starting from a random population
→ each individual is assigned a fitness via the objective function.


In the selection step, certain individuals are chosen to proliferate and
to form a new population.


Operators like Crossover and Mutation are applied to individuals of
the population with prescribed probabilities.


Evaluate the new population.


New generations are formed until the population has converged or a
terminal criterion is reached.


I Many alternatives for every step exist
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Global Optimization : Genetic Algorithms


Advantages


very useful for engineering problems with
I multiple optima
I a noisy objective function
I multiple objectives
I discrete design variables and mixed-discrete variables
I discontinuous function
I high-dimensional parameter space


able to quickly find promising regions in the search space


easy to parallelize


Disadvantages


require more evaluations to converge, compared to gradient-based
methods


tuning of parameters


inefficient in fine tuning the solution
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Multiobjective Optimization


Why are GAs appropriate for multiobjective optimization ?


In MOO, we seek a set of possible solutions.
I at the end of the GA optimization, each individual of the population


can represent a different trade-off between the objectives
I find several members of the Pareto optimal set in a single run
I with gradient-based methods, lots of runs are needed


Less sensitive to the shape of the Pareto front (discontinuous or
concave Pareto fronts)


Same advantages than for mono-objective optimization
(parallelization, multi-disciplinarity, uncomputable functions, handling
of noisy functions, . . . )
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Multiobjective Optimization


Multiobjective Optimization techniques


↙ ↘


Non-Pareto techniques Pareto-based techniques
Aggregating approach MOGA
ε-constraint method NSGA - NSGA-II


VEGA NPGA - NPGA2
Target-vector approaches SPEA - SPEA2


PAES
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Global Optimization : Hybrid methods


Global explorer + Local exploiter


General idea:


Starting with a global method → evolution
I able to explore large and entire design space
I but inefficient in finding accurate solution


→ Combination with local optimization procedure


Fine-tuning with a local method → individual learning
I The local search is applied to find a better solution in the
convergence region e.g. after the GA loop or within the GA loop.


GA + local search = Memetic algorithms


AVT167 - Introduction (Lecture 1) copyright@cenaero 2009 31 / 36







Surrogate based optimization


What is a surrogate model ?


Low cost replacement of the original function for a wide variety of
purposes


Educated guess as to what an engineering function might look like,
based on a few points in space where one can afford to measure the
function values


Basic idea: Avoid the temptation to invest one’s computation budget in
answering the question at hand and, instead, invest in developing fast
mathematical approximations to the long running computer codes
⇒ trade-offs exploration and insights gain
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Surrogate based optimization


minimize f (x)
subject to g(x) ≥ 0


h(x) = 0
xl ≤ x ≤ xu


→


minimize f̃ (x)
subject to g̃(x) ≥ 0


h̃(x) = 0
xl ≤ x ≤ xu


f̃ , g̃ and h̃ are computationally cheaper to run.


Surrogate models f̃ , g̃ and h̃ are constructed based on modeling the
responses of the accurate functions f , g and h to a limited number of
carefully chosen data points.


I Importance of Sampling / Design of Experiments and Infill criteria
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Surrogate based optimization
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Surrogate based optimization
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Robust Optimization


Aims at dealing with uncertainty


Seek designs that are less sensitive to the presence of uncertainty in
the system, without removing the source of uncertainty.


Reduce the variability in the performance of a system, along with
seeking improvement in the mean performance.


Main aspects:


Identification, modeling and representation of uncertainties
I probability theory
I nonprobabilistic approaches


Propagating uncertainties to quantify their impact on system
performance


Formulation and solution of an optimization problem with appropriate
objective and constraint functions that ensure the optimum solution
obtained is robust
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ABSTRACT 


The first part of this lecture describes the basics of global optimizations systems with emphasis 
on those based on evolutionary strategies and the use of metafunctions to accelerate the 
convergence. The basic method is illustrated by the optimization of a 2D turbine blade. 
It is followed by a description on how to extend the method to a multidisciplinary optimization. 
The latter is illustrated by the optimization of a radial compressor impeller. It is shown how such 
a procedure can lead to innovative designs with high performance. 
Further discussed and illustrated by an example are the procedures that may help to guarantee 
the performance over a wide operating range (Multipoint Optimization).  
The next chapter explains the notion of Robustness and how to verify that small changes in 
operating conditions or design and manufacturing errors do not compromise the results.  
The last part discusses the techniques that are available to handle designs that have more than 
one objective (Multiobjective Optimization). 
 


1. INTRODUCTION 


The main goal when designing gasturbine components is to achieve light, compact and highly efficient 
systems while reducing the cost and the duration of the design cycle. The traditional trial-and-error 
process is now replaced by computerized design systems defining the optimum geometry for a required 
performance. They make use of a search technique to find the geometry that is optimum according to a 
performance prediction method, while respecting the design constraints.  


Advanced design systems must allow full use of all the 3D geometrical features that may improve 
performance i.e. lean and sweep. Any limitation of the geometry is acceptable only if it is imposed by 
mechanical (stress), manufacturing or cost limitations. The optimal performance can only be guaranteed if 
all the real flow phenomena are taken into account i.e. if the performance predictions are made by 3D 
Navier-Stokes (NS) solvers. Any use of approximate (incorrect performance measuring systems) may lead 
to a false optimum. However those analysis tools require a large amount of computer effort, leading to 
excessive design cost. Hence methods must be developed that allow limiting the cost and time without 
compromising on the result.  


The system must also provide realistic designs i.e. that satisfy the mechanical and geometrical 
constraints and guarantee the requested life time of the device. Satisfying all these objectives not only 
requires the use of acoustics, stress and heat transfer analysis methods (multidisciplinary optimization) 
but also requires a compromise to satisfy the conflicting objectives (multiobjective optimization). High 
performance must also be guaranteed over the whole operating range (multipoint optimization). A fast 
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and fully automated design system is required to achieve all this within a limited time and cost 
Following describes optimization systems that reach these objectives in an efficient way i.e. with 


improved convergence, while taking into account the design and off-design operating conditions and 
constraints imposed by other disciplines. These methods are illustrated with different examples related to 
turbomachinery. 


An optimization system consists of following components: 
• A parameterized definition of the geometry 
• An Objective Function (OF) expressing the design goals in a mathematical way. 
• A performance prediction system, inclusive automatic grid generators, to providing the input for 


the OF for each newly proposed geometries 
• A search mechanism that defines the design parameters that correspond to the best performance 


while satisfying the constraints (geometrical, mechanical, etc.)  


2. SEARCH MECHANISMS 


There are two main groups of search mechanisms: 
The analytical ones, who calculate the required geometry changes in a deterministic way from the output 
of performance evaluations. A common one is the steepest descend method approaching the area of 
minimum OF by following the path with the largest negative gradient on the OF surface (Fig 1). This 
approach requires the calculation of the direction of the largest gradient of the OF and the step length. A 
comprehensive overview of this type of optimization techniques is given in the lecture of J. Peter [1].  
Zero-order or stochastic search mechanisms require only function evaluations. They make a random or 
systematic sweep of the design space or use evolutionary theories such as Genetic Algorithms (GA) or 
Simulated Annealing (SA) to find the optimum parameter combination. Zero order methods may require 
more evaluations than gradient methods but the latter have more chances to get stuck in a local minimum. 
The present chapter concerns methods using zero order search mechanisms in combination with systems 
that allow reducing the computational effort by reducing the number of evaluations. 


A systematic sweep of the design space, defining v values between the maximum and minimum 
limits of each of the n design variable requires vn function evaluations. Fig.1 illustrates how such a 
systematic sweep, calculating the OF for 3 different values of X1 and X2, provides a very good estimation 
of where the optimum is located with only 9 function evaluations. This method is a valid alternative for 
analytical search methods for small values of n. However it requires more than 14. 106  evaluations for n 
=15. 


 
Fig. 1  Zero order sweep of the 2D design space 
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Evolutionary strategies such as GA and SA can accelerate the procedure by replacing the 
systematic sweep by a more intelligent selection of new geometries using in a stochastic way the 
information obtained during previous calculations. Simulated Annealing (SA) is derived from 
the annealing of solids [2]. At a given temperature, the state of the system varies randomly. The 
new state is immediately accepted if it has a lower energy level. If however the variation results 
in a higher level state, it is accepted only with a probability Pr that is function of the temperature. 


T
EE actopt


e
−


=Pr  
As the temperature decreases, the probability of accepting a higher state becomes lower. In a 
simulated annealing algorithm, the design parameters characterize the state of the system whereas 
the objective function characterizes the energy level. 


The method presented in present paper uses a Genetic Algorithm to find the optimum. 
This is a numerical technique, which simulates Darwin's evolutionary theory stating that the fitter 
survives [3]. According to this theory, an individual (geometry) with favorable genetic 
characteristics (design variables) will most likely produce better offsprings. Selecting them as 
parents increases the probability that individuals of the next generation will perform better than 
the previous one. The method has been developed by Prof. Ingo Rechenberg (Berlin, 1964) [4] 
who optimized an articulated plate with 5 degrees of freedom (design parameters) for minimum 
drag. Each articulation can take 53 values which results in a total number of  
551 = 345 025 251 possible geometries. The solution is quite obvious but difficult to find in a 
mathematical way. 


 


 
Fig. 2 Articulated plate of Ingo Rechenberg 


 
In a standard binary coded GA, the real valued design parameters Xi, defining the geometry are 


jointly represented by a binary string.  


 
The substring length l defines the number of digits of a design parameters can take. n is the number of 
design parameters. Low values of the substring length decrease the optimization effort by limiting the 
possible number of solutions, but the GA may not be able to accurately locate the minimum because of a 
too low resolution. 
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Fig. 3 Schematic of Genetic Algorithm  
 


The operational principle of a standard GA is shown in Fig. 3. Pairs of individuals (parents) are 
selected from an initially random population of N geometries; each one is represented by a binary coded 
string of length n.l. Genetic material is subsequently exchanged between them (crossover), altered within 
the offspring (mutation), followed by an evaluation of each new individual. This process is repeated to 
create the N individuals of the next generation. The whole procedure is repeated for tmax generations and it 
is assumed that the best individual of the last generation is the optimum. 


The GA software can be found on the Webb. The quality of the GA optimizer is measured by: 
• the required computational effort i.e. the number of performance evaluations that are needed to 


find that optimum (GA efficiency). 
• the value of the optimum (GA effectiveness). 


The tuning of the GA parameters (N, l, t) to accelerated the convergence will be the subject of a second 
lecture [5]   


The main issue of the GA is the selection scheme. One of the many selection schemes that have 
been proposed is the roulette (Fig. 4left): a system in which the chance that an individual is selected 
increases proportional with 1/OF. This scheme favors the best individuals as parent. It is elitist and has 
larger chances to get stuck in a local optimum. 


 


 


 
Fig. 4  Roulette (left) and tournament (right) selection 
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In the tournament selection (Fig. 4right), S individuals are chosen randomly from the population and 


the individual with the lowest OF is selected as parent. The same process is repeated to find the second 
parent. The parameter S is called the tournament size and can take values between 1 and N. Larger values 
of S give more chances to the best samples to be selected and to create off-springs. It favors a rapid, but 
maybe premature, convergence to a local optimum. Too small values of S result in a more random 
selection of parents. Tests have shown that a standard value of S=2 gives the best 
results. 


Zero order search methods, even supported by evolutionary theory, also require an excessive 
number of performance evaluations. This becomes prohibitive in cases with expensive performance 
evaluators. One way to speed up the convergence is by working on different levels of sophistication and 
by making better use of the knowledge, gained during previous designs, for subsequent ones. This is 
achieved by using fast but approximate prediction methods to find a near optimum geometry, which is 
then further verified and refined by the more sophisticated but also more expensive analyzer.  


 


 
 


Fig. 5 Flowchart of optimization system 


Such a system is illustrated by the flow chart on Fig. 5. [6]. The fast but less accurate optimization 
loop is indicated in red, the expensive but accurate one in bleu. The OF minimized by the GA is predicted 
by means of a Metafunction or surrogate model i.e. an interpolator using the information contained in the 
Database to correlate the performance to the geometry similar to what is done by a Navier-Stokes solver 
(NS). Surrogate models have the same input and output as the analysis method they replace. Once they 
have been trained on the data contained in the Database, they are very fast predictors and allow the 
evaluation of the OF of the many geometries, generated by the GA, with much less effort than a NS 
solver. Unfortunately the prediction is not always very accurate and the optimized geometry must be 
verified by means of a more accurate but time consuming NS solver. The results of this verification are 
added to the Database and a new optimization cycle is started. It is expected that a new learning on the 
extended Database will result in more accurate metafunction and that the result of the next GA 
optimization will be closer to the real optimum. The optimization cycle is stopped once the ANN 
performance is in agreement with the NS calculations i.e. once the GA optimization has been made with 
an accurate performance predictor.  


The main advantage of this iterative procedure is the fact that, once the system is converged, there will 
be no discrepancy between the results of a Metafunction prediction and the one obtained by a Navier-
Stokes calculation. Such an agreement is not guaranteed if a correlation or simplified solver (Euler or NS 
on course grid) are used because the inaccuracy is not released during the design process This might drive 
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the GA to a false optimum.  
The accuracy of the Metafunction is a major factor defining the convergence of the system to the 


optimum. A GA optimization with an accurate Metafunction would result in a  one step optimization, 
requiring only one extra performance analysis. The parameters influencing this convergence are discussed 
in a separate lecture [5]. 


The main purpose of the Database is to provide information about the relation between the geometry 
and the performance. The more general and complete this information, the more accurate may be the ANN 
and the closer the first optimum geometry, defined by the GA, will be to the real optimum. Hence a good 
Database may considerably speed up the convergence to the optimum. 


Any approximating function can be used as metafunction. Popular ones are: Response surface, 
Artificial Neural Network (ANN), Radial Basis Functions (RBS), Kriging, etc. They will be explained in 
more detail in a later lecture [5] together with the way to define a more representative Database. 


3. 2D TURBINE BLADE OPTIMIZATION 


The convergence speed is also strongly influenced by the number of unknown that are needed to 
define the optimum geometry. Selecting parameters that have a direct relation to the performance, such as 
blade angles, pitch to chord ratio, etc. provide a more straightforward relation between geometry and 
performance. The corresponding ANN is simpler and more easily found. Hence less iterations may be 
needed to reach agreement with the NS predictions. Another important characteristic is the continuity of 
curvature of the blade contour because any discontinuous change in curvature may result in a local 
velocity peak. 


3.1 Parameterization 
A good geometry definition avoids the generation of unrealistic blades while having enough geometrical 
flexibility to represent a large number of blade types. The latter is very important because the best 
geometry can only be found if it can be generated by the system.  
 


Table 1 2D turbine design parameters 
 


 
 


Parameterization is illustrated by the single point optimization of a turbine blade with outlet Mach 
number .9. The design requirements are summarized in Table 1. They include the operating conditions (β1 
and M2), flow characteristics (Re, γ, Tu (%) and geometrical constraints (Cax, pitch and trailing edge 
thickness, maximum cross section area, minimum and maximum moment of inertia and direction), 
required performance (β2 and losses). 


The blade geometry (Fig. 8) is specified by four key points (LE, 2, 3, 5) linked by four curves. The 
points LE and 2 are linked by a Bézier curve defined by three additional points. The lasts ones are located 
in such a way to ensure continuity up to the third derivative at point 2 and continuity up to the first 
derivative in point 3. A Bézier Curve with three additional polygon points is used to define the pressure 


Global Optimization Methods: Theoretical Aspects & Definitions  


3 - 6 RTO-EN-AVT-167 


 


 







side in the same way as the first part of the suction side. This curve is fully defined by β1blade, Rle, L4, αps, 
L3 and the tangent to point 2. Using the same Rle and L4 for both the suction and pressure side guarantees 
the continuity of the curvature radius at the leading edge. The trailing edge is defined by part of a circle 
whose radius Rte is specified by the Trailing edge thickness. The 2D blade geometry is thus fully defined 
by means of 15 parameters represented by G(n) : n=1,15  


 


 
 


Fig. 8  Parameterized definition of 2D turbine blade 
 
Fig. 9 shows 4 different types of turbine blades generated with this geometry model. For each blade 


one parameter is changed and its influence on the blade shape is shown. This figure demonstrates that the 
method is capable of representing the large variety of turbine blades encountered in industrial designs. 


 


 
Fig. 9  Different parameterized blade geometries 


 


3.2   Objective Function (OF) 
The OF based on Navier-Stokes results predictions measures in how far the geometry satisfies the 


Aero-requirements and reaches the performance goals that have been set forward. The same OF, but based 
on ANN results, drives the GA towards the optimum geometry.  


High efficiency however is not the only objective of an aerodynamic shape optimization. A good 
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design must respect the mechanical and manufacturing constraints. Some constraints must be satisfied 
without any compromise (i.e. maximum stress level) whereas others tolerate some margin (i.e. cost or 
weight) or can be corrected for after the design (adjusting the blade height to achieve the required mass 
flow). 


A possible way to satisfy objectives and constraints is by defining a pseudo-OF by summing up the 
penalty terms that are increasing when the constraints are violated [7]. This does not guarantee that each 
individual constraint will be satisfied but contributes to a easier convergence to the constrained optimum. 


Following lists some possible contributions to the pseudo OF.   
 


SideSGeomGMachMaeroBCaperfperfD PwPwPwPwPwOF ⋅+⋅+⋅+⋅+⋅=2     
 
Pperf   is the penalty for non optimum performance i.e. low efficiency (η) or high losses.  


[ ]0.0,1max η−=perfP          
 
PAeroBC     is the penalty for violating the aerodynamic boundary conditions. The purpose of this 
penalty is to enforce the design targets, such as the outlet flow angle (β2) or the mass flow etc. These 
penalties start increasing when the actual value differs from the target value by more than a predefined 
tolerance. Following is a typical expression for mass flow penalty: 


 
( )[ ] 2.0,02./max. −−= reqreqactimass mmmwP &&&       


 
i.e. the penalty starts increasing when the error exceeds 2% of the required mass flow. The rate of increase 
is defined by wi .  


 
PMach      is the penalty for non-optimum Mach number distribution. Analyzing the Mach number 
distribution may help to make a selection between blades that have nearly the same loss coefficient by 
decreasing the uncertainty due to transition predictions, or to favor Mach number distributions that are 
likely to perform better at off-design (see section 4. Multidisciplinary optimization). 
 
PGeom   is the penalty for violating the geometrical constraints. These are the constraints that do 
not influence the mechanical integrity but restrict maximum length and camber or assure dimensional 
agreement with other components. Another reason to introduce geometrical constraints may be to favor 
geometrical features that are known to improve the design or off-design performance i.e. progressive 
change of curvature, some prescribed lean or sweep laws, limiting camber of the uncovered turbine 
suction side, etc .  


 
PSide    is the penalty for violating any other constraint that might be imposed depending on the 
application i.e. weight, manufacturing and maintenance cost, etc   


3.3   Results 
The best blade of the initial database is used as starting geometry. The Mach distribution predicted 


by the NS and ANN are compared on Fig. 10a. The agreement is not perfect but the main features such as 
a shock at mid chord are predicted by the ANN.  


Fig. 10b compares the value of the OF predicted by the ANN with the one predicted by the NS 
solver during the design process. The value of the OF computed by the approximate model decreases until 
iteration 13 after which only very small improvements are found. The value predicted by the NS solver 
shows large discrepancies between both predictions at iteration 2, 5 and 9. It indicates that during these 
first design iterations, the ANN predictions are not very accurate because the Database does not 
sufficiently cover the relevant design space. However this shortcoming is remediated by adding new 
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geometries to the Database. As these new blades are close to the desired operating point they provide very 
valuable information and the ANN becomes more and more accurate. This convergence to the same OF 
value illustrates the self learning capacity of the proposed procedure. Starting from iteration 13 the ANN 
predictions are very reliable. The whole procedure could have been stopped after 15 iterations but has 
been continued to verify the good convergence. 


 


 
 


Fig. 10 Comparison of (a) Mach number distribution predicted by Navier-Stokes solve and  
ANN, trained on initial database and (b) between the ANN and the NS predicted OF 


 
Figure 11 shows the variation of the Mach number distribution and blade shape during the design 


process. The small constant velocity region on the suction side close to the leading edge and the low 
velocity on the pressure side close to the leading edge indicate that the incidence angle on the initial blade 
is too large. After the first modification (one GA and NS verification), this incidence angle has been 
partially reduced by decreasing the stagger angle. The shock intensity is also smaller but the suction side 
Mach number distribution is still wavy. The shock has completely disappeared after 13 design iterations. 
The stagger angle has decreased in order to adapt the blade geometry to the prescribed inlet flow angle. 
The smooth shock free Mach number distribution is reflected in the low loss coefficient (Table 1). 


 


 


Fig. 11  Evolution of the Mach number distribution and geometry during optimization 
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4. MULTIDISCIPLINARY OPTIMIZATION. 


Most mechanical constraints such as maximum stress and deformation have a direct impact on the 
turbomachinery integrity and must therefore be rigorously respected. Hence they cannot be imposed by a 
weak formulation as done for the geometrical constraints. Some of those constraints can easily be 
respected by a simple limitation of a design parameter. Bird ingestion resistance is often expressed by a 
minimum leading edge radius (RLE) . Corrosion may define the minimum trailing edge radius (RTE) and 
blade thickness (Bthickness). However most of the mechanically unacceptable geometries result from a 
combination of different parameters and cannot be avoided by reducing the feasible range of the 
individual design parameters. Hence, a large percentage of the design space will consist of 
geometries violating the constraint.  


A possible approach is a verification of the mechanical constraints by a Finite Element Analysis 
(FEA) before starting the Aero analysis on every geometry proposed by the GA. This sequential analysis 
is very time consuming and is easily be replaced by a parallel analysis shown on Fig. 12. It is an extension 
of the flow chart shown in Fig. 5. The GA, searching for the optimum geometry, gets its input from the 
Finite Element stress Analysis (FEA) as well as from the NS flow analysis. The same type of extension 
could also be made for the constraints related to heat transfer, acoustics, weight limitations, etc. 


 


 
 


Fig.12  Multidisciplinary optimization flow chart 
 
The main advantages of such an approach are: 
• The existence of only one “master” geometry i.e. the one defined by the geometrical parameters used 


in the GA optimizer. This eliminates all possible approximations and errors when transmitting the 
geometry from one discipline to another. 


• The existence of a global OF accounting for all disciplines. This allows a more direct convergence to 
the optimum geometry without iterations between the aerodynamically optimum geometry and the 
mechanically acceptable one. 


• the possibility to do parallel calculations. The different analyses can be made in parallel if each 
discipline is independent i.e. if stress calculations do not need the pressure distribution on the vanes or 
flow calculations are not influenced by geometry deformations. 
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The computational effort increases proportional with the number of different analyses that are 
needed for the performance evaluation of the GA proposed geometries. It can be drastically reduced if one 
can eliminate the unfeasible geometries before any expensive flow analysis is started i.e. if, in analogy 
with the aero analysis, one can formulate an approximate prediction model for mechanical characteristics, 
heat transfer, etc. to drive the GA 


The multidisciplinary optimization is illustrated by the design of a radial compressor impeller for a 
micro-gasturbine application with a diameter of 20 mm rotating at 500,000 rpm.. 


4.1  Geometry Definition 
The 3D radial impeller is defined by the meridional contour at the hub and shroud (Fig 13), the 


camber line of the main and splitter blade (Fig 14), the thickness distribution normal to the camber line 
(Fig. 15) and the number of blades. 


The hub and shroud meridional contours from the leading to the trailing edge are defined by third 
order Bézier curves (Fig 13). The coordinates of the control points are geometrical parameters that can be 
changed by the optimization program. Only 6 parameters are needed to define the meridional contour. 
Each of them has a limited range in which it can vary. The possible variations of the individual Bézier 
control points are shown by arrows in Fig. 13. The control point at the hub trailing edge is fixed by the 
prescribed outlet diameter and axial length. Most control points have only one degree of freedom because 
they are linked to other parameters in order to guarantee an axial inlet or radial outlet. The shroud leading 
edge diameter defines the variable impeller inlet height. Third order Bézier curves define also the inlet 
duct. Their control points are automatically adjusted to obtain a smooth link between the given radial inlet 
and impeller.  


 
 


Fig. 13 Meridional contour defined by Bézier control points. 
 
The blade camber lines at hub and shroud are defined by the distribution of the angle β(u) between 


the meridional plane m and the blade camberline (Fig. 14). The β distributions at hub and shroud are 
defined by third order polynomials: 


( ) ( ) ( ) ( ) 3
3


2
2


2
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with u the non-dimensional meridional length ( [ ]1,0∈u , 0 at the leading edge and 1 at the trailing edge). 
The camber line circumferential position θ (Fig. 14) is then defined by integration of:  


βθ tandmdR =  
β0 and β3 are the blade angles at leading- and trailing edge. This definition is used for both the main- 


and splitter blade, at hub and shroud. The splitter trailing edge angles are the same as the full blade values 
at hub and shroud. This results in 14 design variables for the blade camber line definition. 


The streamwise position of the splitter blade leading edge is also a design parameter. It is defined as 
a percentage of the main blade camber length and can vary between 20% and 35%.  
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Fig. 14 Definition of the blade camber line by β angle. 
 


The blade thickness distributions at hub and shroud are functions of two parameters: the thickness 
“LE” of the ellipse defining the leading edge and the trailing edge thickness “TE” (Fig. 15). The blade 
thickness is kept constant at the shroud (LE=TE=0.3 mm). The two parameters defining the blade 
thickness at the hub are design parameters and can vary between 0.3 to 0.6 mm. The same values are used 
for the main and splitter blade. 


 
 


Fig. 15 Thickness distribution along the camber line of the blade (not to scale). 
 


The number of blades could also be a design parameter to be optimized, but has been fixed to 7 for 
manufacturing reasons. This brings the total number of design parameters to 23. 


4.2   Analysis programs 
The TRAF3D Navier-Stokes solver [8] is used to predict the aerodynamic performance of the radial 


compressors. The computational domain starts at constant radius in the radial inlet (Fig. 13) and ends in 
the vaneless diffuser at r/r2 = 1.5 .  


A structured H-grid with 2x216x48x52 or approximately 1,080,000 cells is used for all 
computations to guarantee a comparable accuracy for all the samples stored in the database. The total inlet 
temperature is 293°K and the total inlet pressure is 1.013E+5 Pa. The design mass flow is 20 g/s. The wall 
temperature of the impeller is fixed at 400º K, as found in a previous study on the heat transfer inside the 
entire micro gas turbine [9].  


The commercial code SAMCEF [10] is used for the stress calculation. Quadratic tetrahedral 
elements are used as a compromise between element quality and automatic meshing. Similar grids with 
250,000 nodes and 160,000 elements are used for all samples. The grid is refined in areas of stress 
concentrations.  


The impeller tip speed of 523.6 m/s results in very high centrifugal stresses. Titanium TI-6AL-4V 
has been selected for its high yield stress over mass density ratio (σyield/ρ). The characteristics are: 
Elasticity modulus = 113.8E+9 Pa, Poisson modulus = .342 and mass density = 4.42E+3 kg/m3. 


A fillet radius of 0.25 mm is applied at the blade hub to limit the local stress concentrations. The 
unshrouded impeller has a tip clearance of 0.1 mm, which is 10% of the exit blade height. This is typical 
for these small impellers and one of the reasons for the moderate efficiencies.  
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4.3   Objective Function 
The OF is the weighted sum of several penalties: 
 


( ) ( ) ( ) ( ) ( )GPwGPwGPwGPwGOF MachMachmassflowmassflowstressstress
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The first penalty concerns the mechanical stresses.  


⎥
⎦


⎤
⎢
⎣


⎡ −
= 0.0,max max


allowable


allowable
stressP


σ
σσ  


where σmax is the maximum stress in the impeller. This penalty is zero when the stresses are below the 
allowable limit σallowable and increases linearly when the von Mises stresses exceeding that value. This 
weak formulation of the constraints does not guarantee that they are fully respected. However, it has the 
advantage that all geometries that have been analyzed provide information that leads towards the optimum 
geometry.  


The efficiency and Mass flow penalties are similar to the ones used for the 2D turbine. The penalty 
on the Mach number aims to favour Mach number distributions that are expected to be good at design 
point and remain good at off-design operation. It also has two contributions. The first one penalizes 
negative loading and is proportional to the area between the suction and pressure side when the pressure 
side Mach number is higher than the suction side one (Fig. 16). 
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1


0


0.0,max dssMsMP sspsMach  


 
 


Fig. 16 Negative loading and loading unbalance in a compressor with splitter vanes.  
 
The second Mach penalty increases with the loading unbalance between main blade and splitter 


blade. This penalty compares the area between the suction- and pressure side Mach number distribution of 
main blade Abl and splitter blade Asp, corrected for the difference in blade length (Fig. 16): 
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The weight factors of the OF are determined based on the knowledge gained in previous 
optimizations. The values used in present design are such that an efficiency drop of 1% is as penalizing as 
an excess in stress limit of 6.668 MPa. 
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4.4   Results 
The optimization starts from the outcome of a simple aerodynamic optimization without stress 


computation. It is called the “Baseline” impeller. Although this geometry has a good efficiency, it cannot 
be used because a mechanical stress analysis predicts von Mises stresses in excess of 750 MPa. It serves as 
a reference for further optimizations. 


An initial database containing a total of 53 geometries is used at the start. 13 geometries out of the 
64 initial ones defined by the DOE technique [5] could not be analyzed because of geometrical constraints 
(intersection of the main blade with the splitter blade). Two additional geometries have been added, 
namely the baseline geometry and the central case. The latter one is a geometry with all parameters at 50% 
of their range.  


Fig. 17 shows the convergence history of the optimization. The “aero penalty”, based on efficiency, 
Mach number and mass flow, the “stress penalty” and “total penalty”, obtained from the Navier-Stokes 
and FEA calculations, are compared to the ones predicted by the ANN. One observes a decrease of the 
discrepancy between both prediction methods with iteration number. This is the consequence of an 
increasing number of samples in the database, resulting in a more accurate ANN.  


Only 10 iterations are needed to obtain a very good agreement for the aero penalties. The ANN 
stress penalty is zero for every geometry proposed by the GA. However it takes more than 15 iterations 
before the FEA confirms that the proposed geometries satisfy the mechanical requirements.  


The good agreement in both stress- and aero penalties, over the last 18 iterations, indicates that the 
ANN predictions are reliable. It means that the same optimum geometry would have been obtained if the 
GA optimization had been driven by the more sophisticated NS and FEA analyses. Hence no further 
improvement can be expected. The optimization procedure could already have been stopped after 35 
iterations. 


 


 
 


Fig. 17 Convergence history of the optimization. 
 
The aero penalty is plotted versus the stress penalty in Fig. 18. The geometries created during the 


optimization process are all in the region of low penalties. Most of them outperform the geometries of the 
database. Only a few geometries of the optimization loop have penalties of the same order as the database 
samples. Those geometries are the ones created during the first 10 iterations where the ANN is still 
inaccurate.  
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Fig. 18 Aero penalty versus stress penalty for baseline, database- and optimization geometries. 
 
Fig. 19 is a zoom on the low penalty region of Fig. 18. A large number of geometries have zero 


stress penalties but with different aero penalty. The geometries corresponding to iteration  17, 49 and 25 
have the lowest aero penalty.  


 


 
 


Fig. 19 Zoom on the low penalty region of Fig. 18. 
 
From all geometries created during the optimization, iteration 25 performs best. It has a little lower 


efficiency than iteration 17 but less loading unbalance and the stresses are 33 MPa below the limit. In spite 
of its high efficiency the baseline impeller shows a high aero penalty because of a too high mass flow. The 
influence of the stress penalty on the optimization is clear by comparing the values of the baseline impeller 
with the ones of iteration 25. The reduction of the maximum stress level with 370 MPa is at the cost of a 
2.3 % decrease of efficiency (21). 


Figure 20 compares the von Mises stresses in the baseline geometry with the ones of iteration 25. 
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The drastic reduction in stress is the consequence of:  
• the reduced blade height at the leading edge, resulting in lower centrifugal forces at the leading 


edge hub 
• the increase of blade thickness at the hub 
• the modified blade curvature resulting in less bending by centrifugal forces 


 


  
 


Fig. 20 von Mises stresses due to centrifugal loading in the baseline (left) and optimized (right) impeller. 


The blade lean is defined as the angle between the blade leading edge and the meridional plane 
(positive in the direction of rotation). It is a result of the integration of the β distribution at hub and shroud, 
while limiting the rake at the outlet. Its impact on stress and efficiency is shown in Fig. 21. One observes a 
rather clear relation between lean and stress. It shows that the lowest stresses can be expected around -
15.0º. Several geometries with good efficiency are found for lean angles between -40.0º to -5.0º. The drop 
in efficiency for lean angles above -5.0 º suggests that in present application the best impellers have some 
negative lean. This unexpected result is a major outcome of the optimization. 


 


 
Fig. 21 Blade lean versus stress and efficiency for database and optimization geometries. 
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5. ROBUSTNESS 


Robustness characteerizes the insensitivity of the performance to small changes in operating 
conditions or geometrical changes (manufacturing inaccuracies).  


Small variations of incidence may trigger flow separation in turbomachinery components operating 
at the verge of separation (limited diffusion factor) and be at the origin of large performance variations. As 
will be demonstrated later this problem  can be avoided by a multipoint optimization. Small changes in 
operating conditions or flow characteristics may result in large performance changes due to a large shift of 
the transition point. This can be avoided by adding penalties on the predicted Mach number distribution to 
account for the expected changes at off-design operation.  


Small geometrical changes or manufacturing inaccuracies should not influence the performance. 
The results of the many geometries that have been analysed during the optimization process provide an 
indication of robustness. Figure 21 shows that a change in blade lean around the optimum value has 
almost no effect on stresses and efficiency. The design is robust in this respect.  


Fig. 22 shows the stress and efficiency versus blade thickness at the leading edge for all geometries. 
Non-dimensional values 0 and 1 correspond to a blade thickness of respectively 0.3 and 0.6 mm. The 
database geometries are at 25% or 75% of the range suggest that the blade hub thickness does not have 
much impact on efficiency. Hence thicker blades are selected because it lowers the stresses. The figure 
also shows that thicker blades are more likely to have a lower stress than thin ones and that the stresses are 
not very sensitive to variations near the maximum thickness.  


 


 
 


Fig. 22 Stress and efficiency versus blade thickness for database and optimization geometries. 
 


6. MULTIPOINT OPTIMIZATION 
 


Multipoint optimization aims for a design that performs well in more than one operating point. The 
simplest straight forward approach is to analyze every candidate geometry at the different operating 
conditions and to calculate a weighted value of the performance. This is not only expensive in terms of 
flow analysis but often compromised by practical problems.  


When doing multipoint optimization one should make distinction between cases with varying inlet 
conditions or varying outlet conditions (back pressure). In the latter case one cannot a priori guarantee that 
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the proposed component can operate steadily at each point i.e. that the NS solver can provide a converged 
solution at the required operating conditions. In fact, it is not a priori known at what pressure ratio a 
compressor will surge because the change in mass flow with pressure ratio depends on the still unknown 
performance curve of the compressor. Less problems occur at the maximum mass flow side because any 
low back pressure provides a good idea of the choking or maximum mass flow and does not create 
stability problems. 


The stability problem is less likely to occur for turbines. Operating with a favorable pressure gradient 
facilitates the convergence of the N.S. calculations and changing inlet angle of back pressure is less of a 
problem.  


Variation of the inlet conditions is less risky in terms of calculation stability than change in outlet 
conditions. 


Following describes an application where the off-design corresponds to a known variation of the inlet 
conditions and where the outlet conditions have less impact on the procedure. It is followed by a 
description of the procedure that has been put in place to do a multipoint optimization for compressors 
where the surge point prediction is a major issue.  


6.1  Multipoint optimization of a Low Solidity Diffuser  
Radial compressors with vaned diffusers provide high pressure recovery and efficiency but the 


operating range is limited by stall, at positive incidence, and diffuser throat choking, at negative incidence. 
Vaneless diffusers do not limit the maximum mass flow but have lower efficiency and minimum mass 
flow may be limited by vaneless diffuser stall. Low Solidity Diffusers (LSD) are characterized by a small 
number of short vanes and do not show a well defined throat section. They intend to stabilize the flow at 
low mass flow without limiting the maximum mass flow by choking. The solidity (chord/pitch) is 
typically of the order of 1 or less (Fig. 23). A multipoint optimization is mandatory for the LSD design 
because achieving a wide operating range is the major target.  


 


 
 


Fig. 23  Low Solidity Diffuser 
 


The optimization of the LSD described here is done for the 3 operating points listed in Table 2 . 
Inlet conditions are different for each operating point because they result from a different operation point 
of the impeller. It is not possible to impose a pressure ratio corresponding to the impeller mass flow 
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because maximizing the diffuser design- and off-design pressure ratio is the target of the optimization 
process. Hence the mass flow will be different for every geometry. However it is expected that the 
performance at the low Mach number flow with fixed inlet angle will not noticeable be influenced by a 
modest change in mass flow. 


Table 2   Diffuser inlet conditions at the 3 operating points 
 


 surge design choke 
Α (flow angle) 62.5o 52.8 o 37.5 o 
Mass flow 162.8 210.0 267.5 


 
The blade geometry is defined by a NACA thickness distribution superposed on a camber line defined 


by a 4 parameter Bezier curve  The 5th design parameter is a scale factor for the NACA thickness 
distribution (between .7 and 1.3). The 6th parameter is the number of blades (between 6 and 21). The last 
design parameter is the blade height. It is constant from leading edge to training edge but can be different 
for the prescribed impeller outlet width.  


The main performance parameters are the static pressure rise- and total pressure loss coefficient 
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They are calculated from the 3D Navier Stokes results obtained by means of the TRAF3D solver on a 
grid with 400 000. cells. 


Making the Database is quite costly because it requires analyzing every geometry at three operating 
points. The initial Database is therefore limited to only 10 randomly generated samples requiring 30 
Navier Stokes calculations. 


The outlet over inlet pressure ratio defines the outlet boundary condition and cannot be used as an 
objective for the optimization. Losses only are also not sufficient to measure the performance because 
minimum losses may be obtained without any pressure rise. One wants to achieve the maximum pressure 
rise with minimum loss to keep the maximum kinetic energy available for the downstream components. 
Hence one must also consider the losses that are generated to reach that pressure rise. 


The optimizer therefore aims to maximize following OF 


highhighmeanmeanlowlowhighhighmeanmeanlowlow wwwCpwCpwCpwOF ωωω ...))...(1( +++++−=  
This corresponds to a maximization of Cp while minimizing the losses. Taking into account that  


isentropicCpCp =+ω   
it is clear that minimizing the losses helps to reach the isentropic Cp. The latter is geometry dependent.  


The outcome of the optimization is illustrated on Fig. 24. All diffusers show low losses with an 
increase of Cp at all operating points up to Cp+ω=.74. Higher values of the latter give rise to increasing 
losses and a decrease of Cp at low mass flow. Iteration 17 is considered as the optimum because of only a 
small decrease of Cp at minimum mass flow. 


The Mach number distribution around the optimized vanes is shown on Fig. 25. One observes a small 
flow separation at minimum mass flow corresponding to the increase of the losses shown on Fig. 24. 
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Fig. 24  Performance criteria of LSD 
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Fig. 25  Mach number distribution in the optimized geometry at the three operating points 
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6.2   Multipoint optimization of a radial compressor impeller  
The mass flow in compressors is an outcome of a compressible flow calculation whereby the pressure 


ratio is imposed. Verifying if the target surge and choking mass flows are reached therefore requires 
knowing the corresponding pressure ratio before the calculation is made. The procedure developed at the 
VKI therefore calculates the flow at three predefined pressure ratios. A low one to find the choking mass 
flow, one corresponding to what is estimated the pressure ratio at design point and one at higher pressure 
ratio. This allows drawing a performance curve (indicated in bleu on Fig. 26) which is unlikely to satisfy 
the required choking mass flow. A simple scaling of the inlet section allows defining a new geometry that 
does satisfy this requirement. This first performance curve also allows a better definition of the design 
point pressure ratio. A last information is the pressure/mass flow slope allowing a guess of the pressure 
ratio at the required surge point mass flow. This is verified by an analysis of the scaled geometry and the 
resulting performance curve (red one) allows verifying if the targets are reached: i.e. choking mass flow, 
best efficiency at design mass flow and minimum pressure mass flow slope. A minimum of six flow 
analyses are required for each optimized geometry proposed by the GA. 


 


 
 


Fig. 26  Procedure for multipoint compressor optimization 
 


7. MULTIOBJECTIVE OPTIMIZATION 


7.1 Pseudo Objective Function versus Pareto front 
Cooling HP turbine blades allows increasing the thermal efficiency by operating at higher Turbine 


Inlet Temperature (TIT) while maintaining the lifetime of the turbine. However the cooling air does not 
contribute to the work output and should be minimized because of its negative impact on thermal 
efficiency. Hence minimizing coolant flow and increasing lifetime are conflicting objectives. One way to 
satisfy both requirements, already explained in section 4.3, is by defining a pseudo OF that increases with 
insufficient lifetime and the amount of coolant mass flow.  


)(.)(.)( GPwGPwGOF mmll +=  
The balance between the different objectives is defined by the respective weight factors. The task of the 
optimization algorithm thereby consists in finding the geometry that minimizes this pseudo OF. 


However the balance between the different objectives may not be clear from the beginning. The 
different OF can then be plotted in the fitness space allowing a tradeoff between the two goals (Fig. 27). 
The non dominant solutions define a Pareto front. i.e. the collection of the geometries G for which one 
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objective cannot be decreased without increasing the other one. The choice is then left to the designer to 
select at the end of the optimization one geometry out of the non-dominated ones, that has the right 
balance between both objectives. 


 
 


Fig. 27 Definition of Pareto front 
 


The relation between the pseudo OF and the Pareto front approach is illustrated on Fig. 28. 
Optimization driven by a pseudo OF will follow a path in the direction of the red arrow on the figure; i.e. 
perpendicular to the slope defined by )(.)(.)( GPwGPwGOF mmll += . Convergence is reached when the 
line of constant OF is parallel to the Pareto front. The main advantage of using a pseudo OF is that fewer 
geometries need to be analyzed to find this optimum. The disadvantage is that the pseudo OF approach 
requires a rather good idea of the relative weights to be given to both penalties. The choice of the relative 
weights is rather obvious when one objective must be satisfied without compromise. This was the case 
when optimizing the radial compressor, shown in section 4, i.e. where the stress penalty had to be satisfied 
at all cost.  


The advantages and disadvantages of both approaches are illustrated by the optimization of the 
cooling system of a HP turbine blade 


 


 
 


Fig. 28 Pseudo Objective Function versus Pareto front 
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7.2 Optimization of a cooled turbine blade 
The optimization of an internal cooling system for an HP turbine aims for a reduction of the coolant 


flow while assuring the required lifetime. The mechanism is by uniformizing the metal temperature and in 
particular by limiting the metal temperatures in areas where the stresses are high [11].  
Geometry parameterization 


The cooling system to be optimized consists of five straight cylindrical channels. Design parameters 
are the position of their center at hub and shroud and their diameter. The centers are defined by the local 
curvilinear (η, ε) coordinates. The η ∈ [0,1] coordinate represents the length along the camber line, while ε 
∈ [−1,1] defines the position perpendicular to the camber line (Fig. 29). The maximum value of ε (±1) 
corresponds to half the blade thickness at each η location. This facilitates the definition of a valid set of 
design parameters, i.e. for which the cooling channels do not intersect the blade wall. The local 
coordinates are the same at hub and shroud in order to reduce the number of design parameters.  


 


 
 


Fig. 29 Parameterization of the location and diameter of the cooling channel 
 


Five individual cooling channels, parameterized by three numbers (η, ε and D), result in 15 design 
variables. Although the choice of relative coordinates reduces the number of invalid geometries, cooling 
channels can still be too close to the blade surface. Table 3 shows the individual range for all parameters 
of each cooling channel to avoid it. 
 


Table 3 cooling hole parameter range 
 


 
 
Lifetime Prediction 


The prediction of the lifetime requires the calculation of the stresses and metal temperature inside 
the blade. The heat transfer from the external flow in the solid blade and cooling channel is calculated by a 
coupled method (CHT) [12]. It is a combination of a 3D NS solver for the external flow, a FEA method 
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for the internal heat transfer and stress calculation and a 1D non-adiabatic flow model for the cooling 
channel. Hence the method requires three grids (Fig. 30). Solid and fluid flow solvers alternate with an 
exchange of boundary conditions until the continuity of temperature and heat flux is obtained at their 
interfaces. The drawback of this approach is the need for sequential iterations between the two platforms 
and an interpolation of the boundary conditions from one grid to the other. The main advantage of the 
coupled approach is that one can make use of standard grid generators, NS and FEA solvers. Those codes 
have been extensively validated and their limitations and capabilities are well known. A FEA calculation 
is anyway needed to calculate the stresses.  


 


 
 


Fig. 30 Superposition of grids used in the coupled calculation 
 
Upon completion of the heat transfer analysis, the solid temperature is known at each node of the 


FEA grid which allows a straight forward calculation of the thermal stress. The stresses due to the 
centrifugal forces and blade bending, resulting from the pressure difference between pressure and suction 
side, can be computed on the same grid with a temperature dependent material model. Assuming linearity, 
the total stresses are the sum of thermal, centrifugal and pressure stresses. Knowing the temperature and 
stress in each node of the FEA grid allows a computation of the blade lifetime.  


The lifetime of the blade is assumed to be proportional to the creep-to-rupture failure according to 
Hill’s anisotropic equation [13]. The equivalent stress γ ranges from 0 to 1. The material is considered to 
fail when γ= 1. 


222222 )(2)(2)(2)()()( zxyzxyxxzzzzyyyyxx MLNGFH τττσσσσσσγ +++−+−+−=  
H, F, G, N, L and M are material properties which depend on the Larson-Miller parameters in the 
longitudinal and transverse directions. They are specified by (Fig. 31) 


]23)(.[log10 += lTLMP  
The parameters for the directionally solidified nickel superalloy material GTD-111 are used for the present 
analysis.  
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Fig. 31 Larson-Miller plot for longitudinal directional solidified GTD-111 


 
The algorithm starts with a first guess of l and computes the Larson-Miller parameter in each node 


of the solid grid. These parameters are input for the calculation of the material properties (H, F, G, N, L 
and M). The material failure is checked in each node. Depending on the result, a new estimation of l is 
made, i.e. l is lowered if the maximum value of γ is larger than 1, or vice versa. This computation is 
repeated until a value of l is found for which the largest γ equals 1, plus or minus a tolerance. 
Performance 


The optimization method is the extension of the aerodynamic optimization tool for axial and radial 
impellers and stators and schematically shown on Fig. 12. The performance of the geometry is assessed 
after each CHT and thermal stress analysis or after the prediction by the metamodel. In order to achieve 
the target lifetime with the prescribed coolant mass flow, a penalty related to an insufficient lifetime and a 
too large coolant mass flow is given to each design. The task of the optimization algorithm thereby 
consists in finding the parameters that minimize the pseudo OF defined by 


)(.)(.)( GPwGPwGOF mmll +=  
The penalty on the lifetime is proportional to the difference between the calculated )(Gl  and target tarl  
lifetime. The latter is set to 20000h, which is very high considering the high TIT(1400K) and the absence 
of a thermal barrier coating. This penalty is zero only if the target lifetime ( tarl ) is exceeded (Fig. 32). 


.)0),(max()( GllGP tarl −=   
 


 
 


Fig 32 Lifetime and cooling mass flow penalties 
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A higher coolant mass flow results in a lower overall cycle efficiency and the penalty increases when the 
mass flow is higher than an offset value sgrmoffset /3=& , as shown on Fig. 32.  


)0,)(max()( offsetm mGmGP && −=  
Considering that the lifetime penalty is more important than the mass flow penalty, the weight given to the 
latter is 400. This results in a penalty of 133.33 for each g/s exceeding the limit of 3g/s. The weight given 
to the lifetime is 1/h.  
Results 


The starting geometry is a blade with 5 equidistant cooling holes. The surface temperature, von 
Mises and effective stresses are shown on Fig. 33. The lifetime based on thermal stresses of the cooled 
blade (220h) is hardly longer than the one of the uncooled blade (161h). The reason is that the solid 
temperature has decreased over most of the blade but not at the trailing edge hub where the largest stresses 
occur. 
 


 
Fig. 33 Non optimized cooled blade (equidistant holes) 


 
Two distinct optimizations are performed starting from the same initial database. One uses the ANN 


while the other one uses the RBF to predict the same quantities. Both optimizations are run for 30 
iterations, after which a synchronization of the databases is made i.e. all existing samples are put together 
in one unified database. An additional 20 optimization iterations are then performed restarting with this 
extended database. The purpose of this synchronization is to exchange information between both 
optimizers and see if they can profit from it.  


Fig. 34 shows, for both optimizations, the evolution per iteration of the mass flow, lifetime and total 
penalty. The metamodel predictions are compared with the results of the CHT and lifetime calculation. 
The mass flow in the individual cooling channels is immediately well predicted by the ANN whereas the 
method is too optimistic in terms of lifetime. The lifetime is better predicted by the RBF with a monotonic 
convergence towards the optimum except for 2 stepwise increases in lifetime. They correspond to a new 
choice by the optimization algorithm, based on the newly acquired information. It takes longer to 
accurately predicted the massflow by the RBF.  


An increased discrepancy is observed after the synchronization of the databases at iteration 30. This 
is probably due to the larger number of training samples, requiring more hidden neurons, respectively 
RBF-centers to remain accurate. The best geometry proposed by the ANN is geometry 18. It has a total 
penalty of 14 058 corresponding to a lifetime of 6872h and a 10g/s cooling mass flow. The best RBF 
geometry is found at iteration 47 with a lifetime of 6758h for 10.4g/s cooling flow.  
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Fig. 34 Convergence with ANN and RBF 
 


 
Fig. 35 Optimized cooling geometry 


 
The optimal solutions found by both optimizations are compared on Fig. 35. A tendency towards 


small non-turbulated cooling channels, near the pressure side of the blade is observed. The trailing edge 
cooling channel should be positioned as far downstream as possible (h = 0.95). Hole number four has the 
largest diameter (4.4mm) with turbulators. 
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Fig. 36 Convergence to the optimum with pseudo OF 
 
Figure 36 shows the mass flow penalty versus the lifetime penalty for the initial database samples and 
both optimizations. It is clear that all geometries created by the optimization system outperform the initial 
database ones. Whereas the maximum lifetime of the samples contained in the initial database does not 
exceed 1685h with an average lifetime of only 300h, most optimized geometries have a lifetime above 
5000h. This illustrates the capability of the optimization system to rapidly improve the performance 
starting from only a limited information. The envelope of all the results form a Pareto front. It is a very 
incomplete one because the optimizer has been targeted towards a particular combination of the two 
penalty functions and a large part of the design space has not been investigated. 


 
 


Fig. 37 Effective strength distribution at rupture 
 


The effective stresses at failure on the surface of the uncooled (161h) , cooled (220h) and optimized 
(6872h) blade surface are shown on Fig. 37. The first two show no change in the critical area. The large 
improvement of the optimized one is the consequence of a more uniform stress distribution over the whole 
blade. The critical area has shifted from the hub trailing edge towards the blade tip. All parts of the blade 
are aging in almost the same  
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Fig. 38 Cooling channel 4 diameter versus lifetime and mass flow 
 
Figure 38 shows the influence of the diameter of the 4th channel on lifetime and mass flow. A sudden 
variation in the mass flow is observed at 3mm due to the activation of the turbulators. The longest lifetime 
is obtained with a turbulated cooling channel of 4.4mm diameter. One also observes that the result is 
rather robust i.e. the lifetime does not change very much for small changes in the hole diameter. 


7.3 Self Organizing Maps 
The Pareto front is quite useful for problems with 2 objectives as long as it remains convex. A 


visualization becomes more complicated when 3 objectives are specified (Fig. 39). 
 


 
Fig. 39 Multi-objective Pareto front 
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Self Organizing Maps (SOM) [14] allow a balanced evaluation of the different geometries when more than 
three objectives are specified. The high dimensional maps are mapped into lower dimensional spaces by 
grouping geometries with similar characteristics. 
 


 
 


Fig. 40 Data mapping in organized maps 
 


This is illustrated by the results of an airplane wing optimization where minimum drag at transonic 
and supersonic speed, bending and pitching moments are the four objectives to be reached. The different 
types of wing sections are grouped on Fig. 41. The corresponding values of the four objectives are shown 
by color on Fig. 42. 


 


 
 


Fig. 41 Map of similar geometries 
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Fig. 42 Self organized maps 
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	Full 3D geometry definition
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	3D Navier Stokes solvers, Acoustics

Realistic designs
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Multi-objective

	Efficiency, operating range, ..
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Fitness                                                 performance      OF(U,xi)      drag



Genetic Algorithms 

















von Karman Institute for Fluid Dynamics







RTO, AVT 167, October, 2009                             





‹#›



























Genetic Algorithm











von Karman Institute for Fluid Dynamics







RTO, AVT 167, October, 2009                             





‹#›





Tournament selection

Genetic Algorithm Selection



Roulette selection



S=2

S 	faster convergence
	loss of diversity

favors best individuals
reduced diversity
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Genetic Algorithm
Computational effort

*  Optimal parameter setting 

*  Two level optimization
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Fast Optimisation 

2 LEVEL OPTIMIZATION
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fast but lower accuracy

	 NS + GA

slow but high accuracy
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  Kriging

Database

Performance (examples)











von Karman Institute for Fluid Dynamics







RTO, AVT 167, October, 2009                             





‹#›







Metafunction
ANN











Learning :       define W   (weight)   and   b (bias)
		using Database samples







Navier Stokes results

Geometry  & bound. cond.









von Karman Institute for Fluid Dynamics







RTO, AVT 167, October, 2009                             





‹#›







Metafunction
ANN









Predicting:        
approximate existing Navier Stokes results

Generalized:	   
predict new geometries



 Training set
- Test set
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 *  Physical relevant parameters

Parameterised turbine blade 

18 geometric parameters to be defined

2D Turbine blade design
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2D Turbine blade design

ANN accuracy  based on 25 initial database samples
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Evolution of Mach number and Geometry
total of 25+13 = 38 Navier Stokes calculations
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Multidisciplinary optimization
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Multipoint optimization
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Multi-objective optimization

  performance
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  lifetime

Key design problems
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	insensitivity to 


  geometry changes

  operating conditions
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Multidisciplinary optimization
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 Heat transfer
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FEA

 Samcef FEA

 ~160000 quadratic tetrahedral elements

 ~250000 nodes

 Periodic walls

 fillet radius .25 mm

CFD

 TRAF3D

 216x48x48 or 500 000 cells

 Baldwin-Lomax

 Long exit diffuser is included

 non-adiabatic flow with specified Twall



Multidisciplinary optimization
radial impeller
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Geometry definition

Multidisciplinary optimization
radial impeller

parameterized thickness distribution

meridional contour

6+2+2 parameters
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Multidisciplinary optimization
Radial impeller
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4 parameters / blade angle distribution
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Penalty on non optimum Mach distribution
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Multidisciplinary optimization
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Low Solidity Diffuser



maximum range

	surge  choke

				surge		design		choke

		α		62.5		52.8		37.5

		m (kg/s)		162.8		210.0		287.5



















Varying inlet conditions
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Multi-objective optimization
Pareto front



Conflicting objectives

      size ↔ performance
 lifetime ↔  mcooling 

      OF1 ↔   OF2







a

b

c



Pareto front = 
         non dominated solutions 

    a dominates b

         OF1(a)<OF1(b) & OF2(a)<OF2(b)

    a does not dominate c

         OF2(a)<OF2(b)
	  but     OF1(a)>OF1(c) 



OF2

OF1
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Multi-objective optimization
PSEUDO objective



Decreasing OF(x)
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Multi-objective optimization

      n>3 objectives



Self-Organizing Maps (SOM)

   maps high dimensional input
	into lower dimensional space

   groups the geometries 
	with similar characteristics





3 objectives
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Transonic wing design

Low supersonic drag ~
	high pitching moment
	high bending moments
high sweep

		 Sasaki & Obajashi

CD transonic

CD supersonic

Multi-objective optimization
Self-Organizing Map

Bending Moment

Pitching Moment









von Karman Institute for Fluid Dynamics







RTO, AVT 167, October, 2009                             





‹#›





Failure at γ = 1 

Multi-objective optimization

Maximize Lifetime l

l = function of 

	stress
	temperature
	material 





Minimize cooling mass flow
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3 codes are coupled 

FEA for heat transfer 

1D for Cooling Channel

CFD for fluid



3 different grids

3D unstructured

1D structured

3D structured 



Iterative procedure continuity 

Temperature

Heat flux



















Multi-objective optimization
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Multi-objective optimization
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Multi-objective optimization

Design parameters



5 cooling channels

     Cooling hole diameter D

     Cooling hole position  ε ,η



Constrained







Click to edit Master text styles

Second level

Third level

Fourth level

Fifth level
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Lifetime = 220 hours

Max Temperature = 1222 K







Max Therm. Stress = 369 MPa

Uncooled blade    Lifetime = 161 hours

Multi-objective optimization

Cooled blade: non optimized (equidistant) cooling hole position
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20 000

20 000

Lifetime

Lifetime penalty







.003

400

 Relative mass flow error (kg/s)

Mass flow penalty







÷

÷

ø

ö

ç

ç

è

-

-

.

,

.

)

(

max

)

(

)

),

(

)

(

tar

tar

m

tar

L

m

m

m

P

L

r

&

r

r

r

   

 

mass flow objective

     

          

          

  

æ

=

-

=

0
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lifetime objective

Multi-objective optimization
Objective function











Click to edit Master text styles

Second level

Third level

Fourth level

Fifth level
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In each FEM node temperature and 3D stress is known

Computation of lifetime of blade by Larson-Miller Parameter





Temperature



Lifetime (prediction)







Maximum Stress

Multi-objective optimization
Convergence



Click to edit Master text styles

Second level

Third level

Fourth level

Fifth level
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ANN

RBF













Lifetime OF

Lifetime OF

 cooling  OF

 cooling  OF

 total  OF

 total  OF

Multi-objective optimization
Convergence
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ANN

RBF









Lifetime OF

Lifetime OF

 cooling  OF

 cooling  OF

 total  OF

 total  OF

Multi-objective optimization
Convergence
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Multi-objective optimization
Convergence
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uncooled                                cooled                                  optimized

  161 h                                    220 h                                     6872 h  

Effective strength distribution at rupture

Multi-objective optimization
Results
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D4

D4





Multi-objective optimization
Robustness
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Fast   
        (ANN, RBF)   < 100 NS

Multidisciplinary 
       Aero-performance (NS)
        Conjugate heat transfer (FEA)
        Stresses (FEA)
        Maximizing lifetime (complex OF)

Multipoint
        Easy off design analysis

Accurate
      Navier-Stokes, FEA, etc

Constrained

Fully automated, concurrent Optimization

Conclusions
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Optimization

Can one find the best geometry?

	The best of the possible(*) geometries ?

	The absolute best ?     How to check?





Retrofit (improvement) of existing designs

	How much (*) performance can be gained 

(*)     Depends on starting point

(*)     in terms of geometries
 	than can be defined by present parameterization ?
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Thanks  to



	Dr. S. Pierret

	Dr. Z. Alsalihi

	Dr. T. Verstraete

	…..
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Genetic Algorithms	

	Binary representation

	Fixed mutation rate

	Fixed cross over rate

	Probabilistic selection

	Identical population size

	Non self-adapting

Evolutionary strategies

	Real-valued representation

	Normally distributed mutations

	Fixed recombination rate

	Deterministic selection

	Creation of offspring surplus

	Self adapting strategy

Ref:  Th. Bäck
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Local Optimization and Sensitivity Analysis RTO AVT-167


OPTIMIZATION


Mathematics and Mechanics


• Classical optimization problems in Mechanics


. Minimize the drag of an aircraft under constraints (on lift, pitching mo-


ment...)
. Maximize total pressure of supersonic aircraft air intake


. Maximize efficiency of a turbomachinery blade under constraints (on surge


margin - compressor - aerothermal behaviour - turbine)


• General mathematical conterpart


. All possible shapes = infinite dimensional search


. Partial differential equations (unsolvable for complex shapes and B.C.)


. No solution except for very simple problems


• Need for simplification - discretization and parametrization
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OPTIMIZATION


Mathematics in finite dimension and Mechanics


• Classical optimization problems in Mechanics


• Using numerical analysis and parametrization


. Mesh (some hundreds of thousands/milions points)


. Numerical analysis (finite volumes for (RANS) equations...)


. Design parameters describing the possible shapes


• Solvable, finite dimensional mathematics


• Optimization with large design space and complex direct problem very expensive


. Sampling of all design space plus computation of all points : unaffordable


. Efficient optimization algorithms required
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OPTIMIZATION


Local and global optimization - Mathematics (1/2)


• Definitions and notations


. α vector of parameters


. Dα design space = Region of Rnf associated to the parametrization


. Mechanics - objective : function that has to be maximized/minimized


→ Maths - function J (α) to minimize


. Constraints : functions that have to be kept lower/higher than some value


→ Maths - functions Gk(α) that should verify Gk(α) ≤ 0.


• Global optimization


. Goal = find the best solution/shape α∗ over all design space


• Local optimization


. Goal = find a shape α∗, best shape over its neighborhood


. α∗ to be found in the vicinity of an initial value of parameter α0
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OPTIMIZATION


Local and global optimization - Mathematics (2/2)


• Global optimization


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Dα


∀k ∈ [1, nc] Gk(α∗) ≤ 0.


• Local optimization α∗ over a neighborhood of α∗


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗


(Vα∗ neighborhood of α∗)


∀k ∈ [1, nc] Gk(α∗) ≤ 0.
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OPTIMIZATION


Local and global optimization - Mechanics (1/2)


• For all shapes α


Mesh of the configuration X(α)
State variables (displacement, flowfield) W (α)
Discrete equations for Mechanics (RANS...) link X and W


R(W (α), X(α)) = 0


Function of interest depend on W and X


J (α) = J(W (α), X(α)) Gk(α) = gk(W (α), X(α))


→ See lecture notes for the assumption behind “W function of α”
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OPTIMIZATION


Local and global optimization - Mechanics (2/2)


• Global optimization


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) over Dα


∀k ∈ [1, nc] gk(W (α∗), X(α∗)) ≤ 0.


• Local optimization


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) over Vα∗


(Vα∗neighborhood of α∗)


∀k ∈ [1, nc] gk(W (α∗), X(α∗)) ≤ 0.
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OPTIMIZATION


Classification of optimization Algorithms and associated subjects


• Global optimization


. Genetic and evolutionnary algorithms


. Simulated annealing, Aunt colony, Particle swarm...


. Use of surrogate models for global optimization


→ Lecture of R. Van den Braembussche


• Local optimization


. Simplex method


. Descent methods


. Sensitivity computation for descent methods


→ Topics of this lesson


• How to combine local and global optimization algorithms


→ Discussed day 2 by R. van den Braembussche
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OPTIMIZATION


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods
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KKT CONDITION FOR LOCAL OPTIMALITY


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


. KKT Conditions


. Solving KKT conditions in R2


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods
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KKT CONDITION FOR LOCAL OPTIMALITY


Simple cases


• Infinite design space ( Dα = Rnf ), no constraint, J C2 regular


. Necessary condition for local optimality in α∗


∇J (α∗) = 0
. Necessary and sufficient condition for local optimality in α∗


∇J (α∗) = 0 H(α∗) (Hessian of J ) positive definite


. Necessary condition for global optimality in α∗


∇J (α∗) = 0
. Necessary condition for global optimality in α∗


∇J (α∗) = 0 H(α) positive definite over Dα
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KKT CONDITION FOR LOCAL OPTIMALITY


General case (1/2)


• Bounded design space


. Supposed to be a parallelepiped


Dα = Dα = [α1,l, α1,u]×[α2,l, α2,u]×[α3,l, α3,u]×...×[αnf ,l, αnf ,u]


. Consider the bounds as 2nf additional constraints


Gnc+1(α) = α1,l − α1


Gnc+2(α) = αl − α1,u


Gnc+3(α) = α2,l − α2


...


Gnc+2nf
(α) = αnf


− αnf ,u


. Total number of constraints n′c = nc + 2nf
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KKT CONDITION FOR LOCAL OPTIMALITY


General case (2/2)


• KKT necessary condition for local optimality in α∗ (no lagrangian)


α∗is an admissible state and there exist n′c real numbers λj such that


∇J (α∗) + Σλ∗j∇Gj(α∗) = 0


λ∗jGj(α∗) = 0 λ∗j ≥ 0.


• Define Lagrangian L(α, λ1, · · · , λnc) = J (α) + ΣλjGj(α)


• Other form of KKT necessary condition for local optimality in α∗


α∗is an admissible state and there exist n′c real numbers λj such that


∇αL(α∗, λ∗1, · · · , λ∗nc
) = 0


λ∗jGj(α∗) = 0 λ∗j ≥ 0.
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Considered simple problems


• Minimization in R2 - useful illustrative plots.


• Minimization of α2
1 + 3α2


2 with different constraints


/ To improve readability, change of notations (α, β) = (α1, α2)


• Minimization of α2 + 3β2 in R2 subject to


/ g1(α, β) = 7− 2α− 3β ≤ 0
/ g2(α, β) = 1− α + β2 ≤ 0 (lecture notes only)


/ g2(α, β) = 1− α + β2 ≤ 0 g3(α, β) = 4− α− 2β ≤ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With one linear constraint


• Considered problem:


Min α2 + 3β2


subject to g1(α, β) = 7− 2α− 3β ≤ 0


• Corresponding Lagrangian Function:


L(α, β, λ) = α
2


+ 3β
2


+ λ(7− 2α− 3β)


• KKT conditions:


∂L
∂α


(α
∗
, β


∗
, λ


∗
1) = 2α


∗ − 2λ
∗
1 = 0


∂L
∂β


(α
∗
, β


∗
, λ


∗
1) = 6β


∗ − 3λ
∗
1 = 0


g1(α
∗
, β


∗
) ≤ 0


λ
∗
1g1(α


∗
, β


∗
) = 0


λ
∗
1 ≥ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


First problem : solving KKT conditions


• First case: g1 is active ⇒ g1(α
∗, β∗) = 08>><>>:


2α∗ − 2λ∗1 = 0


6β∗ − 3λ∗1 = 0


7− 2α∗ − 3β∗ = 0


9>>=>>; ⇒ (α∗, β∗, λ∗1) = (2, 1, 2)


• Second case: g1 is not active ⇒ λ∗1 = 08<: 2α∗ = 0


6β∗ = 0


9=; ⇒ (α∗, β∗) = (0, 0) ⇒ g1(α
∗, β∗) = 7 > 0


• Unique solution: (α∗, β∗) = (2, 1) with λ∗1 = 2
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


First problem - solution


Solution of first problem: (α∗, β∗) = (2, 1), λ∗1 = 2
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With two inequality constraints (1)


• Considered problem:


Min α2 + 3β2


subject to g2(α, β) = 1− α + β2 ≤ 0


and g3(α, β) = 4− α− 2β ≤ 0


• Corresponding Lagrangian Function:


L(α, β, λ2, λ3) = α
2


+ 3β
2


+ λ2(4− α− 2β) + λ3(1− α + β
2
)
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With two inequality constraints (2)


• KKT conditions:


∂L
∂α


(α
∗
, β


∗
, λ2, λ3) = 2α


∗ − λ2 − λ3 = 0


∂L
∂β


(α
∗
, β


∗
, λ2, λ3) = 6β


∗ − 2λ2 + 2λ3β
∗


= 0


g2(α
∗
, β


∗
) ≤ 0


g3(α
∗
, β


∗
) ≤ 0


λ2g2(α
∗
, β


∗
) = 0


λ3g3(α
∗
, β


∗
) = 0


λ2 ≥ 0


λ3 ≥ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Second problem - solving KKT conditions (1)


• First case: the two constraints are active ⇒ g2(α
∗, β∗) = g3(α


∗, β∗) = 08>>>>><>>>>>:
2α∗ − λ∗2 − λ∗3 = 0


2β∗(3 + λ∗3)− 2λ∗2 = 0


4− α∗ − 2β∗ = 0


1− α∗ + (β∗)2 = 0


9>>>>>=>>>>>;
⇒ (α∗, β∗, λ∗2, λ


∗
3) = (2, 1,


7


2
,
1


2
)


• Second case: only constraint g2 is active ⇒ g2(α
∗, β∗) = λ∗3 = 08>><>>:


2α∗ − λ∗2 = 0


6β∗ − 2λ∗2 = 0


4− α∗ − 2β∗ = 0


9>>=>>; ⇒ (α∗, β∗, λ∗2) = (
12


7
,
8


7
,
24


7
) ⇒ g2(α


∗, β∗) =
29


49
> 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Second problem - solving KKT conditions (2)


• Third case: only constraint g3 is active ⇒ g3(α
∗, β∗) = λ∗2 = 08>><>>:


2α∗ − λ∗3 = 0


2β∗(3 + λ∗3) = 0


1− α∗ + (β∗)2 = 0


9>>=>>; ⇒ (α∗, β∗, λ∗3) = (1, 0, 2) ⇒ g3(α
∗, β∗) = 3 > 0


• Fourth case: two constraints are inactive ⇒ λ∗3 = λ∗2 = 08<: 2α∗ = 0


6β∗ = 0


9=; ⇒ (α∗, β∗) = (0, 0) ⇒ g3(α
∗, β∗) = 4 > 0


• Unique solution: (α∗, β∗) = (2, 1) with λ∗2 = 7
2


and λ∗3 = 1
2







Local Optimization and Sensitivity Analysis RTO AVT-167


SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Solution of second problem


Solution of second problem: (α∗, β∗) = (2, 1), λ∗2 = 7
2 , λ∗3 = 1


2
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SIMPLEX METHODS


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


/ Definition of “simplex” or “polytop”


/ Transformation of the simplex


/ Algorithm


• Descent methods


• Sensitivity evaluation for descent methods
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SIMPLEX METHODS


Introduction


• Deterministic and simple nonlinear local optimization algorithm:


/ Introduced by Nelder and Mead (1965)


/ "Direct method": uses only values of the objective function


/ Efficient (low memory and low computational cost), robust (very tolerant to


noise) and easy to code


• Based on the concept of “simplex” or “polytop”


/ Polytop = set of nf + 1 vertices (triangle in 2D, tetrahedron in 3D)


• Principle


/ Choice of an initial simplex


/ Successive transformation of simplex to adapt it to the objective function
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SIMPLEX METHODS


Starting simplex - possible transformations


• Values of J computed for all points


• Points of simplex sorted so that J (α1) ≤ J (α2) ≤ ... ≤ J (αnf +1)


• Principle = substitute a better point to worst point αnf +1


• Additional points considered during iteration


/ (always) ᾱ the center of gravity of the simplex


/ (possibly) αr reflection of worst point w.r.t. ᾱ : αr = (1+a)α−aαnf +1


/ (possibly) αe expansion towards αr : αe = bαr + (1− b)α
/ (possibly) αc contraction in [α, αr] : αc = cα + (1− c)αr


/ (possibly) αc contraction in [α, αnf +1] : αc = cα+(1−c)αnf +1
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SIMPLEX METHODS - MOVING THE WORST POINT


In R3, red α1 (worst point), blue αnf+1 (best point)


Original simplex


Reflection Reflection and expansion


αr = (1 + a)α− aαn+1 αe = bαr + (1− b)α


a: reflection coefficient b: expansion coefficient
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SIMPLEX METHODS - MOVING THE WORST POINT


In R3 - red α1 (worst point), blue αnf+1 (best point)


Original simplex


Contraction Contraction in all direction


αc = cα + (1− c)αn+1 αi = dαi + (1− d)α1, i = 2, ..., nf + 1


c: contraction coefficient d: shrinking coefficient
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SIMPLEX METHODS


An iteration of Simplex


• Sorted simplex : J (α1) ≤ J (α2) ≤ ... ≤ J (αnf +1). ᾱ the center of gravity


• Define αr = (1 + a)α− aαnf +1 Compute J (αr)


• If J (αr) < J (α1) (very good point), define αe by expansion towards αr


If J(αe) < J(αr), αe is selected to replace αnf +1


Else αr is selected to replace αnf +1


• If J (α1) ≤ J(αr) < J(αn), αr is accepted to replace αnf +1


If J (αn) ≤ J (αr) < J (αn+1), df.αc by contraction of αr


If J(αc) < J(αr) then αc is selected to replace αnf +1


Otherwise αr is selected to replace αnf +1


• If J (αnf +1) ≤ J (αr) (very bad point), define αc by contraction of αnf +1


If J (αc) < J (αnf +1) then αc is selected to replace αnf +1


Otherwise, make an internal contraction of the polytop: points


αi, i = 2, ..., nf + 1 are contracted
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SIMPLEX METHODS


Staring and stopping simplex - parameters


• Choice of initial simplex:


/ An initial point α1 is chosen (for example, randomly)


/ Simplex is build around this point: αi+1 = α1 + λie
i, i = 1, ..., nf


→ Vectors ei define a basis of IRnf


→ Scalar factors λi, (i = 1, ..., nf ) are constants


• Stopping criterion: 1
n


Pnf


i=1 ||α
i k+1 − αi k||2 < ε (displacement of polytop small


enough)


• Standard value of parameters: (a, b, c, d) = (1, 2, 1/2, 1/2)
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SIMPLEX METHODS


Rosenbrock Banana Function


Figure 1: f(x, y) = (1− x)2 + 100(y − x2)2
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SIMPLEX METHODS


Example


 0.8
 0.85


 0.9
 0.95


 1
 1.05


 1.1


 0.8


 0.85


 0.9


 0.95


 1


 1.05


 1.1


(1-x)**2 + 100*(y - x**2)**2
Simplex (it.1)
Simplex (it.2)


True minimum


 0.86  0.88  0.9  0.92  0.94  0.96  0.98  1


 0.86


 0.88


 0.9


 0.92


 0.94


 0.96


 0.98


 1


(1-x)**2 + 100*(y - x**2)**2
Simplex (it.10)
Simplex (it.11)
True minimum


 0.93  0.94  0.95  0.96  0.97  0.98  0.99  1  1.01


 0.93


 0.94


 0.95


 0.96


 0.97


 0.98


 0.99


 1


 1.01


(1-x)**2 + 100*(y - x**2)**2
Simplex (it.20)
Simplex (it.21)
True minimum


 0.99
 0.995


 1
 1.005


 1.01


 0.99


 0.995


 1


 1.005


 1.01


(1-x)**2 + 100*(y - x**2)**2
Simplex (it.30)
Simplex (it.31)
True minimum


Figure 2: Iterations on Rosenbrock banana function







Local Optimization and Sensitivity Analysis RTO AVT-167


DESCENT METHODS


Sensitivity computation for descent methods


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


/ Line search (1D descent)


/ Unconstrained multi-D descent


/ Constrained multi-D descent


• Sensitivity evaluation for descent methods
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LINE SEARCH


PRESENTATION


• One part of classical optimization algorithm (at iteration k):


/ Compute direction dk


/ Compute step tk in direction dk (USE LINE-SEARCH)


/ Update current solution: αk+1 = αk + dktk


• Objective of line-search:


/ Find step t which minimizes q(t) = J (αk + tdk)
/ Use a reasonable number of function evaluation


• Presented methods:


/ Academic methods: methods of order 0, dichotomy


/ Wolfe line-search and Golstein and Price method


/ Polynomial approximations
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LINE SEARCH


Academic methods - methods of order 0


• Naive method: search minimum by successive tries and search range refinement


• Algorithm


/ Begin with a search interval [a0, b0]
/ At each step k, choose two search points t−k and t+k in [ak, bk]
/ q(t−k ) ≤ q(t+k ) ⇒ [ak, bk] = [ak−1, t


+
k ]


/ q(t+k ) < q(t−k ) ⇒ [ak, bk] = [t−k , bk−1]
/ Stop when |ak − bk| ≤ ε


• Need a strategy to choose search points
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LINE SEARCH


Methods of order 0 - three equal parts


• Three equal parts: t−k = tL + 1
3
(tR − tL) and t+k = tL + 2


3
(tR − tL)


⇒ linear convergence with rate of
q


2
3
' 0.82
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Figure 3: First iterations of the method







Local Optimization and Sensitivity Analysis RTO AVT-167


LINE SEARCH


Methods of order 0 - Golden number


• Use of golden number ( λ = 1+
√


5
2


): t−k = 1
1+λ


(λtL + tR) and t+k = 1
1+λ


(tL + λtR)


⇒ linear convergence with rate of 1
λ
' 0.62
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Figure 4: First iterations of the method
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LINE SEARCH


Academic methods - dichotomy


• In case derivatives are available, one point evaluated by iteration


• Algorithm:


/ Begin with a search interval [a0, b0]
/ At each step k, search point tk = ak+bk


2


/ q′(tk) < 0 ⇒ [ak, bk] = [tk, bk−1]
/ q′(tk) > 0 ⇒ [ak, bk] = [ak−1, tk]
/ Stop when |q′(tk)| ≤ ε


• Convergence is linear with rate of 1
2
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LINE SEARCH


Dichotomy - an example
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Figure 5: First iterations of the method
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LINE SEARCH


Wolfe line-search


• Compromise between accuracy of computed solution and required number of evaluations


• Well-adapted to industrial applications


• Based on wolfe rules ( 0 < m1 < m2 < 1):


/ A step is too large if q(t) > q(0) + m1tq
′(0)


/ A step is too small if q′(t) < m2q
′(0)


/ Else the step is satisfactory
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LINE SEARCH


Wolfe line-search - Rules


t


q’(0)


m2q’(0)


q(t)


0


m2q’(0)


m2q’(0) m1q’(0)


Too largeToo small Satisfactory step Too small Satisfactory step


Figure 6: Wolfe rules







Local Optimization and Sensitivity Analysis RTO AVT-167


LINE SEARCH


Wolfe line-search - algorithm


• Start with a = 0, b = ∞, an initial stepsize t = t0 and values for parameters m1, m2


(0 < m1 < m2 < 1), and β > 1


• At each step:


/ Evaluate rules on current step:


→ Step too small⇒ a = t


→ Step too large⇒ b = t


→ Step satisfactory⇒ stop algorithm


/ Compute new step:


→ b real⇒ t = a+b
2


→ b infinity⇒ t = βa
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LINE SEARCH


Wolfe line-search - example


 1.05


 1.1


 1.15


 1.2


 1.25


 1.3


 0  0.2  0.4  0.6  0.8  1


[a0,b0]


[a1,b1]


exp(-x) + 0.3*exp(x)
Step (it.1)


Final step (it.2)


Figure 7: Wolfe method when (m1,m2) = (0.4, 0.9)
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LINE SEARCH


Goldstein and Price method


• Used instead of Wolfe line-search when derivatives are not available or computationally


too expensive


• Derivative q′(t) is replaced by average slope q(t)−q(0)
t


• Corresponding rules ( 0 < m1 < m2 < 1):


/ A step is too large if q(t) > q(0) + m1tq
′(0)


/ A step is too small if q(t) < q(0) + m2tq
′(0)


/ Else the step is satisfactory
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LINE SEARCH


Goldstein and Price method : example
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Figure 8: Goldstein and Price method when (m1,m2) = (0.4, 0.9)
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LINE SEARCH


Polynomial approximations


• One ot the most effective techniques:


/ Requiring only a few function evaluations


/ Can lead to a very poor approximation for highly nonlinear functions


• Example: approximation with a polynomial of degree 2 q̃(t) = a0 + a1t + a2t
2


/ Evaluation of q and q′ at t0 = 0: ⇒ (a0, a1) = (q(t0), q′(t0))
/ Evaluation of q at an another point t1: ⇒ a2 = q(t1)−a0−a1t1


t21


/ Identification of minimum: t∗ = −a1
2a2


• Approximation with a polynomial of degree n requires n − 1 function evaluations (in


addition to the evaluation of function and derivative in t0 = 0)
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LINE SEARCH


Polynomial approximations- Example
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UNCONSTRAINED MULTI-D DESCENT


Presentation


• Objective: search an optimum of the objectif function on the whole space Rnf


• General principle:


/ Start with an initial point α0


/ At each iteration k, current iterate is modified


→ Compute a descent direction dk


→ Compute a step in this direction tk (for basic method, tk = 1)


→ Update approximation by αk+1 = αk + tkdk


/ End when a criterion (in most cases on the gradient) is satisfied


• Presented methods:


/ Steepest descent method


/ Newton method


/ Quasi-Newton method
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UNCONSTRAINED MULTI-D DESCENT


Steepest descent method


• Most intuitive, basical method: dk = −∇J (αk) and tk = 1


/ Easy to implement


/ But short-sighted


/ Zig-zagging behaviour


• Requires more information to be efficient, in particular information about the second-


order derivatives → Newton method
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UNCONSTRAINED MULTI-D DESCENT


Steepest descent method: one example


Figure 10: Steepest descent on Rosenbrock function
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UNCONSTRAINED MULTI-D DESCENT


Newton method (1)


• Originally a method to find roots of equation z(α) = 0


/ Approximate z by linear expansion: z(αk + dk) ' z(αk) +∇z(αk)dk


/ Solve equation z(αk) +∇z(αk)dk = 0
→ increment dk = −


[
∇z(αk)


]−1
z(αk)


/ Update current approximation: αk+1 = αk + dk


• Same method can be used as an optimization algorithm by searching roots of gradient of


the objective function


/ Descent direction is computed by: dk = −
[
∇2J (αk)


]−1∇J (αk)
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UNCONSTRAINED MULTI-D DESCENT


Newton method (2)


• Reminder α(k+1) = αk −
ˆ
∇2J (αk)


˜−1∇J (αk)


• Main advantage is the convergence in neighborhood of the solution


/ Superlinear in general


/ Quadratic (number of exact digits doubled at each iteration) if J has C3


regularity
• Drawbacks


/ Hessian is required: explicit form unavailable in general and numerical com-


putation very expensive
/ In high dimensional space, solution of linear system (at each iteration) very


CPU demanding
/ Violent divergence far from the optimal point


• Quasi-Newton methods developed to circumvent these drawbacks
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UNCONSTRAINED MULTI-D DESCENT


Quasi-Newton method


• Improvement over the Newton method based on two main ideas


/ Adding a line-search process to the algorithm:


→ At each iteration, compute an optimal step by minimizing


q(t) = J (αk + tdk) (Cf. line-search methods above)


→ Hessian of the objective function needs to be positive


/ Approximate the inverse of the Hessian by a matrix H̄


• Algorithm:


/ Start from an initial point α0 with H̄ initialized to a positive definite matrix


/ While ||∇J || > ε


→ Compute descent direction : dk = −H̄k∇J (αk)
→ Line-search (initialized t = 1)


→ Update current iterate: αk+1 = αk + tdk


→ Compute the new approximation H̄k+1
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UNCONSTRAINED MULTI-D DESCENT


Quasi-Newton method: update H̄


• Method presented here: BFGS (Broyden-Fletcher-Goldfarb-Shanno)


• The most used quasi-Newton algorithm


• Keep the matrix positive definite


• Update H̄ by following formula:


sk = αk+1 − αk


yk = ∇J (αk+1)−∇J (αk)


H̄k+1 = H̄k − sk(yk)T H̄k + H̄kyk(sk)T


(yk)T sk
+


»
1 +


(yk)T H̄kyk


(yk)T sk


–
sk(sk)T


(yk)T sk
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UNCONSTRAINED MULTI-D DESCENT


Quasi-Newton method: one example


Figure 11: Quasi-Newton method (BFGS) on Rosenbrock function







Local Optimization and Sensitivity Analysis RTO AVT-167


CONSTRAINED MULTI-D DESCENT


Reminder


• Solve the mathematical problem defined at the beginning of the talk


• Local optimization problem :


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗


(Vα∗ neighborhood of α∗)


∀k ∈ [1, nc] Gk(α∗) ≤ 0.


• Restricted to differentiable functions


• Four methods: sequential linear programming, method of centers, feasible direction


method, sequential quadratic programming
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (1/3)


• Solve a sequence of linear problems


• At each iteration, solve the problem linearized from exact equations


• Two issues to deal with :


/ Intermediate non admissible state may appear


→ Acceptable or not depending on problem


/ Solution of intermediate linear problem may be non-bounded


→ A bound for (α(p+1) − α(p)) is needed


→ Bound to decrease with the number of iteration
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (2/3)


• Algorithm :


/ Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Find δαk which


. minimizes J (α) ' J (αk) +∇J (αk).δα;


. subject to Gj(α) ' Gj(αk) +∇Gj .δα ≤ 0 j = 1, nc


. subject to αi,l ≤ α + δα ≤ αi,u i = 1, nf


Update αk+1 = αk + δαk


Set k = k + 1
/ END WHILE
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (3/3)


Figure 12: Sequential linear programming in R2
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CONSTRAINED MULTI-D DESCENT


Method of centers (1/4)


• Solve also a sequence of linear problems. Almost all of them are admissible (advantage


over (SPL)


• Search for the center of the largest sphere included in following subspace :


∇J (α0).(α− α0) ≤ 0. Gj(α
0) +∇Gj .(α− α0) ≤ 0 j = 1, nc


• Draw some plots, see slide N+3...


/ Intersection of hyperplanes problem


/ Not always a bounded space, hence norm of (α − α0) needs to be


bounded
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CONSTRAINED MULTI-D DESCENT


Method of centers (2/4)


• Principle : search for the center of the largest sphere included in the subspace defined


by linearized objective and constraints


∇J (α0).(α− α0) ≤ 0. Gj(α
0) +∇Gj .(α− α0) ≤ 0 j = 1, nc


• Euclidian distance of point α1 to those hyperplanes.


/ Note d = α1 − α0


/ Distance of α1 to linarized objective and constraints hyperplanes


D = −∇J (α0).d
|∇J (α0)|


Dj = −Gj(α0) +∇Gj(α0).d
|∇Gj(α0)|


/ core of the algorithm : solve linear problem defined byD > r andDj > r
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CONSTRAINED MULTI-D DESCENT


Method of centers (3/4)


• Algorithm :


/ Set k = 0; an initial iterate α0, a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Find dk (a priori bounded) which maximizes r subject to


. ∇J (α0).dk + |∇J (α0)|r ≤ 0.


. ∇Gj(α0).dk + |∇Gj .(α0)|r ≤ −Gj(α0) j = 1, nc


Update αk+1 = αk + dk


Set k = k + 1
/ END WHILE
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CONSTRAINED MULTI-D DESCENT


Method of centers (4/4)


Figure 13: Method of centers in R2
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CONSTRAINED MULTI-D DESCENT


Method of feasible direction (1/3)


• Two step “non-linear” algorithm


/ Search for descent direction (taking into account non-linearity of active con-


straints)
/ Line-search along descent-direction


• Definition of descent direction


/ Goal find best possible descent direction, avoiding following “trap” :


In R2, current point α0, objective J , one CONVEX ACTIVE


constraint G1.


The solution of “Find d (a priori bounded) minimizing


∇J (α0).d subject to ∇G1(α0).d < 0” leads to inadmissi-


ble α1 (see plot of slide N+3)
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CONSTRAINED MULTI-D DESCENT


Method of feasible direction (2/4)


• Definition of descent direction d


• Avoid trap described on previous slide


/ Good requirement associated to an active convex constraint is


∇G1(α0).d + θj < 0 θj > 0
• Need to link the decrease of J and Gj along d


• “Good” feasible direction search


/ Maximize β, find dk (a priori bounded), such that


. ∇J (α0).dk + β ≤ 0.


. ∇Gj(α0).dk + θjβ ≤ 0. ∀j/Gj(α0) = 0
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CONSTRAINED MULTI-D DESCENT


Method of feasible direction (3/4)


• Algorithm :


/ Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Maximize β, find dk (a priori bounded), such that


. ∇J (αk).dk + β ≤ 0.


. ∇Gj(αk).dk + θjβ ≤ 0. ∀j/Gj(αk) = 0
Minimize q(l) = J(αk + ldk) (One dimensional search)


Update αk+1 = αk + ldk


Set k = k + 1
/ END WHILE
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CONSTRAINED MULTI-D DESCENT


Method of feasible direction (4/4)


Figure 14: Method of feasible direction in R2
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CONSTRAINED MULTI-D DESCENT


Sequential quadratic programming (SQP) (1/2)


• Solve a sequence of quadratic minimization with linear constraints


• Quadratic minimization of Q(d) = J (αk) +∇J (αk).d + 1
2
dT Bd


/ B approximate Hessian matrix


• Set of linear constraints ∇Gj(α
k).d + δjGj(α


k) ≤ 0. j = 1, nc


/ δj=1 for strictly respected constraint


Gj(αk) < 0 value of the constraint may increase


/ δj ∈ [0, 1] for violated constraints


Gj(αk) > 0 Forces decrease of (first-order expansion of) Gj
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CONSTRAINED MULTI-D DESCENT


Sequential quadratic programming (SQP) (2/2)


• Algorithm :


/ Set k = 0; an initial iterate α0, a stopping tolerance ε, and initial approxi-


mate Hessian matrix B0 are given.
/ WHILE KKT-conditions not satisfied


Find dk which


. minimizes J (αk) +∇J (αk).d + 1
2dT Bkd


. subject to∇Gj(αk).d + δjGj(αk) ≤ 0. j = 1, nc


Update αk+1 = αk + dk


Build Bk+1 (for example, from BFGS formula)


Set k = k + 1
/ END WHILE







Local Optimization and Sensitivity Analysis RTO AVT-167


SENSITIVITY COMPUTATION


Sensitivity computation for descent methods


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods


/ Definition


/ Finite difference


/ !!! Warning !!! about robustness and accuracy


/ Discrete direct method


/ Discrete adjoint method


/ Continuous adjoint method (fluid dynamics - Euler equations)


/ Approximation in the differentiation (fluid dynamics)
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SENSITIVITY COMPUTATION


Sensitivity computation for descent methods


• Context - descent method for local optimization


• Task - compute the derivatives involved in the descent


/ At current point α(p) of descent algorithm


/ Derivatives of objective J w.r.t. design parameters


/ Derivatives of constraints Gk reaching their bound w.r.t. design parameters


Compute∇Gk only if Gk(α(p)) = 0


• “sensitivity computation” = computation of those derivatives ...,
∂J
∂αl


, ...,
∂Gk


∂αn
,...


• Differentiation of nu function w.r.t to nf design parameters


/ Most often nu << nf


/ Classical optimization in aerodynamics nu ' 4, nf = ...20, 50, 100, ...
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SENSITIVITY COMPUTATION


First method : finite differences (1/3)


• Task : compute the derivatives of nu functions w.r.t. the nf design parameters


/ J (α) = J(W (α), X(α)) Gk(α) = gk(W (α), X(α))
/ W state variables, X mesh nodes, R(W (α), X(α)) = 0


• Finite differences :


/ Method as old as direct simulations (used in the 70s for aerodynamics)


/ Principle - compute“shifted” state variables corresponding to shifted shapes


/ Derivation w.r.t. αl (classical 2nd order formula)


Shifted meshes X(α + δαl), X(α− δαl)
Solve for W (α− δαl),W (α + δαl) :


. R(W (α + δαl), X(α + δαl))) = 0


. R(W (α− δαl), X(α− δαl))) = 0
Compute the finite differences of the functions of interest
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SENSITIVITY COMPUTATION


First method : finite differences (2/3)


• Task - compute the derivatives of nu functions of interest w.r.t. nf design parameters


• Derivation w.r.t. αl (classical 2nd order formula


/ Consider shifted meshes according to lth design variables - X(α + δαl),


X(α− δαl)
/ Solve for corresponding state variables W (α + δαl), W (α− δαl)
/ Compute


∂J (α)
∂αl


'
[
J (α + δαl)− J (α− δαl)


2δαl


]
=


[
J(W (α + δαl)), X(α + δαl))− J(W (α− δαl), X(α− δαl))


2δαl


]
/ Corresponding formula for active constraints Gk
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SENSITIVITY COMPUTATION


First method : finite differences (3/3)


• Cost : Solve 2nf direct problem


• Drawbacks


/ Cost


/ Tricky choice of δl (too large or too small→ inaccuracy)


/ Validity for complex configurations exhibiting bad convergence ???


if R(W (α + δαl), X(α + δαl)) <> 0, what about (FD)


gradients of J and Gl???
• Assets


/ No new code lines needed


/ OK for black-box numerical tools
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SENSITIVITY COMPUTATION


!!! WARNING !!! about ROBUSTNESS and ACCURACY


• The threee other methods are in principle much more interesting and powerful than FD


/ Linear systems are solved instead of non-linear systems


/ Moreover multiple-rhs linear algebra may be used


/ Either nu (direct) or nf (adjoint) complexity


• BUT Adjoint and direct methods...


/ often use various approximations in jacobian ∂R
∂W


/ (sometimes) face (very) bad conditioning of the matrices they try to invert


• ASK about / CHECK the ROBUSTNESS and ACCURACY of your numerical tools for gra-


dient computation


• Use these advanced methods instead of FD when appropriate
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SENSITIVITY COMPUTATION


Discrete direct differentiation method (1/2)


• Starting point : equations for fluid dynamics


∀α R(W (α), X(α)) = 0


• Differentiation w.r.t αl


∂R


∂W


dW


dαl
= − ∂R


∂X


dX


dαl


• Solve the nf linear systems (with same matrix) for state variables sensitivity
dW


dαl


• Compute the needed derivatives with straighforward formula


dJ (α)


dα
=


∂J


∂W


dW


dα
+


∂J


∂X


dX


dα
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SENSITIVITY COMPUTATION


Discrete direct differentiation method (2/2)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step involved


(except when product
∂R


∂X


dX


dαl
is computed using (FD))


• Drawbacks


/ complexity (and CPU cost) linked to nf (number of design parameters)


which of often (very) large
/ new routines in simulation code if the problem is non-linear
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SENSITIVITY COMPUTATION


Discrete adjoint method (1/4)


• Many possible derivation of discrete adjoint method


/ (1) Transposition of previous equations


/ (2) Lagrangian


/ (3) Product of differentiated equation of CFD by an arbitrary vector


• Demonstration (3) presented here as


/ it is quite simple


/ it helps understanding the quite difficult continuous adjoint method


• Starting point
∂R


∂W


dW


dαl
= − ∂R


∂X


dX


dαl


• Hence ∀Λ ∈ IRnW


ΛT ∂R


∂W


dW


dαl
+ ΛT


„
∂R


∂X


dX


dαl


«
= 0
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SENSITIVITY COMPUTATION


Discrete adjoint method (2/4)


• Add this relation to the gradient of direct differentiation method ∀Λ ∈ IRnW


dJ (α)


dαl
=


∂J


∂X


dX


dαl
+


∂J


∂W


dW


dαl
+ ΛT ∂R


∂W


dW


dαl
+ ΛT


„
∂R


∂X


dX


dαl


«


• Possible factorization ∀Λ ∈ IRnW


dJ (α)


dαl
=


„
∂J


∂W
+ ΛT ∂R


∂W


«
dW


dαl
+


∂J


∂X


dX


dα
+ ΛT


„
∂R


∂X


dX


dαl


«


• A choice of Λ vector exempts from computing
dW


dαl


/ no need to solve the direct problem


/ this choice is independant of l


/ this choice is dependant of J , the function of interest
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SENSITIVITY COMPUTATION


Discrete adjoint method (2/4)


• Adjoint equations for objective and constraints (line vectors)


ΛT ∂R


∂W
= − ∂J


∂W
ΛT


k
∂R


∂W
= −∂Gk


∂W


• Or adjoint equations for objective and constraints (column vectors)„
∂R


∂W


«T


Λ = −
„


∂J


∂W


«T „
∂R


∂W


«T


Λk = −
„


∂Gk


∂W


«T


• Sensitivity evaluation


dJ (α)


dα
=


∂J


∂X


dX


dα
+ ΛT


„
∂R


∂X


dX


dα


«
dGk(α)


dα
=


∂Gk


∂X


dX


dα
+ ΛT


k


„
∂R


∂X


dX


dα


«
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SENSITIVITY COMPUTATION


Discrete direct differentiation method (4/4)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step


→ (except when product
∂R


∂X


dX


dαl
is computed using (FD))


/ complexity (and CPU cost) linked to nu and not to nf


• Drawbacks


/ New lines in the simulation code except if the problem is linear and its


jacobian symmetric
/ No drawback form a theoritical point of view
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SENSITIVITY COMPUTATION


Continuous adjoint method (1/2)


• Principle


/ Differentiate CONTINUOUS equations of mechanics w.r.t. design parame-


ters
/ Multiply resulting equation by arbitrary function λ


/ Add the product to (continuous) expression of
dJ
dαl


/ Do integration by parts


/ Define the p.d.e. and b.c. verified by adjoint function λ canceling state


variable sensitivity
dw


dαl
in


dJ
dαl


/ Same principle as previous demonstration for discrete equation - much


more difficult from a mathematical point of view


• Presented in detail in the Lecture Notes for Euler equations with coordinates change


• Can’t be explained in detail with a few slides
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SENSITIVITY COMPUTATION


Continuous adjoint method (2/2)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step


/ complexity (and CPU cost) linked to nu and not to nf


• Drawbacks


/ New lines in the simulation code except if the problem is linear and its


jacobian symmetric
/ Not consistent with the limit of (FD) gradients (for small steps δl)
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SENSITIVITY COMPUTATION


Continuous vs discrete method


• Assets of discrete adjoint


/ Consistency of gradients with the limit of (FD) gradients


/ Always well defined equations (vs possible issues for the definition of B.C.


for continuous approach)
/ Routines possibly built from AD (Automatic Differentiation) tools


• Assets of continuous adjoint


/ Simple and well defined dissipative schemes (vs linearization of classical


schemes for discrete adjoint)


• Large litterature in aerodynamics some years ago


• Discrete adjoint becoming the standard in CFD (?)
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SENSITIVITY COMPUTATION


Approximation in ∂R
∂W


• Reminder : warning about accurracy and robustness


• Some examples for CFD using (RANS) equations


/ Linearization (RANS)+ tubrulence model equations leads to bad condi-


tionned ∂R
∂W matrices


/ Freezing turbulence increases robustness but decreases accuracy of di-


rect/adjoint codes
/ Nowdays, freezing turbulence is a very classical option


/ Lack of accuracy depending on test case. To be measured
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SENSITIVITY COMPUTATION


Outlines


/ The KKT (Karush-Kuhn-Tucker) conditions for local optimality


/ Simplex method


/ Descent methods


/ Sensitivity evaluation for descent methods


Thank you for your attention


Any question ?
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OPTIMIZATION


Mathematics and Mechanics


• Classical optimization problems in Mechanics


. Minimize the drag of an aircraft under constraints (on lift, pitching mo-


ment...)
. Maximize total pressure of supersonic aircraft air intake


. Maximize efficiency of a turbomachinery blade under constraints (on surge


margin - compressor - aerothermal behaviour - turbine)


• General mathematical conterpart


. All possible shapes = infinite dimensional search


. Partial differential equations (unsolvable for complex shapes and B.C.)


. No solution except for very simple problems


• Need for simplification - discretization and parametrization
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OPTIMIZATION


Mathematics in finite dimension and Mechanics


• Classical optimization problems in Mechanics


• Using numerical analysis and parametrization


. Mesh (some hundreds of thousands/milions points)


. Numerical analysis (finite volumes for (RANS) equations...)


. Design parameters describing the possible shapes


• Solvable, finite dimensional mathematics


• Optimization with large design space and complex direct problem very expensive


. Sampling of all design space plus computation of all points : unaffordable


. Efficient optimization algorithms required
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OPTIMIZATION


Local and global optimization - Mathematics (1/2)


• Definitions and notations


. α vector of parameters


. Dα design space = Region of Rnf associated to the parametrization


. Mechanics - objective : function that has to be maximized/minimized


→ Maths - function J (α) to minimize


. Constraints : functions that have to be kept lower/higher than some value


→ Maths - functions Gk(α) that should verify Gk(α) ≤ 0.


• Global optimization


. Goal = find the best solution/shape α∗ over all design space


• Local optimization


. Goal = find a shape α∗, best shape over its neighborhood


. α∗ to be found in the vicinity of an initial value of parameter α0
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OPTIMIZATION


Local and global optimization - Mathematics (2/2)


• Global optimization


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Dα


∀k ∈ [1, nc] Gk(α∗) ≤ 0.


• Local optimization α∗ over a neighborhood of α∗


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗


(Vα∗ neighborhood of α∗)


∀k ∈ [1, nc] Gk(α∗) ≤ 0.
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OPTIMIZATION


Local and global optimization - Mechanics (1/2)


• For all shapes α


Mesh of the configuration X(α)
State variables (displacement, flowfield) W (α)
Discrete equations for Mechanics (RANS...) link X and W


R(W (α), X(α)) = 0


Function of interest depend on W and X


J (α) = J(W (α), X(α)) Gk(α) = gk(W (α), X(α))


→ See lecture notes for the assumption behind “W function of α”
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OPTIMIZATION


Local and global optimization - Mechanics (2/2)


• Global optimization


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) over Dα


∀k ∈ [1, nc] gk(W (α∗), X(α∗)) ≤ 0.


• Local optimization


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) over Vα∗


(Vα∗neighborhood of α∗)


∀k ∈ [1, nc] gk(W (α∗), X(α∗)) ≤ 0.
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OPTIMIZATION


Classification of optimization Algorithms and associated subjects


• Global optimization


. Genetic and evolutionnary algorithms


. Simulated annealing, Aunt colony, Particle swarm...


. Use of surrogate models for global optimization


→ Lecture of R. Van den Braembussche


• Local optimization


. Simplex method


. Descent methods


. Sensitivity computation for descent methods


→ Topics of this lesson


• How to combine local and global optimization algorithms


→ Discussed day 2 by R. van den Braembussche
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OPTIMIZATION


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods
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KKT CONDITION FOR LOCAL OPTIMALITY


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


. KKT Conditions


. Solving KKT conditions in R2


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods
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KKT CONDITION FOR LOCAL OPTIMALITY


Simple cases


• Infinite design space ( Dα = Rnf ), no constraint, J C2 regular


. Necessary condition for local optimality in α∗


∇J (α∗) = 0
. Necessary and sufficient condition for local optimality in α∗


∇J (α∗) = 0 H(α∗) (Hessian of J ) positive definite


. Necessary condition for global optimality in α∗


∇J (α∗) = 0
. Necessary condition for global optimality in α∗


∇J (α∗) = 0 H(α) positive definite over Dα
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KKT CONDITION FOR LOCAL OPTIMALITY


General case (1/2)


• Bounded design space


. Supposed to be a parallelepiped


Dα = Dα = [α1,l, α1,u]×[α2,l, α2,u]×[α3,l, α3,u]×...×[αnf ,l, αnf ,u]


. Consider the bounds as 2nf additional constraints


Gnc+1(α) = α1,l − α1


Gnc+2(α) = αl − α1,u


Gnc+3(α) = α2,l − α2


...


Gnc+2nf
(α) = αnf


− αnf ,u


. Total number of constraints n′c = nc + 2nf
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KKT CONDITION FOR LOCAL OPTIMALITY


General case (2/2)


• KKT necessary condition for local optimality in α∗ (no lagrangian)


α∗is an admissible state and there exist n′c real numbers λj such that


∇J (α∗) + Σλ∗j∇Gj(α∗) = 0


λ∗jGj(α∗) = 0 λ∗j ≥ 0.


• Define Lagrangian L(α, λ1, · · · , λnc) = J (α) + ΣλjGj(α)


• Other form of KKT necessary condition for local optimality in α∗


α∗is an admissible state and there exist n′c real numbers λj such that


∇αL(α∗, λ∗1, · · · , λ∗nc
) = 0


λ∗jGj(α∗) = 0 λ∗j ≥ 0.
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Considered simple problems


• Minimization in R2 - useful illustrative plots.


• Minimization of α2
1 + 3α2


2 with different constraints


/ To improve readability, change of notations (α, β) = (α1, α2)


• Minimization of α2 + 3β2 in R2 subject to


/ g1(α, β) = 7− 2α− 3β ≤ 0
/ g2(α, β) = 1− α + β2 ≤ 0 (lecture notes only)


/ g2(α, β) = 1− α + β2 ≤ 0 g3(α, β) = 4− α− 2β ≤ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With one linear constraint


• Considered problem:


Min α2 + 3β2


subject to g1(α, β) = 7− 2α− 3β ≤ 0


• Corresponding Lagrangian Function:


L(α, β, λ) = α
2


+ 3β
2


+ λ(7− 2α− 3β)


• KKT conditions:


∂L
∂α


(α
∗
, β


∗
, λ


∗
1) = 2α


∗ − 2λ
∗
1 = 0


∂L
∂β


(α
∗
, β


∗
, λ


∗
1) = 6β


∗ − 3λ
∗
1 = 0


g1(α
∗
, β


∗
) ≤ 0


λ
∗
1g1(α


∗
, β


∗
) = 0


λ
∗
1 ≥ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


First problem : solving KKT conditions


• First case: g1 is active ⇒ g1(α
∗, β∗) = 08>><>>:


2α∗ − 2λ∗1 = 0


6β∗ − 3λ∗1 = 0


7− 2α∗ − 3β∗ = 0


9>>=>>; ⇒ (α∗, β∗, λ∗1) = (2, 1, 2)


• Second case: g1 is not active ⇒ λ∗1 = 08<: 2α∗ = 0


6β∗ = 0


9=; ⇒ (α∗, β∗) = (0, 0) ⇒ g1(α
∗, β∗) = 7 > 0


• Unique solution: (α∗, β∗) = (2, 1) with λ∗1 = 2
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


First problem - solution


Solution of first problem: (α∗, β∗) = (2, 1), λ∗1 = 2
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With two inequality constraints (1)


• Considered problem:


Min α2 + 3β2


subject to g2(α, β) = 1− α + β2 ≤ 0


and g3(α, β) = 4− α− 2β ≤ 0


• Corresponding Lagrangian Function:


L(α, β, λ2, λ3) = α
2


+ 3β
2


+ λ2(4− α− 2β) + λ3(1− α + β
2
)
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


With two inequality constraints (2)


• KKT conditions:


∂L
∂α


(α
∗
, β


∗
, λ2, λ3) = 2α


∗ − λ2 − λ3 = 0


∂L
∂β


(α
∗
, β


∗
, λ2, λ3) = 6β


∗ − 2λ2 + 2λ3β
∗


= 0


g2(α
∗
, β


∗
) ≤ 0


g3(α
∗
, β


∗
) ≤ 0


λ2g2(α
∗
, β


∗
) = 0


λ3g3(α
∗
, β


∗
) = 0


λ2 ≥ 0


λ3 ≥ 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Second problem - solving KKT conditions (1)


• First case: the two constraints are active ⇒ g2(α
∗, β∗) = g3(α


∗, β∗) = 08>>>>><>>>>>:
2α∗ − λ∗2 − λ∗3 = 0


2β∗(3 + λ∗3)− 2λ∗2 = 0


4− α∗ − 2β∗ = 0


1− α∗ + (β∗)2 = 0


9>>>>>=>>>>>;
⇒ (α∗, β∗, λ∗2, λ


∗
3) = (2, 1,


7


2
,
1


2
)


• Second case: only constraint g2 is active ⇒ g2(α
∗, β∗) = λ∗3 = 08>><>>:


2α∗ − λ∗2 = 0


6β∗ − 2λ∗2 = 0


4− α∗ − 2β∗ = 0


9>>=>>; ⇒ (α∗, β∗, λ∗2) = (
12


7
,
8


7
,
24


7
) ⇒ g2(α


∗, β∗) =
29


49
> 0
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SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Second problem - solving KKT conditions (2)


• Third case: only constraint g3 is active ⇒ g3(α
∗, β∗) = λ∗2 = 08>><>>:


2α∗ − λ∗3 = 0


2β∗(3 + λ∗3) = 0


1− α∗ + (β∗)2 = 0


9>>=>>; ⇒ (α∗, β∗, λ∗3) = (1, 0, 2) ⇒ g3(α
∗, β∗) = 3 > 0


• Fourth case: two constraints are inactive ⇒ λ∗3 = λ∗2 = 08<: 2α∗ = 0


6β∗ = 0


9=; ⇒ (α∗, β∗) = (0, 0) ⇒ g3(α
∗, β∗) = 4 > 0


• Unique solution: (α∗, β∗) = (2, 1) with λ∗2 = 7
2


and λ∗3 = 1
2







Local Optimization and Sensitivity Analysis RTO AVT-167


SOLVING KKT CONDITIONS FOR ELEMENTARY PROBLEMS


Solution of second problem


Solution of second problem: (α∗, β∗) = (2, 1), λ∗2 = 7
2 , λ∗3 = 1


2
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SIMPLEX METHODS


Outlines of the lecture on local optimization


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


/ Definition of “simplex” or “polytop”


/ Transformation of the simplex


/ Algorithm


• Descent methods


• Sensitivity evaluation for descent methods
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SIMPLEX METHODS


Introduction


• Deterministic and simple nonlinear local optimization algorithm:


/ Introduced by Nelder and Mead (1965)


/ "Direct method": uses only values of the objective function


/ Efficient (low memory and low computational cost), robust (very tolerant to


noise) and easy to code


• Based on the concept of “simplex” or “polytop”


/ Polytop = set of nf + 1 vertices (triangle in 2D, tetrahedron in 3D)


• Principle


/ Choice of an initial simplex


/ Successive transformation of simplex to adapt it to the objective function
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SIMPLEX METHODS


Starting simplex - possible transformations


• Values of J computed for all points


• Points of simplex sorted so that J (α1) ≤ J (α2) ≤ ... ≤ J (αnf +1)


• Principle = substitute a better point to worst point αnf +1


• Additional points considered during iteration


/ (always) ᾱ the center of gravity of the simplex


/ (possibly) αr reflection of worst point w.r.t. ᾱ : αr = (1+a)α−aαnf +1


/ (possibly) αe expansion towards αr : αe = bαr + (1− b)α
/ (possibly) αc contraction in [α, αr] : αc = cα + (1− c)αr


/ (possibly) αc contraction in [α, αnf +1] : αc = cα+(1−c)αnf +1
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SIMPLEX METHODS - MOVING THE WORST POINT


In R3, red α1 (worst point), blue αnf+1 (best point)


Original simplex


Reflection Reflection and expansion


αr = (1 + a)α− aαn+1 αe = bαr + (1− b)α


a: reflection coefficient b: expansion coefficient
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SIMPLEX METHODS - MOVING THE WORST POINT


In R3 - red α1 (worst point), blue αnf+1 (best point)


Original simplex


Contraction Contraction in all direction


αc = cα + (1− c)αn+1 αi = dαi + (1− d)α1, i = 2, ..., nf + 1


c: contraction coefficient d: shrinking coefficient
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SIMPLEX METHODS


An iteration of Simplex


• Sorted simplex : J (α1) ≤ J (α2) ≤ ... ≤ J (αnf +1). ᾱ the center of gravity


• Define αr = (1 + a)α− aαnf +1 Compute J (αr)


• If J (αr) < J (α1) (very good point), define αe by expansion towards αr


If J(αe) < J(αr), αe is selected to replace αnf +1


Else αr is selected to replace αnf +1


• If J (α1) ≤ J(αr) < J(αn), αr is accepted to replace αnf +1


If J (αn) ≤ J (αr) < J (αn+1), df.αc by contraction of αr


If J(αc) < J(αr) then αc is selected to replace αnf +1


Otherwise αr is selected to replace αnf +1


• If J (αnf +1) ≤ J (αr) (very bad point), define αc by contraction of αnf +1


If J (αc) < J (αnf +1) then αc is selected to replace αnf +1


Otherwise, make an internal contraction of the polytop: points


αi, i = 2, ..., nf + 1 are contracted
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SIMPLEX METHODS


Staring and stopping simplex - parameters


• Choice of initial simplex:


/ An initial point α1 is chosen (for example, randomly)


/ Simplex is build around this point: αi+1 = α1 + λie
i, i = 1, ..., nf


→ Vectors ei define a basis of IRnf


→ Scalar factors λi, (i = 1, ..., nf ) are constants


• Stopping criterion: 1
n


Pnf


i=1 ||α
i k+1 − αi k||2 < ε (displacement of polytop small


enough)


• Standard value of parameters: (a, b, c, d) = (1, 2, 1/2, 1/2)
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SIMPLEX METHODS


Rosenbrock Banana Function


Figure 1: f(x, y) = (1− x)2 + 100(y − x2)2
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SIMPLEX METHODS


Example
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Figure 2: Iterations on Rosenbrock banana function
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DESCENT METHODS


Sensitivity computation for descent methods


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


/ Line search (1D descent)


/ Unconstrained multi-D descent


/ Constrained multi-D descent


• Sensitivity evaluation for descent methods
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LINE SEARCH


PRESENTATION


• One part of classical optimization algorithm (at iteration k):


/ Compute direction dk


/ Compute step tk in direction dk (USE LINE-SEARCH)


/ Update current solution: αk+1 = αk + dktk


• Objective of line-search:


/ Find step t which minimizes q(t) = J (αk + tdk)
/ Use a reasonable number of function evaluation


• Presented methods:


/ Academic methods: methods of order 0, dichotomy


/ Wolfe line-search and Golstein and Price method


/ Polynomial approximations
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LINE SEARCH


Academic methods - methods of order 0


• Naive method: search minimum by successive tries and search range refinement


• Algorithm


/ Begin with a search interval [a0, b0]
/ At each step k, choose two search points t−k and t+k in [ak, bk]
/ q(t−k ) ≤ q(t+k ) ⇒ [ak, bk] = [ak−1, t


+
k ]


/ q(t+k ) < q(t−k ) ⇒ [ak, bk] = [t−k , bk−1]
/ Stop when |ak − bk| ≤ ε


• Need a strategy to choose search points
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LINE SEARCH


Methods of order 0 - three equal parts


• Three equal parts: t−k = tL + 1
3
(tR − tL) and t+k = tL + 2


3
(tR − tL)


⇒ linear convergence with rate of
q


2
3
' 0.82
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Figure 3: First iterations of the method
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LINE SEARCH


Methods of order 0 - Golden number


• Use of golden number ( λ = 1+
√


5
2


): t−k = 1
1+λ


(λtL + tR) and t+k = 1
1+λ


(tL + λtR)


⇒ linear convergence with rate of 1
λ
' 0.62
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Figure 4: First iterations of the method
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LINE SEARCH


Academic methods - dichotomy


• In case derivatives are available, one point evaluated by iteration


• Algorithm:


/ Begin with a search interval [a0, b0]
/ At each step k, search point tk = ak+bk


2


/ q′(tk) < 0 ⇒ [ak, bk] = [tk, bk−1]
/ q′(tk) > 0 ⇒ [ak, bk] = [ak−1, tk]
/ Stop when |q′(tk)| ≤ ε


• Convergence is linear with rate of 1
2
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LINE SEARCH


Dichotomy - an example
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Figure 5: First iterations of the method
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LINE SEARCH


Wolfe line-search


• Compromise between accuracy of computed solution and required number of evaluations


• Well-adapted to industrial applications


• Based on wolfe rules ( 0 < m1 < m2 < 1):


/ A step is too large if q(t) > q(0) + m1tq
′(0)


/ A step is too small if q′(t) < m2q
′(0)


/ Else the step is satisfactory
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LINE SEARCH


Wolfe line-search - Rules


t


q’(0)


m2q’(0)


q(t)


0


m2q’(0)


m2q’(0) m1q’(0)


Too largeToo small Satisfactory step Too small Satisfactory step


Figure 6: Wolfe rules







Local Optimization and Sensitivity Analysis RTO AVT-167


LINE SEARCH


Wolfe line-search - algorithm


• Start with a = 0, b = ∞, an initial stepsize t = t0 and values for parameters m1, m2


(0 < m1 < m2 < 1), and β > 1


• At each step:


/ Evaluate rules on current step:


→ Step too small⇒ a = t


→ Step too large⇒ b = t


→ Step satisfactory⇒ stop algorithm


/ Compute new step:


→ b real⇒ t = a+b
2


→ b infinity⇒ t = βa
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LINE SEARCH


Wolfe line-search - example
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Figure 7: Wolfe method when (m1,m2) = (0.4, 0.9)
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LINE SEARCH


Goldstein and Price method


• Used instead of Wolfe line-search when derivatives are not available or computationally


too expensive


• Derivative q′(t) is replaced by average slope q(t)−q(0)
t


• Corresponding rules ( 0 < m1 < m2 < 1):


/ A step is too large if q(t) > q(0) + m1tq
′(0)


/ A step is too small if q(t) < q(0) + m2tq
′(0)


/ Else the step is satisfactory
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LINE SEARCH


Goldstein and Price method : example


 1.05


 1.1


 1.15


 1.2


 1.25


 1.3


 0  0.2  0.4  0.6  0.8  1


[a0,b0]


[a1,b1]


exp(-x) + 0.3*exp(x)
Step (it.1)


Final step (it.2)


Figure 8: Goldstein and Price method when (m1,m2) = (0.4, 0.9)







Local Optimization and Sensitivity Analysis RTO AVT-167


LINE SEARCH


Polynomial approximations


• One ot the most effective techniques:


/ Requiring only a few function evaluations


/ Can lead to a very poor approximation for highly nonlinear functions


• Example: approximation with a polynomial of degree 2 q̃(t) = a0 + a1t + a2t
2


/ Evaluation of q and q′ at t0 = 0: ⇒ (a0, a1) = (q(t0), q′(t0))
/ Evaluation of q at an another point t1: ⇒ a2 = q(t1)−a0−a1t1


t21


/ Identification of minimum: t∗ = −a1
2a2


• Approximation with a polynomial of degree n requires n − 1 function evaluations (in


addition to the evaluation of function and derivative in t0 = 0)
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LINE SEARCH


Polynomial approximations- Example
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Figure 9: Exact solution and computed solution by polynomial approximations
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Presentation


• Objective: search an optimum of the objectif function on the whole space Rnf


• General principle:


/ Start with an initial point α0


/ At each iteration k, current iterate is modified


→ Compute a descent direction dk


→ Compute a step in this direction tk (for basic method, tk = 1)


→ Update approximation by αk+1 = αk + tkdk


/ End when a criterion (in most cases on the gradient) is satisfied


• Presented methods:


/ Steepest descent method


/ Newton method


/ Quasi-Newton method
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UNCONSTRAINED MULTI-D DESCENT


Steepest descent method


• Most intuitive, basical method: dk = −∇J (αk) and tk = 1


/ Easy to implement


/ But short-sighted


/ Zig-zagging behaviour


• Requires more information to be efficient, in particular information about the second-


order derivatives → Newton method
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UNCONSTRAINED MULTI-D DESCENT


Steepest descent method: one example


Figure 10: Steepest descent on Rosenbrock function
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UNCONSTRAINED MULTI-D DESCENT


Newton method (1)


• Originally a method to find roots of equation z(α) = 0


/ Approximate z by linear expansion: z(αk + dk) ' z(αk) +∇z(αk)dk


/ Solve equation z(αk) +∇z(αk)dk = 0
→ increment dk = −


[
∇z(αk)


]−1
z(αk)


/ Update current approximation: αk+1 = αk + dk


• Same method can be used as an optimization algorithm by searching roots of gradient of


the objective function


/ Descent direction is computed by: dk = −
[
∇2J (αk)


]−1∇J (αk)







Local Optimization and Sensitivity Analysis RTO AVT-167


UNCONSTRAINED MULTI-D DESCENT


Newton method (2)


• Reminder α(k+1) = αk −
ˆ
∇2J (αk)


˜−1∇J (αk)


• Main advantage is the convergence in neighborhood of the solution


/ Superlinear in general


/ Quadratic (number of exact digits doubled at each iteration) if J has C3


regularity
• Drawbacks


/ Hessian is required: explicit form unavailable in general and numerical com-


putation very expensive
/ In high dimensional space, solution of linear system (at each iteration) very


CPU demanding
/ Violent divergence far from the optimal point


• Quasi-Newton methods developed to circumvent these drawbacks
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UNCONSTRAINED MULTI-D DESCENT


Quasi-Newton method


• Improvement over the Newton method based on two main ideas


/ Adding a line-search process to the algorithm:


→ At each iteration, compute an optimal step by minimizing


q(t) = J (αk + tdk) (Cf. line-search methods above)


→ Hessian of the objective function needs to be positive


/ Approximate the inverse of the Hessian by a matrix H̄


• Algorithm:


/ Start from an initial point α0 with H̄ initialized to a positive definite matrix


/ While ||∇J || > ε


→ Compute descent direction : dk = −H̄k∇J (αk)
→ Line-search (initialized t = 1)


→ Update current iterate: αk+1 = αk + tdk


→ Compute the new approximation H̄k+1
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Quasi-Newton method: update H̄


• Method presented here: BFGS (Broyden-Fletcher-Goldfarb-Shanno)


• The most used quasi-Newton algorithm


• Keep the matrix positive definite


• Update H̄ by following formula:


sk = αk+1 − αk


yk = ∇J (αk+1)−∇J (αk)


H̄k+1 = H̄k − sk(yk)T H̄k + H̄kyk(sk)T


(yk)T sk
+


»
1 +


(yk)T H̄kyk


(yk)T sk


–
sk(sk)T


(yk)T sk
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UNCONSTRAINED MULTI-D DESCENT


Quasi-Newton method: one example


Figure 11: Quasi-Newton method (BFGS) on Rosenbrock function
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Reminder


• Solve the mathematical problem defined at the beginning of the talk


• Local optimization problem :


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗


(Vα∗ neighborhood of α∗)


∀k ∈ [1, nc] Gk(α∗) ≤ 0.


• Restricted to differentiable functions


• Four methods: sequential linear programming, method of centers, feasible direction


method, sequential quadratic programming
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (1/3)


• Solve a sequence of linear problems


• At each iteration, solve the problem linearized from exact equations


• Two issues to deal with :


/ Intermediate non admissible state may appear


→ Acceptable or not depending on problem


/ Solution of intermediate linear problem may be non-bounded


→ A bound for (α(p+1) − α(p)) is needed


→ Bound to decrease with the number of iteration
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (2/3)


• Algorithm :


/ Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Find δαk which


. minimizes J (α) ' J (αk) +∇J (αk).δα;


. subject to Gj(α) ' Gj(αk) +∇Gj .δα ≤ 0 j = 1, nc


. subject to αi,l ≤ α + δα ≤ αi,u i = 1, nf


Update αk+1 = αk + δαk


Set k = k + 1
/ END WHILE
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CONSTRAINED MULTI-D DESCENT


Sequential linear programming (SLP) (3/3)


Figure 12: Sequential linear programming in R2
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Method of centers (1/4)


• Solve also a sequence of linear problems. Almost all of them are admissible (advantage


over (SPL)


• Search for the center of the largest sphere included in following subspace :


∇J (α0).(α− α0) ≤ 0. Gj(α
0) +∇Gj .(α− α0) ≤ 0 j = 1, nc


• Draw some plots, see slide N+3...


/ Intersection of hyperplanes problem


/ Not always a bounded space, hence norm of (α − α0) needs to be


bounded
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CONSTRAINED MULTI-D DESCENT


Method of centers (2/4)


• Principle : search for the center of the largest sphere included in the subspace defined


by linearized objective and constraints


∇J (α0).(α− α0) ≤ 0. Gj(α
0) +∇Gj .(α− α0) ≤ 0 j = 1, nc


• Euclidian distance of point α1 to those hyperplanes.


/ Note d = α1 − α0


/ Distance of α1 to linarized objective and constraints hyperplanes


D = −∇J (α0).d
|∇J (α0)|


Dj = −Gj(α0) +∇Gj(α0).d
|∇Gj(α0)|


/ core of the algorithm : solve linear problem defined byD > r andDj > r







Local Optimization and Sensitivity Analysis RTO AVT-167


CONSTRAINED MULTI-D DESCENT


Method of centers (3/4)


• Algorithm :


/ Set k = 0; an initial iterate α0, a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Find dk (a priori bounded) which maximizes r subject to


. ∇J (α0).dk + |∇J (α0)|r ≤ 0.


. ∇Gj(α0).dk + |∇Gj .(α0)|r ≤ −Gj(α0) j = 1, nc


Update αk+1 = αk + dk


Set k = k + 1
/ END WHILE
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CONSTRAINED MULTI-D DESCENT


Method of centers (4/4)


Figure 13: Method of centers in R2
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Method of feasible direction (1/3)


• Two step “non-linear” algorithm


/ Search for descent direction (taking into account non-linearity of active con-


straints)
/ Line-search along descent-direction


• Definition of descent direction


/ Goal find best possible descent direction, avoiding following “trap” :


In R2, current point α0, objective J , one CONVEX ACTIVE


constraint G1.


The solution of “Find d (a priori bounded) minimizing


∇J (α0).d subject to ∇G1(α0).d < 0” leads to inadmissi-


ble α1 (see plot of slide N+3)
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Method of feasible direction (2/4)


• Definition of descent direction d


• Avoid trap described on previous slide


/ Good requirement associated to an active convex constraint is


∇G1(α0).d + θj < 0 θj > 0
• Need to link the decrease of J and Gj along d


• “Good” feasible direction search


/ Maximize β, find dk (a priori bounded), such that


. ∇J (α0).dk + β ≤ 0.


. ∇Gj(α0).dk + θjβ ≤ 0. ∀j/Gj(α0) = 0
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Method of feasible direction (3/4)


• Algorithm :


/ Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.


/ WHILE KKT-conditions not satisfied


Maximize β, find dk (a priori bounded), such that


. ∇J (αk).dk + β ≤ 0.


. ∇Gj(αk).dk + θjβ ≤ 0. ∀j/Gj(αk) = 0
Minimize q(l) = J(αk + ldk) (One dimensional search)


Update αk+1 = αk + ldk


Set k = k + 1
/ END WHILE
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Method of feasible direction (4/4)


Figure 14: Method of feasible direction in R2
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Sequential quadratic programming (SQP) (1/2)


• Solve a sequence of quadratic minimization with linear constraints


• Quadratic minimization of Q(d) = J (αk) +∇J (αk).d + 1
2
dT Bd


/ B approximate Hessian matrix


• Set of linear constraints ∇Gj(α
k).d + δjGj(α


k) ≤ 0. j = 1, nc


/ δj=1 for strictly respected constraint


Gj(αk) < 0 value of the constraint may increase


/ δj ∈ [0, 1] for violated constraints


Gj(αk) > 0 Forces decrease of (first-order expansion of) Gj
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Sequential quadratic programming (SQP) (2/2)


• Algorithm :


/ Set k = 0; an initial iterate α0, a stopping tolerance ε, and initial approxi-


mate Hessian matrix B0 are given.
/ WHILE KKT-conditions not satisfied


Find dk which


. minimizes J (αk) +∇J (αk).d + 1
2dT Bkd


. subject to∇Gj(αk).d + δjGj(αk) ≤ 0. j = 1, nc


Update αk+1 = αk + dk


Build Bk+1 (for example, from BFGS formula)


Set k = k + 1
/ END WHILE
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Sensitivity computation for descent methods


• The KKT (Karush-Kuhn-Tucker) conditions for local optimality


• Simplex method


• Descent methods


• Sensitivity evaluation for descent methods


/ Definition


/ Finite difference


/ !!! Warning !!! about robustness and accuracy


/ Discrete direct method


/ Discrete adjoint method


/ Continuous adjoint method (fluid dynamics - Euler equations)


/ Approximation in the differentiation (fluid dynamics)
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Sensitivity computation for descent methods


• Context - descent method for local optimization


• Task - compute the derivatives involved in the descent


/ At current point α(p) of descent algorithm


/ Derivatives of objective J w.r.t. design parameters


/ Derivatives of constraints Gk reaching their bound w.r.t. design parameters


Compute∇Gk only if Gk(α(p)) = 0


• “sensitivity computation” = computation of those derivatives ...,
∂J
∂αl


, ...,
∂Gk


∂αn
,...


• Differentiation of nu function w.r.t to nf design parameters


/ Most often nu << nf


/ Classical optimization in aerodynamics nu ' 4, nf = ...20, 50, 100, ...
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First method : finite differences (1/3)


• Task : compute the derivatives of nu functions w.r.t. the nf design parameters


/ J (α) = J(W (α), X(α)) Gk(α) = gk(W (α), X(α))
/ W state variables, X mesh nodes, R(W (α), X(α)) = 0


• Finite differences :


/ Method as old as direct simulations (used in the 70s for aerodynamics)


/ Principle - compute“shifted” state variables corresponding to shifted shapes


/ Derivation w.r.t. αl (classical 2nd order formula)


Shifted meshes X(α + δαl), X(α− δαl)
Solve for W (α− δαl),W (α + δαl) :


. R(W (α + δαl), X(α + δαl))) = 0


. R(W (α− δαl), X(α− δαl))) = 0
Compute the finite differences of the functions of interest
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First method : finite differences (2/3)


• Task - compute the derivatives of nu functions of interest w.r.t. nf design parameters


• Derivation w.r.t. αl (classical 2nd order formula


/ Consider shifted meshes according to lth design variables - X(α + δαl),


X(α− δαl)
/ Solve for corresponding state variables W (α + δαl), W (α− δαl)
/ Compute


∂J (α)
∂αl


'
[
J (α + δαl)− J (α− δαl)


2δαl


]
=


[
J(W (α + δαl)), X(α + δαl))− J(W (α− δαl), X(α− δαl))


2δαl


]
/ Corresponding formula for active constraints Gk
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First method : finite differences (3/3)


• Cost : Solve 2nf direct problem


• Drawbacks


/ Cost


/ Tricky choice of δl (too large or too small→ inaccuracy)


/ Validity for complex configurations exhibiting bad convergence ???


if R(W (α + δαl), X(α + δαl)) <> 0, what about (FD)


gradients of J and Gl???
• Assets


/ No new code lines needed


/ OK for black-box numerical tools
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!!! WARNING !!! about ROBUSTNESS and ACCURACY


• The threee other methods are in principle much more interesting and powerful than FD


/ Linear systems are solved instead of non-linear systems


/ Moreover multiple-rhs linear algebra may be used


/ Either nu (direct) or nf (adjoint) complexity


• BUT Adjoint and direct methods...


/ often use various approximations in jacobian ∂R
∂W


/ (sometimes) face (very) bad conditioning of the matrices they try to invert


• ASK about / CHECK the ROBUSTNESS and ACCURACY of your numerical tools for gra-


dient computation


• Use these advanced methods instead of FD when appropriate
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Discrete direct differentiation method (1/2)


• Starting point : equations for fluid dynamics


∀α R(W (α), X(α)) = 0


• Differentiation w.r.t αl


∂R


∂W


dW


dαl
= − ∂R


∂X


dX


dαl


• Solve the nf linear systems (with same matrix) for state variables sensitivity
dW


dαl


• Compute the needed derivatives with straighforward formula


dJ (α)


dα
=


∂J


∂W


dW


dα
+


∂J


∂X


dX


dα
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Discrete direct differentiation method (2/2)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step involved


(except when product
∂R


∂X


dX


dαl
is computed using (FD))


• Drawbacks


/ complexity (and CPU cost) linked to nf (number of design parameters)


which of often (very) large
/ new routines in simulation code if the problem is non-linear
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Discrete adjoint method (1/4)


• Many possible derivation of discrete adjoint method


/ (1) Transposition of previous equations


/ (2) Lagrangian


/ (3) Product of differentiated equation of CFD by an arbitrary vector


• Demonstration (3) presented here as


/ it is quite simple


/ it helps understanding the quite difficult continuous adjoint method


• Starting point
∂R


∂W


dW


dαl
= − ∂R


∂X


dX


dαl


• Hence ∀Λ ∈ IRnW


ΛT ∂R


∂W


dW


dαl
+ ΛT


„
∂R


∂X


dX


dαl


«
= 0
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Discrete adjoint method (2/4)


• Add this relation to the gradient of direct differentiation method ∀Λ ∈ IRnW


dJ (α)


dαl
=


∂J


∂X


dX


dαl
+


∂J


∂W


dW


dαl
+ ΛT ∂R


∂W


dW


dαl
+ ΛT


„
∂R


∂X


dX


dαl


«


• Possible factorization ∀Λ ∈ IRnW


dJ (α)


dαl
=


„
∂J


∂W
+ ΛT ∂R


∂W


«
dW


dαl
+


∂J


∂X


dX


dα
+ ΛT


„
∂R


∂X


dX


dαl


«


• A choice of Λ vector exempts from computing
dW


dαl


/ no need to solve the direct problem


/ this choice is independant of l


/ this choice is dependant of J , the function of interest
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Discrete adjoint method (2/4)


• Adjoint equations for objective and constraints (line vectors)


ΛT ∂R


∂W
= − ∂J


∂W
ΛT


k
∂R


∂W
= −∂Gk


∂W


• Or adjoint equations for objective and constraints (column vectors)„
∂R


∂W


«T


Λ = −
„


∂J


∂W


«T „
∂R


∂W


«T


Λk = −
„


∂Gk


∂W


«T


• Sensitivity evaluation


dJ (α)


dα
=


∂J


∂X


dX


dα
+ ΛT


„
∂R


∂X


dX


dα


«
dGk(α)


dα
=


∂Gk


∂X


dX


dα
+ ΛT


k


„
∂R


∂X


dX


dα


«
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Discrete direct differentiation method (4/4)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step


→ (except when product
∂R


∂X


dX


dαl
is computed using (FD))


/ complexity (and CPU cost) linked to nu and not to nf


• Drawbacks


/ New lines in the simulation code except if the problem is linear and its


jacobian symmetric
/ No drawback form a theoritical point of view
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Continuous adjoint method (1/2)


• Principle


/ Differentiate CONTINUOUS equations of mechanics w.r.t. design parame-


ters
/ Multiply resulting equation by arbitrary function λ


/ Add the product to (continuous) expression of
dJ
dαl


/ Do integration by parts


/ Define the p.d.e. and b.c. verified by adjoint function λ canceling state


variable sensitivity
dw


dαl
in


dJ
dαl


/ Same principle as previous demonstration for discrete equation - much


more difficult from a mathematical point of view


• Presented in detail in the Lecture Notes for Euler equations with coordinates change


• Can’t be explained in detail with a few slides
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Continuous adjoint method (2/2)


• Assets


/ solve linear instead of non-linear problems (like (FD))


/ no (FD) step


/ complexity (and CPU cost) linked to nu and not to nf


• Drawbacks


/ New lines in the simulation code except if the problem is linear and its


jacobian symmetric
/ Not consistent with the limit of (FD) gradients (for small steps δl)
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Continuous vs discrete method


• Assets of discrete adjoint


/ Consistency of gradients with the limit of (FD) gradients


/ Always well defined equations (vs possible issues for the definition of B.C.


for continuous approach)
/ Routines possibly built from AD (Automatic Differentiation) tools


• Assets of continuous adjoint


/ Simple and well defined dissipative schemes (vs linearization of classical


schemes for discrete adjoint)


• Large litterature in aerodynamics some years ago


• Discrete adjoint becoming the standard in CFD (?)
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Approximation in ∂R
∂W


• Reminder : warning about accurracy and robustness


• Some examples for CFD using (RANS) equations


/ Linearization (RANS)+ tubrulence model equations leads to bad condi-


tionned ∂R
∂W matrices


/ Freezing turbulence increases robustness but decreases accuracy of di-


rect/adjoint codes
/ Nowdays, freezing turbulence is a very classical option


/ Lack of accuracy depending on test case. To be measured
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Outlines


/ The KKT (Karush-Kuhn-Tucker) conditions for local optimality


/ Simplex method


/ Descent methods


/ Sensitivity evaluation for descent methods


Thank you for your attention


Any question ?
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ABSTRACT
Many shape optimization problems of industrial interest can be converted in mathematical finite-dimensional
optimizations through discretization and parametrization. Hence a good knowledge of global and local
optimization algorithms is important to design engineers. This part of the lecture series describes the most
classical local optimization methods. All of these algorithms - except the simplex - require the gradient of the
functions of interest with respect to the design parameters. The different ways to compute those derivatives -
often called “sensitivities” - are also described.


1 Introduction


Numerical optimization aims at locating the minima of a regular function (called objective function) on a
finite-dimensional design space, while satisfying a certain number of constraints (expressed as inequality
verified by the so-called constraint functions). More precisely, local optimization aims at finding a local
optimum in the neighborhood of an initial guess, whereas global optimization aims at finding the global
optimum on the whole design space. These problems are, of course, the mathematical counterparts of me-
chanical optimization problems - like drag minimization of an aicraft or total pressure maximization of a
supersonic aircraft air intake - as soon as (a) a mesh and a simulation tool are available ; (b) the solid shape
has been parametrized/a remeshing tool is available to propagate its deformation to the whole mesh ; (c) the
objective and constraints have been expressed as functions of the geometry and state variables.
Numerical optimization for airplane design was used almost as soon as simulation codes appeared. The aero-
dynamic optimizations carried out by G.N. Van der Plaats at NASA in the mid 70’s illustrate this early inter-
est in optimization [1]. At that time, 2D and simple 3D configurations were considered, simplex or descent
methods were used and the gradients required by descent methods were estimated by the finite-differences.
Since then, the framework of aerospace optimization has known at least three drastic extensions:
(1) several global optimization methods have been defined and intensively used (evolutionary algorithm, par-
ticle swarm, ant colony, simulated annealing,...) ;
(2) surrogate functions (neural network, Kriging, polynomial regression, support vector machine,...) have
been used for a part of the evaluation of the global optimization methods leading to significant cost reduc-
tions ;
(3) adjoint vector and direct differentiation method have been defined , studied and more and more often
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used to computate the gradients necessary for descent algorithms.


This part of the course focuses on local optimization methods. Section 1 and 2 gather general informa-
tions, basic definitions and theorems. Section 3 is dedicated to the broadly used simplex method. Section 4 is
devoted to descent methods. Section 5 describes the adjoint and direct methods that can efficiently compute
the gradient of the functions of interest with respect to the design parameters.


Section 3 and 4 are joint work with M. Marcelet (ONERA). Section 5 is joint work with R.P. Dwight
(TU-Delft).


2 Notations, mathematical problem and properties


2.1 Mathematical optimization problem


In this first subsection, the classical notations of a mathematical finite-dimensional optimization problem are
defined. Let α be the current vector of the input space (design vector). Let us denote nf its dimension. The
vector α is supposed to vary in Dα (the design space), a parallelepiped of Rnf .
The objective function to minimize on Dα is denoted J (α). The constraints of the problem are supposed
to be formulated through nc functions Gj , j ∈ [1, nc], that are negative at admissible design points. Only
inequality constraint are considered here as for most practical design problems an adequate choice of the
design parameters allows to avoid equality constraints.
Obviously the local and global optimization problems read


• Global optimum search


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Dα


∀j ∈ [1, nc] Gj(α∗) ≤ 0.


• Local optimum search


Seek for α∗ in Dα such that J (α∗) = Min J (α) on Vα∗


(Vα∗ neighborhood of α∗)
∀j ∈ [1, nc] Gj(α∗) ≤ 0.


In most common situations, the objective and constraint functions are at least continuous. In this course, the
functions are supposed to have C1 regularity, and in some sections, C2 regularity.


2.2 Optimization problem stemming from a numerical simulation


In the framework of aircraft or turbomachinery design, the functions of interest depend on a distributed
state field and geometrical variables that are linked by a system of equations discretizing physical partial
differential equations on a computational domain. It is rather difficult to write a general presentation fitting
all disciplines. For this reason this subsection is "aerodynamics-oriented".
Let us note S(α), the coordinates of the surface mesh of a solid body. This function is supposed to be C1
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regular. From any surface mesh S(α) a volumic mesh X(α) is built. This function is also supposed to have
C1 regularity. Its Jacobian dX/dα can always be estimated by finite-differences and in some cases by the
following product of Jacobians


dX


dα
=


dX


dS


dS


dα


The state variables (aerodynamic conservative variables at the center of the cells, for example, for a CFD
simulation) are noted W (vector of size na). State variables and mesh satisfy the discrete equations of fluid
mechanics (a discrete form of (RaNS) equations for example),


R(W,X) = 0


(in general, nonlinear set of na equations). These equations of mechanics are also supposed to have C1


regularity with respect to (w.r.t.) its two vector arguments. For a specific mesh Xi = X(αi), the equations
for mechanics define a set of na nonlinear equations and na unknowns (the components of W ). Let us now
consider the state variable Wi associated with mesh Xi


1. More precisely, we shall suppose that


R(Wi, Xi) = 0 det[(∂R/∂W )(Wi, Xi)] 6= 0


The implicit funtion theorem allows us to define W as a C1 function of X in a neighborhood of Xi, and
then, thanks to the regularity of X(α), as a C1 function of α in a neighborhood of αi. For the remainig part
of this subsection this property is assumed to be true for the whole design space Dα.
We may now use the notation W (α) (C1 function from Rnf to Rna) and rewrite the discrete state equations


R(W (α), X(α)) = 0


Note that when R(W,X) and X(α) have Ck (k > 1) regularity, the implicit function theorem garantees Ck


regularity for W (α). This property is needed when computing the derivatives of order k of objective and
constraints functions (with most often k=1 or 2).
In case of an optimization problem associated with a framework of numerical simulation, the objective
function may be written


J (α) = J(W (α), X(α))


The constraint functions Gj(α) have the same dependencies Gj(α) = gj(W (α), X(α)). A shape, corre-
sponding to a vector α (size nf ) is said to be admissible if and only if


∀j ∈ [1, nc] gj(W (α), X(α)) ≤ 0.


(nc number of contraint functions).


1in aerodynamics, for certain geometry and boundary conditions the steaty flow may not be unique. Such a troublesome situation
is obviously not compatible with design optimization and is not discussed here.


Local Search Methods for Design in Aeronautics 


RTO-EN-AVT-167 4 - 3 


 


 







• The global optimisation problem now reads


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) sur Dα


∀j ∈ [1, nc] gj(W (α∗), X(α∗)) ≤ 0.


Obviously no optimization algorithm can pretend to systematically find one global optimum without
more hypothesis, in particular convexity, than C1 regularity of J and gj (which has been adopted to allow
derivatives computations).


• The local optimisation problem is also rewritten


Seek for α∗ in Dα such that


J (α∗) = J(W (α∗), X(α∗)) = Min J (α) sur Vα∗


(Vα∗ being a neighborhood of α∗)
∀j ∈ [1, nc] gj(W (α∗), X(α∗)) ≤ 0.


2.3 The Karush-Kuhn-Tucker condition


For the unconstrained optimization of a C2 function of Rnf , classical conditions of existence for minima
read :
- local optimum located in α∗ - ∇J (α∗) = 0 is a necessary condition. ∇J (α∗) = 0 and H(α∗) positive
definite (H hessian matrix of J ) is a sufficient condition.
- global optimum located in α∗ - ∇J (α∗) = 0 is a necessary condition. ∇J (α∗) = 0 and H(α) positive
definite on Rnf is a sufficient condition.
For a constrained problem on a finite size domain, the necessary condition for optimality is more complex to
express. Actually, we first have to introduce more explicit notations for the parallelepiped design space Dα:


Dα = [α1,l, α1,u]× [α2,l, α2,u]× [α3,l, α3,u]× ...× [αnf ,l, αnf ,u]


Then the domain bounds are rewritten as 2nf additionnal constraints:
Gnc+1(α) = α1,l − α1


Gnc+2(α) = α1 − α1,u


Gnc+3(α) = α2,l − α2


...
Gnc+2nf


(α) = αnf
− αnf ,u


For an optimization problem with inequality constraints the Karush-Kuhn-Tucker conditions are:
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KKT conditions


α∗is an admissible state
∇J (α∗) + Σλ∗j∇Gj(α∗) = 0
λ∗jGj(α∗) = 0 λ∗j ≥ 0.


The third line means that only the constraints attaining the limit value zero may have their gradient in-
cluded in the linear combination of the second line.


By introducing a lagrangian L(α, λ1, · · · , λnc) = J (α) + ΣλjGj(α), we can write KKT conditions:


KKT conditions (alternative formulation)


α∗is an admissible state
∇αL(α∗, λ∗1, · · · , λ∗n′


c
) = 0


λ∗jGj(α∗) = 0 λ∗j ≥ 0.


The Karush-Kuhn-Tucker condition is a necessary condition for optimality. This condition is the coun-
terpart for constrained problems of the necessary condition ∇J = 0 for unconstrained problems. It is a
sufficient condition only when objective and constraint functions are convex.


As this condition is not very intuitive, it is suggested that the reader draws some sketches for nf = 2
with a minimum reached inside Dα


- with one inequality constraint attaining its bound G1(α) = 0. Drawing iso-lines of J and G1 helps under-
standing the theorem ;
- with two inequality constraints attaining their bound G1(α) = 0, G2(α) = 0. Drawing iso-lines of the three
functions of the problem also helps understanding the theorem.


2.4 Solving KKT conditions for elementary problems in R2


In this section, three examples of solution of KKT optimality conditions are given. To improve readability,
we set α = α1 and β = α2.


2.4.1 With one linear inequality constraint


The following problem is considered:{
Min α2 + 3β2


subject to g1(α, β) = 7− 2α− 3β ≤ 0


The corresponding Lagrangian function is:


L(α, β, λ) = α2 + 3β2 + λ(7− 2α− 3β)
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The KKT conditions are:
∂L
∂α (α∗, β∗, λ∗1) = 2α∗ − 2λ∗1 = 0
∂L
∂β (α∗, β∗, λ∗1) = 6β∗ − 3λ∗1 = 0
g1(α∗, β∗) ≤ 0 λ∗1 ≥ 0 λ∗1g1(α∗, β∗) = 0


/ First case: constraint g1 is active. Following system has to be solved:


2α∗ − 2λ∗1 = 0
6β∗ − 3λ∗1 = 0


7− 2α∗ − 3β∗ = 0


The first two equations yield α∗ = 2β∗ = λ∗1. With the third, we obtain (α∗, β∗, λ∗1) = (2, 1, 2)


/ Second case: constraint g1 is not active. Following system has to be solved:


2α∗ = 0
6β∗ = 0
λ∗1 = 0


But the solution (0, 0, 0) gives g1(α∗, β∗) = 7 > 0, in contradiction with the hypothesis.


/ Conclusion. The KKT conditions give the following unique solution : (α∗, β∗) = (2, 1) and λ∗1 = 2.


Figure 1: Solution of problem 1
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2.4.2 With one nonlinear inequality constraint


The following problem is considered:{
Min α2 + 3β2


subject to g2(α, β) = 1− α + β2 ≤ 0


The solution of the KKT conditions yield (α∗, β∗) = (1, 0) and λ∗2 = 2:


∇J(1, 0) + λ∇g2(1, 0) = 0 ⇔
[
2
0


]
+ λ


[
−1
0


]
= 0


⇔
[
2
0


]
= λ


[
1
0


]


Figure 2: Solution of problem 2


2.4.3 With two inequality constraints


The following problem is considered: Min α2 + 3β2


subject to g2(α, β) = 1− α + β2 ≤ 0
and g3(α, β) = 4− α− 2β ≤ 0
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The corresponding Lagrangian function is:


L(α, β, λ2, λ3) = α2 + 3β2 + λ2(1− α + β2) + λ3(4− α− 2β)


The KKT conditions are:
∂L
∂α (α∗, β∗, λ∗2, λ


∗
3) = 2α∗ − λ∗2 − λ∗3 = 0


∂L
∂β (α∗, β∗, λ2, λ3) = 6β∗ + 2λ∗2β


∗ − 2λ∗3 = 0
g2(α∗, β∗) ≤ 0 λ2 ≥ 0 λ2g2(α∗, β∗) = 0
g3(α∗, β∗) ≤ 0 λ3 ≥ 0 λ3g3(α∗, β∗) = 0


/ First case: the two constraints are active. The following system of equations has to be solved:


2α∗ − λ∗2 − λ∗3 = 0
2β∗(3 + λ∗2)− 2λ∗3 = 0


4− α∗ − 2β∗ = 0
1− α∗ + (β∗)2 = 0


The last two equations are equivalent to (β∗)2 + 2β∗ − 3 = 0 and α∗ = 1 + (β∗)2. The solutions for β
of the first equation are -3 and +1.


1. β∗ = −3 gives α∗ = 10. Solving for the 2x2 linear system (λ∗2, λ
∗
3) leads to a negative λ∗2;


2. β∗ = 1 gives α∗ = 2. Solving for the 2x2 linear system (λ∗2, λ
∗
3) yields (λ∗2, λ


∗
3) = (1


2 , 7
2)


/ Second case : only constraint g3 is active. The following system of equations is to be solved:


2α∗ − λ∗3 = 0
6β∗ − 2λ∗3 = 0


4− α∗ − 2β∗ = 0
λ∗2 = 0


The first two equations give 2α∗ = 3β∗ = λ∗3. With the third equation, we obtain (α∗, β∗, λ∗3) = (12
7 , 8


7 , 24
7 ).


At this point, the constraint g2 is violated (g2(12
7 , 8


7) = 29
49 > 0).


/ Third case: only constraint g2 is active. The following system of equations needs to be solved:


2α∗ − λ∗2 = 0
2β∗(3 + λ∗2) = 0


λ∗3 = 0
1− α∗ + (β∗)2 = 0


In the second equation, we retain only the option β∗ = 0. So we obtain (α∗, β∗, λ∗2) = (1, 0, 2). At this
point, the constraint g3 is violated (g3(1, 0) = 3 > 0).
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/ Fourth case: Constraints g2 and g3 are inactive. The following system of equations needs to be solved:


2α∗ = 0
6β∗ = 0
λ∗2 = 0
λ∗3 = 0


But the solution (α, β, λ∗2, λ
∗
3) = (0, 0, 0, 0) leads to g3(α∗, β∗) = 4 > 0 and g2(α∗, β∗) = 1 > 0.


/ Conclusion. The unique minimun of our problem is reached at (2, 1), as it can be checked on the
graphics below. Let us also note that λ∗2 = 7


2 and λ∗3 = 1
2 are the coefficients of the linear combination of the


gradient of the objective function and the (active) constraints that satisfies the first KKT condition∇αL = 0.
This is illustrated by figure 3.


Figure 3: Solution of problem 3


3 Simplex method


This method is both deterministic and simple (as it uses only values of the function of interest). It was
introduced in 1965 by Nelder et Mead [2] and appeared to be efficient, robust and easy to code. Actually,
its robustness allows in some circumstances to subtitute approximate values of the function of interest to the
exact ones. The simplex algorithm was the starting point for the definition of many derived algorithms called
“pattern search methods”.
It is supposed here that the whole search path is located in an admissible region or that no constraint appears
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in the minimization problem. In opposition to classical descent methods, the initialisation procedure requires
the evaluation of the function of interest for a set of nf + 1 points (the vertices of a simplex of Rnf ). Most
often this set is built around a specific point α1, the nf other points being defined by following relationship 2 :


αi+1 = α1 + λie
i i = 1, ..., nf


where vectors ei, (i = 1, ..., nf ) define a basis of Rnf The scalar factors λi, (i = 1, ..., nf ) are constants.
Most often they are all equal to a single value. The set of nf + 1 points can be called either polytop or
simplex and is denoted P =< α1, α2, ..., αnf+1 >. The minimization algorithm proceeds as follows :


1. Sort the points so that :
J (α1) ≤ J (α2) ≤ ... ≤ J (αnf+1)


2. The center of gravity of the (α1, α2, ..., αnf ) (all points of simplex P but the worst) is considered and
denoted α


3. A new point (αr) is defined by reflection of the worst point of the polytop w.r.t the center of gravity


αr = (1 + a)α− aαnf+1


(coefficient a > 0 is called the reflection coefficient of the method)


(a) If J (αr) < J (α1), αr if a very interesting point for the purpose of minimization. A trial is
made to go further in the direction of αr. Following point is defined


αe = bαr + (1− b)α


where b > 0 is called the expansion coefficient of the polytop. If J(αe) < J(αr) then αe is
selected to replace αnf+1. The algorithm goes back to step 1. Otherwise αr is finaly selected to
replace αnf+1 ; The algorithm goes back to step 1.


(b) If J (α1) ≤ J(αr) < J(αnf ) then αr is accepted to replace αnf+1 ; The algorithm goes back to
step 1.


(c) If J (αn) ≤ J (αr) < J (αnf+1) then the algorithm tries an internal contraction by evaluating
the point


αc = cα + (1− c)αr


where c is the contraction coefficient. If J (αc) < J (αr) then αc is kept to replace αnf+1 ;
Execution goes back to step 1. Otherwise αr is finaly accepted to replace αnf+1 ; Algorithm
goes back to step 1.


(d) If J (αnf+1) ≤ J (αr) then αr is a very bad point for the purpose of the minimization. The
algorithm tries an internal contraction of the polytop


αc = cα + (1− c)αnf+1


If J (αc) < J (αnf+1) then αc is selected to replace αnf+1 ; Algorithm goes back to step
1. Otherwise the whole simplex is shrinked. All points of the polytop but the best αi, i =


2caution : do not mix the lower index of vector components in α = (α1, α2, ..., αnf ) with the upper index of design vector
number
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2, ..., nf + 1 are replaced by
αi = dαi + (1− d)α1


where d is the shrinking coefficient of the algorithm.


The algorithm is stopped when the displacement of polytop becomes small enough, that is


1
n


nf∑
i=1


||αk+1
i − αk


i ||2 < ε


(i index of points in the sorting of step (1), k index of iterations) Standard values for reflection (a), expansion
(b), contraction (c) and shrinking coefficients(d) are :


(a, b, c, d) = (1, 2, 1/2, 1/2)


The location of the candidate new points is illustrated in figure 4 for nf = 3.


α1
α4


α


α1
α4


α


(a) original simplex (b) reflection


α1
α4


α


α1
α4


α


(c) expansion (d) contraction


α1
α4


(e) shrinking


Figure 4: simplex – search of new points
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4 Descent methods


The graphics in this section are adapted from those of the classical book of G.N. Vanderplaats “Numerical
optimization techniques for engineering design: with applications.” [3] or from http://www.mathworks.com.


A descent method is an iterative method for the solution of a local optimization problem. Starting from
an initial point, it attempts to converge to an optimum, using local information at the current point to compute
the next iterate.


In the following pages, we first present the most popular algorithm for 1D minimization. Then, we focus
on some unconstrained optimization methods before presenting constrained optimisation methods.


4.1 Function of one variable


In many algorithms of multi-dimensionnal optimization, after a descent direction dk has been defined, a one
dimensional minimization along dk is performed. This means that a step t is sought to diminish significantly
q(t) = J (αk + tdk). A good line-search is obviously desirable, but the number of exact evaluations of J
must remain as low as possible : the goal is not to find the optimal t > 0 at an intermediate step but to
reduce is the objective function J efficiently at each iteration. Conversely a bad line-search can slow down
the global algorithm and a compromise must be found between the performance of the line-search and the
number of evaluations of J .
This minimization along a descent direction during multi-dimensionnal optimization is one of the reasons
for the interest in 1D-minimization.


4.1.1 Academic methods


Methods of order 0 Methods of order 0 can be used to find the minimum of a function of one variable in
case function values only can be computed.


Algorithm 1 Methods of order 0
Set tL = a, tR = b and k = 1;
while convergence level not reached do


Choose search point t−k and t+k ;
Compute q(t−k ) and q(t+k );
if q(t−k ) ≤ q(t+k ) then


tR = t+k
else


tL = t−k
end if
k = k + 1


end while


Various strategies to choose the search point have been developed:


• if the original interval is divided in three equal parts, it can be shown that the convergence is linear


with a rate of
√


2
3 ;
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• if the golden number (λ = 1+
√


5
2 ) is used (t−k = λ


1+λ tL + 1
1+λ tR and t+k = 1


1+λ tL + λ
1+λ tR). One of


the two points of step k, is also a search point of step k + 1. The convergence rate is then 1
λ .


Dichotomy In some cases, the considered function is smooth and the derivative of q(t) is known. It can
then be used to improve the descent rate.


Algorithm 2 Dichotomy


Set tL = a, tR = b,k = 1 and stop=false;
while not stop do


Choose search point tk as tk = tL+tR
2 ;


Compute q′(tk);
if q′(t−k ) = 0 then


stop=true;
else


if q′(t−k ) > 0 then
tR = tk


else
tL = tk


end if
k = k + 1


end if
end while


It can be shown that this method converges linearly with a rate of 0.5. There are many other methods of
academic interest to find the minimum of function of one variable ; all of them use a large number of eval-
uations of q(t) (possibly q′(t)). For industrial applications, a satisfactory method is based on a compromise
between the accuracy of the computed solution and the required number of evaluations of q(t) (each of them,
of course, requiring an evaluation of J ).


4.1.2 Wolfe line-search


From this point of view, in case the derivative of q(t) is available, one of the most efficient methods is the
Wolfe line-search, based on the following rules (where 0 < m1 < m2 < 1):


• a step is too large if q(t) > q(0) + m1tq
′(0);


• a step is too small if q′(t) < m2q
′(0);


• else the step is satisfactory.


This rules are illustrated on the figure 5.
Based on these rules, the algorithm is given hereafter.
In many applications, obtaining derivatives q′(t) of q(t) is computationally expensive. One adapted


method of Wolfe linear search, called the Goldstein and Price method, replaces q′(t) by the average slope
q(t)−q(0)


t . It is described in the next subsection.
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t


q’(0)


m2q’(0)


q(t)


0


m2q’(0)


m2q’(0) m1q’(0)


Too largeToo small Satisfactory step Too small Satisfactory step


Figure 5: Wolfe’s rules


Algorithm 3 Wolfe line-search
Set tL = 0, tR = +∞ and stop=false; Choose an initial stepsize t and value for parameters m1 and m2


with 0 < m1 < m2 < 1 and β > 1;
while not stop do


if q(t) > q(0) + m1tq
′(0) or q′(t) < m2q


′(0) then
if q(t) > q(0) + m1tq


′(0) then
tR = t (current step is too large)


end if
if q′(t) < m2q


′(0) then
tL = t (current step is too small)


end if
if tR is real then


t = tL+tR
2


else
t = βtL


end if
else


stop=true (current step is satisfactory)
end if


end while


4.1.3 Goldstein and Price method


By substituting q′(t) by q(t)−q(0)
t , condition which defines too small step becomes :


q(t)− q(0) < m2tq
′(0)


The definition of too small and too large steps becomes :


• a step is too large if q(t) > q(0) + m1tq
′(0);
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• a step is too small if q(t) < q(0) + m2tq
′(0);


• else the step is satisfactory.


It is equivalent to say that a step is satisfactory if the average slope is bounded by m1q
′(0) and m2q


′(0).
Even with these modifications, Wolfe line-search requires a large number of objective funtion evalua-


tions. In most industrial cases, it is replaced by a parabolic-approximation approach.


4.1.4 Polynomial approximations


Polynomial approximations is one of the most effective techniques for finding the minimum of a function
of one variable. The method has the advantage of requiring only a few function evaluations at each step.
Conversely, it can lead to a very poor approximation for highly nonlinear functions. The approximation with
a polynomial of degree 2 is presented:


q̃(t) = a0 + a1t + a2t
2


 1.05


 1.1


 1.15


 1.2


 1.25


 1.3


 0  0.2  0.4  0.6  0.8  1


exp(-x) + 0.3*exp(x)
Polynomial approximation


Computed solution
Exact solution


Figure 6: Polynomial approximations


The evaluation of the function q and its first derivative q′ at t0 = 0 leads to the following system
(a0, a1) = (q(t0), q′(t0)). Evaluation of the function q in an another point t1 is needed to compute the
coefficient a2:


a0 + a1t1 + a2t
2
1 = q(t1) ⇔ q(t0) + q′(t0)t1 + a2t


2
1 = q(t1)


⇔ a2 =
q(t1)− a0 − a1t1


t21


After the polynomial coefficients are found, the location of the minimum of the polynomial is identified,
which is simple and inexpensive. For a polynomial approximation of degree 2, the result is obvious (t∗ =
−a1
2a2


). More information about polynomial approximations can be found in Vanderplaats[3].
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4.1.5 Line-search for constrained optimization


Section 4.3 will describe several algorithms adapted for constrained optimization and requiring a line-search.
In this case, the methods presented in previous sections 4.1.[1-4] must be generalized and applied to function
r(t) = Φ(αk + tdk) instead of q(t) = J (αk + tdk). The function Φ includes a penalty term to account for
non-admissible areas of the design space. The most popular penalty function is the following :


Φ(α) = J (α) +
nc∑
i=1


σig
+
i (α) (1)


g+
i (α) = min(0, gi(α))2 (2)


4.2 Descent methods for unconstrained optimization


In this part, we focus on the search of an optimum of the objective function on the design space Dα. In
this section an the next one, the sequence of points of several algorithms is illustated in 2D for Rosenbrock
banana function :


J (α1, α2) = (α1 − 1)2 + 100(α2 − α2
1)


2


4.2.1 Steepest Descent Methods


The most intuitive method uses, at each iteration, the opposite of the gradient as the descent direction.


Algorithm 4 Steepest Descent algorithm with fixed step


We set k = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do


Compute dk = −∇J (αk).
Update current iterate: αk+1 = αk + dk.
Set k = k + 1


end while


This method can be improved by finding, at each iteration, one optimal step by resolving 1D optimisation
problem by methods presented above.


Algorithm 5 Steepest Descent algorithm with optimal step


We set k = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do


Compute dk = −∇J (αk).
Find t∗ by line-search on q(t) = J(αk + tdk).
Update current iterate: αk+1 = αk + t∗dk.
Set k = k + 1


end while


Actually, theses methods are short-sighted and have a zig-zagging behaviour for simple test cases (for
example, with the Rosenbrock banana function, see figure 7). This behaviour affects convergence speed and
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robustness of this method. Conjugate gradient methods is one of the mean developped to circumvent these
difficulties.


Figure 7: Steepest descent path for Rosenbrock banana function


4.2.2 Conjugate Gradient methods


The idea behind Conjugate gradient methods comes from the analysis of the behaviour of the steepest de-
scent for the specific case of positive definite quadratic forms (J (α) = 1


2αT Hα + bT α). In this case,
the conditioning of positive definite matrix H strongly affects the robustness and convergence speed of the
steepest descent. To improve robustness, Conjugate Gradient methods uses at step k a descent direction dk


orthogonal to dk−1 in the sense of H -
(
dk−1


)T
Hdk = 0.


dk = −∇J (αk) + βkdk−1 βk =


(
∇J (αk)


)T
Hdk−1


(dk−1)T
Hdk−1


In this simple case (positive definite matrix H), the search of the unique minimum of J is equivalent to the
resolution of the linear system Hα + b = 0 (search for the unique point where gradient of J is zero) and it
can be proven that the algorithm converges to the unique solution in nf or less steps.


Two formulas have been proposed for computation of βk for extension to non quadratic cases. The first
one is based on an other formula of βk in the quadratic positive definite case βk = ‖∇J (αk)‖2


‖∇J (αk−1)‖2 which can be
directly applied to a non-quadratic function as it does not refer anymore to matrix H . The second extension,
proposed by Polak and Gibière in 1969, reduces also to the same algorithm in the quadratic positive definite
case (see below, as then ∇J (αk)T .∇J (αk−1) = 0). It is known to lead to a more efficient algorithm for
specific applications.


• Fletcher-Reeves
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βk =
‖∇J (αk)‖2


‖∇J (αk−1)‖2


• Polak-Ribiere


βk =
‖∇J (αk)‖2


‖∇J (αk−1)‖2
−
(
∇J (αk)


)T ∇J (αk−1)
‖∇J (αk−1)‖2


Algorithm 6 Conjugate Gradient algorithm


We set k = 0 and d−1 = 0; an initial iterate α0 and a stopping tolerance ε is given;
while ‖∇J (αk)‖ ≥ ε do


Compute dk = −∇J (αk) + βkdk−1.
Find t∗ by line-search on q(t) = J(αk + tdk).
Update current iterate: αk+1 = αk + t∗dk.
Set k = k + 1


end while


Figure 8: Conjugate Gradient path for Rosenbrock banana function


A more efficient algorithm requires more information, in particular information about the second deriva-
tives of the function to minimize. Newton methods have been devised for this reason.
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4.2.3 Newton methods


The classical Newton method is originally a method to find the roots of the equation z(α) = 0 by approxi-
mating the function z by successive linear expansions. Starting from the current iterate αk, substituting z by
its linear approximation leads to :


z(αk + dk) = z(αk) +∇z(αk)dk + o(‖dk‖). (3)


Neglecting the term o(‖dk‖) yields z(αk)+∇z(αk)dk = 0, the solution of which, dk = −
[
∇z(αk)


]−1
z(αk),


allows to calculate the next iterate αk+1 = αk + dk.
The same method can be used as an optimization algorithm, by solving the optimality equation presented


in section 3. In this case, the function z(α) becomes the gradient ∇J of the objective function J and the
gradient ∇z, its Hessian ∇2J . At each iteration k, the descent direction has to be computed by the formula
dk = −


[
∇2J (αk)


]−1∇J (αk).


Algorithm 7 Newton algorithm


We set k = 0; an initial iterate α0 and a stopping tolerance ε are given;
while ‖∇J (αk)‖ ≥ ε do


Compute dk = −∇2J (αk)∇J (αk).
Update current iterate: αk+1 = αk + dk.
Set k = k + 1


end while


The important advantage of this method resides in its convergence in the neighborhood of the solution,
which is superlinear in general and quadratic (at each iteration, the number of exact digits is doubled) if J
has C3 regularity.


Besides, the drawbacks of Newton’s method are also well-known:


• the Hessian is required: in most engineering problems, an explicit form of the objective function
is unavailable. The Hessian must be computed numerically which requires a large number of the
objective function evaluations ;


• in high dimensional spaces, the solution of the linear system at each iteration is very CPU demanding ;


• Newton methods diverge violently far from the optimal point ;


• this algorithm converges on the closest stationary point, not necessarily the global minimum.


Quasi-Newton methods were developed to circumvent these drawbacks.


4.2.4 Principle of Quasi-Newton methods


Considering these drawbacks, the quasi-Newton realizes an improvement over the above Newton method
based on two main ideas:


• First, the stability problems of the method can be avoided by adding a line-search process in the
algorithm. Actually, noting that the requirement J (αk+1) < J (αk) enforces stability, the Newton
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increment dk is considered as a direction, along which a line-search is performed to diminish the
function q(t) = J (αk + tdk). It can be proved that the line-search is possible if and only if the
Hessian of the objective function is positive definite. Line-search algorithms are presented in section
(4.1).


• Secondly, rather than computing the Hessian matrix, its inverse is approximated by a matrix H̄ which
evolves during the iterations. This matrix can be chosen symmetric positive definite. An algorithm
following this approach will be presented in the next section.


Algorithm (8) describes the steps of a generic quasi-Newton algorithm.


Algorithm 8 Generic quasi-Newton algorithm


Set k = 0; an initial iterate α0 and a stopping tolerance ε are given; an initial matrix H̄0, positive definite
(generally the identity matrix) is also chosen.
while ‖∇J (αk)‖ ≥ ε do


Compute dk = −H̄k∇J (αk).
Make a line-search initialized by t = 1.
Update current iterate: αk+1 = αk + tdk.
Compute the new matrix H̄k+1.
Set k = k + 1


end while


Figure 9: quasi-Newton path on Rosenbrock banana function
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4.2.5 BFGS method


Let us now explain how the matrix H̄ evolves during the iterations. The method presented here was intro-
duced by C. Broyden[4], R. Fletcher[5], D. Goldfarb[6] and D. Shanno[7]. It certainly is the most popular
quasi-Newton algorithm. The matrix H̄k+1 is computed from H̄k and some vectors attached to iteration k
and k + 1 computations according to following formulas


sk = αk+1 − αk


yk = ∇J (αk+1)−∇J (αk)


H̄k+1 = H̄k − sk(yk)T H̄k + H̄kyk(sk)T


(yk)T sk
+
[
1 +


(yk)T H̄kyk


(yk)T sk


]
sk(sk)T


(yk)T sk


4.3 Constrained optimization


Multidimensionnal constrained optimization problems are now considered : the optimum is searched in the
admissible sub-domain of the design space. Actually, most complex indutrial problems lead to multidimen-
sionnal constrained optimization.


4.3.1 Sequential linear programming (SLP)


This method solves a sequence of linear problems approximating the posed non-linear one. α0 being an
initial guess of the solution the algorithm reads 3


Algorithm 9 Sequential linear programming


Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do


Find δαk which minimizes J (α) ' J (αk) +∇J (αk).δα;
subject to Gj(α) ' Gj(αk) +∇Gj .δα ≤ 0 j = 1, nc


and αi,l ≤ α + δα ≤ αi,u i = 1, nf


Update αk+1 = αk + δαk


Set k = k + 1
end while


A linear problem has to be solved at each iteration of the algorithm. Its solution may not be an admissible
state for the non-linear problem (i.e. it may violate one of the constraints). It is nevertheless possible to have
non-admissible states as intermediate solution of the algorithm and to converge towards the exact admissible
solution. Another issue of the SLP algorithm is that the solution of the linear problem may not be bounded.
In this case, the norm of δα is bounded by the user. In pratice it appears that the corresponding bound has
to be lowered as the number of iterations increases. Sequential Linear Programming is well-suited for many
optimization problems but its parameter - the bound of δα as a function of the number of iterations - is
critical and has to be carefully defined.


3caution : do not mix the lower index of vector components in α = (α1, α2, ..., αnf ) with the upper index of design vector
number
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Figure 10: Sequential linear programming


4.3.2 The method of centers


As explained in previous sub-section, (SLP) algorithm generates many intermediate inadmissible states αj


(draw a sketch in the case of two convex contraints and two des ign parameters). The methods of centers,
although also based on linear approximations of objective and constraints functions, defines almost only
admissible intermediate states.
Let point α0 be the initial guess for the minimization problem. α1 is then build as the center of the largest
sphere (in Rnf ) included in following subspace of Rnf .{


∇J (α0).(α− α0) ≤ 0.
Gj(α0) +∇Gj .(α− α0) ≤ 0 j = 1, nc


(4)


The reader is invited to draw some figures to check that the sphere is not always tangent to all planes
defined by linearization of the constraints in α0. Hence, just as for (SLP), δα = α1 − α0 has to be bounded.
Let d also denote the first increment d = δα = (α1 − α0). The distances of center α1 to the hyperplanes
defined by differentiation of objective and constraint functions are


D = −∇J (α0).d
|∇J (α0)|


Dj = −Gj(α0) +∇Gj(α0).d
|∇Gj(α0)|


The algorithm has to find the radius of the sphere r and its center α1 - or equivalently -the displacement d
from α0 to α1 solving the linear problem defined by D ≥ r, Dj ≥ r :


 Maximize r, find d
∇J (α0).d + |∇J (α0)|r ≤ 0.
∇Gj(α0).d + |∇Gj .(α0)|r ≤ −Gj(α0) j = 1, nc


(5)


This linear optimisation problem is solved in r and d and an other iteration is done with α∗1 as starting point.
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Algorithm 10 The method of centers


Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do


Find dk which maximizes r;
subject to ∇J (αk).dk + |∇J (αk)|r ≤ 0.
and ∇Gj(αk).dk + |∇Gj .(αk)|r ≤ −Gj(αk) j = 1, nc


Update αk+1 = αk + dk


Set k = k + 1
end while


Several authors proposed to combine this method with a gradient method defining the new position of
the estimated minimum as


α1 = α0 + d + β
∇J (α0)
|∇J (α0)|


where the factor β must be small in order to stay in the linearly admissible region (β = -r/2 for example).


Figure 11: Method of centers


4.3.3 Feasible direction method


In opposition to the two previous methods, this one directly works on the non linear equations of the problem.
Its goal is to build a sequence of points α(p) such that


α(p) = α(p−1) + ld(p)


where the displacement along direction d leads to lower values of both, the objective the active constraints 4.
After d has been defined, the factor l is determined by a monodimensional optimization. Let us now derive
the definition of d. As before, the index are the ones of the first iteration of the algorithm. The vector d must


4all constraints satisfying Gj(α
(p−1)) = 0
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satisfy
∇J (α0).d ≤ 0


∇Gj(α0).d ≤ 0 ∀j/Gj(α0) = 0.


The tricky point is the determination of the vector d ensuring the best descent. For a simple two dimensional
problem (nf = 2) with one active convex constraint G1, it is easy to check on a sketch that the minimisation
∇J(α0).d with ∇G1(α0).d ≤ 0. will lead to a vector d that will lead to a nonadmissible state α1. To tackle
this issue, scalar factors θj are included in the problem


∇Gj(α0).d + θj ≤ 0 θj > 0. ∀j/Gj(α0) = 0.


One wants to link the value of θj with the one of ∇J (α0).d Eventually, the research of he best direction for
descent is reformulated as follows


Maximize β, find d
∇J (α0).d + β ≤ 0.
∇Gj(α0).d + θjβ ≤ 0. ∀j Gj(α0) = 0.
d bounded


(6)


Obviously, if Gj is a linear constraint then θj = 0. For non linear constraints the simplest choice is θj = 1.
More complex formulas are presented in [3].


Algorithm 11 Feasible direction method


Set k = 0; an initial iterate α0 and a stopping tolerance ε are given.
while KKT-conditions not satisfied do


Find dk which maximizes β;
subject to ∇J (αk).dk + β ≤ 0.
∇Gj(αk).dk + θjβ ≤ 0. ∀j/Gj(αk) = 0 and dk bounded.
Compute optimal step t minimizing q(t) = J (αk + tdk)
Update αk+1 = αk + tdk


Set k = k + 1
end while


4.3.4 Sequential quadratic programming (SQP)


In this method, an auxiliary fonction of the descent vector d is indroduced. It is a quadratic approximation
of J (α + d). The algorithm reads{


Minimize Q(d) = J (α) +∇J (α).d + 1
2dT Bd


∇Gj(α).d + δjGj(α) ≤ 0. j = 1, nc
(7)


B is a positive definite matrix equal to the identity matrix I at the first step and to an approximation of
the hessian for the next iterations. Parameter δj is taken equal to 1 if the contraint is strictly respected
(Gj(α) < 0) and to a value in [0,1] if the current design point α violates contraint Gj(α). See [3] for more
information about hessian estimation, and monodimensional search after determination of d.
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Figure 12: Method of feasible direction


Algorithm 12 Sequential quadratic programming


Set k = 0; an initial iterate α0 and a stopping tolerance ε are given; an initial hessian matrix is also chosen;
an initial hessian matrix B0 is also chosen;
while KKT-conditions not satisfied do


Find dk which minimizes Q(d) = J (αk) +∇J (αk).d + 1
2dT Bkd;


subject to ∇Gj(αk).d + δjGj(αk) ≤ 0. j = 1, nc


Update αk+1 = αk + dk


Build Bk+1 from, for example, BFGS formula
Set k = k + 1


end while


5 Sensitivity evaluation for descent methods


Most of this section is extracted from a review article by R.P. Dwight and J. Peter [8] where more details can
be found.


5.1 Introduction


This section will derive in some detail the principle methods of gradient evaluation, firstly finite differences,
followed by discrete and continuous versions of the direct and adjoint methods. We use the convention of
uppercase symbols for discrete, and lowercase for continuous quantities, so that W is the solution of the
discretized governing equations R(W,X) = 0 on the mesh X . The discrete adjoint variable will be denoted
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Λ. The continuous flow and adjoint solutions are w and λ respectively.


Most 3D gradient computations for fluid dynanics use (RaNS) equations with “frozen µt”-assumption. This
asumption leads sometimes to large discrepancy between finite-difference references ans computed gradi-
ents. A warning about that is absolutely necessary in the foreword of this section


5.2 Finite Differences


The application of finite differences to an entire flow solver is by far the simplest means of obtaining solution
gradients, as it requires no modification of the solver itself. As a result it was one of the first sensitivity
evaluation methods to be used.


To proceed, the numerical flow solution corresponding not only to α but also to perturbed states α + δα
and possibly α − δα is calculated. For the typical case of δα representing a geometry modification, this
implies a mesh deformation X(α + δα), and a new flow solution on the modified mesh satisfying


R (W (α + δα), X(α + δα)) = 0.


An approximation of objective functions derivatives in the direction δα can then be computed using a finite
difference formula, such as the second-order accurate formula


dJ (α)
dα


δα ' 1
2


[J (α + δα)− J (α− δα)]


=
1
2


[J(W (α + δα), X(α + δα))− J(W (α− δα), X(α− δα))] .
(8)


The entire matrix dJ (α)/dα may be evaluated at a cost of 2×nf flow solutions, or if a first-order difference
is used nf + 1 flow solutions, making the method impractical for large design spaces.


Another serious disadvantage is that the choice of the step size ‖δα‖ is critical to the accuracy of the
result. If it is too small then rounding errors become significant; particularly if the convergence level of the
steady state computation is low. For example if ε is the machine epsilon (the smallest number that may be
added to 1 giving a number distinct from 1), then


‖δα‖ � ε‖α‖, ‖δα‖ � ε
|J (α)|∣∣∣dJ (α)


dα


∣∣∣ ,
are weak constraints on ‖δα‖. In practice however J is rarely evaluated to machine accuracy, and ‖δα‖must
be increased accordingly. On the other hand too large a value of ‖δα‖ invalidates the neglection of higher
order terms in the Taylor expansion in (8). The choice is case and parameter dependent, and in practice
the only means of guaranteeing accuracy is to perform a convergence study on ‖δα‖ for each parameter, at
considerable cost.
Finite differences have been used since the 70s in the context of shape optimization. Early contributions
include works of Hicks et al. [9] and Vanderplaats et al. [1] for aerofoil design, and later wing design [10],
using the method of feasible directions in which the lift was held constant by moving in the design space
only normal to the lift gradient. Here the flow was modeled with a small perturbation full potential equation
solver. Early contribution also include articles by Reneaux and Thibert [11, 12]. As 3d optimization was
considered with finite difference gradients, the number of design parameters and the cost of computations
became severe problems. In an attempt to reduce the number of parameters needed aerofunction shapes were


Local Search Methods for Design in Aeronautics  


4 - 26 RTO-EN-AVT-167 


 


 







introduced for example by Aidala et al. [13], defined to be aerodynamically meaningful parameterizations
of an aerofoils. These might consist of geometry perturbations that control leading edge pressure, or shock
position [14, 15].


However the fundamental limitations of finite differences have lead to the investigation of alternative
means of gradient evaluation.


5.3 The Discrete Direct Method


Under the assumption that the discrete residual R is once continuously differentiable with respect to the
flow field and mesh in a neighbourhood of W (α) and X(α), the discrete form of the governing equations
R(W,X) = 0 may be differentiated with respect to α to give


∂R


∂W


dW


dα
= − ∂R


∂X


dX


dα
. (9)


This may be regarded as a linear system in unknowns dW/dα, where dX/dα may be evaluated by finite
differences as in the previous section, and the partial derivatives could be evaluated for example by hand.
The dimension of the system is the number of degrees of freedom in the non-linear equations nW , and it can
be regarded as a linearization of those equations. Of course R is seldom differentiable everywhere, but in
practice this rarely causes difficulties [16].


Given the nf solutions dW/dα the derivatives of J are


dJ (α)
dα


=
∂J


∂W


dW


dα
+


∂J


∂X


dX


dα
(10)


where again the partial derivatives are in principle easy to evaluate, as J is a known, explicit function of
W and X . Hence the 2 × nf non-linear solutions required for second-order flow finite differences have
been replaced by one non-linear and nf linear solutions, all of dimension nW , and the dependence on finite
differences has been confined to the relatively cheap mesh update procedure.


This method was considered as early as 1982 by Bristow and Hawk for a subsonic panel method [17,
18], and again in 1989 for the transonic perturbations equations by Elbanna et al. [19]. In the early 90s it
was applied to the compressible Euler equation by two teams at Old Dominion University; that of Baysal
[20, 21, 22, 23] and that of Taylor and Hou [24]. Many of these articles are concerned not only with gradient
evaluation, but also the linearization of the solver as a tool for investigating small perturbation to the base
flow. On unstructured grids the idea was pursued by Newmann, Taylor et al. from 1995 onwards [25, 26, 27,
28].


5.4 The Discrete Adjoint Method


There are many ways to derive the discrete adjoint equations, the one given here is chosen for its similarity
to the derivation of the continuous adjoint presented in the following sections. Let the direct linearization (9)
be premultiplied by an arbitrary line vector ΛT of dimension nW , so that


ΛT ∂R


∂W


dW


dα
+ ΛT


(
∂R


∂X


dX


dα


)
= 0, ∀Λ ∈ RnW .
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Adding this expression to (10)


dJ (α)
dα


=
∂J


∂X


dX


dα
+


∂J


∂W


dW


dα
+ ΛT ∂R


∂W


dW


dα
+ ΛT


(
∂R


∂X


dX


dα


)
, ∀Λ ∈ RnW , (11)


and factorizing


dJ (α)
dα


=
(


∂J


∂W
+ ΛT ∂R


∂W


)
dW


dα
+


∂J


∂X


dX


dα
+ ΛT


(
∂R


∂X


dX


dα


)
, ∀Λ ∈ RnW ,


isolates the term dW/dα, which may be eliminated by choosing the arbitrary vector Λ to satisfy(
∂J


∂W
+ ΛT ∂R


∂W


)
= 0 or equivalently


(
∂R


∂W


)T


Λ = −
(


∂J


∂W


)T


, (12)


the adjoint equation, a linear system in unknowns Λ the adjoint solution, with respect to the objective func-
tion J . Given Λ the sensitivities may be written


dJ (α)
dα


=
∂J


∂X


dX


dα
+ ΛT


(
∂R


∂X


dX


dα


)
.


The critical point is that, because α does not appear in (12), that linear system must only be solved once for
each J . Hence the full matrix dJ /dα may be evaluated at a cost of nJ linear system solutions, substantially
independent of nf . Note that the issues described in Section 5.3 with regard to evaluation of the partial
derivatives above also apply here.


Perhaps the first application of this method was given by Shubin and Frank in 1991 for a quasi one-
dimensional nozzle flow using the compressible Euler equations [29, 30, 31], and was denoted there the
“implicit gradient approach” as contrast to the direct approach. Baysal et al. also recognized its potential,
and offered it as an alternative to the direct approach when nJ � nf [20, 21, 22, 23]. Later examples of the
discrete adjoint are given in more specific contexts elsewhere in this article.


5.5 Derivation of the Continuous Adjoint Equations


In this approach the adjoint of the continuous governing equations with respect to a given objective function is
derived, before being discretized. As already mentioned, the first appearance was due to Pironneau [32], with
Jameson providing the first treatment for compressible flows [33], which is similar to that given here. For a
more detailed introductory treatment see Abergel and Teman [34], Giles and Pierce [35], and Jameson [36].
The approach has since been reproduced by a variety of authors [37].


It is no longer easy to present the theory independently of the particular equations considered, therefore
we consider the 2d Euler equations in body-fitted coordinates in two dimensions. At the end of this section,
references for more general cases are presented.


It is assumed that the problem in physical space with a body-fitted structured grid, can be transformed
into computational coordinates (ξ, η), see Figure 13, in such a way that the transformation of Dxy to Dξη is
direct, that Dξη is a rectangular domain [ξmin, ξmax] × [ηmin, ηmax] and that ξmin corresponds to the profile
surface. Note that whereas the coordinate change operator depends on α, Dξη itself does not.


Local Search Methods for Design in Aeronautics  


4 - 28 RTO-EN-AVT-167 


 


 







ξ


ξ


ηΨ


max


min


ηmax


η min
ξmin ξmax


η
min
max


Figure 13: Body-fitted to computational coordinate domain transformation


Let K be the determinant of the Jacobian of the coordinate transformation


K(ξ, η) = det


(
∂x
∂ξ


∂x
∂η


∂y
∂ξ


∂y
∂η


)
representing the change in size of a volume element under the transformation. Then the Euler equations in
the computational coordinates are


∂F (W )
∂ξ


+
∂G(W )


∂η
= 0, (13)


where


W = K


 ρ
ρu
ρv
ρE


 F (W ) = K



ρU


ρUu + p ∂ξ
∂x


ρUv + p ∂ξ
∂y


ρUH


 G(W ) = K



ρV


ρV u + p∂η
∂x


ρV v + p∂η
∂y


ρV H


 .


The slip-wall boundary condition is U = 0 on ξ = ξmin, and a farfield condition is applied to the ξmax


boundary. The objective function formulated in the new coordinate system is


J (α) =
∫


ξmin


J1(w)
∂y


∂η
dη +


∫
Dξη


J2(w)K(ξ, η) dξ dη, (14)


where the domain of integration is now independent of α.
The continuous adjoint equations can now be derived as follows: first write the first variation of the flow


equations with respect to the design parameter α. Referring to (13) there are two distinct types of variation:
the flux terms f(w) and g(w) vary with α, because the flow changes in the transformed coordinate space
when the shape changes, and independently all metric terms also depend on α:


f(w) → f(w) +
∂f


∂w


dw


dα
δα,


∂x


∂η
→ ∂x


∂η
+


∂2x


∂η∂α
δα.


Introduce a(w) = df(w)/dw and b(w) = dg(w)/dw the flux Jacobians, then the linearized equation
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corresponding to (13) is


∂


∂ξ


{(
a(w)


∂y


∂η
− b(w)


∂x


∂η


)
dw


dα


}
+


∂


∂η


{(
−a(w)


∂y


∂ξ
+ b(w)


∂x


∂ξ


)
dw


dα


}
+


∂


∂ξ


{
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


}
+


∂


∂η


{
−f(w)


∂2y


∂ξ∂α
+ g(w)


∂2x


∂ξ∂α


}
= 0,


(15)


and similarly for (14):


dJ (α)
dα


=
∫


ξmin


(
dJ1(w)


dw


dw


dα


∂y


∂η
+ J1(w)


∂2y


∂η∂α


)
dη


+
∫


Dξη


(
dJ2(w)


dw


dw


dα
K(ξ, η) + J2(w)


∂K(ξ, η)
∂dα


)
dξ dη.


(16)


Before continuing it is convenient to introduce notation for the flux Jacobian in the computational mesh
directions ξ and η,


a1(w, ξ, η) =
(


a(w)
∂y


∂η
− b(w)


∂x


∂η


)
, a2(w, ξ, η) =


(
−a(w)


∂y


∂ξ
+ b(w)


∂x


∂ξ


)
. (17)


The idea behind the following procedure is to add to (16) the inner product of the linearized governing
equations with an arbitrary four-component Lagrange multiplier λ, analogously to the discrete case in Sec-
tion 5.4. Then we search for a condition on λ for the gradient to be independent of the dw/dα terms. In
this case we assume that the flow and adjoint solutions, w and λ, are once continuously differentiable with
respect to the computational coordinates, i.e. w, λ ∈ C1(Dξη)4. Note that this is a very different restriction
to that necessary in the discrete case. Proceeding from (15) we have that∫


Dξη


λT


{
∂


∂ξ


(
a1(w, ξ, η)


dw


dα


)
+


∂


∂η


(
a2(w, ξ, η)


dw


dα


)}
dξ dη+∫


Dξη


λT


{
∂


∂ξ


(
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


)
+


∂


∂η


(
−f(w)


∂2y


∂ξ∂α
+ g(w)


∂2x


∂ξ∂α


)}
dξ dη = 0.


Using integration by parts, and the fact that the flow sensitivity and coordinate derivatives such as
∂2y/∂ξ∂α are taken to be zero at the farfield we have


−
∫


Dξη


∂λT


∂ξ
a1(w, ξ, η)


dw


dα
dξ dη −


∫
Dξη


∂λT


∂η
a2(w, ξ, η)


dw


dα
dξ dη−∫


Dξη


∂λT


∂ξ


(
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


)
− ∂λT


∂η


(
−f(w)


∂2y


∂ξ∂α
+ g(w)


∂2x


∂ξ∂α


)
dξ dη+∫


ξmin


λT a1(w, ξ, η)
dw


dα
dη +


∫
ξmin


λT


(
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


)
dη = 0.


Adding this expression to (16) and extracting terms multiplying dw/dα we obtain, from the volume and
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surface integrals respectively:
dJ2(w)


dw
K(ξ, η)− ∂λT


∂ξ
a1(w, ξ, η)− ∂λT


∂η
a2(w, ξ, η) = 0, on Dξ,η,


λT a1(w, ξ, η) +
dJ1(w)


dw


∂y


∂η
= 0, on ξmin,


(18)


the continuous adjoint equations and boundary conditions.
One very significant feature of this problem is that not all objective functions J1 lead to a well posed


adjoint boundary condition, because the flux Jacobian a1 is singular at a slip wall [33]. For the compressible
Euler equations described here functions of pressure are admissible, which is fortunate given that integral
forces on a profile are thereby allowed. On the other hand for the Navier-Stokes equations there is no clear
way of accounting for wall shear-stresses, and hence viscous drag [38]. Given a solution of (18) the gradients
of J may be written


dJ (α)
dα


=
∫


ξmin


J1(w)
∂2y


∂η∂α
dη +


∫
ξmin


λT


(
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


)
dη


−
∫


Dξη


∂λT


∂ξ


(
f(w)


∂2y


∂η∂α
− g(w)


∂2x


∂η∂α


)
dξ dη


−
∫


Dξη


∂λT


∂η


(
−f(w)


∂2y


∂ξ∂α
+ g(w)


∂2x


∂ξ∂α


)
dξ dη


+
∫


Dξη


J2(w)
∂K(ξ, η)


∂dα
dξ dη.


(19)


For the extension to the Navier-Stokes equations, also derived in curvilinear coordinates, see the seminary
articles of Jameson, Martinelli and Pierce of 1997 [39], while a more discursive treatment is given in [40],
which also includes considerations related to the use of the thus obtained gradients in shape optimization.


For finite volumes on unstructured meshes such coordinate transforms as described above are not used,
and a formulation in physical coordinates is necessary. One approach was first published by Anderson and
Venkatakrishnan in 1998 [38], and one year later by Hiernaux and Essers [41, 42]. Also of interest is an early
adjoint formulation of the thin shear-layer equations in physical coordinates [43].


All theory presented in this section has been under the assumption of continuously differentiable flow
and adjoint solutions, and therefore is only valid for flows without shocks. To alleviate this restriction the
integrals involved the derivation above may be split into parts downstream and upstream of a shock, before
applying the integration by parts formula and imposing the Rankine-Hugoniot condition on the boundary.
The extension of the continuous adjoint to discontinuous flows is a difficult topic, and the reader is referred
to works by Iollo et al. [44, 45], Cliff et al. [46], Giles et al. [47] and Gunburger [48]. However despite
the theory, it should be noted that difficulties with discontinuous solutions have only been seen to occur
numerically for special cases, and in practice they are not an issue.


Finally we note that the continuous direct formulation, embodied by (15), rarely occurs in the gradient
evaluation literature. Pelletier et al. [49, 50] applied it to incompressible flows, and the one of few com-
pressible references is of Sharp and Sirovitch for hypersonic profile optimization [51]. At the end, of course,
the continuous equations are discretized (using most classical CFD schemes) to define are computational
problem of finite dimension.
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5.6 Fully Linearized or Frozen Turbulence Modeling


Though frozen eddy-viscosity is increasingly the norm, there are indeed many authors who have linearized
turbulence models by hand or using AD. To our knowledge three classes of models have been linearized in
the literature:


1. The algebraic model of Baldwin-Lomax was differentiated by for example Le Moigne et al. [52] and
Kim et al. [53], both of whom used their method for profile optimization. Pham [54] adjointed the
algebraic Michel model for evaluating sensitivities in three dimensions in turbomachinery.


2. The one-equation model of Spalart-Allmaras was linearized by under others Giles et al. [55], and
the team of Anderson, Nielsen and Bonhaus at NASA Langley [56, 57, 58] who compared resulting
gradients with frozen eddy-viscosity gradients [59]. The complete linearized code was applied to the
3d optimization of an isolated wing. Further examples include Nemec and Zingg [60] and Brezillon
et al. [61] who both presented profile optimizations, in the latter case with multiple design points and
constraints.


3. The two-equation transport models k − ε, k − ω SST and Wilcox k − ω have been differentiated and
applied to sub- and transonic profile design, as well as high-lift profile and setting optimization by
Kim et al. [62, 63]. The former model has also been adjointed in the context of turbomachinery by
Renac et al. [64, 65].


There is however a notable lack of linearized transport equation turbulence models applied to configura-
tions significantly more complex than isolated wings with fully attached flow [59] or 2d high-lift profiles [63].
We suspect this is consequence, not of the difficulty of performing the linearization itself or accounting for
the coupling with the mean-flow, but of the problems associated with the solution of the resulting linear
system, which may be exceptionally poorly conditioned [66].


In any case in a very large number of articles the turbulence is fixed. In both the continuous and discrete
cases this is achieved simply by adjointing only the mean-flow equations and treating turbulent quantities
appearing therein as constants. For one-equation models these are just the eddy-viscosity, for two-equation
models the turbulent kinetic energy k also appears in the internal energy and hence in the pressure. Hence
in addition simplifying the solution of the system, the number of equations to be solved is reduced. Notable
examples of this approach are due to Jameson et al. [67], Soemarwoto [68] and Valentin [69].


There are additionally several authors that are principally interested in AD, and the linearization of tur-
bulence models as a secondary issue: Hou et al. [70] for Baldwin-Lomax, and Mohammadi [71] for a k − ε
model. As a related point of interest, Bischof et al. [72] used an AD tool in forwards mode to determine
the sensitivity of flow over a backward-facing step (particularly the re-attachment point) to empirical param-
eters of several turbulence models, the idea being that a large sensitivity to an experimentally determined
parameter is a weakness of the model.


5.7 Use of sensitivities for variance analysis


In the context of industrial applications, an adequate local optimum of a function is not the only result which
is sought for. In particular, the sensitivity of the objective function with respect to small variations in the
design parameters is also of gret interest.
For a constrained optimization problem, most often, the first derivative dJ


dα is not equal to zero and its value
is the requested information.
Conversely, if dJ


dα = 0, then either a local sampling of function J is needed or a computation of second
derivatives - not described here, see [73].
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6 Applications


6.1 Discrete adjoint method at ONERA


ONERA publications relative to discrete adjoint method are :
- Discrete adjoint in elsA (part I): method/theory [74] and Improving accuracy robustness of discrete direct
differentiation method and discrete adjoint method for aerodynamic shape optimization [65]. These confer-
ence articles present the baseline of the discrete direct differentiation and adjoint method for aerodynamics
at ONERA ;
- Sensitivity analysis of a strongly coupled aero-structural system using discrete direct and adjoint methods
[75] presents the extension of the gradient computation methods to aeroelasticity ;
- Aerodynamic Sensitivity Analysis of the RANS Equations via the Recursive Projection Method [76]. This
paper focuses on the efficient resolution of linear systems of the gradient methods.


6.2 Turbomachinery, helicopter and civil aircraft shape optimizations at ONERA


Many turbomachinery and civil aircraft shape optimizations have been carried out at the applied aerodynam-
ics departement of ONERA. Even if various local and global optimization algorithms have been used, most
often, local optimization was performed using conjugate gradient for unconstrained optimization and feasi-
ble direction method for constrained optimization. Discrete adjoint method (see previous section) provided
the gradients needed by the algorithms for most of the recent studies.


Two turbomachinery blade optimization - out of three presented in an ASME paper by Burguburu et al.
[77] - are summarised in the next two sessions. Other recent studies include :
- Discrete adjoint in elsA (part II): application to aerodynamic design optimization [78] This paper presents
the 2006 status of aerodynamic shape optimization for civil aircrafts at ONERA. It presents three appli-
cations among which the enhancement of aerodynamic performance of a supersonic commercial transport
wing (multipoint optimization) and the shape optimization of the engine pylon of a large transport aircraft;
- Single and Multi-point Aerodynamic optimizations of a supersonic transport aircraft wing using optimiza-
tion strategies involving adjoint method and genetic algorithm G. Carrier [79];
- Efficient design optimization by physics based direct manipulation free-form deformation Yamazaki et al.
[80];
- Aerodynamic shape optimization of Hovering Rotors using a discrete adjoint of RANS equations A. Du-
mont et al. [81] (an improved version is also to be soon published in the AHS Journal) This paper gives
the status of the discrete adjoint for hovering rotors at ONERA. Basic shape optimization of Rotor 7A and
advanced shape optimization of rotor ERATO are also presented.


At last, some conference articles dealing with multi-disciplinary optimization are listed below :
- Multi-disciplinary Optimization of a Supersonic Transport Aircraft Wing Planform G. Carrier [82];
- Aerodynamic and structural optimization of powerplant integration under the wing of a transonic transport
aircraft S. Mouton et al. [83];
- Towards aerodynamic design by optimisation of a transonic aircraft in a multi-disciplinary context G.
Carrier et al. [84].
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6.3 Optimization of a turbine stage. Quasi 3D flow. [77]


6.3.1 Mesh, parametrisation, mesh deformation


The optimization presented here concerns the shape modification of the stator of a turbine stage. The objec-
tive is to improve the efficiency by only modifying the stator, but taking into account the rotor bladings. So
this optimization is carried out by computing the whole stage. The mesh, represented on Fig. 11, is made of 4
blocks per row, with a O3H topology for each of them. One can notice the large number of nodes around the
stator blade. A particular attention has been paid to keep the mesh as homogeneous as possible, especially
at the interface of the wheels. As illustrated on Fig. 12, the inlet absolute flow angle is close to the stator
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Figure 14: O3H-O3H Mesh. Test case 1.


exit absolute flow angle. The deviation is rather small (<20o) compared to the standard stator turbine blade
where the deviation can be greater than 70o. The relative Mach number flowfield plotted on Fig. 12 shows
a subsonic flow in the major part of the stage. Only a supersonic zone at the suction side of the stator can
be observed downstream of the leading edge. In the rotor, the relative Mach number remains lower than 0.7.
The camber line and the suction side of the blade are modified, one after the other, by the shape optimization
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Figure 15: Relative Mach-number iso-lines. Test case 1.
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process. The deformation of the suction side profile is based on degree seven Bézier function. This function
of the reduced abscissa defines the displacement of the profile points along the local normal vector. For the
application, two coefficients of the degree six Bézier function are frozen, so that there are only five design
variables for the deformation of the suction side profile.
The modification of the camber (as a function of the abscissa along the central line of the blade) is somehow
different. Once again, changes w.r.t. to the initial shape are defined, but the coefficients of the Bézier curve
defining the new camber are not anymore the shape parameters. The change in camber is defined by


δcamb(u) =
k=5∑
k=0


ΨkB
5
k(u)


The 6 coefficients Ψk correspond to 6 reduced abscissa along the central line of the blade, uk in [0, 1] ; they
are computed iteratively from Ψ0= 0 and five design parameters αi (i ∈ [1, 5]) using recursive formula


Ψk = Ψk−1 + (uk − uk−1)tan(αk)


This means that αk define Ψk steering the difference between two successive Ψk.


This displacement of the wall points is exactly transmitted to all points of the corresponding mesh line,
orthogonal to the wall. Its is damped in the three H domains.


6.3.2 Objective and constraints


The objective function and constraints are evaluated by averaging the aerodynamic flowfield with a momen-
tum average. The averaging planes are located upstream (2) of the stator and downstream (1) of the rotor.
As the goal is to improve the performance of the stage, the objective function is taken as the opposite of the
"gas power" of the stage:


J (α) = −mCp(Ti2 − Ti1)


Of course the mass flow must be maintained to its initial value. The (only) constraint of the problem is thus


G1(α) = m(α)−m(α0)


Also notice that the improvement of the gas power is linked to the improvement of the efficiency because the
total- to-total pressure ratio remains constant during the optimization. This is a result of the constraint on the
mass flow and the same downstream static pressure for all the calculations.
Eventually, different constraints are implicitly applied through the definition of the parametrization, for tech-
nological reasons and in order to improve the robustness of the optimizer. The stator axial chord remains
constant when applying a deformation and the design variables are restricted to ’reasonable’ values (i.e. lead-
ing to feasible bladings). For example, the camber line is not allowed to be curved by more than 4o and the
blade thickness can only vary among ±50% of the initial thickness.


6.3.3 Optimization using feasible direction method


A two step optimization is carried out. First, only the camber line of the blade is optimized (with zero defor-
mation of the suction side of the blade). Then, the suction side profile of the blade is also optimised while
the camber line is equal to the one defined by the first step of the optimization. Respectively, six and seven
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descent iterations are performed for the two steps of the optimization.
As the adjoint method was not available at ONERA in 2003, finite difference gradients were computed. After
the descent direction was found by feasible direction method (see 4.3.3) third order polynomial approxima-
tion was used (see 4.1.4) to find a step value. This led to (5 + 3) × (6 + 7) = 104 analysis computations.
Convergence history is presented by figure 16.
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Figure 16: Convergence history. Test case 1.


6.3.4 Results


The variation of the turbine stage outputs is summarized in next array


∆J ∆ηisen ∆m ∆Rpi ∆RTi


∆ ∆ % % %
-0.12 +0.82 -0.08 0.0 0.87


As indicated in the table, the variations of the overall performance show that there is no need to apply a
constraint on the total-to-total pressure ratio.
The normalized density gradient contours plotted on fig. 17 allow a more precise analysis. One can not only
observe a large reduction of the gradients downstream the leading edge, but also a redution of the gradient
at the trailing edge, on the pressure side. Moreover, the boundary layer on the suction side is thinner on the
optimized blade.


6.4 Single rotor blade. 3D flow [77]


A 3D blade of a transonic compressor is optimized. The CFD calculation is carried out on the isolated rotor
with account of the tip clearance. (RANS) equations with wall-law boudary conditions are considered.
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Figure 17: || ~gradρ||
ρ


Cas test 1.


6.4.1 Mesh, parametrization, mesh deformation


The grid is made up of 3 blocks (H-O-H topology) in the main duct (Fig. 19) and of 2 blocks (O-H topol-
ogy) in the tip clearance zone, for a total of 196573 nodes. On the periodic boundaries, the nodes are not
coincident, but lie on the same surface for an accurate interpolation. An adiabatic wall boundary condition
is applied in the rotating frame at the hub and on the blade. A fixed wall boundary condition is applied at the
casing. The grid is suited for computations using wall functions (in order to reduce the CPU time). Figure
18 presents a view of the mesh.
The operating point is in a transonic state: the relative Mach number at the tip of the blade is about 1.2 but
the compressor is not choked in these conditions.


For the shape parametrization, the same principle as described with the quasi 3D approach is extended


Figure 18: Configuration. Mesh. Test case 2.


to 3D. The blade surface is extracted from the grid, and a deformation zone is defined on this surface by
its indices. A current point in this zone is defined by its reduced coordinate (u, v) ∈ [0, 1] × [0, 1] (chord
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and in the span direction respectively). In the present application, the zone where geometrical modifications
are applied covers the suction side, from the leading edge to the trailing edge and from hub to casing. The
displacement is defined by a Bézier surface. The Bézier surface, defining the displacement along the local
normal, is linked to the parameters Pkl by the relation:


δ(u, v) =
k=n∑
k=0


l=m∑
l=0


PklB
n
k (u)Bm


l (v)


(where Bn
k (u), just as before, is the kth Bernstein polynom of degree n). More precisely the degree of δ(u, v)


is n = 6 for reduced coordinate u and m = 3 for reduced coordinate v. Next plot (figure 19) defines the fixed
and free coefficients. The nine free coefficients (P32, P33, P34, P42, P43, P44, P52, P53, P54) are the design
parameters. The deformation of the solid wall is propagated and damped inside the domains, almost like for
the quasi 3D case. Neverthless, specific care is taken near the tip clearange (it is important that it keeps a
strictly constant heigh).
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Figure 19: Active/inactive control points of the Bézier surface. Test case 2.


6.4.2 Objective, contraints functions


The objective is the isentropic efficiency of the blade


J (α) = 100× (1− ηisen)


No constraint is included.


6.4.3 Optimization


For this 3D case, only 3 iterations of optimization are performed. This optimization requires 41 calls to the
CFD solver for a total calculation time of 41 000 seconds ( 11 hours) on NEC SX5. As the adjoint method
was not available at ONERA in 2003, finite difference gradients were provided to the feasible direction
method algorithm. Final values of the main parameters are presented in next array.
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∆J ∆ηisen ∆m ∆Rpi ∆RTi


∆ ∆ % % %
-1.07 +1.07 +1.2 -0.1 -0.2


One can notice a low variation of the mass flow (but larger than in the quasi 3D application). The total-to-
total pressure and temperature ratio remains almost constant. The deformations of the blade are plotted on
Fig. 20 with an amplification factor of 10. As we can see on the optimized blade, the new shape at 80%
and at 50% of the reduced span follows the same trend as observed in the quasi 3D test case: the thickness
is increased in the rear part of the blade and a curvature change is applied at 30% of the chord. At 80% of
the span, the blade thickness is reduced downstream of the leading edge. A mechanical constraint should be
applied in this part of the blade to avoid any vibration problems. At 20% of the span, the blade thickness
is increased from the leading edge to the trailing edge with a maximum located at 60% of the chord. The
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Figure 20: Final deformation (amplified). Test case 2.


radial distribution of aerodynamic characteristics at one axial chord downstream of the blade are plotted on
Fig. 21. The most significant result is indicated by the radial evolution of the efficiency difference between
the optimized and the reference blade: the efficiency improvement is larger than 5 points at 95% of the span,
close to the tip clearance. Most of the efficiency improvement is located between 50% of the blade span and
casing although the blade has changed in the lower part of the blade. The evolution of the other quantities
does not present large modification as compared to the reference: the increment of mass flow from 70% of
the span to casing is balanced by a 2% reduction in the lower part. The total-to-total pressure ratio evolution
is not modified after the optimization except in the tip clearance region. Some differences occur on the flow
angle (more than 1o from 80% of the span to casing) but they stay low in the major part of the duct; only the
tip clearance presents some variations larger than 2o.
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Figure 21: Spanwise change in aerodynamic outputs. Test case 2.


7 Conclusion


Local optimization for aeronautics has been a very active topic since the 70’s. As it appears in other lectures
of this RTO course, local and global optimization methods are nowdays often combined in an efficient search
of global optimum. Nevertheless, a good knowledge of the basics of local optimization is still essential.
Besides, some questions related to local optimization remain open today. For example, in aerodynamic
shape design, the solution of the adjoint equation for complex flow equations and complex geometries, is not
yet a routine process.
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Figure 22: Iso-Mach number lines at 90% span. Test case 2.
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Surrogate based optimization


What is a surrogate model ?


Low cost replacement of the original function for a wide variety of
purposes


Educated guess as to what an engineering function might look like,
based on a few points in space where one can afford to measure the
function values


Basic idea: Avoid the temptation to invest one’s computation budget in
answering the question at hand and, instead, invest in developing fast
mathematical approximations to the long running computer codes
⇒ trade-offs exploration and insights gain
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Surrogate based optimization typical workflow
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Some important topics


In a surrogate model approach, the devil’s in the details:


What points do you sample in building the approximation ?


What approximation method do you employ ?


How do you manage the approximation model(s) ?


How do you use the approximation to suggest new, improved designs ?


How do you use the approximations to explore tradeoffs between
objectives ?


(What to do if your simulation has numerical “noise” in it ?)
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Sampling the design space


Design of Experiments (DoE)


Classical DoE techniques (e.g. full factorial, fractional factorial,
Central Composite, Box Benhken, ...)


Optimal DoE techniques (e.g. Taguchi methods, ...)


Space-filling techniques (random and quasi-random sequences, Latin
Hypercube Sampling, ...) appropriate for computer experiments and
when there is no a priori knowledge of the considered cost functions


Adaptive or so-called capture/recapture techniques, which
incorporate function knowledge
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Surrogate models


Two main categories of low-fidelity surrogate models :


I Data-fitting models


non-physics-based approximations


typically involve interpolation or regression of a set of data generated
from the original expensive model


Global models
I provide information about the global behaviour of the system


Local models
I Construct a local model around the current design point
I Use in local search to move in a downhill direction


characterized by the number of data points used in the fit
I local approximations use data from a single point
I multipoint approximations use a small number of data points
I global approximations use a set of data points distributed over the


whole design space
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Surrogate models


I Physics-based surrogate models


Hierarchical models
I also known as multi-fidelity, variable fidelity or variable complexity


models. Such models use corrected results from a low-fidelity model
(e.g. coarser mesh discretization, looser convergence tolerances, simpler
model that neglects some physics: Navier-Stokes vs. Euler equations,
...) as an approximation to the results of a high-fidelity model.


Reduced-order models
I models with fewer unknowns than the original high-fidelity model
I generated directly from a high-fidelity model through the use of a


reduced basis (modal analysis or Proper Orthogonal Decomposition)
and projection of the original high-dimensional system down to a small
number of generalized coordinates


I do not require multiple models of varying fidelity
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Physics-based surrogates - POD techniques


Proper Orthogonal Decomposition (POD)


Also known as Karhunen-Loeve Decomposition and Principal
Component Analysis


Standard tool in data analysis to reduce a large, complex data set to
a lower dimensional one
⇒ to identify the most meaningful basis, remove as much of
redundancy as possible, and give a compact representation
⇒ enables to reveal the sometimes hidden, simple underlying
structures in complex structures


Widely used in CFD (low dimensional description of turbulent flows),
image processing, signal analysis, data compression, etc
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POD techniques


An efficient method for computing PODs for large dimensional problems is
the method of Snapshots (Sirovich).


Consider a computationally expensive simulation S(x) ∈ IRn,
depending on np parameters (x1, . . . , xnp ).


Generate observations or “snapshots” {sk}k∈m of S at m locations in
the design space.


Construct the snapshot deviation matrix as
D = ((s1 − s̄) . . . (sm − s̄)) where s̄ is the mean vector.


Compute the Singular Value Decomposition (SVD) of D :


D = UΣV ∗ = U


 σ1 0
. . .


0 σr


 V ∗


where σ1 ≥ · · · ≥ σr > 0, r = rank(D).
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POD techniques


Then


sk = s̄ +
r∑


i=1


α
(k)
i Φi (k = 1, . . . ,m)


where the i th mode Φi = U(:, i).


The most important part of the “energy” contribution is
concentrated in the first modes.


POD truncated approximation (p < r)


sk ≈ s̄ +


p∑
i=1


α
(k)
i Φi (k = 1, . . . ,m)


POD basis = optimal basis which contains more information than any
other one.
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Non intrusive POD surrogate


Derivation of low-order models by combining


POD techniques
I to perform the space reduction of the model
I to obtain the basis functions for the low-order model


Generic data-fitting techniques like RBF or Kriging
I to perform the low-dimensional reconstruction in the design space
I to approximate the POD coefficients for cases not included in the
snapshot set, i.e. to express the POD coefficients directly as functions
of the design variables


For any x , one can estimate S(x) :


x
data-fitting−−−−−−−−−→


Kriging or RBF


(
α


(x)
i


)
i∈p


reconstitution−−−−−−−−→
POD


S̃(x)


Does not require an intrusive or code-specific implementation
I ... as good as the observed data set used for its training!
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Illustration of POD approach


Optimal rotary control of the cylinder wake
using POD Reduced Order Model
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Model Assessment


The accuracy of the metamodel depends on the number and location of
sample points in the design space.


The leave-one-out (LOO) procedure is a way to estimate the accuracy of a
metamodel without the need for creating extra data for validation.


LOO procedure


Create a data set with k sample points.


k − 1 samples are used to build a metamodel and the ith
sample is left out in the fitting process.


The output value at the ith sample is estimated with the
metamodel.


I k − 1 samples ; training data
I ith sample ; validation data


Repeat for all the k sample points (each sample point is used
once as the validation data).
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Model Assessment


20 samples 50 samples
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Surrogate model(s) management


Key issues


Offline(i.e. a priori trained)/Online(i.e. adaptively improved) models
management I search infill criteria


Global/Local models management (move limit strategies, trust region
techniques, ...)


Graal quest: Optimum exploitation/exploration balance
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Search infill criteria


Enhance the accuracy of the model using further function calls : infill or
update points


Online model management


Improve the accuracy only in the region of the optimum predicted by
the surrogate → local exploitation
I quickly converge to an optimum value
I possibly get stuck at a local optimum


Ability to search away from the current optimum and explore other
regions → global exploration


Instead of either exploiting or exploring the surrogate model, use infill
criteria which balance these options.
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Search infill criteria


Kriging not only allows to compute a predictor, ỹ(x), but also a measure
of the possible error in the predictor, s(x).


There are 2 “zones” where it is
desirable to add new sample
points :


where the model is minimized
I min ỹ(x)


where there is a significant
error in the prediction
I max s(x)


I Updating approaches based on explicit measures of uncertainty
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Search infill criteria


Simplest way of balancing exploitation of ỹ(x) and exploration using s(x)
is to minimize the lower confidence bounding (LCB) function


LCB(x) = ỹ(x)− ρ s(x)


small ρ leads rapidly to an optimum,
but possibly only a local one


large ρ explores the potential regions of improvement,
in which the uncertainty is high


I Difficult to choose the user defined parameter ρ to obtain a good
balance between exploration and exploitation.
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Search infill criteria


The amount of improvement we expect may also be evaluated
I Maximizing the Expected Improvement (EI) criteria


EI (x) =


{
(ymin − ỹ)Φ


(
ymin−ỹ


s


)
+ s Ψ


(
ymin−ỹ


s


)
if s > 0


0 if s = 0


where Φ and Ψ are the cumulative and density normal distribution
functions.
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Search infill criteria


The concept of merit function can be employed to maintain diversity
in the solution space.


Search both in regions where the surrogate model indicates there
might be a minimizer of the objective and where we realize that we
know very little about the problem (few samples).


Take into account the distance of
an individual with the other
individuals and favor the solutions
far away from their neighbours :


merit (x) = ỹ(x) − ρ d(x)


with ρ ≥ 0 and d(x) = min
i
‖x − xi‖2.
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Parallel infill points


Parallel updating approaches : multiple designs are selected for sampling
during each iteration
I make effective use of parallel computing resources


Different approaches :


Some infill criteria (e.g. EI, PI) exhibit multi-modal behaviour
I identify several local optima and select them as infill points


Search the infill criterion, temporarily add the surrogate predicted
value at this point (assume the model is correct at this location),
rebuild the surrogate, search again the infill criterion, . . .


Focus on one target at a time rather than compromise by, for
instance, adding two new design points per iteration, one coming from
the exploration search and the other one from the exploitation search
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Surrogate model(s) management


Move limit strategy allows to


adapt the search range of the variables along the design process based
on efficacity of approximations


focus the optimization search on smaller regions of the design space
and exploiting local models


ensure that the inner optimization does not produce design points
outside the region where the surrogate model is valid


As the optimization proceeds, the idea is to enlarge or restrict the search
space based on a heuristic rule in order to refine the candidate optimal
region (new additional points are chosen within these move limits).


If improvement ⇒ we can trust the model and the search region is
enlarged.


If no improvement ⇒ the search region is contracted.
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Surrogate model(s) management


Example for the Rosenbrock function (locations of one additional random
sample point at each design iteration)


with move limit without move limit


f ∗ = 1.7 10−8 f ∗ = 1.4 10−6
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ANOVA


Analysis of Variance


Gives information on which design variables have more influence over
the outcome, e.g. performance.


Allows to quantify first order sensitivities, cross terms, higher order
interaction volume ...


Based on multi-dimensional integration of the model with given
variable(s) held constant. This process is repeated number of times
with different value of the fixed variable(s).
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Conclusion


Multidisciplinary design optimization (MDO) has considerable impact on
the design by increasing performance, lowering lifecycle cost and


shortening design time for complex products


However,
the objective is not only to eke out a “5% “ performance improvement in
the design solution, but most importantly to


Gain insight into the design space


Assess key factors


Quantify trades


Point out innovative design options
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Conclusion


No one optimization method works well for all problems


“Chicken and egg dilemma ...”
The best search algorithm to exploit depends upon the type of design
space that has been defined. But the characteristics of the design space
are typically not known until it has been explored, ...which is the primary
role of the search method.


⇒ Trend towards hybrid and adaptive search strategies


Fundamental role of the optimization specification:
Parameterization, bounds definition, model simulations choice, cost


functions and constraints definitions, ...
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Abstract

Over the last two decades, there has been an explosion in the ability of engineers to build numerical models (e.g. finite element models) to simulate how a complex product will perform. Moreover, the ability to quickly modify these simulation models to reflect design changes has also greatly increased and the potential for using optimization techniques to improve engineering design is now higher than ever before. However, one of the major obstacles to the use of optimization is the large running time of the simulations and the lack of gradient information in many complicated simulations. Due to these obstacles, long running times and lack of analytic gradients, almost any optimization method applied directly to the simulation will be slow.


An adequate and general answer to optimization based on long running and computationally intensive analysis lies in the exploitation of surrogate models. Surrogate models are educated guesses as to what an engineering function might look like, based on a few points in space where we can afford to measure the function values. Recent advances in Surrogate-Based Optimization (SBO) bring the promise of efficient global optimization to reality.  A review of the state-of-the-art constructing surrogate models and their use in optimization strategies is to be found in references 
 
 
. The present lecture aims at pointing out a series of complementary aspects with respect to the local and global optimization lectures regarding surrogates as the latter have become a fundamental element of our engineering thought processes.

Introduction

SBO uses surrogates or approximations in lieu of the expensive analysis results to contain the computational time within affordable limits. Surrogate models may be usefully exploited through optimization as they indeed seek to provide answers in the gaps between the necessarily limited analysis runs that can be afforded with the available computing power. They can also be used to bridge between various levels of sophistication afforded by varying fidelity physics based simulation code, or even between predictions and experiments. Their role is to aid understanding and decision taking by wringing every last drop of information from the analysis and data sources available to the design team and making it available in a useful and powerful way. The basic idea is for the surrogate to act as a curve fit to the available data so that the results may be predicted without recourse to the use of the primary source, the computationally intensive simulation codes.

The approach is based on the assumption that, once built, the surrogate will be many orders of magnitude faster than the primary source while still being usefully accurate when predicting away from known data points. This underlines the two key requirements of the approach: a significant speed increase in use and useful accuracy. Obviously these constitute two conflicting requirements and the compromise best suited to the application targeted will drive the choices set.


As has been underlined, the surrogates are used so as to augment the results coming from expensive simulation codes that need to be run for a range of possible inputs dictated by some design strategy. The latter could be a planned series of runs following an a priori Design of Experiments (DoE) or runs  suggested by a search process. In this respect, a most efficient practice to tackle industrial design applications based on computationally intensive simulations lies in continuous improvement of the surrogate models along the design, in a so-called online framework illustrated in Figure 1. 
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Figure 1: Surrogate-based optimization typical workflow

Since the affordable design selections made to produce the initial set of data supporting the surrogate’s construction will almost inevitably miss certain features of the landscape, the construction of trustable surrogates often requires further, judiciously selected calls to the analysis codes. These additional calls, made all along the design, are termed infill points. These are typically made either in areas where the surrogate is thought to be inaccurate or, alternatively, where the surrogate model suggests that particularly interesting combination of variables lies, aiming for the Graal quest of optimum balance between exploration and exploitation. For a surrogate to be suited to some form of search-infill process, the surrogate must moreover have the capacity to modify its shape to fit any complex local behaviour the true function(s) may exhibit. 

As underlined in the preceding paragraph and although exact choice of SBO methodology may be problem dependent, one underlying trait that any SBO methodology must include is some form of repetitive search and infill process to ensure the surrogate is accurate in regions of interest. The performance of online SBO is known to be largely dependent on the following key elements:


· the underlying optimization algorithm(s),


· the surrogate model(s),


· their training (Design of Experiments (DoE) for the selection of the initial data and infill criteria), 


· the surrogate model(s) management scheme (global/local).


All these elements are critical and should not be considered nor tackled independently, optimization performance also essentially resulting from a coherent choice regarding all these aspects. Following the introductory lecture, outlining taxonomy and classification of problems and search methods, two dedicated lectures series have been devoted to local and global optimization respectively. The latter lecture has given some insight into powerful and generic interpolation/regression surrogate models such as neural networks or Kriging. The present lecture, meant as a support to the lecture slides, will give a broader overview of surrogate’s type and usage but also focus on key elements in terms surrogate training and management, whether in terms of initial sampling plan or infill criteria.

1. Exploiting Surrogates

Before proceeding to the description of sampling plans, it is worth underlining once again that exploiting surrogates means avoiding to invest one’s computation budget in answering the specific question at hand and instead invest in developing fast mathematical approximations to the long running computer codes, offering a wide potential for trade-offs exploration and physical insight gain. Besides optimization, another increasingly common use for surrogates is to act as calibration mechanism for predictive codes of limited accuracy.  It is indeed quite common when producing a software model of some physical process to have to simplify the approach taken so as to gain acceptable run times. For example in CFD, simulation approaches e.g. range from rapid potential flow solvers, through Euler codes to Reynolds-Averaged Navier-Stokes (RANS) methods to Large Eddy Simulations (LES) and on to Direct Numerical Simulation (DNS) of the full equations. A surrogate model may well be trained to bridge between such codes by being set up to represent the differences between a simple but somewhat inaccurate approach and a more accurate but slower approach, the idea being to gain the accuracy of the expensive code without the full expense. Such multi-fidelity approaches can be extended to deal with data coming from physical experiments and their correlation with computational predictions. A third exploitation of surrogate models is to deal with noisy or missing data. The small random errors affecting experimental measures need to be dealt with when the data are used. It is also commonplace that some experiments fail to yield usable results at all. On the other hand “computational noise” stems from the schemes used to set up the computational models. Hence similarly, most numerical schemes are rarely completely foolproof and may sometimes fail in unexpected ways. In such circumstances, the surrogate models can be used as filters and fillers to smooth data, revealing overall trends free of extraneous fine detail and spanning any gaps.

Last but not least, it is worth underlining that surrogate models may be thoroughly exploited in a form of data mining where the aim is to gain insight into the functional relationships between variables open to the design team and results of interest. If appropriate methods are selected and applied to sets of data, surrogates can be used to demonstrate which variables have most impact and what the forms of such effects appear to be. This can allow engineers to focus on those quantities that have most importance and also to understand such quantities with greater clarity. Sometimes, such understanding comes directly from the equations resulting from surrogate construction (e.g. weighting coefficients of the kernel functions); alternatively surrogates may be used to evaluate sensitivity indices (e.g. Monte Carlo based evaluation of the Sobol’ indices for global sensitivity analysis 
) or in visualization schemes to map and graph different projections of the data more rapidly than would be possible by repeated runs of the available analysis codes.

One example of such visualization schemes is Kohonen’s self organizing maps, described and illustrated in the global optimization lecture. On the other hand, the figure below illustrates the first order sensitivity coefficients obtained for the total pressure at inlet of a hypersonic mixed-compression air intake with respect to the geometrical parameters allowing to control the intake shape 
.  These coefficients, evaluated from a radial basis functions network built upon RANS simulations of the air intake, allowed to point out the parts of the air intake where added mass should be allowed in order to have a more stable and uniform total pressure to feed the combustion chamber. This work was performed in the frame of the FP6 European project LAPCAT, from which a detailed case study is also to be presented for system optimization.  
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Figure 2: Analysis of variance (ANOVA): Estimation of the first order sensitivity coefficients 


for the total pressure at inlet of a hypersonic mixed-compression air intake 


with respect to the geometrical parameters allowing to control the intake shape (FP6 LAPCAT project)  

In all cases, the basic steps of the surrogate modeling process remain essentially the same and have been illustrated in the flowchart presented in Figure 1. Firstly some form of data set relating a series of inputs and outputs is obtained, typically by sampling the design decision space, making use of the available and often expensive analysis codes. A number of possible candidate designs are generated and analyzed, using whatever computational or experimental means available at hand. Following this, a suitable surrogate model form must be selected and fitted to the available data. Its parameters must be estimated and it must be assessed for accuracy and a number of schemes can be used to do this, among which the simple and widely used Leave-One-Out (LOO) cross validation.

This underlines a key limitation of the surrogate approach as, if the problem being dealt with has many dimensions, the number of points needed to give reasonably uniform coverage rises exponentially, the so-called curse of dimensionality (see Section 2). Moreover, as the initial design selections made to produce the first set of data will almost inevitably miss certain features of the landscape, the construction of a useful surrogate often requires further, judiciously selected calls to the analysis codes, in an online approach, as introduced here above. These additional calls, termed infill points, are typically to be selected either in areas where the surrogate is thought to be inaccurate, or alternatively in regions where the surrogate model suggests that particularly interesting combinations of design variables lie, seeking for the optimum balance between exploitation and exploration. The selection of such points is often the result of the exploitation of an optimization-based search over the surrogates. The updating of the surrogate with infill points may be carried out a number of times until the surrogate is fit for purpose or perhaps the available budget of computing effort has been exhausted.


Having constructed (and hopefully assessed) a suitably accurate model, it can then be finally exploited for exploration of the search space, whether through optimization and/or visualization. As has already been underlined, the processes of surrogate model building, exploration, exploitation and updating may/should  essentially be closely interlinked. The present lecture will highlight some elements in terms of sampling and surrogate models management.

2. SAMPLING PLAN – DeSIGN OF EXPERIMENTS (DoE)

It is intuitively obvious that the higher the number of design variables in a modeling problem, the more objective function measuring locations we need if we are to build a reasonably accurate predictor. What is more striking is just how many more: if a certain level of prediction accuracy is achieved by sampling a one-variable space in N locations, to achieve the same sample density in a k-dimensional space, Nk observations are required. To get a better feel for why this is often referred to as the curse of dimensionality, let’s consider a case were ten one hour simulations give us a reasonably accurate predictor of the performances with respect to a given parameter variations, even considering that the response can be highly nonlinear. If we then decide to refine the model by including other variables, let’s say with eight variables and assuming the same sampling density, the computational budget requirement jumps to 108 runs, which would take more than 11 thousand … years simulation !

Evaluating the objective function for every possible combination of the design variables, which is referred to as a full factorial experiment, can hence become a very expensive undertaking. And the number of design variables has a massive impact on the number of experiments required. The question is how to identify the parameters that do not have a significant impact on the objective function and how to model the impact from the significant parameters with a minimum number of runs of the computationally intensive simulation ?  


Both physical and computational experiments may be used to obtain the objective function but they are not subject to similar types of errors. We will be focusing here on computational experiments, which besides “human errors” (e.g. wrong boundary conditions setting), are essentially subject to “systematic errors” (e.g. insufficient mesh resolution), i.e. deterministic errors adding a consistent bias to the results. The latter errors may be referred to as “noise” for computational experiments although they are not random. To avoid any confusion, it is important to stretch that for Gaussian process based approximation techniques (e.g. Kriging) the results of computer experiments, which are deterministic values, will be seen as realizations of a stochastic process in order to facilitate the mathematical process. 

The design of experiments techniques  are quite different for computational and physical experiments as for the latter replicating experiments (which is pointless for computational experiments) is typically exploited in order to mitigate the effects of random errors affecting the responses 
. 

The subject of design of experiments indeed has a long history and was originally studied in the context of designing physical experiments. The objective of DoE in such a context is to generate data that can be used to fit a regression model that reliably predicts the true trends of the input/output relationship. Classical DoE techniques include central composite design, Box-Behnken design, and full and fractional factorial designs, tending to place sample points at the extremes of the parameter space in order to alleviate the contaminating influence of measurement noise. There is also a wide class of DoE techniques based on optimality criteria suitable for cases when a linear or quadratic polynomial response surface model is employed. It has been underlined that, in contrast to physical experiments, observations made using computer experiments are not subject to random errors. Hence, to extract a maximum amount of information about the underlying input/output relationship, the sample points chosen should fill the design space in an optimal sense (hence such techniques are typically termed space-fill techniques) and it makes little sense to employ classical DoE techniques essentially placing points at the extremes of the design space.


It is possible to formulate DoE techniques that create N samples in one shot, also termed a priori DoE techniques, without using any information about the type of surrogate model being employed. But it is also possible to select/create the samples in a stage-wise procedure where at stage k+1, the trends of the input/output relationship observed from the data generated at stage k are exploited. Such adaptive techniques are also termed sequential sampling or capture/recapture techniques and may be very powerful in optimization. 

Only a limited number of well-know techniques are briefly recalled here before discussing the building of the surrogates. For a detailed account of DoE techniques appropriate for computer experiments, the book by Santner et al.
 provides a complete review of techniques while reference
 offers an interesting and detailed review of DoE techniques for physical experiments.

Monte Carlo techniques are perhaps the simplest of all DoE methods, wherein the basic idea is to use a random number generator to sample the design space.  In practice, their major disadvantage is that the points generated may not be space filling. Stratified variants, where the design space is divided into bins of equal probability and at least one point is placed within a bin, tend to generate points more uniformly.


One of the most well-known techniques is the Latin Hypercube Sampling (LHS) technique, which was proposed as an alternative to Monte Carlo techniques for design computer experiments. The basic idea is to divide the range of each design variable into n bins of equal probability and then to generate N samples such that, for each design variable, no two values should lie in a bin. Accordingly, when a one-dimensional projection of the design is taken, there will be one and only one sample in each bin. The space-filling characteristics of designs produced using LHS are not guaranteed to be good all the time, which has motivated the further development of optimal LHS designs yielding a more uniform coverage of the design space. A simple modification of LHS involves placing the sample at the center of its bin, which is referred to as lattice sampling. The so-called uniform designs additionally impose uniformity in the p-dimensional design space and Orthogonal Arrays may be seen as a generalization of LHS sampling whose one-dimensional projections are uniformly spaced. 

Let us also cite minimum discrepancy sequences (e.g. Hammersley, Halton, Sobol, … sequences), also often referred to as quasi-Monte Carlo methods, generate a deterministic sequence of points. Aimed at minimizing how much the distribution of the points deviates from an ideal uniform distribution, such sequences were originally conceived to develop space filling points for the purpose of efficient numerical integration of multidimensional functions. Finally, let us mention the wide family of DoE using optimality criterion in which a plan for conducting experiments can also be decided by maximizing or minimizing a suitable figure of merit, e.g. to minimize the posterior variance. Optimality criteria-based DoE approaches are suitable for generating points in irregular design spaces but their major disadvantage is that the computational effort can be significant compared to other DoE techniques briefly outlined earlier.  


Since design optimization studies are iterative in nature, a sequential or stage-wise DoE approach as defined above looks perhaps the most attractive. The essential distinction between a priori DoE and space-fill DoE has been introduced here above. Let us recall that the basic idea it to generate an initial design matrix to decide the location of the points at which the computer model must be run. A baseline surrogate model can then be constructed using the data thus generated. Subsequently, promising designs or insufficiently sampled regions can be identified exploiting this surrogate, leading to an augmentation of the original design matrix by a selection of points aiming for an optimum exploitation/exploration balance. This topic will be further detailed hereafter with some elements about infill criteria. 

To conclude, and as was already pointed out in the introduction, the DoE method must work synergistically with the surrogate modeling technique in use to ensure good generalization. It has been noted in a series of references to be found in the literature that in general, space-filling designs such as LHS and quasi-Monte Carlo sequences work best with models such as Radial Basis Functions (RBFs) networks and Gaussian processes. An interesting study of using data sets from computer experiments to compare how different DoE techniques (LHS, Hammersley sequences, orthogonal arrays, …) work in conjunction with a selection of surrogate modeling techniques commonly used in engineering practice (quadratic polynomials, Kriging, RBF approximations, … ) is to be found in Simpson et al.
 One of the major concluding recommendations from this study was to favour models with low values of root mean-square error with respect to models with low maximum error as the latter can always be reduced by employing a sequential model updating strategy. 

3. BUILDING A SURROGATE – SOME COMPLEMENTARY ELEMENTS

SBO approaches constitute an adequate engineering practice to tackle the complexity of multidisciplinary design optimization based on high fidelity simulations. The surrogate model is to be used most of the time, with occasional recourse to the high-fidelity model. More specifically, surrogate modeling techniques may be classified as 


· data-fitting models (interpolation or regression) which are non-physics-based approximations; such techniques are described and illustrated in details in the global optimization lecture and case studies,

· hierarchical models, also known as multi-fidelity, variable fidelity or variable complexity models, 

· reduced-order models which can use, for instance, modal analysis or proper orthogonal decomposition.


Data-fitting models are generic but they are not based on the physical properties of the behavior they are trying to represent. On the other hand, hierarchical models use corrected results from a low-fidelity model as an approximation to the results of a high-fidelity model. These models are physics-based but are of lower fidelity. Contrarily to traditional SBO methods with data-fitting models that use a sampling of high-fidelity calls to produce a low-fidelity surrogate model, variable-fidelity methods model the error between the higher and lower fidelity models and this error is used as a correction to the low-fidelity model, instead of a direct approximation to the high-fidelity model. 


Data-fitting models are covered in the global optimization lecture and several case studies, so the present lecture now rather focuses on reduced-order models, which also constitute an active area of research. The traditional reduced-order models are generated directly from a high-fidelity model through the use of a reduced basis and a projection of the original high-dimensional system down to a small number of generalized coordinates. This drastically reduces the number of degrees of freedom. While generic, it must be underlined that these surrogates are still physics-based (and may therefore have better predictive qualities than data-fitting models), but do not require multiple system models of varying fidelity (as required for model hierarchy). 

Reduced models typically allow to gain a deep physical insight into the leading phenomena. However, it is important to note that many of the existing reduced-order modeling and hierarchical modeling techniques require a priori knowledge of the structure of the high-fidelity model to be approximated. However, in many (surrogate-based) design optimizations, the CFD solvers are used as black-boxes and it is therefore difficult to derive low-order models by using classical model reduction approaches, which generally employ a Galerkin projection procedure requiring knowledge of the underlying high-fidelity model. In consequence, such techniques are considered as intrusive.

Non-intrusive reduced order models may also be derived e.g. by combining the use of Proper Orthogonal Decomposition (POD) and data-fitting techniques. Such an approach has the advantage of not requiring an intrusive or code-specific implementation. Such a procedure benefits from the POD to perform the space reduction of the model, whereas generic data-fitting approximations, like Radial Basis Functions (RBF) or Kriging, described in the global optimization lecture, can be used for the low-dimensional reconstruction in the design space. 

POD is a standard and powerful tool in data analysis aimed at obtaining low-dimensional approximate descriptions of high-dimensional processes. The POD, also known as the Karhunen-Loève Decomposition
 or the Principal Component Analysis (PCA)
, provides a simple way to reduce a complex data set to a lower dimensional one, which enables to reveal the sometimes hidden, simple underlying structures in complex structures by using analytical solutions from linear algebra. Since its introduction in 1901
, the POD method has received much attention as a tool to analyze complex non-linear systems. It has been applied in a wide range of fields, including image processing, signal analysis, data compression, process identification,… 


The goal of this mathematical procedure is to identify the most meaningful basis to re-express a data set. The basis resulting from the POD can also potentially filter out noise and reveal hidden structures. The POD analysis transforms a number of possibly correlated variables into a smaller number of uncorrelated variables which are called the principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. 


In this framework, the goal of the model reduction approach is to represent a set of data, called the snapshots, obtained from the original high-fidelity numerical simulations, in terms of an optimal coordinate system. Regarding terminology, it is worth underlining that selecting the snapshots amounts to a DoE exercise. The POD analysis detects correlation between the snapshots and yields a smaller set of orthogonal vectors, known as POD basis. An efficient method for computing PODs for large dimensional problems is the method of snapshots introduced by Sirovich
. This technique has been widely applied to CFD formulations to obtain reduced-order models for unsteady aerodynamic applications
. A set [image: image3.emf] of N observations, called snapshots, is obtained from accurate numerical simulations (e.g. the high-fidelity CFD simulations in the present setting).  The POD procedure computes a set of modes from these snapshots. This set of modes is optimal in the sense that, for any given basis size, the error between the original and the reconstructed data is minimized. Reduced-order models can then be obtained by projecting the CFD model onto the reduced space spanned by the POD modes. 


The goal of the POD procedure is to build a linear basis[image: image4.emf]such that 


[image: image5.emf]

where 


· [image: image6.emf] is the mean vector of the set [image: image7.emf];


· N  is the number of snapshots;


· the[image: image8.emf] are the POD basis vectors;


· the [image: image9.emf] are the POD linear expansion coefficients.


The POD basis is built in several steps. First, the snapshot deviation matrix is constructed as


[image: image10.emf]

Then, the covariance matrix C is computed by [image: image11.emf]. The eigenvectors of C determine how to construct the N POD modes [image: image12.emf]. Newman
 noticed that the most important part of the energy contribution is concentrated in the first modes. Consequently the approximation based on the POD can be constructed by only conserving r modes corresponding to the largest singular values of C. A low-dimensional representation of [image: image13.emf]can then be given by


[image: image14.emf]

where r<<N is chosen to capture the desired level of accuracy. Therefore, the POD procedure can extract dominant features in data by decomposing the data into at set of optimal orthogonal base vectors of decreasing importance. The POD basis could be understood as an optimal basis which contains more information than any other one. 

The POD technique has shown its usefulness through different fields of application. It has been applied for the treatment of reconstruction of missing data. Everson and Sirovich
 have proposed a modification of the basic POD method that handles incomplete or “gappy” data sets in the context of image reconstruction, such as human faces, from partial data. An incomplete data vector can be reconstructed by representing it as a linear combination of known POD basis vectors. 


Non intrusive POD as a reduced order model/surrogate has already shown its effectiveness through various strategies and applications. Coelho et al.
 
 have proposed a bi-level model reduction technique in the context of multidisciplinary optimization. First, the discipline output variables are reduced by means of the POD. In a second step, an inexpensive surrogate model (based on the moving least squares method) is built in order to approximate the POD linear coefficients for cases not included in the initial database. This approach has been applied to the shape optimization of both a 2D airfoil and a 3D flexible wing. Toal et al.
 have recently developed an optimization strategy called geometric filtration. The geometric filtration strategy applies an initial Kriging response surface model optimization to the original problem. From the results of this optimization a number of good design points are selected to form a snapshot set for the purposes of proper orthogonal decomposition. The POD basis functions then act as a reparameterization of the original problem, filtering out badly performing designs and reducing the number of variables. A secondary Kriging based optimization is then carried out on the reparameterization. The geometric filtration strategy was tested on the optimization of a transonic airfoil and was found to outperform a traditional Kriging based optimization. 


The methodology for the computation of the POD modes requires the generation of a snapshot set. Following this DoE, it must be emphasized that the quality of the low-order POD-based models is mainly related to the good choice of the distribution of the snapshots in the design space. Selection of snapshots is the crucial ingredient for generation of a good POD basis and represents one of the major challenges for the successful exploitation of POD-based surrogates in optimization.


As has been described in the global optimization lecture, global explorers such as genetic algorithms or simulated annealing are good at leaving poor objective regions behind quickly, while simultaneously exploring several basins of attraction. The exploration capability of population based global searches is typically enhanced by the use of a space-filling sampling plan as described in Section 2. However, in comparison with local search methods, what these explorers sometimes lack is a high convergence speed (though this is much less of a problem in terms of searching a surrogate) and precision in the exploitation of individual local optima. Because the surrogate models are only an approximation of the true functions we wish to optimize, it is prudent to enhance the accuracy of the model using further function calls in addition to the initial space-fill plan. One may wish to improve the accuracy solely in the region of the optimum predicted by the surrogate in order to obtain an accurate optimal value quickly: local exploitation. One may however be unsure of the global accuracy of the surrogate and employ an infill strategy focused on enhancing the general accuracy of the model: global exploration. Each of these venues can be considered in turn, and several methods also combine both schools of thought.

Prediction based exploitation will apply infill points at the optimum predicted by the surrogates which will allow to quickly converge towards an optimum value. However, this may not be the global optimum. Interpolating models continually improve with the addition of infill points. However, in cases where the function is extremely multimodal, this can be a disadvantage and regression may be required. Clearly, for multimodal functions where the initial model does not approximate the whole function well, an infill strategy that can search away from the current minimum and explore other regions is required. Now regarding exploration, Gaussian process based models such as Kriging have a very interesting advantage: since such models permit the calculation of an estimated error in the model, it is possible to perform error based exploration and to use the estimated error to position infill points where the uncertainty in the predictions of the model is highest. For example, one could choose to maximize the predicted error as an infill criterion. However such as strategy would be tantamount to just filling the gaps and could be achieved by simply using a larger sampling plan. An important point to face would also be to decide when to stop adding error based exploration points and start exploiting the model. Instead of either exploiting or exploring the model, criteria which balance these options are most interesting. A wide variety exists, among which one can cite the well-known expected improvement criterion. For more details on infill criteria, which represent a key element of surrogate based designs, the excellent reference  
 can be consulted, as it covers all the core building blocks of surrogate model infill criteria. This is an active area of research and many permutations or hybrids of the criteria are worth looking at, striving for an optimal balance between exploitation and exploration. 

Before concluding this section, let us point out once again that a key benefit of a surrogate model based optimization is that the gradients of the objective function are not required. If gradient information is available, the designer may indeed choose to employ a localized gradient descent search of the objective function with no surrogate model. However, if the global optimum is thought, the gradient information can be used to enhance the accuracy of a surrogate model of the design landscape, which can then be searched with a global optimizer. Whether obtained through finite differencing or adjoint methods and algorithmic differentiation (as exposed in the local optimization lecture), the gradients or even higher order derivative information can be incorporated into the model. The use of derivative information adds considerable complexity to the model building, leading to lengthier parameter estimation but there is clearly the possibility of building more accurate predictions which could reveal particularly interesting in very high dimensional problems. 

Last but not least, it must be underlined that it is difficult to construct a global surrogate model that accurately captures the input/output relationship over the entire design space. Although infill criteria aim at improved global and local accuracy, effective coupling of a global search strategy and surrogate modeling often implies the use local surrogate models that are valid only over an evolutive subregion of the design space. This is especially key in high dimensional problems and again constitutes a research topic of its own, it remains an open issue especially for multi-objective optimization. For mono-objective optimization for example, as illustrated in the global optimization lecture, a move-limit 
 procedure based on effectiveness of approximations can be chosen to adapt the range of the variables along the design process, focusing the optimization search on smaller regions of the design space and exploiting local models. As the optimization proceeds, the idea is to enlarge or restrict the search space based on a heuristic rule in order to refine the candidate optimal region, in order to avoid generating design points in regions where the surrogates are not valid.

4. CONCLUSION 

In the context of optimization, the objective is to create a surrogate model that accurately captures the trends of the relationship between input and output and in particular over those regions where high performance designs lie. Rarely a completely fixed approach turns out to be appropriate in all cases of interest since the data itself will typically influence the directions taken. The best search methodology to exploit depends upon the type of design space that has been defined, whose characteristics are typically not known … until it has been explored. This calls for knowledge, care and experience from those constructing and using the surrogates. As will be shown in all case studies, a good understanding of the capabilities and limitations of the various techniques is key but the fundamental role of the optimization specification (parameterization, bounds definition, model simulations choice, cost functions/constraints definition) remains at the heart of the success of the design methodology. 




Air intake inlet total pressure 


1st order sensitivities






































� .J. Forrester and A.J. Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, Volume 45, Issues 1-3, January-April 2009, pp. 50-79.


� N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, P.K. Tucker, Surrogate-based analysis and optimization, Progress in Aerospace Sciences, Volume 41, Issue 1, pp. 1-28, 2005.


� Forrester, A., Sobester A., Keane A., Engineering Design via Surrogate Modelling, A Practical Guide, John Wiley & Sons Ltd, 2008


� Chan K., Saltelli A. and Tarantola S., Sensitivity analysis of the model output: variance-based methods make the difference, Proceedings of the 1997 Winter Simulation Conference


� Kato, H., Ito, K., Lepot, I., Simulation-Based Sensitivity Analysis and CAD-driven Shape Optimization of Hypersonic Mixed-Compression Intake for Variable-Cycle Engine, Proceedings of the ECCOMAS Eurogen 2009 Conference (Evolutionary and Deterministic Methods for Design, Optimization and Control Applications to Industrial and Societal Problems), Cracow, Poland, June 15-17.


� A.J. Keane, P. B. Nair, Computational Approaches for Aerospace Design, the Pursuit of Excellence, J. Wiley & Sons Ltd,  ISBN-13 978-0-470-85540-9 (HB), ISBN-10 0-470-85540-1 (HB)


� Santner T.J., Williams B.J. and Notz W.I., The Design and Analysis of Computer Experiments, Springer, 2003.


� Montgomery D.C., Design and Analysis of Experiments, John Wiley and Sons, 4th edition, 1997.


� Simpson T.W., Lin D.K.J., Chen W., Sampling Strategies for Computer Experiments: Design and Analysis, International Journal of Reliability and Applications, 2(3):209-240, 2001.


�	 Loève, M., Probability Theory, Van Nostrand, Princeton, 1995.


�	 Jolliffe, I.T, Principle Component Analysis, Springer Verlag, New-York, 1986.


�	 Pearson, K., On lines and planes of closest fit to systems of points in space, Philosophical Magazine, Vol. 2, No. 6, 1901.


�	 Sirovich, L., Turbulence and the dynamics of coherent structures, Quarterly of Applied Mathematics, Vol. 45, No. 3, pp. 561-571, 1987.


�	 Hall, K. C., Thomas, J. P., Dowell, E. H., Reduced-order modeling of unsteady small-disturbance flows using a frequency-domain proper orthogonal decomposition technique, AIAA Paper  99-0655, 1999.


�	 Newman, A., Model reduction via the Karhunen-Loève expansion, Part I: An exposition, Technical Report TR 96-32, Inst. Systems Research, 1996. 


�	 Everson, R, Sirovich, L., The Karhunen-Loève for Gappy Data, J. Opt. Soc. Am., 12: 1657-1664, 1995.


�	 Coelho, R. F., Breitkopf, P., Knopf-Lenoir, C., Reduced Models for Coupled Aerodynamic and Structural Optimization of a Flexible Wing, EngOpt 2008 – International Conference on Engineering Optimization, Brazil, 2008.


�	 Coelho, R. F., Breitkopf, P., Knopf-Lenoir, C., Model reduction for multidisciplinary optimization - application to a 2D wing, Structural and Multidisciplinary Optimization, 378(1):29–48, 2008.


�	 Toal, D.J.J,  Bressloff, N.W and  Keane, A. J., Geometric Filtration Using POD for Aerodynamic Design Optimization, AIAA-2008-6584, 2008.


� Forrester, A., Sobester A., Keane A., Engineering Design via Surrogate Modelling, A Practical Guide, John Wiley & Sons Ltd, 2008


� Torczon, V. and Trosset, M.,W., 1998, Using Approximations to Accelerate Engineering Design Optimization, ICASE Report No. 98-33, NASA Langley Research Center Technical Report 23681-2199.





RTO- EN-AVT-167
5 - 1

5 - 12
RTO- EN-AVT-167

RTO- EN-AVT-167
5 - 11




[image: image53.png]Mesh generation for new profile
Solve Flow Field

N
Solve Adjoint Field
Calculate Gradient

Optimiser: perturb geometry and search

(Steepest Decent of the Objective)





[image: image54.png]N
Q0

N
~

N
(2]

T
&)

N
o~

N
w

N
N

L[ TTTT I I T[T T[T T[T ITT[TTTT]

near choke

Original
——————————————— Optimised

Original
——————————————— Optimised

N N0 NS RN RRRE LARE RN LR

aF

L L1 L1
16 165 17 17.5 155 16 165 17 17.5
Mass flow rate (kg/s) Mass flow rate (kg/s)

o
Ak
ol
oF




[image: image55.png]- - ©- - concurrent

——=—— aeroelastic only ‘

TEFENENE ETENENEEN BT AN B A |

-0 15
design cycles

alizedentropy |
o w A O O

Normalized entro
o

5 210 15
design cycles

20




[image: image56.png]FE modal analysis

Update blade
geometry

Calculate

geometry
perturbation

v

Three-phase
flow solution

v

Three-phase
adjoint solution

v

Gradient
calculation









[image: image57.png]H(%)

Original
—rmmmmime Optimised

075 08 085 09 1.4 1.42 144  1.46 27 28

n T




[image: image58.png]0.25

IGV R1 ST R2 | S2 | R3} S3

0.15

0.1

0.05

0.15

-0.05

201 0 0.7 x(m) 02 0.3 0.4




[image: image59.png]0.1

0.075

0.05

TTT T TTT T[T T T[T T T T[T T T T[T T T T[T T IT[TITTIT

0.05 0.1 0.15 0.2
X(m)




Concurrent Blade Optimization with Component Interaction







[image: image60.wmf][image: image61.jpg]}
A NATO
\4% OTAN




Concurrent Blade Optimization with Component Interaction



Concurrent Blade Optimization with Component Interaction 


L. He1 - D.X. Wang2 


1Dept of Engineering Science  


University of Oxford  


Parks Road, Oxford, OX1 3PJ, U.K.


(Li.He@eng.ox.ac.uk)


2Siemens Industrial Turbomachinery


Ruston House, PO Box 1, Waterside South

Lincoln, LN5 7FD, UK

Abstract


An important issue in turbomachinery design optimization is how to deal with the influence of other interacting components.  For instance, when optimizing the blade shape for one blade row, how can we include the influence of its adjacent rows?  When optimizing blade shape for aerothermal (loading and efficiency) performance, how can we include the changes in flow-induced structural vibration (flutter and forced response) characteristics? Modern designs with higher loads and more compact configurations increasingly call for a more concurrent optimization procedure to take into account interactions among multi-components (and multi-disciplines) at the same time.


In this lecture, some recent development in concurrent design optimizations for turbomachinery blades is described. The optimization procedure is based on a very efficient adjoint method for sensitivity calculations. The effectiveness of the approach is illustrated for two examples of different blading optimization applications, firstly for the aerothermal performance enhancement with multi-stage aerodynamic interactions; secondly for the combined aerodynamic-aeroelastic performance enhancement with fluid-structure interaction.


1.0
Introduction

Computational fluid dynamics methods have been developed extensively and used in blade design on a daily basis [1]. Methodology development for turbomachinery blade shape optimization typically follows that for the external flows, e.g. those around aircraft wings. A starting point of the departure of the former from the latter is the interactive nature among components in turbomachines. An ‘optimized’ bladerow in isolation may more than often behave differently when put in a multi-row environment. From a basic blade row/stage matching viewpoint, interactive blade rows should be optimized concurrently. An iterative alternative would typically be very lengthy.


Ever increased aerodynamic loading in turn increases the blade row interactions, hence by itself underlines the need for concurrent design and optimization.  Furthermore, the enhanced aerodynamic loads give rise to concerns over the blade structure integrity. A simple pursuit of an aerodynamic performance gain often results in structurally unacceptable configurations even simply from a static stress limit consideration, although this may be overcome relatively easily and simply by imposing some simple structure constraints. It is more difficult to evaluate and control the dynamic stresses associated with aerodynamics induced blade vibrations, flutter and forced response. Flutter typically limits the performance for low pressure components, while forced response limits both low pressure and high pressure components.  


A similar case can be also made for high pressure turbine blades in terms of the interaction between aerodynamics and heat transfer. An aerodynamically ‘optimized’ blading might lead to high heat transfer. The associated extra cooling required to keep to an acceptable blade metal temperature might give a very different trade-off both in terms of the extra cooling air consumption and the corresponding coolant-main stream mixing losses.


The conventional blade designs have been largely based on a trial and error iterative process guided by the identification and hence choice of a relatively small number of  1st order influencing factors (e.g. blade lean, sweep, etc). The physical understanding of the corresponding working mechanisms of those parameters gathered over many years have made the iterative optimization procedures reasonably effective. A design optimization for configurations under strong influences of component interactions (and/or of multi-disciplinary nature), is a much harder problem. For such kind of problems, number of design parameters naturally increases drastically and the influences of these parameters are far less intuitive.


The difficulties in such multi-components/disciplines optimization usually manifest themselves by the complex interactions being regarded as conflicting constraints and treated as such in a design process.  This ‘norm’ can be attributed largely to lack of tools/methods for concurrent optimizations.  Because of this, a designer tends to miss potential benefit/opportunities caused by those interactions.


In the following, some recent work relevant to the concurrent design optimization is described. The first part gives a brief account of the development of the adjoint approach to enable an efficient aerodynamic design optimization to be carried out in a multi-stage turbomachinery environment. The second part illustrates how to concurrently optimize a blade for both aerothermal and aeroelastic performance.


2.0 Concurrent Multi-Bladerow Design Optimization


Here, we take a gradient based approach to blade shape optimization. A typical issue one would face when dealing with a multi-component concurrent design optimization is how to get the gradient sensitivities for a large number of variables.  In general, the number of design variables for detailed shaping of each blade could be in the range of 102. For a multi-stage compressor, the total number of design variables could easily be in the order of 103.  The challenge is, how to get the gradient information for this large number of variables, simultaneously as required for a concurrent design optimization.  An adjoint method is the one which can meet the challenge. 


2.1 Adjoint Principle


For a typical design situation of practical interest, there are only few objective functions (e.g. isentropic efficiency, pressure ratio of a compressor). Consider an objective function I (scalar) in an aerodynamic design optimization as a function of the flow variable vector 
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 and a design variable
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, expressed as,


I = I(U, ()                                                 





(1)


The relation between the flow variable and the design variable is determined through the solution to the nonlinear flow equation (a vector equation),


R(U, () = 0                                                 





(2)


The gradient of the objective function to a design variable can be given by,
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Of the three terms in the gradient expression, 
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can be calculated analytically. The key term is the flow variable sensitivity
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. In a direct sensitivity calculation, the flow variable sensitivity to each design variable is obtained by solving the flow fields respectively, as the flow variables of the whole flow filed are coupled together. Thus a direct approach would mean that for N design variables, N flow field solutions are needed for each design cycle. This apparently would be unpractical (even if not impossible) for situations with a large number of design variables. 


Having identified the problem of a direct sensitivity calculation, the central point is whether we can find a way to decouple the influence of different design variables on an objective function through the flow variable sensitivity 
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. Put it more specifically, we would like to find a way to eliminate the explicit dependency of the objective function sensitivity dI /d(  on the flow variable sensitivity 
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 in (3).    


The adjoin formulation can now be introduced to accomplish the task of eliminating 
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 in Eq 3. The differentiation of the flow equation with respect to the design variable  is:
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(4)


Multiplying the right hand side of the linearized flow equation (4) with the adjoint variable vector (also called Lagrange multiplier) 
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 (noting 
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 is in fact a transpose of a vector of the same dimension as the flow variable 
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), and subtracting the product from the gradient expression  yields
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Given the task of eliminating 
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, we regroup Eq (5a),
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It is clear then that our task can be achieved by choosing the adjoint variables to satisfy the following to nullify the influence of 
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(6)


Eq (6) is called the adjoint equation. This is a field equation in the same dimension as the flow equations.

Upon satisfying the adjoint equation (Eq.6), the gradient of the objective function is reduced to:
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(7)
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which is not longer dependent on the flow variable sensitivity. Furthermore, the adjoint equation (Eq.6) does not depend on any design variable. This implies that the gradient of a scalar objective function to ALL the design variables can be obtained by solving only two sets of equations for the computational domain: 


1) the standard RANS flow equation (Eq.2); 


2) the adjoint equation (Eq.6). 

For each design cycle, only the above two field solutions are required (Fig.1). The calculation of the gradient expression (Eq.7) is effectively equivalent to a post-processing and hence can be done very efficiently.  


Figure 1: Flow Chart of Aerodynamic Design Optimization


There are two kinds of adjoint approaches. The first kind is the continuous adjoint method (Jameson [3]) in which the continuous ﬂow equations are linearized (differentiated) first with respect to a design variable. Then an adjoint system will be derived from the linearized continuous ﬂow equations, followed by the adjoint treatment (the flow gradient sensitivity elimination as described above) before the  discretization.  The second type is the discrete adjoint method, where the discretized flow equations are linearized and then the adjoint formulation is applied (Giles and Pierce [4]). The details of the continuous adjoint formulations for the RANS flow equation are given by Wang and He [32].

2.2  Adjoint Mixing-Plane Treatment for Bladerow Interface


It is recognized that the conventional multi-bladerow analysis methods in most design systems are based on the mixing–plane treatment for the rotor-stator interfaces (Denton [2]). A multi-bladerow adjoint optimization would point to a need for an equivalent adjoint mixing-plane method. 


The strategy for such a development is that an adjoint mixing-plane should “reflect” the physical domain mixing-plane treatment as the adjoint equations reflect the corresponding flow equations in the physical domain. To follow this through, we need to start with a recognition of the difference in the information/disturbance propagation between a direct flow problem in a physical domain and that of an adjoint one. In a physical domain, a perturbation to a design variable would propagate through flow characteristics (acoustic, entropic and vortical disturbances).  This is how an objective function will be influenced in a direct analysis. The purpose of introducing of the adjoint variable (as shown in Eq.5), however,  is exactly to ‘block’ the direct information propagation, so that the objective function will not directly and explicit ‘see’ the influence from each design variable. This basic feature of the adjoint approach leads to a distinctive property of the adjont disturbances propagation: the characteristics of the adjoint equations are exactly in the opposite directions as the flow physical characteristics (Giles and Pierce [29]). The ‘anti-physics’ adjoint characteristics in fact provide a simple and consistent basis for boundary condition specification for a 3D time-marching solution for turbomachinery applications (Wang and He [32]). 


Consider a common situation with a subsonic axial flow at inlet and at exit of a computational domain. The number of specified boundary conditions in the physical domain and the adjoint domain are shown in Table 1.  The “anti-physics” adjoint characteristics manifest themselves clearly in that the physical inlet corresponds to an adjoint exit, while the physical exit corresponds to an adjoint inlet. 


                   Table 1:  Number of boundary conditions for inlet and exit boundaries

		

		Physical

		Adjoint



		Domain Inlet 

		Inlet BC: 

     Specified : 4


     Extrapolated from interior: 1

		Adjoint “Exit” BC:


     Specified:    1


     Extrapolated from interior: 4



		Domain Exit 




		Exit BC:


     Specified : 1


     Extrapolated from interior: 4

		Adjoint “Inlet” BC: 

     Specified : 4


     Extrapolated from interior: 1





The consistent understanding of the “anti-physics” adjoint characteristics propagation is very helpful in formulating an adjoint mixing plane.  For a rotor-stator interface in the physical domain, the number of physical flow characteristics across the interface and their directions are known. The corresponding number of the adjoint characteristics across the interface and their directions can be worked out exactly based on the ‘anti-physics” path. A set of adjoint mixing-plane interface conditions can thus be  consistently formulated and implemented as demonstrated by Wang and He [32].

An example of illustrating the anti-physics adjoint characteristics is taken from [32] for a 2D section of the compressor stage. The relative Mach number contours are shown in Fig 2. The upstream rotor is choked with a passage shock, whilst the downstream stator is of a typical subsonic flow pattern.  The corresponding field for an adjoint variable is shown in Fig.3. Clearly the adjoint solution looks to behave in a complete opposite way: the physical upstream domain becomes the adjoint downstream domain. The ‘adjoint wakes’ flowing reversely are clearly visible in both blade rows (Fig.3).

           Figure 2: Relative Mach Number Contours for a Transonic Compressor Stage 
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     Figure 3:  Contours of an Adjoint Variable for a Transonic Compressor Stage


      Figure 4: Meridional view and blade to blade view of Siemens 3-stage compressor computational domain


The demonstration sample example is taken from Wang et al [33]. In this case, the computational domain consists of 7 rows and its blade to blade view of a mid-span section and meridional view are shown in Fig.4. In the design optimization, the IGV remains unchanged as for the three-row design optimization, whilst the other 6 rows are allowed to be changed (a total number of design variables of 1023). For each blade row, the design variables are distributed on 11 spanwise sections with the same number of design variables for each section. A single-point design optimization is carried out at the original design point of the compressor. Twenty nine design cycles are completed over 11 days (single processor). 

The performance comparison between the original compressor and the optimised one at the chosen operating point is presented in Table 3. The optimised design has an efficiency that is 2.47% point higher than the original one with 0.34% increase in mass flow rate and 0.08% decrease in pressure ratio. 

  Table 3:  Performance comparison between original and optimised blades 


(Siemens 3-stage compressor redesign. 1023 design variables)

		

		mass flow rate (kg/s)

		pressure ratio

		isentropic efficiency(%)



		original

		26.46

		2.9885

		86.81



		optimised

		26.55

		2.9860

		89.28



		change

		+0.34%

		-0.08%

		+2.47







Figure 5: Spanwise distributions of circumferentially averaged efficiency ((),      stagnation temperature ratio (() and stagnation pressure ratio (() at the compressor exit (Siemens 3-stage compressor redesign, 1023 design variables)

Figure 5 compares the spanwise distribution of circumferentially averaged efficiency, stagnation temperature ratio and stagnation pressure ratio at the compressor exit. The optimised design has higher efficiency than the original design over the whole span. The stagnation temperature ratio in the optimised design is lower than the original design over the whole span. The stagnation pressure ratio in the optimised design is increased in the tip region and decreased in the hub region. 

3. Concurrent Aerodynamic-Aeroelastic Design Optimization 

A concurrent blade shape optimization for aerodynamic and aeroelastic optimization needs to be based on solving the unsteady flow equations. The required attribute is that the unsteady flow solver will provide the steady (time-mean) aerothermal as well as aeroelastic performance parameters at the same time. In most blade aeroelastic applications, only the harmonic unsteady aerodynamic force component corresponding to that of a harmonic structural vibration mode would contribute to the modal damping (in flutter/forced response analysis) and forcing (in forced response analysis). Due to the basic orthogonality of the circular functions, any other harmonic components in the flow will not contribute to the modal forcing and damping. The structural modeshapes and frequency, typically from a linear Finite Element analysis (FEA), tend to be largely independent of unsteady aerodynamics due to the large structure/fluid mass ratio. Therefore, a harmonic solution retaining only one harmonic would be sufficiently accurate to serve as a baseline unsteady aerodynamic solver.

3.1 Harmonic Unsteady Flow Model


The unsteady nonlinear flow equations can be written as
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 is the lumped residual including the source terms.


The unsteady flow field is decomposed into the mean and harmonics with known frequencies. And as introduced earlier, only one harmonic should be sufficient for blade forced response and flutter predictions.
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For a given frequency, an unsteady flow can now be determined by 3 time-independent unknowns: the time-mean 
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, and the 2 harmonic coefficients A, B. 

To get the solutions for these three unknowns, the unsteady equations are simply solved at three distinctive temporal phases, -90(, 0( and 90( (He [31]). Denote the flow solutions at the three phases with subscripts ‘U-B’, ‘UA’ and ‘UB’ respectively: 

  
At (t = -90(,     
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(10a)


     
At (t = 0(,        
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(10b)


           
At (t = 90(,      
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(10c)
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,  A, and B are directly linked to U-B, UA and UB . These three sets of equations are coupled through the unsteady source terms (-(A, (B, (A), and are solved simultaneously by marching in the pseudo time as for a steady flow problem.  Hence an unsteady flow problem is effectively made equivalent to 3 steady-flow like problems, which can be solved very efficiently using well established numerical methods and techniques (e.g. local time stepping and multi-grid).


It should be pointed out that the 3-phase harmonic model described above should be able to provide gradient information for a concurrent steady and unsteady design optimization. For any design variable (, the perturbed unsteady flow field can be expressed as:
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By assuming a linear unsteady flow response, the changes in the harmonic part will then be independent of the time-mean part. Consequently the steady mean and unsteady performance changes due to a perturbation of the design variable are given by the changes in 
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, and A, B respectively.  Hence the 3-phase harmonic flow model can in theory be directly used for a concurrent aerodynamic and aeroelastic design optimization. The adoption of a phase-solution based unsteady adjoint approach as described below however will  make the gradient evaluation much more efficient. 

3.2  Unsteady Adjoint Formulation

When we perturb blade geometry, we will have responses not only in terms of the steady mean aerodynamic field, but also in terms of the unsteady harmonic field characterized by the two harmonic coefficients. The adjoint equations can be formulated conveniently and directly following the three-phase harmonic solution approach described above. Now our objective function contains both the mean flow and the unsteady flow performance parameters. The objective function is thus a function of the combined three-phase flow solutions on a perturbed mesh,
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In this case, the objective function I can be a weighted sum of entropy (flow loss) and aerodynamic damping or forcing.


A change to a design variable ( parameterizing a blade shape will cause a change to the mesh
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. In turn, the changed mesh will translate the change to the flow solution, and finally to the objective function. The gradient of the objective to the design variable can be given by the chain rule,
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Differentiation (linearization) of the flow equations (Eq.8) with respect to a design variable leads to
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(14c)


Introduce the adjoint variable vectors (Lagrange multipliers) at the three phases respectively: 
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. Then we can derive the adjoint equations by eliminating the dependence of the objective function gradient on the flow field sensitivity. Following a similar procedure to a steady flow problem, we can now get three adjoint equations at (t = -90(, 0( and 90( respectively:
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With Eqs 15 being satisfied, the augmented gradient expression for a coupled aerodynamic and aeroelastic objective is reduced to
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The three sets of the adjoint equations are of a coupled system and need to be solved simultaneously. Their solution can be achieved in the same way as that for the harmonic flow equations (Eq.10) by time-marching in the pseudo time. The detailed formulations are given by He and Wang [34].


3.3 Examples of Concurrent Aeroelastic-Aerodynamic Design Optimization

The design optimization flow chart is shown in Fig. 6. A design cycle consists of 7 steps.

    Step 1: problem setup, the choice of operating point, design variables, design targets and constraints. 


Step 2: FE modal analysis, generating modeshape and frequency of a required structure vibration mode.


Step 3: the three-phase flow equations are solved.


Step 4: the three-phase adjoint equations are solved.


Step 5: the gradients of an objective function to all design variables are obtained using the adjoint gradient expression with some post-processing.


Step 6: calculate the geometry perturbations according to the gradient information.


Step 7: update the blade geometry according to gradients.


Step 2 to step 7 constitute a design cycle and are repeated until a design optimization is converged.

Figure 6:  Aerodynamic–Aeroelastic Design optimization flow chart

A simple case is firstly presented to indicate the potential need of considering both aerodynamics and aero-elastics concurrently in an aero-elastic related design optimization. The 2-D blade section is taken from the 3D transonic fan, NASA rotor 67. The design optimization target is to increase the blade aero-damping for a hypothetic mode shape which is a combination of flap and torsion with a frequency of 1000Hz. In this design exercise, the blade vibration mode shape is maintained to be the same when the blade geometry is changed. 


Two design scenarios are considered. The first case is a pure aeroelastic design optimization. The second case is a concurrent aeroelastic and aerodynamic design optimization. The changes in the aero-damping and the entropy with design cycles are shown in Fig. 7. It can be seen clearly that the pure aero-elastic design case leads to a considerable increase in aerodynamic loss when the aero-damping is raised. On the other hand the concurrent design can very effectively restrict the aero-loss when the aeroelastic stability is improved.



              (a) Aerodynamic Damping                                          (b) Aerodynamic Loss 

Figure 7:  Changes of Aeroelastic and Aerodynamic Performances with Design Cycles

                  (Concurrent Optimization versus Aeroelastic-only Optimization)

The next case considered here is the rotor of the DLR transonic compressor stage [30]. At the rotor blade original first vibration mode, our calculation shows that the blade has sufficient aero-damping over its all possible operating conditions along the design speed line. To test the present optimization method, a hypothetic vibration mode is used. The minimum aero-damping of the transonic DLR rotor, which is 0.1% in terms of logarithmic decrement, occurs at the inter-blade phase angle of 25.71 degrees (corresponding to the second nodal diameter of a forward travelling wave mode), when the rotor operates at a condition with the following aerodynamic performance,

Mass flow rate:       16.25 kg/s


Pressure ratio:        1.667


Isentropic efficiency:   88.29%

and vibrates at the following hypothetic vibration mode,


Mode shape:   the blade's first natural vibration mode


Frequency: 589.4032 Hz (80% of the original frequency)

In the FE analysis, the chosen material for the rotor blade has a density of 4428.8
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Pa and Poisson ratio of 0.27, which are close to the property of Titanium at the ambient temperature.

In order to maintain a good overall performance in the final design, a multi-operating-point parallel optimization [32] is carried out. Here three operating points are considered in the optimization process. As shown in Table 4, one operating point is at a near stall condition at which the aero-damping is quite low (0.1% in terms of logarithmic decrement) and needs to be increased. Another operating point is the rotor peak efficiency point, chosen with an intent to maintain the peak efficiency. The third operating point has a mass flow rate close to the choke mass flow rate, aimed at maintaining the choke mass flow rate in the optimised design. 

The performances of the optimised rotor at the three operating points are also given in Table 4. The optimised design has slightly higher mass flow rate, pressure ratio, and isentropic efficiency at all the three operating points. At the near stall operating point, the aero-damping of the optimised design is now increased by a factor of 20 in terms of the log-dec. Even at the other two operating points, the optimised design also has higher aero-damping values over the original one.

Table 4: Performance of the optimised rotor at three operating points 


        (compared to the original design in brackets)

		Operating point

		Mass flow rate (kg/s)

		Pressure ratio

		Efficiency (%)

		Log-dec (%)



		Near stall

		16.78 (16.25)

		1.716 (1.667)

		89.57 (88.29)

		2.0 (0.1)



		Peak efficiency

		17.27 (17.07)

		1.661 (1.626)

		89.76 (89.70)

		3.2 (2.7)



		Near choke

		17.52 (17.46)

		1.449 (1.421)

		83.60 (83.47)

		3.9 (3.4)





The performance map of the optimised design is compared with that of the original design, as shown in Fig.8. In line with the aerodynamic performance gain indicated in Table 4, the optimised design has higher efficiencies and pressure ratios over the whole operating line at the given rotating speed. Fig.9 shows the overall aero-damping (in terms of the log-dec) of the original design and the optimised design at the first few nodal diameters, at the near stall condition. The optimised design has increased aero-damping at all these nodal diameters, with the lowest aero-damping occurring at the second nodal diameter at which the original design has the lowest aero-damping. This means that the design optimization does not change the nodal diameter at which the lowest aero-damping occurs.

Figure 8:  Compressor Characteristics: total pressure ratio (), efficiency (() for DLR rotor
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Figure 9:  Aeroelastic Performance (Log-dec) for DLR rotor

The final case is the minimization of blade forced response. NASA rotor 67 is used here to demonstrate the capability for blade forced response minimization.  The blade row is subject to a hypothetical 7-node inlet total pressure distortion, providing an excitation of the first torsion mode at a frequency of 1969.4Hz (the properties of Titanium at the ambient temperature are used in the blade FE modal analysis). Inter-blade phase angle is 120° and a rotor speed of 105.2%. In the original design, this inlet total pressure distortion leads to a forced response of 1.94 mm at its leading edge tip. 

The blade forced response minimization is conducted at a single operating point. Perturbations to 7 radial mesh sections are parameterized with each of them using 9 hump functions, resulting in 63 design variables in total.


The changes of normalized aeroelastic performance parameters (normalized by their initial values) with design iterations are shown in Fig.10. The forced response is reduced by 25% after 34 design iterations, while the mass flow rate, pressure ratio and efficiency are constrained effectively around their original values. The reduction of forced response, as can be seen from Fig.10, is achieved by increasing aero-damping by more than 40%. Interestingly for this case with a significant reduction in forced response, the aero-forcing is not decreased, but increased by 10% instead.
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Figure 10: Changes in Aeroelastic Performance Parameters with Design Iterations


(NASA rotor 67 under inlet distortion)
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Figure 11: Local worksum on the original blades  (‘+’ destabilizing; ‘-‘stabilizing)
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Figure 12: Local worksum on the optimised blades (‘+’ destabilizing; ‘-‘stabilizing)

Figure 11 and 12 show the local aero-damping distribution on the original and optimised blade surfaces respectively. As can be seen, the aero-damping is increased on both pressure side and suction side of the optimised blade. The pressure contours on the original and the optimised blade surfaces are shown in Figs.13 and 14. The optimised blading (Fig.14)  does give a noticeable change in the main passage shock position, but it seems to weaken the shock strength by producing two shocks between the mid span and the near tip regions (see the pressure surface (P.S) side of the optimized design, Fig.14). The weakening of the shock strength is also reflected in a slight increase of the isentropic efficiency in the optimised design.
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Figure 13: Pressure contours on the original blade surfaces
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Figure 14: Pressure contours on the optimised blade surfaces


Concluding Remarks


Development of modern high performance gas turbine blading calls for more concurrent multi-component & disciplinary approaches toward design & optimization.  In this lecture, some recent efforts are reviewed with emphasis on the blade shape optimization under influence of blade row-to-row interactions, and aerodynamic-aeroelastic interactions. The efforts are largely based on the gradient based approach, and an adjoint approach is adopted for efficient evaluations of gradient sensitivities. The results have demonstrated the effectiveness of the adjoint approach, but more importantly the benefit or/need for a concurrent approach.  


There are also other application examples where the interactions need to be included in design optimization in a concurrent manner. For instance, it is shown that different intra-row gaps can have considerable influence on both blade aerodynamic performance and flutter stability in a multi-blade row environment [35]. A recent work on combined convection and conduction (conjugate) heat transfer for a high pressure turbine indicates a potential of performance gain which might be explored when unsteady combustor-turbine interaction is included [36]. In general, the traditional single component/single disciplinary design optimization will be increasingly challenged. More concurrent and multi-disciplinary (e.g. coupled aero-mechanical and aero-heat-transfer approaches) are expected to emerge as outcomes of design optimizations will be increasingly dictated by interactions between closely coupled components and between nominally labelled disciplines. 
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Abstract

The present lecture focuses on surrogate-based optimization applied to the design of a non axisymmetric hub endwall for an HP compressor single-row rotor blade. The objective was to improve its performance at nominal conditions. The non axisymmetric hub surface is parameterized under CATIA v5 with 16 design parameters that can create circumferential 3D bumps and hollows of variable amplitude and width.


A first mono-point optimization was conducted, with the objective to maximize the isentropic efficiency of the compressor at design point. No additional constraints were imposed in order to let the optimizer free to search the conception space before judging the optimum according to its feasibility in terms of manufacturing and operability. Based on this experience, a second two-point optimization was then conducted with the aim to maximize the isentropic efficiency at the design point while also preserving the total-to-total pressure ratio at a second point closer to stall and limiting the mass flow variations within 0.5%.  The amplitude of the designed hollows had to be limited as well for manufacturing purposes. While satisfying the stability, mass flow and manufacturing constraints, the optimized non axisymmetric hub designs highlighted the global search capabilities of the optimization carried out and yielded a 0.4% increase of the isentropic efficiency compared to the axisymmetric case by adequately altering the shock and reacceleration pattern close to the wall rather than reducing the secondary flow features. 

NOMENCLATURE

· AXI       Axisymmetric Endwall 

· CFD       Computation Fluid Dynamics 

· DoE       Design of Experiments 

· LHS       Latin Hypercube Sampling 

· EA         Evolutionary Algorithm 

· HP         High Pressure 

· LE         Leading Edge 

· L-O-O    Leave One Out 

· NAXI     Non Axisymmetric Endwall 

· RBF       Radial Basis Functions 

· SBO       Surrogate Based Optimization

· TE         Trailing Edge 

· 3D         Three Dimensional  

1. INTRODUCTION

The present practical case study fits into the frame of the ongoing 6th Framework European Project NEWAC (NEW Aero engine Core concepts), which targets the development of alternative engine configurations in order to achieve significant reduction of pollution. More specifically, new engine core configurations with heat management and active systems as well as advanced combustion technology are developed to reduce CO2 and NOx emissions. The present case study, published in References [19]

 REF _Ref267291974 \r \h 
[20], more particularly falls within the flow controlled core subproject lead by Snecma: various flow control technologies, including tip injection, aspiration and advanced 3D aerodynamics are to be investigated to achieve an increase in HP compressor efficiency, additional surge margin and reduced in-service deterioration.


1.1  Physics Background


The loss mechanisms in turbomachinery may be generally classified into three main categories: the tip clearance losses, the profile losses and the losses due to the secondary flows next to the endwalls. All these mechanisms may be eventually better controlled by altering the blade shape as well as the endwall geometry. For example, casing circumferential grooves applied to compressor blades may increase their stall margin, squealer tip turbine blades may reduce the high heat transfer due to hot tip leakage flow impingement and 3D non axisymmetric hub endwalls typically tackle the origin of the secondary flows. Designing the blade shape and the endwall geometries constitutes an interesting challenge to be tackled with surrogate-based optimization. 

Up to now several studies have demonstrated the positive effect of endwall contouring in turbomachines. A non axisymmetric endwall interferes with the secondary flows and may significantly decrease the local losses by either weakening the secondary vortex system and/or the shock formation close to the wall (as highlighted in numerical studies on compressor blades[1], experimental studies on compressor blades[2]

 REF _Ref267217688 \r \h 
[4], numerical studies on turbine blades[5]

 REF _Ref267218904 \r \h 
[6], experimental studies on turbine blades[7]

 REF _Ref267218940 \r \h 
[11]. The design of the endwall shape highly depends on the specific features of the flow around the blade. A thorough understanding of the flow physics is required in order to adequately define the optimization specification (parameterization and associated bounds, objective(s)/constraint(s)) as well as the computational chain setup.

In the Reference[12], Harvey et al. generated a systematic set of perturbations to the parameterized hub geometry of a turbine blade that created 36 new endwalls. Their design was a product of two curves in axial and circumferential directions. The same author[13] further investigated several designs: a sinusoidal endwall shape was specified in terms of height and phase angle at 6 axial control points. More about the design methodology is also to be found in Reference [14]. A 38% reduction of the overall secondary kinetic energy was achieved for the non axisymmetric vane, while this reduction reached 28% for the non axisymmetric rotor downstream. The equivalent improvement of 0.9% on the stage efficiency was also experimentally verified. The cost function exploited in these studies was the secondary kinetic energy multiplied by the helicity, more information about its definition can be found in Reference[37]. A similar design methodology was applied for the first time to a subsonic compressor blade by Harvey et al.[32] in order to control the secondary flows and demonstrate the possibility of suppressing hub corner stall by 3D profiling. A 3D endwall optimization was conducted by Harvey and Offord [33] applied to a compressor blade that exhibited extensive stator hub corner stall at off-design conditions. Their best designs showed as effective as the 3D blading (blade sweep and lean) to improve the compressor surge margin. 


Saha and Acharya[15] also generated several combinations of two curves that defined the endwall design of a turbine blade, one in streamwise and one in pitchwise direction. The heat transfer on the endwall and  the turbine blade surface was locally reduced by  15 to 25%; the average Nusselt number decreased by 8% and the average losses were reduced by 3.2%. Nowadays with the increasing computational power, an automatic optimization procedure that searches for the best combination of the geometrical parameters is possible. Surrogate-Based Optimization reveals a very efficient tool to do so and numerous recent examples are to be found in the literature. Before proceeding to the case study, a couple examples both related to compressors and turbines are given hereafter.


Dorfner et al.[16] improved the efficiency of a compressor blade by around 1% by using a single objective optimization procedure with 30 parameters (a grid of 5 times 8 control points was selected) to describe the hub endwall geometry. Nagel and Baier[17] optimized both the blade shape and the endwall of a symmetrical turbine vane. Due to the symmetry, the calculations were performed only in half of the channel. Based on the modification of 43 parameters (2D airfoil shapes and stacking axis, endwall), the integral losses in total pressure of the optimized geometry were reduced by 22% with respect to the starting cascade.


Germain et al.[35] exploited an extended endwall parameterization in order to allow more complex surfaces definitions, they also additionally modelled the fillet radii in their CFD evaluations performed with the TRACE solver. An optimization was carried out both on the hub and tip of the first stator and on the hub of the rotor of a high work one and a half turbine stage configuration (the cost function was the secondary kinetic energy defined by Germain et al. in Reference [34]). The efficiency was improved by about 1% and the design achieved not only a reduction of the secondary losses but also a strong weakening of the midspan losses. Time-resolved flow comparisons between the axisymmetric and the optimized geometries (see Reference[36]) explained that this reduction of midspan losses resulted from the reduction of the trailing shed vorticity. Praisner et al. [18] also exploited a gradient-based optimization algorithm with a 3D CFD RANS solver to adjust an endwall parameterized by five equally spaced axial control points with five pitchwise points per axial row. The number of design iterations reached 1000. The method was applied to three different turbine blades and decreased the losses by 4 to 12% depending on the reference blade. Experimental validation showed an even higher decrease, between 10 to 25%, for the same blade endwall geometries.


 1.2  Context and outline

This lecture [20]

 REF _Ref267291976 \r \h 
[19] presents the surrogate-based optimization chain and methodology that has been set up to maximize the isentropic efficiency of a high pressure compressor rotor blade by modifying its 3D parameterized hub. More specifically,  the framework of the present case study is the following: 


·  the non axisymmetric endwall design is strictly limited between the leading edge and the trailing edge of the blade and therefore it facilitates its implementation in a real engine (where the axial gap between rotor-stator is only a few millimeters); 


·  the parameters that describe the highly 3D non axisymmetric surface are limited to 16; this parameterization is carried out under CATIA v5; 


·  an evolutionary algorithm combined with a surrogate model is exploited to globally search the conception space;

·   the optimization platform developed in-house at Cenaero, Minamo, is coupled with CATIA v5, the Autogrid5 meshing tool and the elsA code [28]

 REF _Ref267219689 \r \h 
[29] that has been exploited for the flow analysis. 

This lecture is structured as follows. First, the parameterization of the hub endwall is discussed, with particular focus on CAD neutral integration within the optimization framework. Then Cenaero's optimization platform and its capabilities are described. The hub endwall surrogate-based optimization of an HP compressor single-row rotor blade is then presented in details. Both mono-point and multi-point optimizations have been performed. First, the Design of Experiments (DoE) and the optimization convergence history are commented, along with the monitoring of the reliability of the response surfaces. Comparative analysis of the mono-point and multi-point optimized designs with respect to the axisymmetric reference will then be provided, with focus not only on the global performances but also on the detailed flow features. Finally, some conclusions will be drawn.


2. DESCRIPTION OF THE OPTIMIZATION CHAIN

2.1  Parameterization and CAD-access

CAD systems have become an integral and critical part of the design process in various fields, and in particular in the field of turbomachinery design. A major advantage of CAD systems today is that design intent can be incorporated into the CAD model using the master model concept: it consists of  features and parameters that can be used to modify and regenerate a new, altered, instance of the CAD model.


However, most CAD integration strategies rely on translators and geometry kernels. In such a framework, complete access to the native CAD model including its features and parameters is not available to the simulation environment, which may result in both loss of information and robustness. In addition, the manual intervention that may be required to heal the CAD model in such situations results in a procedure that is neither general nor automated enough to be directly incorporated into an industrial shape optimization process. In order to minimize the bookkeeping and to avoid translation and manipulation/regeneration errors, it is, therefore, of prime importance to use the native CAD system and CAD model directly within the design loop.


In this research, the CAPRI [21] CAD integration middle-ware has been exploited in order to provide direct CAD access without manual interventions in the CAD system during the optimization loops. Based on CAPRI, an object-oriented framework has been developed to: 

·  interact with the underlying CAD system transparently,

·  modify the shape design variables, 

·  regenerate the CAD model and 

·  provide an updated native geometry representation to be used for the analyses (see Figure 1).


In the present work, the hub endwall is parameterized under CATIA v5 using a series of B-spline curves and holds 16 parameters in all. Respectively 6 parameters axially, 6 ones radially, and 4 ones azimuthally permit to adjust the surface. The locations of the B-spline control points have been chosen such as to provide 


·  surface flexibility,


·  surface periodicity in the azimuthal direction,


·  surface continuity,


·  surface slope continuity.


More specifically, four control sections were employed:


·  Two of them are axial sections, one at the blade LE and one  at the blade TE, defining the limits of the non axisymmetry within the blade channel. 

·  The other two sections are located inside the blade channel and are responsible for the generation of the non axisymmetric surface. Each one is defined by three control points that can move in axial and circumferential directions independently. These six points can also move radially. The movements of these points with respect to the axisymmetric geometry are the main degrees of freedom that are to be exploited by the optimizer.
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Figure 1: Native CAD access with CAPRI

2.2  Optimization platform

Minamo, Cenaero’s optimization platform exploited here, implements mono- and multi-objective Evolutionary Algorithms (EAs) using real coded variables. These methods are stochastic, population-based search techniques and are widely used as efficient global optimizers. Such zero-order optimization techniques are indeed robust and able to cope with noisy, discontinuous, non-differentiable, highly non-linear and uncomputable functions. Most importantly, they also permit to simultaneously handle multiple physics as well as large numbers of design variables and multiple objectives. 

However one drawback of EAs is that they may suffer from slow convergence due to their probabilistic nature, such as stochastic recombination operators. As a consequence, for engineering applications involving expensive high-fidelity simulations, the CPU time required for a pure EA is usually not practical. This highlights the importance to reduce the number of calls to the high-fidelity simulations. Therefore, as detailed in the theoretical lectures, the optimization process in Minamo is significantly accelerated by the use of cheap-to-evaluate surrogate models, also known as meta-models or response surface models.


2.2.1 Surrogate-Based Optimization


The heart of the proposed methodology consists of a surrogate modeling optimization strategy. As already underlined, SBO refers to the idea of accelerating optimization processes by exploiting surrogates for the objective and constraint functions [26]

 REF _Ref267241295 \r \h 
[23]. An SBO design cycle consists of several major elements as shown in Figure 2.
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Figure 2: Online Surrogate-Based Optimization framework

It is worth underlying the major importance of the first step, namely the problem definition and optimization specification, which includes, for instance, the parameterization, the definition of the bounds, the objectives and the constraints. The second step consists in building an initial database by choosing a set of points in the design space and conducting high-fidelity simulations at the selected sample points. This exercise is called the Design of Experiments (DoE). Based on this DoE, surrogate models are constructed in order to build an analytical relationship between the design parameters and the expensive simulation responses. This phase provides cheap responses to be used by an optimizer. Using the surrogate models to evaluate the objective and constraint functions, an optimization is then carried out to identify the optimum, at least in the sense of the surrogates. The accurate simulation is used to evaluate the real objective function and constraint values for this optimum in order to check the accuracy of the surrogates at the optimal solution. The new simulation result (and possibly simulation results at other infill points) is (are) added to the database which is therefore continuously improved with new design points, leading to increasingly accurate approximate models all along the design. This design loop is repeated until the maximum number of optimization cycles specified by the user is reached. 


In this case study, an EA is employed because this optimizer choice allows any kind of surrogate models without particular properties such as differentiability of the surrogates.  It is important to note that this SBO scheme can incorporate the derivative information, when it is available, in different ways without any major modifications. For instance, the derivatives could be exploited directly in the construction of the


meta-models. The periodic retraining of the surrogates ensures that the meta-models continue to be representative of the newly-defined search regions. Furthermore, in order to obtain a better approximated solution, a framework for managing surrogate models is used. Based on effectiveness of approximations, a move-limit procedure adapts the range of the variables along the design process, focusing the optimization search on smaller regions of the design space and exploiting local models. As the optimization proceeds, the idea is to enlarge or restrict the search space based on a heuristic rule in order to refine the candidate optimal region. The main advantage of this scheme is that it ensures that the optimization does not generate design points in regions where the surrogates are not valid. 


In order to guarantee diversity in the population, Minamo also exploits a merit function which is combined with the objective function of each candidate solution [25]. This function takes into account the average distance of a candidate with the other candidate solutions, and favors the solutions far away from their neighbours. A good approach for SBO seeks a balance between exploitation and exploration search, or refining the approximate model and finding the global optimum. Our strategy also allows to add several new design points evaluated in parallel at each cycle. Typically, the design point coming from the optimization of the surrogate(s) is added and other update points may be appended to the database as well. Using several research criteria per iteration allows to combine exploitation (optimization of the approximate function) and exploration (to systematically aim for a better global capture) within a single iteration, speeding up the restitution time of the optimization.  In other words, although most of the optimizers based on the Kriging model use one single refinement criterion per iteration (the Expected Improvement criterion), Minamo is capable to proceed by iteratively enhancing with more than one point per iteration by using a balancing between model function minimization and uncertainty minimization.  


Furthermore, particular attention has been paid to handling simulation failures, i.e. experiments where the simulation fails to converge. Indeed, when optimization is carried out using high-fidelity numerical simulations, it is an inevitable fact that not all simulations provide reliable results (due to an inappropriate mesh, failed geometry regeneration, etc.). The best practice is to try to make the simulation chain as robust as possible, and let the optimizer take care of the simulation failures. In Minamo, the simulation failures are recorded for every sample point through a Boolean response, called the success/failure flag. Two separate surrogate models are maintained simultaneously, namely the response model(s) and the failure prediction model. When the EA performs on the dual surrogate models, it uses the response model for the evaluation of objective and constraint functions, whereas for the evaluation of the simulation failure, it uses the failure prediction model.  The idea is to bias the search away from failed sample points by penalizing, via a constraint, regions containing simulation failures.


2.2.2 Design of Experiments


The DoE, which is the sampling plan in the design parameter space, is a crucial ingredient of the optimization procedure, especially when the function evaluations are expensive, because it must concentrate as much information as possible. Indeed, the quality of surrogate models are mainly related to the good choice of the initial sample points. The challenge is in the definition of an experiment set that will maximize the ratio of the model accuracy to the number of experiments, as the latter is severely limited by the computational cost of each sample point evaluation.

Minamo features various DoE techniques aiming at efficient and systematic analysis of the design space. Besides classical space-filling techniques, such as Latin Hypercube Sampling (LHS), Minamo's DoE module also offers Centroidal Voronoi Tessellations (CVT) and Latinized Centroidal Voronoi Tessellations (LCVT) [24].  A drawback of LHS is that sample points could cluster together due to the random process by which the points are generated. CVT efficiently produces a highly uniform distribution of sample points over large dimensional parameter spaces. However, a CVT dataset (in a hypercube) has the tendency for the projections of the sample points to cluster together in any coordinate axis. LCVT technique tries to achieve good dispersion in two opposite senses: LHS and CVT senses. The idea is to compute a CVT dataset and then apply a Latinization on this set of points. Latinizing a set of points means transforming it into another set of neighbouring points that fulfills the Latin hypercube property. The aim of this Latinization of CVT sample points is to improve the discrepancy of the set of points. LCVT technique has both lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS, it was exploited in the present case study. All these space-filling techniques, independent of the design space dimensionality and of the type of surrogates, constitute good first choices to generate an a priori sample set in large dimensions. The DoE can be generated quickly by making use of massively parallel computers.


Since the computation of the response functions can typically take several hours on tens of computational cores, next to LCVT implementation, further research effort has been put to achieve a good accuracy of approximate models with a reasonable number of samples by incorporating function knowledge. In order to further tailor the sampling and to better capture the responses underlying physics, Minamo also incorporates an auto-adaptive DoE technique. The idea is to locally increase the sampling intensity where it is required, depending on the response values observed at previous sample points. The aim is to automatically explore the design space while simultaneously fitting a response surface, using predictive uncertainty to guide subsequent experiments. 


2.2.3 Surrogate Modeling


The challenge of the surrogate modeling is similar to that of the DoE: the generation of a surrogate that is as good as possible, using as few expensive evaluations as possible.  Polynomial fitting surfaces are generally not well-suited for high dimensional and highly multimodal problems. Several non-linear data-fitting modeling techniques can be used to build the surrogates, e.g. artificial neural networks, Radial Basis Functions (RBF) networks, Kriging or support vector machines [22]. Contrary to polynomial response surface models, these techniques have the advantage of decoupling the number of free parameters with respect to the number of design parameters. Furthermore, they can describe complex and multimodal landscapes. The Minamo surrogate module offers several generic interpolators such as RBF networks, ordinary and universal Kriging. In the training process, a trade-off must be attained between the accuracy of the surrogates and their computational cost. For our RBF network, the surrogate models are generated without the user's prescription of the type of basis function and hyperparameter values. Our method autonomously chooses the type of basis functions and adjusts the width parameter of each basis function in order to obtain an accurate surrogate model; it was exploited in the present case study.

In the optimization studies presented in this lecture, mono-objective optimization is carried out to minimize an aggregate objective function function composed as the sum of the RBF multiquadrics fitting of  the isentropic efficiency at design point plus a series of weighted penalization terms accounting for the aerodynamic and manufacturing constraints. The EA will be applied at each design iteration in order to search for the extremum of this aggregate objective function. The satisfaction of multiple constraints can not be ensured. It has to be underlined that besides the penalty terms taken into account in the global objective function definition, the constraints are also directly handled by the EA with a tournament procedure. This means that feasible individuals will be unconditionally preferred [31] .


For industrial applications, the computational cost of one optimization iteration mainly depends on the cost of the simulation employed, which will be detailed in the next section devoted to the mesh generator and flow solver. In general the cost for building the approximate model and running the  EA is from a few seconds to a few minutes, depending on the number of training examples and the number of input and output variables.


3. NON AXISYMMETRIC HUB ENDWALL OPTIMIZATION

As already mentioned in the introduction, the optimization platform has been coupled with the AutoGrid5 mesh generation tool and the elsA code, developed at ONERA and exploited for the flow analysis. elsA (Ensemble Logiciel de Simulationen Aerodynamique) is a cell-centered, finite volume, multi-block structured solver. In the optimization studies conducted in the present work, RANS simulations with the two additional transport equations turbulence model k-l by Smith have been performed, without resorting to wall law functions. Backward Euler pseudo-time integration with 3-grid V-cycling multigrid acceleration has been employed to reach steady state.


A grid convergence analysis was first conducted in order to adequately define the mesh to capture the flow physics to be tackled. This analysis lead to the definition of a 2.2 million grids points mesh. When considering endwall profiling, the flow changes may indeed be performed quite locally, which not only requires adequate discretization of the boundary layers but also sufficient axial resolution to be well captured. The hub and blade meshing is illustrated in Figure 3. The blade surface is discretized with 185 points, 25 of them are concentrated at the LE and 25 at the TE. The y+  value was checked to remain below 1 everywhere at wall. The number of the span wise layers is equal to 124 (among which 24 cell layers in the tip gap),  while the cell expansion ratio is kept below 1.2 for the growing of the boundary layers. 
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Figure 3: Hub and blade surface mesh for the non axisymmetric hub optimizations 


 Close up in the hub region

The hub parameterization is quite efficient because although the number of parameters is fairly small (16 in total), it can define complex 3D surfaces that follow the blade curvature. Moreover, discontinuities or local high gradient areas are avoided by construction. In order to decrease the computational cost, only one operating point was considered for the first optimization conducted. The objective was to maximize the isentropic efficiency of the compressor while imposing no additional operational or manufacturing constraints. The idea was to let the optimizer free to search in the design space before judging the optimum according to its feasibility in terms of manufacturing and operation in real engines, which could also reveal suitable constraints for a next optimization. 

Spanwise distributions of absolute total temperature and pressure as well as the velocity direction and the values of the two turbulence variables are given as boundary conditions at the inlet of the computational domain that is taken one axial blade chord upstream the blade LE. The static pressure at the hub endwall of the outlet defines then the operating point of the rotor, which corresponds to both subsonic inlet and outlet. The outlet boundary of the computational domain is located one axial chord downstream the blade TE. 


The definition of the bounds of the parameters was of prime importance as they had to be as broad as possible (so that a large design space was explored), while providing a sufficient overall (including CATIA v5 surface regeneration, AutoGrid mesh generation and elsA simulation convergence) success rate of the experiments to create a reliable response surface with the database to start the optimization. Because of the relatively high non linearity of the objective function with respect to the parameters, the choice was set to require a number of converged experiments included in the dabase at least equal to 4 times the number of parameters. The initial DoE holds 97 sampled points (6 times the number of parameters). The resulting overall success rate was 76 % (74 experiments). 

The Leave-One-Out (L-O-O) test was used to assess the reliability of the response surfaces [30]. This test indeed provides an estimate of the accuracy of the surrogate model without the need of creating additional data. To this end, 73 experiments are used in fitting the surrogate model and one experiment is left out. Its actual value from the fine CFD analysis is then compared with its predicted value calculated with the above surrogate model. The same procedure is repeated for all the experiments. The matching and the correlation coefficient between these two output sets, actual and predicted values, is then calculated and is shown in Figure 4 for the isentropic efficiency. The correlation coefficient was found equal to 0.91 which demonstrates that the predicted values from the surrogate models match closely and regularly the fine analysis results and that the response surface constitutes a sound basis for the subsequent optimization.
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Figure 4: Leave-One-Out Assessment of the isentropic efficiency response surface 


built based on the initial DoE results (74 converged experiments)

The next step set was then the mono-point optimization: another 79 experiments were generated. The optimization converged after less than 50 experiments. With this first mono-point optimization, a non axisymmetric surface was found that yielded and isentropic efficiency gain of about 0.4%. This increase may be seen as quite important, when considering that the geometry changes very locally, only at the hub endwall. The blade operates in the transonic regime all along the span and the shock generates losses in the whole channel. In addition, there are also the tip clearance losses that are not at all negligible. As more detailed flow analysis will show hereafter, the optimized design appears to tackle essentially one out of three mechanisms of losses, the shock/acceleration structure, from the hub endwall to approximately midspan. One can also note that the overall mass flow of the optimized geometry at the design point increased only by 0.4% compared to the axisymmetric case. It is positively surprising that the mass flow of the optimized geometry was very close to the reference case, although no active constraints on the mass flow were used during the optimization. The mass flow values of the DoE experiments  varied by more than 1% around the mass flow value of the reference with axisymmetric hub.


It can be noted that for this first mono-point optimization, the optimized parameter values of the control points were not located at the bounds of the conception space, except for one parameter value, close to its limit. Accordingly, in order to check wether the originally chosen bounds did not constrain the design too severely, the database was further enriched with additional experiments considering slightly wider bounds of the design space. The optimization that followed lead to a very similar non axisymmetric surface.


However, the total-to-total pressure ratio decreased by 0.4%. This clearly illustrates that the optimizer will naturally exploit any flaw in the optimization specification as there was in this preliminary exploratory phase no constraint on stability/operability. This observation then lead to the specification of a second optimization, now accounting for two operating points, the design point and a second point closer to stall in order to better represent the perfomance map of the compressor and aim for a more robust design. 

The first operating point was again chosen close to peak efficiency (design point) and the second point considered was chosen closer to the stall region (stall point). The objective was to maximize the efficiency at the design point while preserving at least the same total-to-total pressure ratio at the stall point. The mass flow at design point was also constrained to remain within 1% of the reference axisymmetric flow value. 
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Figure 5: Design convergence history of the two-point optimization 


(green dots: DoE points - red dots: Optimization points)

In order to reexploit the meshes that had already been generated for the mono-point optimizations, the same conception space was defined, although for manufacturing purposes, an axisymmetric reference surface below the hub would now limit the amplitude of the hollows creation, which ruled out a couple surfaces. The overall (CATIA v5 regeneration - AutoGrid5 meshing - elsA simulation convergence) success rate achieved for this two-point DoE was again arount 70%, leading to 67 converged experiments. 


The most interesting point of this new DoE appeared to be the hereafter noted individual 13, which yielded an increase in terms of isentropic efficiency of about 0.39% with respect to the axisymmetric case, while it increased the total-to-total pressure ratio by 0.31% at stall without exceeding the limit on the mass flow at design point. Let us note that the mass flow at stall was also found to remain within 0.5% of the corresponding reference axisymmetric flow value.

A series of promising individuals were then found along the optimization phase in itself. The design convergence history is illustrated in Figure 5, complete stabilization of the optimization was obtained in about 40 design cycles. FiguresFigure 6 and Figure 7 illustrate the evolution of the L-O-O correlation coefficient after the DoE and at the end of the optimization. These figures show that the optimizer favours increased stability and essentially highlight the increase of the reliability of the surrogates along the design. Some of promising designs obtained following the optimization phase were quite close in terms of performance and shape to the best DoE experiment pointed out in the above paragraph. However, most interestingly, a second family of promising designs, quite different and somewhat smoother in terms of 3D surface definition, was found. This illustrates the ability of the EAs to globally search the conception space and possibly offer a panel of solutions to the designer. Let us point out one design in this second family, hereafter noted as individual 144, which yields an increase of efficiency of 0.35 % with respect to the reference axisymmetric case, while increasing the total-to-total pressure ratio of 0.1 % at stall without exceeding the limit on the mass flow at design point. Interestingly also, the 144 individual appeared quite close in shape to the interesting designs found from the mono-point optimizations (termed hereafter experiment 134). The isentropic efficiency curves of the rotor with the optimized non axisymmetric hub endwalls and with the baseline axisymmetric hub are shown in 

Figure 8
. 
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Figure 6: Leave-One-Out Assessement of the close to stall total-to-total pressure ratio 

RBF model following the DoE
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Figure 7: Leave-One-Out Assessment of the close to stall total-to-total pressure ratio

 RBF model following optimization
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Figure 8: Isentropic efficiency (orange: baseline - yellow/green: two-point optimized designs) 

(distance between two tics:  reduced mass flow scale: 0. 6% – isentropic efficiency scale: 0.25%)

4. NON AXISYMMETRIC HUB COMPRESSOR FLOW DESCRIPTION

A comparison between the local flow features resulting from the optimized hub geometries and the reference axisymmetric flow can offer more information about the loss mechanisms that were tackled by the design. The purpose of the present section is hence to further provide comparative analysis.


The relative total pressure downstream the blade clearly indicates the higher losses regions. Figure 9 presents an axial cut about 30% hub axial chord downstream the TE. The optimized individuals typically decrease the losses up to 50% span while on the contrary, one can note an increase of losses in a small region very close to the endwall, in the boundary layer. However, in this region, the mass flow is much lower than at higher spanwise positions and, as a consequence, this loss increase can be considered as less important. These observations remain valid for the different optimized geometries of the two-point optimization. It is essentially very close to the endwall in the boundary layer that the slight differences between the distinct design families can be noted while, as will be shown further, the global action on the flow and its shock structure remains similar although the 3D contoured endwalls are quite different.  

The main loss mechanism results from the shock and acceleration system along the blade suction side. The static pressure distribution along the blade profile at design point at 23.6% span is shown in Figure 11 a). The different optimized geometries mainly considerably decreased the acceleration along the suction side of the blade, without decreasing the total blade loading. The same conclusion can be drawn from the relative Mach number in blade-to-blade view in Figure 10 plotted at the same spanwise position. For this transonic flow, the non axisymmetric hub design influences the shock mechanism and reacceleration pattern close to the wall rather than the secondary flows. The resulting reduction of the profile losses to be observed up to a little less than 50% span is clearly visible in Figure 10.
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Figure 9: Relative total pressure 30% hub axial chord dowstream the trailing edge 


Optimized design (mono-point optimization selected case 134 -  left) vs baseline (right)
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Figure 10: Relative Mach number blade-to-blade view at 23.6% span


Optimized design (two-point optimization selected case 144 - left) vs baseline (right)
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Figure 11: Static pressure distribution along the blade profile at design point

The static pressure distribution along the blade profile at 3.7% span is displayed in Figure 11 b). The shock is clearly reinforced for all the optimized geometries at this low spanwise position. However, the reinforcement of the shock tends to diminish for higher spanwise locations. In any case, very close to the wall, the losses due to the shock are increased. In addition, a small additional recirculation region is formed for the non axisymmetric cases very close to the wall. This additional recirculation increases the losses close to the wall as well. However, the decrease of the losses at higher spanwise locations due to the reduction of the flow acceleration is much higher than the increase of the losses close to the wall. As a consequence, the total losses along the blade span are decreased with the non axisymmetric optimized hub endwalls.


Interestingly, the loss reduction close to the hub endwall is achieved without significantly interfering with the absolute exit flow angle. The average absolute exit flow angle difference with respect to the axisymmetric case is smaller than 0.8 degrees for all the optimized geometries. This may be considered as an additional advantage of the designs produced, since this tends to indicate that the performance gain  should be preserved when considering a stage environment and this statement was indeed verified with a stage computation, confirming the preservation, both qualitatively and quantitatively, of the 3D profiling gain in a stage environment. 

As a last comment, let us note that the behaviour of the flow at the stall point for the non axisymmetric optimized hub endwalls resulting from the two-point optimization is similar to the behaviour at design point. As displayed in Figure 12, the shock gets stronger close to the wall (see the left plot, at 3.7% span) with respect to the axisymmetric reference, while it moves slightly upstream  for higher spanwise positions (see right plot at 23.6% span). The isentropic efficiency at stall point did not improve but, following the constraint imposed, the total-to-total pressure ratio at stall was more than preserved with respect to the axisymmetric reference value for the different families of promising geometries identified.

As a general conclusion, the shock loss mechanism appears markedly dominant with respect to the secondary losses for this HP compressor rotor blade and the optimization chain set up showed its ability to identify a panel of promising designs by directly tackling the main loss mechanism.
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Figure 12: Static pressure distribution along the blade profile close to stall point

5. CONCLUSION

The exploitation of surrogate-based optimization for an HP mobile row 3D endwall profiling has been presented. To this end the automated computational chain setup developed coupled the multi-functional CAD tool CATIA v5, the AutoGrid5 meshing tool, and the elsA code, driven by Minamo, the optimization platform developed in-house at Cenaero, implementing surrogate model assisted mono- and multi-objective evolutionary algorithms and a direct CAD neutral integration to the CAD system based on the CAPRI middleware.

Emphasis has been set on the optimization methodology, from the adequate definition of the optimization specification (parameterization and associated bounds, objectives and constraints) to the choices regarding design of experiments, surrogate modeling, constraints and failure handling. Mono-point and multi-point hub endwall optimization results for a HP compressor single-row rotor blade have been presented. The design histories and detailed flow features have been analyzed and compared. 

Both mono- and two-point optimizations have been conducted with the aim to maximize isentropic efficiency at an operating point close to peak efficiency. For the mono-point optimization first performed, no additional constraints have been imposed in order to let the optimizer search the conception space as freely as possible, independently of operational and manufacturing requirements. In a second phase, two operating points were chosen in order to better represent the performance map of the compressor. The first


operating point was again chosen close to peak efficiency (design point) and the second point considered was chosen closer to the stall region (stall point).


The objective of the two-point optimization was to maximize the efficiency at the design point while preserving at least the same total-to-total pressure ratio at the stall point. The mass flow at design point was also constrained to remain within 0.5% of the reference axisymmetric flow value and for manufacturing purposes, an axisymmetric reference surface below the hub would limit the amplitude of the hollows creation. Several sets of parameters that increased the isentropic efficiency by about 0.4% with respect to the axisymmetric reference were identified while satisfying the constraints. This performance gain is quite large, considering that the geometry changed very locally, only at the hub endwall. Interestingly, two different families of promising designs resulted from the two-point optimization, illustrating the ability of EAs to globally search the conception space and possibly offer a panel of solutions to the designer. One of these two families was moreover close to the mono-point optimizations designs obtained.


A more detailed investigation of the flow features showed that, for all the 3D promising designs identified, the non axisymmetric hub influenced more the shock mechanism close to the wall rather than the secondary flows. The shock loss mechanism appears markedly dominant with respect to the secondary losses for this HP compressor rotor blade and the optimization chain set up showed its ability to identify a panel of promising designs by directly tackling the main loss mechanism. Although local differences and losses increase could be noted very close to the endwall, in the boundary layer, the positive impact of the two different 3D profiling families identified appeared similar. Interestingly also, the loss reduction close to the hub endwall was achieved without significantly interfering with the absolute exit flow angle, and the performance gain was showed to be preserved in a stage environment.
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Figure 13: Assessment of the aerodynamic fillet impact


Truncated modelling (left) vs “true” fillet (bi-tangency, right) mesh

The optimizations performed in the present work were performed without modelling the fillet. However, as the fillet radius to be applied appeared in the order of magnitude of the perturbation heights of the 3D hub profiling, verification of the fillet impact has also been performed. Modelling the bi-tangency (platform/fillet and fillet/blade junctions) of a “true” constant radius fillet requires a major grid topology change for multi-block structured grid simulations with respect to the classical OH4 topology exploited here so as to avoid the creation of flat cells. In order to obtain a preliminary estimation of the fillet impact while preserving the simple grid topology and low computational cost, truncated fillet simulations have hence been performed first. The computational domain was modified so as to ensure a finite angle in the order of 15 degrees instead of a tangency condition at the fillet/blade junction, somehow integrating the fillet into the endwall definition and allowing to keep an OH4 topology with acceptable grid quality (see Figure 13, left). 


As a reference, modeling of the “true fillet”, with tangency at both fillet/endwall and fillet/blade junctions, was also achieved by modifying the grid topology in order to include a quarter of a butterfly mesh around the blade root into the reference mesh without fillet (see Figure 13, right). Although the fillet deteriorates the overall performances, the relative performance gain achieved with 3D profiling also appeared preserved, both qualitatively and quantitatively when considering the fillet and the truncated modelling. The latter moreover showed to be a reliable substitute for the “true” fillet modelling, more demanding in terms of mesh generation, in the present context.

In the long run, as the shock loss mechanism appears dominant in the present HP compressor framework, the hub endwall optimization strongly depends on the reference axisymmetric flow and therefore, an aero-mechanical optimization of both the blade and the endwall(s) possibly including fillet modelling should be considered as the goal.  
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Framework  

Target: Reduction of pollution and noise



Means: 1. Advanced combustion 

             2. Heat management 

             3. Active (injection/aspiration) and Passive control 

                                                                    Non axisymmetric endwalls 

efficiency       surge margin



Loss mechanisms in turbomachines



1. Tip clearance flow    2. Profile losses    3. Secondary flows



   Losses reduction 

  Blade shape design

  Circumferential grooves

  Squealer tip

  3D Non axisymmetric endwalls design



  3D CFD based optimization 
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Outline

Endwall profiling

Parameterization

CAD integration 

Optimization specification

Optimization methodology

Sampling and surrogate modeling

Constraints and failure handling

 Optimization results

 Conclusions 
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Non-axisymmetric endwall profiling



Potential impact on the flow field:



Local effect close to the endwall: Introduction of some additional curvature on the endwall 

	 Influence on the pressure field (e.g. reduction of the crossflow).

More « global » effects :

Change of cross sections  Influence on the whole flow field over the span.

Modification of the blockage, in particular when steep bumps are applied in the leading edge region. 
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Design space definition (1/2)

Adequate parametric space size is key … 
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Design space definition (2/2)





    … as is adequate bounds definition















AVT-167 Lecture Series,

Montreal, October 26 2009 



© Copyright Cenaero 2009 – All rights reserved



Hub parameterization



 CATIA v5 R17

 16 parameters

 Series of B-spline curves

 Design between LE and TE

 6 main control points in the 

   blade channel that can 

   move radially, axially 

   and/or circumferentially



3D surfaces that follow the blade curvature









AVT-167 Lecture Series,

Montreal, October 26 2009 



© Copyright Cenaero 2009 – All rights reserved

Master script (Python or C++, called by the optimizer)

middleware client

CAD Model

Ref. mesh



Linux

Windows

middleware server

CATIA V5 – SolidWorks – UG NX - Pro/Engineer – Open CASCADE - …



TCP/IP

Modified 

CAD model

Unstructured mesh generation 

Structured mesh generation

Modified

CAD Model

Mesh

Ref. mesh

Direct and neutral CAD access
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Aiming for secondary flows
Optimization specification?

If the prime objective is to tackle secondary flows …



It is worth underlining that visualising and accurately

evaluating 3D flow structures, both experimentally and

numerically, remains a challenge.



 Aiming for secondary flows reduction raises the question of relevant optimization specification(objective(s)/constraint(s)) that could isolate and quantify the secondary flow features due to the presence of the endwalls. 
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Optimization specification





 Geometry 

   (Fixed) single mobile row – CATIA v5 parameterized hub endwall 

    A posteriori profiling

 Per individual

	2 operating points computed: 1 close to peak efficiency and 1 close to 	the stability limit (≈ 2.2 M. grid points / tip clearance modeling / 

	RANS k-l Smith 	turbulence model)

 Specification

 1st Mono-point optimization to freely search the design space

 Maximize isentropic efficiency (free of constraint)

 Two-point optimization

 Maximize isentropic efficiency at design point

 Constraint on Total-to-Total pressure ratio at close to stall point

 Manufacturing constraints - Mass flow/Outlet angles
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Optimization methodology – Step 1

Surrogate model

Design Variables

              Responses





Design of Experiments

(DoE)

CAD regeneration

Mesh regeneration



CFD fine analysis





Master model modification





Space-fill (LHS, CVT, LCVT) sampling

   

Initial population = 3 to 5 x # Design Variables



  RBF network
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A square grid containing sample positions is a Latin square if there is only one sample in each row and each column. Latin hypercube (LHS) is the generalization to an arbitrary number of dimensions. 

Centroidal Voronoï Tesselation (CVT): A Voronoï region is the set of points that are closer to the generator than to any other generator.



CVT superior to LHS w.r.t. 

	volumetric measures of quality

… but poor discrepancies and 

	few points at boundaries





Space-filling (1/2)
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Space-filling (2/2)

Latinized CVT (LCVT), latinization of a CVT set of points, aims at combining LHS and CVT strengths, achieving lower discrepancy than pure CVT and higher volumetric uniformity than pure LHS













   2D plot of 100 points sampled in 10 dimensions
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Tuning the RBF network parameters  (1/2)





Branin function, with 6 sample points and 25 iterations













Average of 10 runs
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Rastrigin function in 20 D with 80 sample points 













Average of 10 runs

Tuning the RBF network parameters  (2/2)
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Optimization methodology – Step 2



Surrogate based GA



yes

Surrogate models enrichment

 & reliability assessment 

Objectives 

achieved ?



Stop

no

     





Individual(s) selection

& CAD regeneration

Mesh regeneration &

CFD fine analysis



 Infill criteria

Cross-validation

 Failure handling

 Constraints handling

 Data mining

 ANOVA
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Response surface reliability assessment

Total-to-total pressure ratio constraint @ stall point









 Leave-One-Out

Cross-correlation coefficient history

Key issue of infill

Exploitation/Exploration 
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Constraints handling

A dynamic penalty approach outside the GA is 

exploited to compare the best solutions pointed out by the

GA at the end of each design iteration 







combined with



A constraint tournament selection within the GA  which is 

exploited to compare the individuals of the population along 

the GA run for selected constraints
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Optimization results

Convergence history

 Step 1 - DoE

67 converged cases out of 100 individuals/samples

 Step 2 - Optimization

Full stabilization after 

40 design iterations
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Overall performance results

First mono-point optimization highlighted a marked total pressure drop close to stall  Need for robust multi-point design

Two-point design: Performance gain at the design point

 2 distinct families identified

 Efficiency increase by 0.4 % 

 Mass flow increase only by 

  0.4% (DoE scatter > 1%)

 Total-to-total pressure ratio

   preserved close to stall

 Very moderate outlet flow

   angle alteration 



    Gain should be preserved 

        in a stage environment 

       Checked and confirmed (3D RANS simulations)
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Oil Traces on the hub endwall







Impingement of the secondary flow at the blade SS



No significant change of the structure of the secondary flows





Additional recirculation zones at wall with non axi surface



Local increase of losses

Axisymmetric reference

Optimized design
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Total relative pressure 
just downstream the blade






Marked losses decrease almost until 50%

Axisymmetric reference

Optimized design





Local (low mass flow BL zone) losses increase
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Relative Mach number 
in the B2B plane (23.6% span) 







Marked decrease of the relative Mach number downstream the shock, in the region of flow acceleration

Optimized design

Axisymmetric reference





Visible reduction of the wake
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Static pressure distribution along the blade









3.5 % span

23.6 % span



Shock       Acceleration



Reduction of losses, limited deceleration at SS (23.6%)

Strengthening of the shock – acceleration close to the wall (3.5%) 
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Some conclusions

Local modification but 3D impact

Main loss mechanism (shock-acceleration formation) tackled. The non axisymmetric hub decreased the acceleration downstream the shock and played no evident role on the secondary flow mechanism.

Two-point 3D hub endwall optimization tackled the main loss mechanism in a similar way while preserving total pressure ratio near stall and offering 2 different families of designs yielding a similar performance gain.

 Proceeding further w.r.t. a posteriori 3D contouring:

Aeromechanical design 

Endwall/(s) + blade optimization 

 Real geometry effects integration (e.g. fillet handling)

Technological effects integration

…
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Integration of real geometry effects





(Truncated) fillet modeling

 

Key issue of discretization and model level required
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Abstract

This section describes the application of the presented methods to component level problems. The components and features discussed in this paper are: a turbine blade – disc attachment, a turbine disc life assessment, the effect of manufacturing tolerances on compressor discs and the robustness assessment of a structural casing. This paper is the first one of three papers addressing the application of the methods, tools and processes to component, subsystem and system level tasks (see also Case Study 4 and 6). The introductory sections of the three papers give an overview of the practical application of the presented methods, tools and processes within Rolls-Royce.

1.0
Methods, Tools and Processes

The basic application of optimization and automated design within Rolls-Royce follows a generic five step process:


· Automate process (execute design / analysis process without human interaction)

· Process integration (build up of integrated processes between various disciplines)

· Design exploration (getting an understanding of the design space characteristic)

· Optimization (achieve the best compromise regarding all requirements)

· Robust design (make sure that the design performs for variable conditions)

The first two steps on the list are supported by so called “Integrated Frameworks” which are software packages to perform these two tasks very efficiently.  Typical examples would be Isight® [1] and ModelCenter® [2].  The same task can also be performed without specialized software by scripting or internal automation toolsets. 

The process integration step to build up multi-disciplinary analysis and design processes is very important. Nowadays it is no longer acceptable to just perform a single discipline optimization. The customer requires products which fulfil all the requirements in a balanced way. Developing these integrated processes is a challenging task as these processes are going across domain and organizational barriers and hence require commitment from higher levels of management.


The last step in the basic process outlined above is very important and should not be neglected. The design exploration and optimization steps will usually drive the solution to the boundaries and constraints of the design space. Considering the inherent variability of the inputs to the design some of the design solutions will not perform within the specified boundaries and constraints. The robust design step ensures that there is adequate margin to the boundaries and constraints of the problem so that the selected design solution performs as expected under all circumstances.


A graphical representation of a basic automated process is given in Figure 1.  A parametric geometry description is used to model changes in the design. This modified geometry is fed into a parametric analysis of the design. The analysis results are assessed, compared to the targets and constraints and the automated process is changing the inputs to the geometry or analysis model to explore the design space and perform an optimization.
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Figure 1: Basic automated design and analysis process.


A key point for a successful automated design and analysis are good quality working parametric models for the geometry and the analysis process. These parametric models need to reflect changes in the input variables throughout the envisioned design space, for example the parametric geometry model needs to regenerate for each set of inputs within the investigated design space. Similarly the analysis model needs to predict the results with the required accuracy for the whole investigated domain, e.g. for different boundary conditions. The automation of the process and the process integration are generating a repeatable and standardized template for the design and analysis tasks which can be re-used for future applications. 


In addition, the automated process enables the design team to perform more analysis runs and hence more design iterations resulting in a significant productivity gain. Figure 2 depicts this in a graphical form. On the left a typical manual process is shown. The changes to the inputs to the various tasks as well as the results extraction and post processing are done in a manual way. This is very time consuming. On the right an automated design process is shown. The tedious and repetitive manual tasks have been automated and the process is driven by an optimizer. This eliminates error prone manual tasks and results in a standardization of the design and analysis tasks. A considerable speed-up in the order of 10-30 times can be realized for most of the automation tasks. However, it has to be emphasised that it is important to keep the designers and analysts in the loop. For the automated design and analysis process this is achieved via the design review process where the team is assessing the outcome of the optimization. It is very important that the team understands why the automated process has arrived at the given solution. The design team should not treat the automated design and optimization as a “black box”.   


[image: image2]

Figure 2: Application of process automation.


The following section will show several examples where the outlined principles were applied to real engine design tasks.

2.0
Application Examples

2.1 Turbine blade – disc attachment


The first example discussed is the attachment area of a turbine blade to the turbine disc. This is a very challenging area as the operating conditions are very harsh (see introduction to the lecture series). Under full power a typical turbine blade exerts a centrifugal load equivalent to a London double decker bus. At the same time there is limited space for the attachment area and the turbine discs are designed not to fail. Finally, the temperature in the high pressure turbine area is very high resulting in an very challenging design task. The analysis process used to design this attachment is given in Figure 3. The analysis was based on a parametric geometry model. From this model two different analysis tasks were setup. The first analysis model calculated the contact stresses and the stresses in the blade and disc for a given attachment style. These results were used to perform the life assessment of the blade and disc. The second analysis model covered a failure condition. It was assumed that one blade was lost and the calculation needed to proof that this unsymmetrical loading on the disc did not allow the neighbouring blades to slip out of their attachments. The behaviour of these two calculations with geometry changes for example the radius at the bottom of the attachment area it can be showed that the lifing was improved by large radii but the failure condition required small radii. This is a classical problem whit two competing goals for the automated design and optimization process. 


[image: image3]

Figure 3: Process definition of the blade – disc connection design and analysis task.


A classical solution to such a problem is a multi-objective optimization where the competing goals are treated independently instead of generating a weighted sum objective. Such an optimization process is able to create a so called pareto front [3]. The points at the pareto front are defined via the following criteria: for any point on the pareto front one of the optimization objectives can only be improved by making another optimization objective worse. Hence the pareto front defines the location of the optimal combinations of the various optimization goals. The pareto front can also been interpreted as a trade curve between the optimization objectives. A typical example for the blade disc assessment is given in Figure 4. The goal is to minimize the “criteria 1” and at the same time maximize the “criteria 2”, so the optimal points will be in the upper left corner of the graph. The pareto front is identified by the blue dots. The points above the blue dots have been excluded due to violation of external constraints not modelled in the optimization process. The manual design is depicted as a black square. It is obvious that this best manual design can be improved considerably as indicated by the yellow arrows. It is now up to the design team to choose which of these improvements are selected. This is typically done in the design review using the pareto curve as a trade curve between the objectives. 


[image: image4]

Figure 4: Typical results of a multidisciplinary optimisation process.


2.2 Turbine disc life assessment


The second example presented is dealing with the life assessment of a turbine disc. A similar process to the example for the turbine blade attachment (section 2.1) was used: a parametric geometry model followed by a parametric analysis system. In this case the two competing goals were a lightweight turbine disc with a robust disc life measured in flight cycles. The lightweight disc required the minimum amount of material and was the cheaper solution. However, as these discs are designed not to fail the disc needed adequate margin for the stresses, temperatures and required flight cycles.  The results for this optimisation are given in Figure 5. On the right the starting disc shape is shown as dashed line and the optimized disc is shown as solid line. It is obvious that the optimized disc uses less material than the original disc. The left side shows the normalized diaphragm (middle section of the disc) life for the turbine disc. It can be seen that there is an increase in disc life with an increase of the heat transfer assumption in some of the boundary conditions. In addition to the trend there is considerable scatter around the trend line observed as depicted by the point cloud. The variation of these points around the trend line is caused by variation in parameters not plotted in this plot. In the presented case this variation is about ±20%. This variation needed to be considered for the final life assessment of the disc. Using this variation information a robustness assessment of the disc was performed.  In simplified terms this means for example: The customer requirement was 20000 cycles for the disk than the nominal design needed to be set around 24000 cycles to ensure that all discs had at least 20000 cycles. On the other hand this meant that some of the discs will actually have up to 28000 cycles and last longer than required. A main goal for robust design is to control this variation as anything above the customer target value can be seen as loss of profit.


[image: image5]

Figure 5: Results of the robustness assessment for a turbine disc.


2.3 Effect of manufacturing tolerances on compressor discs


A similar example to the turbine disc example in section 2.2 is given here for the compressor area. The effect of manufacturing tolerances on critical to quality characteristics of the compressor disc were assessed. In this case the main goal was to simply assess the effect of geometry variation. Again, a similar process as with the two previous examples was used. In the presented example a Monte-Carlo simulation was used to assess the effect of manufacturing tolerances. More details about the Monte-Carlo technique are given in the second paper (case study 4). The Monte-Carlo method transformed the variability of the inputs (manufacturing tolerances) into the variability of the outputs. Typical input distributions are depicted in Figure 6 for several locations. The resulting distributions for two sample outputs are given in Figure 7.

Using the variation information for the outputs a much better assessment of the performance of the design can be performed. The variation information allowed for the consideration of various combinations of input parameters and not just the nominal or worst case designs. Using this information the design team made a much more informed decision about the performance of the selected design.



[image: image6]

Figure 6: Typical input distributions based on manufacturing tolerances for the simulation task.



[image: image7]

Figure 7: Typical outputs for critical to quality metrics (mass, radial movement).


2.4 Robustness assessment of a structural casing


The final example in this first paper is about a non-rotating component, a structural casing.  The multidisciplinary process used for this analysis is depicted in Figure 8. In this case the process includes

· Thermal assessment

· Stress assessment


· Cost assessment


· Manufacturing assessment



[image: image8]

Figure 8: Multi-disciplinary process definition for the analysis of a structural casing.


Using this integrated process the effect of tolerances, design and analysis assumption was assessed during the early phases of the design of the structural casing. Again a Monte-Carlo simulation was used to derive the distribution of the critical to quality targets for this casing. Some selected results are shown in Figure 9. In this case a “Six Sigma” analysis of the output results was performed. This analysis took the output distributions as and compared them to the given target values. The “Six Sigma” analysis calculated key metrics (e.g. Sigma Level) regarding the performance of the given design with respect to the target values for the critical to quality metrics. Looking at the two graphs at the bottom of Figure 9 it is obvious that the nominal design was in the acceptable area. The mean of the output distributions was lower than the upper limit value marked by the blue line in the pictures. However, there was a significant portion of the distribution which was above the upper limit (as indicated by the circle). The upper limit was about one standard deviation away from the mean value of the distributions. This means that far too many designs were not fulfilling the customer requirements if the design is not changed.  Again the consideration of the variability allowed the design team a much better assessment of a proposed design solution in the early phases of the design process.


[image: image9]

Figure 9: Results for the robustness assessment of the structural casing.

3.0
Conclusion


Several examples for the application of the automated design an optimization processes have been shown. The examples have demonstrated how the data generated via these design and analysis methods can be used to greatly enhance the understanding of a proposed design solution. In addition, the generated data is improving the decision making about a proposed design solution and hence is a valuable tool to reduce the risk in the execution of a development program for a complex system like a gas turbine.
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Design for Six Sigma Toolset



Integrated Frameworks

5 steps to achieve Robust Design

Automate Process

execute design / analysis process without human interaction

Process Integration

build up of integrated processes between various disciplines

Design Exploration

getting an understanding of the design space characteristic

Optimisation

achieve the best compromise regarding all requirements

Robust Design

make sure that the design performs for variable conditions
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Integrated Frameworks

 Enable the linking of simulation tools to

Achieve a considerable speed-up of the simulation task

Achieve multidisciplinary processes across teams and business units

Achieve a standardisation of the used simulation processes 
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Examples – Component Level

Turbine Blade – Disc attachment

Turbine Disc life assessment

Effect of Manufacturing tolerances on compressor discs

Robustness Assessment of a structural casing
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Blade – Disc connection example: Process Definition 
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Blade – Disc connection example: Results of Optimisation 
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Turbine Disc Life Prediction:
Variability Assessment and Weight Reduction
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Compressor Disc Design:
Monte Carlo Simulation 

Manufacturing tolerances are transformed into

Mass variability

Movement variability

Stress variability

Etc.

Proper assessment of the design becomes possible
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Structural Casing example: 	        Process Definition
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Structural Casing example: 	       Robustness Results
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Summary

Several examples have shown the benefit of using automated design approaches

Important info can be gained by these methods making the design decisions more focused

Using the info from the automated design approaches the risk in the execution of development programs for complex systems can be reduced
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Abstract

This section describes the application of the presented methods to subsystem level problems. The components and features discussed in this paper are: a turbine subsystem and the secondary air system. This paper is the second one of three papers addressing the application of the methods, tools and processes to component, subsystem and system level tasks (see also Case Study 3 and 6). The introductory sections of the three papers give an overview of the practical application of the presented methods, tools and processes within Rolls-Royce.

1.0 Methods, Tools and Processes

1.1 Simulation based design process


Due to increased availability of compute resources more and more simulation work can be done during the development of gas turbine engines. These simulations help to increase the knowledge about the proposed design solutions in the early phases of a development task. Using this increased knowledge the decision making is improved and the risk for the development task is reduced. 


The basic automated design process has been described in the first paper of this series (case study 3). This basic process is described here in more detail as shown in Figures 1 and 2. The high level flow chart in Figure 1 shows the human interaction with the process. As mentioned in the paper about case study 3 it is very important to keep the design team involved in the simulation driven design process and the automated analysis task. As shown in Figure 1, the whole process kicks off with an optimization launch meeting. During this meeting the design objectives, the constraints and any other factors influencing the design are discussed and agreed. Using this agreed set of objectives and constraints the initial values for the design variables are set and fed to the detailed simulation process (see Figure 2). The output of the detailed simulation process is assessed for convergence to an optimum solution. If the optimum solution is reached a post-optimization review is performed otherwise new sets of design variables are selected and fed into the detailed simulation process. The post-optimization review assesses the output of the simulation driven design process. The key in this review is to understand the optimized solution and be able to explain why this is an optimized solution. It is very important to ensure that the simulation driven design is not treated as a “black box” approach. If no acceptable design solution can be found another meeting is called to review and/or reformulate the design objectives. Using a modified set of design objectives and/or constraints the process is started again.
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Figure 1: High level flowchart for a simulation based design process.



[image: image2]

Figure 2: Low level flowchart for a simulation based design process.


The lower level simulation driven design process is given in Figure 2. The design variables from the high level process, the parametric geometry and the parametric analysis models are used as an input for the regeneration of the simulation models for the current instance of the design. This instance of the design is analysed and the required responses, constraints and objective functions are calculated. The automated process then assesses these outputs against the defined acceptance criteria and classifies the design instance either as feasible or unfeasible. 

This generic simulation driven design process is used for various different simulation tasks to assess and improve the design solution. On of the typical analysis tasks is a Monte-Carlo simulation to assess the robustness of the design solution. This method is briefly described in the next section.

1.2 Monte-Carlo simulation


Monte Carlo simulation (MCS) techniques as described in Figure 3 are a class of sampling algorithms for randomly simulating a design or process, given the stochastic properties of one or more random variables, with a focus on characterizing the statistical nature (mean, variance, range, distribution type, etc.) of the responses (outputs) of interest [1].   Monte Carlo methods have long been recognized as the most exact method for all calculations that require knowledge of the probability distribution of responses of uncertain systems to uncertain inputs.  To implement a Monte Carlo simulation, a defined number of system simulations to be analyzed are generated by sampling values of random variables (uncertain inputs), following the probabilistic distributions and associated properties defined for each.

Monte Carlo simulation is also the traditional method for reliability analysis.  The probability of failure is estimated simply as the ratio of the number of points violating constraints to the total number of sample points:  Pf = Nfailed/Ntotal.  The reliability, or probability of satisfying requirements, is then 1-Pf.  Other information gathered through MCS includes response statistical information (including standard deviation/variance for assessing robustness), visual response scatter, response PDF/CDF (probability density function, cumulative distribution function) information, and a measure of the relative effects of each random variable on a response (identifying key random variables that drive response variability).  


[image: image3]

Figure 3: Monte-Carlo simulation.


1.3 Vision


The current simulation driven design process works in a forward step: the variability or uncertainty of the design inputs is measured and assessed. This input variability is then transformed into the variability of the outputs. These are then assessed against the allowable output variability and the process is repeated until a satisfactory variation on the output side is achieved. The ideal way of doing this would be the reverse way: defining the target output variation and then derive the acceptable variation on all the design inputs in one step. This so called “inverse” analysis is depicted in Figure 4 (curved arrow at the bottom) as the long term vision for the simulation driven design process.


[image: image4]

Figure 4: Long term vision for automated design: Achieve “inverse” analysis capability.

The following section will show several examples where the outlined principles were applied to real engine design tasks.

2.0
Application Examples


2.1 
Secondary air systems


The secondary air system is required to cool the high temperature areas in a gas turbine. Especially the high pressure turbine blades need cooling as the gas temperature surrounding them is above the melting temperature for the metal. The secondary air system typically takes air from a cooler area in the gas turbine and feeds it via channels, ducts, gaps etc. into the higher temperature areas of the gas turbine. These secondary air system flows are detrimental to the engine performance so the goal here is to keep them to the absolute minimum required. The flows are typically small and all the gaps and tolerances in the channels and ducts used to guide this secondary air flows have a considerable effect on the overall performance of the secondary air system. Figure 5 shows a simplified high pressure turbine (HPT) casing cross section to illustrate this.


[image: image5]

Figure 5: Simplified HPT casing cross section with outlined secondary air system flows (blue arrows).


In a typical simulation driven design for the secondary air system a Monte-Carlo simulation was performed to assess the variability of the critical flows, temperatures and pressures. Typical results of such an analysis are given in Figure 6. The left of Figure 6 shows the normalized distribution for the pressure value in one of the secondary air system cavities. There was a variation of this pressure of -17% to +11% from the nominal value. Also the distribution was skewed towards the smaller values. If the pressure in this cavity is too high the losses increased which is detrimental to the overall engine performance. On the other hand if the pressure is low adequate sealing to prevent hot gas leakage still must be provided. The predicted variation in pressure was not acceptable and the data from the Monte-Carlo simulation was used to perform an Analysis of Variance (ANOVA) to determine which of the design inputs had the most influence on this variation. The output of such an ANOVA analysis is shown as a pareto plot on the right of Figure 6. In the presented case the pareto plots pointed to one of the design inputs (R220) as the key contributor to the output variation. Reducing the variation of the pressure in this cavity required the adjustment of this design input. Changes in all the other design inputs were not affecting the output variation. This example shows the power of the simulation driven design process in identifying variation in the output and their key driving inputs early in the design process. This information was used to significantly improve the design of the secondary air system.


[image: image6]  
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Figure 6: Typical results (distribution, sensitivity coefficients) for a critical pressure within a secondary air system cavity.


2.2 Thermo-mechanical analysis of a turbine system


The second example presented in this case study is the preliminary design of a turbine system. This is a simplified multidisciplinary optimization example used for training purposes within Rolls-Royce. Figure 7 shows the definition of the problem with the various design variables and constraints put onto the system.



[image: image8]

Figure 7: Definition of the turbine preliminary design task.


The key output used in this example was the engine performance represented by the achievable tip clearance. This is the gap between the turbine blade and the casing, which should be as small as possible. 


The design variables influencing the tip clearance were:


· Thermal behaviour of the tip clearance control system on the outside of the turbine casing


· Secondary air system cooling air flow going through the turbine casing


· Heat transfer on the back side of the liner 

· Amount of hot gas ingestion in to the sealing cavity at the back of the turbine.


The design was subject to various constraints (arbitrary values for training purpose):


· Liner temperature below 1200K

· Transient temperature gradient across the inner box structure below 520K


· Transient temperature gradient across the outer rail below 620K


As a first step a design exploration was performed. Using this information an optimization of the system was performed. Typical results of the design exploration and sensitivity study for this example are shown in Figure 8. The left side shows the trends of the various outputs with respect to selected design variables as well as ANOVA results to identify the key design variables for each of the outputs. On the right a sample output for a tip clearance optimization is depicted. The overall tip clearance is the plot in the middle and the goal is to minimize the value. It is obvious that the simulation driven design process reduced the tip clearance but then stopped at some value. Looking through the data and plotting one of the constraints (transient temperature gradient across the outer rail below 620K, bottom plot) it can be seen that reducing the tip clearance resulted in an increase of this gradient and it also can be seen that the gradient reached its maximum allowable value and hence the optimization stopped. This is a typical behaviour of any optimization. The objective function is improved until one or more constraints are reached. This means that an optimum solution is sitting right at the constraint boundaries. If variability in the design inputs is taken into account some of the design instances will actually violate the constraints. To avoid this, the last step of the five step process (robust design) needs to be executed. This method will be described in more detail in the final paper (case study 6).


[image: image9]

Figure 8: Typical output from a design exploration, sensitivity study and optimization.


3.0
Conclusion


Several examples have shown the benefits of using a simulation driven design process. Applying simulation allows the design team to perform design explorations, sensitivity analysis and robustness assessments. The data can also be used in ANOVA type analysis to identify the key influence factors for the performance of the design solution. Using all this information the design team can make better informed decisions about the optimal design solution. The optimization and automate design processes helps to achieve better designs by focusing the work on the key levers.

4.0
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Monte-Carlo Simulation
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Examples

Secondary Air System





Thermo-mechanical analysis of a turbine system
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Secondary Air System
Problem Description

Large number of gaps and small nominal flow rates  tolerance effects become important



Simplified HPT casing cross section

MCS simulation used to investigate the effect of 23 secondary air system parameters on over 30 mass flows, pressures and temperatures
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Typical result: 
Probability Distribution for a selected pressure

Distribution skewed towards smaller pressures

Maximum pressure variation is -17% to +11%



 Both effects need to be taken into account for the design
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Typical result: 
Pareto plot to identify key drivers

Flow restrictor 220 (R220) is clearly identified as the key driver for the pressure variation

All the other restrictors have only a small influence



 Changes to control the variation in pressure need to be made in the are modeled by flow restrictor 220
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Thermo-mechanical Analysis:
Design Exploration & Sensitivity Studies   

Ingestion can vary between 0% and 2% W26 

Cooling air mass flow can be increased up to three times the current level

Liner back surface HTC can be increased up to 3 times by addition of ribs





















Tip seal liner temperature to be below 1200K to avoid distortion



Gradient across rail not to exceed 620K transiently



Gradient across box structure not to exceed 520K transiently
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Tip clearance control manifold modelled outside casing
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Summary

Several examples have shown the benefit of using sensitivity studies to support important design decisions



Optimizations and automated design help achieving better design by focusing the work on the key levers
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Questions ?
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Goal


1. LAPCAT II Mission


-  Range: Brussels - Sydney (~ 18,700 km)


-  Cruise Velocity: Mach 8


-  Payload: 300 Pax (60 t)


-  Fuel: Hydrogen


Identify an Optimal Hypersonic M8 Passenger Vehicle Architecture


                                    (with “Minimum” TOGW)


2. Hypersonic Vehicle Design Requirements/Constraints


-  Passenger comfort: horizontal acceleration ax = 0.3 g


-  Compliance with JAR field performance requirements:


a) Take-off (TO) one engine inoperative (OEI) climb requirement


    (Roskam,1985; Torenbeek, 1982)


b) Emergency landing with high fuel load (CLmax, W/S)


         c) Runway length = 10000 ft (as for B747)
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4 STEPS:


1.  IMPLEMENT PROCEDURE AT CRUISE


2. IMPLEMENT PROCEDURE FOR NON-CRUISE CONDITIONS


- TO


- LANDING


- 1 ENGINE OFF AT CLIMB


- EMERGENCY LANDING


3. INTEGRATE TRIMMING DEVICES AND PROPULSION SYSTEMS AND


      RE-ITERATE UNTIL CONVERGENCE


4. PERFORM OPTIMISATION and SENSITIVITY ANALYSIS


based on :  - Structural index, Istr = 15.1 – 21.0 kg/m2


                 - Propulsion Optim: 1. EJR (ETW=22)+DMR 2. TRJ (ETW = 4.5, 8.5, 12.5) +SCRJ


                 - Trajectory Analysis and Optimisation


Implementation - PROCEDURE


Based on subsonic aircraft methodology (Loftin, 1980) and hypersonic approach by J.


Vandenkerckhove (VDK) and P. Czysz (2001) :
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Integrated pre-cooled turbofan/ramjet module


Scramjet module (for  Mach 8 cruise)


(Example: Mach 8 cruise inlet configuration)


TBCC propulsion system
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TBCC propulsion system (H2 fuel)


ATR


PCTF
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DEFINE VARIABLES: 9 + trajectory  (+ engine cycle)


Mission variables: 4


   Mission requirements for LAPCAT II:


• Ma = 8


•   Range = 18728 km
•   N of pax =300 !"Wpay = (30-)60 t


•   Fuel is hydrogen


Performance variables (and their expected range): 2


• Isp=2000 s in cruise (depends on engine cycle, engine efficiency, trajectory…)


•  ETW=T/Wengine=8.5-22


Industrial Technology variables: 3


• Istr=15,18, 21 kg/m2,


• Wsys/W=rsys=0.07 (Wsys= weight of all systems)


•  !v=0.7 (useable volume)


Trajectory variables


Implementation - PROCEDURE
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RESULTS IN CRUISE CONDITIONS


Implementation - PROCEDURE
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Unknowns: 14


1. geometry:                     , Splan, Swet, Vtot, Vpay, Vvoid, Vfuel


2. performance:   L/D=f(Ma,"), Thrust


3. weight :             TOGW, Wsys, Wprop, Wfuel, Wstr


4. technology :      Kw(")


TO DETERMINE UNKNOWNS:


WRITE LINKING EQUATIONS AND SOLVE THEM


tot


1.5


plan


V


S
! =


Implementation - PROCEDURE
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Unknowns: 14


1. geometry:    Splan, Swet, Vtot, Vpay, Vvoid, Vfuel   +


2. performance:   L/D=f(Ma,"), Thrust


3. weight :             TOGW, Wsys, Wprop, Wfuel, Wstr


4. technology :      Kw(")


TO DETERMINE UNKNOWNS:


WRITE LINKING EQUATIONS AND SOLVE THEM


Implementation - PROCEDURE


tot


1.5


plan


V


S
! =
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+ Wstr
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Kw =


Swet/Spf
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                               Into practice


1. FIX a range of tau and Splan:


          tau=0.01-0.2


         Splan=1000-20000ft2


2. From equations CALCULATE all variables: Swet, Vtot,


Vpay, Vvoid, Vfuel, L/D, TOGW, Wsys, Wprop,


Wfuel, Wstr,  Kw(t)


3. ITERATE total volume of vehicle until


volume available (calculated from tau) = volume


required (calculated from TOGW)







Montreal RTO AVT-167 26 & 27 October 2009







Montreal RTO AVT-167 26 & 27 October 2009


Vtot_av


Vtot req
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 RESULTS FROM T.O. to LANDING


Implementation - PROCEDURE
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Assign:


1. Slenderness parameters


2. Istr=15-18


3. ERJ up to M=3.8 +DMR


The aircraft is simulated from TO to landing:


-  Climb


1. Constant velocity climb-out to 3048 m
2. Constant altitude acceleration to Mach 0.8
3. Constant Mach 0.8 climb to 11000 m
4. Acceleration to max dynamic pressure
5. Constant dynamic pressure climb
  to 30,000 m


- Cruise, including climb to maximum


 altitude


- Descent at maximum L/D


1st Considered (fixed) FLIGHT TRAJECTORY


Vehicle integration (EJR +DMR)
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Along the trajectory L/D and effective Isp changes computed [Czysz, 2001]


Vehicle integration (EJR +DMR)


FLIGHT TRAJECTORY
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Uniroma1/ULB vehicle thrust margin







Montreal RTO AVT-167 26 & 27 October 2009


!"Impose Constraints: maximum landing weight (MLW) = 70% TOGW for


emergency landing with OEI


! =0.16 to 0.14 is


appropriate
Meets W/S


requirement


for MLW


landing


Meet landing


requirements


while balancing


Spln, Volume


and Weight


Fails W/S requirement


for MLW landing


Vehicle integration (EJR +DMR)


A RANGE OF CONVERGED SOLUTIONS: TO CHOOSE
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 OPTIMISATION - Define the OF


SENSITIVITY ANALYSIS


Implementation - PROCEDURE
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Industrial structural capability Index for cold structures (from HC)


Istr = 15.1 – NASA, 1995


Istr = 18.0 – VDK, circa 1985


Istr = 21.0 – VDK, circa 1970


As the structural index


increases from 15.1 to 21.0,


larger wing areas are


required for emergency


landing (high fuel


weight).


This requires ! to be


reduced accordingly.


TRADE-OFF STUDY:  Structural Index


Vehicle integration (EJR +DMR)
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Compare effect of Istr:


This is a fuel-dominated aircraft: TOGW and size vehicle driven primarily


by fuel weight and volume. Structural technology and payload are second


order design variables for Mach 8 and 18000 km!


TRADE-OFF STUDY:  Structural Index


Vehicle integration (EJR +DMR)
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Objective Function : OF = w1 x TOGW + w2 x Vfuel


Constraints : technology (Istr), TOD, MLW/Spf, Wpay, ...


Methodology : GO with Surrogate Model / Metafunction with ANN


Learning methodology for database (DOE) :


Trajectory & TBCC Engine (performance, mass & vol)


(for 1 engine cycle ! , afterwards other cycles)


Vehicle Size Optimisation - MDO
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TBCC engine perfo data


Mach number (-) Thrust (kN) Fuel Flow (kg/s)


0 248.1 5.9


0.3 245.1 6.2


0.5 268.1 6.8


0.7 306.8 7.7


0.9 285.9 7.1


1.0 271.9 6.5


1.1 256.1 6.1


1.3 238.0 5.5


1.5 237.4 5.3


1.8 192.0 4.6


2.0 195.0 4.6


2.2 199.1 4.7


2.49 198.7 4.7


2.5 173.2 4.1


2.55 198.4 4.7


2.8 196.9 4.7


3.0 202.7 4.8


3.3 167.2 3.8


3.6 158.3 3.7


3.8 152.6 3.6
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TOGW (Tons) 464 532 344 400


Tau 0,1 0,12 0,15 0,187


L/D 4,34 3,94 4,64 4,14


Take-off (T/W)vehicle 0,35 0,4 0,35 0,4 0,35 0,4 0,35 0,4


Number of turbofanramjets


required
6 8 8 8 6 6 6 6


Fan inlet diameter (m) 1,581,46 1,46 1,571,361,451,471,57


TFRJ weight (tons) 4,0 3,4 3,4 3,9 3,0 3,4 3,4 3,9


Full pre-cooler weight (tons) 3,8 3,3 3,3 3,7 2,9 3,2 3,3 3,8


Basic pre-cooler weight (tons)


Festip2 estimation 2,1 1,8 1,8 2,1 1,6 1,8 1,8 2,1


P&W comparison


(same corrected airflow rate


at M=3)


1,4 1,2 1,2 1,4 1,1 1,2 1,3 1,4


Pre-cooled TFRJ weight (tons)


Festip2 full PC  estimation 7,8 6,7 6,7 7,7 5,8 6,6 6,8 7,7


Festip2 basic PC  estimation 6,1 5,2 5,2 6,0 4,5 5,2 5,3 6,0


Rolls-Royce comparison


(same SLS thrust)
5,1 4,4 4,4 5,1 3,8 4,4 4,4 5,1


TBCC engine mass and volume data
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Select Istr=18.0


aircraft as baseline


vehicle due to


moderate


structural technology


level and the minor


weight savings of the


Istr = 15.1 vehicle.


Selected Baseline


Aircraft


TRADE-OFF STUDY:  Structural Index


Vehicle MDO (EJR +DMR)
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Converged weight and volume budgets for given Istr and calculated " !


vehicle geometry and weights defined.


BASELINE AIRCRAFT  [Istr = 18.0] : " = 0.16, TOGW = 476 t, Vfuel = 79 % 


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2


Vehicle MDO (EJR +DMR)
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BASELINE AIRCRAFT PERFORMANCE SUMMARY


(W/S)TO (kg/m2) 448


(T/W)TO 0.73


L/Dcruise 3.2


Ispcruise (s) 2000


ff 0.69


tclimb (min) 14.16


tcruise (min) 108.6


tdescent (min) 24


tflt (min) 147


Rclimb (km) 929


Rcruise (km) 16610


Rdescent (km) 1180


Rtotal (km) 18728


Istr (kg/m2) 18


Ip (kg/m3) 33.74


(CL)Landing 0.95


will require the addition of a retractable canard for landing in order to achieve adequate


trimmed lift coefficient; this enables deflection of the trailing edge control surfaces


downward to increase lift


Vehicle MDO (EJR +DMR)
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Vehicle design (ERJ +DMR)


SKETCH OF NOTIONAL BASELINE AIRCRAFT:


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2
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LAPCAT 2 vehicle and Boeing 747 comparison 
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OPTIMISATION


SENSITIVITY ANALYSIS TO


PROPULSION SYSTEM


MDO
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       For the selected slenderness parameter and assumed Structural


Technology the aircraft is simulated through :


-  Climb-out


1. Constant velocity climb-out to 3,048 m
2. Constant altitude acceleration to Mach 0.8
3. Constant Mach 0.8 climb to 9,000 m
4. Acceleration to Max dynamic pressure


-  Constant dynamic


    pressure climb to 30,000 m


-  Cruise climb


-  Descent at Maximum L/D


Trade-OFF Study : Flight Trajectory


Vehicle MDO (TRJ +SCRJ)
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With Istr = 18.0 the installed Sea Level ISA, engineT/W is:


ETW =   4.5 – Conservative ULB


           (approximately 270 kN net thrust / 6.2 tons engine weight)


ETW =   8.5 – Optimistic, ULB


ETW = 12.5 – Optimistic, [Czysz, 1986]


For ETW ! 4.5


a snowball effect


results in a significant


planform area increase


and TOGW


Convergence fails for ETW=4.5
 and " > 0.12


TRADE-OFF STUDY: propulsion system ETW


0


200000


400000


600000


800000


1000000


1200000


1400000


950 1450 1950 2450


TOGW
(kg)


Spln (m2)


ETW=4.5
ETW=8.5
ETW=12.5


!=0.14
!=0.10 !=0.08!=0.12


!=0.16


!=0.20


!=0.22


Failed to converge


- Constant Istr assumed. Vary ETW  and " for the same mission trajectory.


Vehicle MDO (TRJ +SCRJ)
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• An ejector ramjet or turbo-


ramjet with ETW>12.5


could provide a significant


reduction in vehicle size


and weight
200000


400000


600000


800000


1000000


1200000


1400000


950 1050 1150 1250 1350 1450 1550


TOGW
(kg)


Spln (m2)


ETW=8.5


ETW=12.5


Ejector Ramjet ETW=22.0


MDO - Propulsion system comparison


ERJ (ETW = 22.0) + DMR TRJ (ETW=12.5) +SCRJ


similar vehicle dimensions and weights!
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Design Trades and Sensitivities


• The original study was done using a propulsion model for an


ejector ramjet with a ETW = 22.0 with a transition to a dual mode


Ram/Scramjet at Mach 3.8. When comparing the turbo-ramjet


vehicle with ejector ramjet vehicle it is clear that a turbo-ramjet


with a ETW=12.5 yields a similar vehicle compared to the ejector


ramjet.


• Thus, either an ejector ramjet or reduced weight turbo-ramjet


could provide a significant reduction in vehicle size and weight


Revised Sizing: some additional notes
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ETW 4.5 8.5 12.5


Geometry
" 0.1 0.14 0.14


Spln (m2) 1987.84 1230.94 1114.68


b (m) 41.96 33.02 31.42


c (m) 8.39 6.60 6.28


L (m) 78.96 62.13 59.13


h (m) 3.48 3.83 3.65


Weight


TOGW (kg) 939972 567437 479348


Wfuel  (kg) 538190 357352 303231


OWE  (kg) 401783 210085 176117


Wpay  (kg) 60000 60000 60000


OEW  (kg) 341783 150085 116117


Wcrew (kg) 1472 1472 1472


Wsys  (kg) 47846 22843 18412


Woper items (kg) 5968 5968 5968


Wstr  (kg) 120833 67104 60766


Wprop (kg) 165663 52699 29499


ff 0.57 0.63 0.63


Wstr/TOGW 0.129 0.118 0.127


Volume


Vtotal (m^3) 8863 6046 5210


Vpay (m^3) 510.0 510.0 510.0


Vfuel (m^3) 7211.4 4788.3 4063.1


VENG (m^3) 492.0 295.6 243.4


Vsys (m^3) 182.3 125.9 109.2


Thrust Requirement


T/W req 0.793 0.789 0.789


Ttotal (kN) 7313 4394 3617


Teng avalible (kN) 270 270 270


Number of Engines Req 27.1 16.3 13.4


Wprop (kg per engine) 6116 3238 2202


Vehicle MDO (TRJ +SCRJ)
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SKETCH OF NOTIONAL BASELINE AIRCRAFT:


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2


Vehicle MDO (TRJ +SCRJ)


ETW 8.5


Geometry
" 0.14


Spln (m2) 1230.94


b (m) 33.02


c (m) 6.60


L (m) 62.13


h (m) 3.83


Weight


TOGW (kg) 567437


Wfuel  (kg) 357352


OWE  (kg) 210085


Wpay  (kg) 60000


OEW  (kg) 150085


Wcrew (kg) 1472


Wsys  (kg) 22843


Woper items (kg) 5968


Wstr  (kg) 67104


Wprop (kg) 52699


ff 0.63


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 6046


Vpay (m^3) 510.0


Vfuel (m^3) 4788.3


VENG (m^3) 295.6


Vsys (m^3) 125.9


Number of Engines Req 16.3


Wprop (kg per engine) 3238
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Solution ...


Successful Configuration found
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Solution ...


Successful Configuration found
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Summary & Conclusions


• Correct balancing of weight and volume critical to select a feasible design.


• Correct selection of optimisation parameters is difficult.


• For LAPCAT II requirements: fuel weight and volume in conjunction with


emergency TO and landing wing area requirements are primary drivers for


aircraft size. In comparison, structural and payload weights are secondary.


• A conservative structural technology level may be selected without a dramatic


impact on vehicle size.


• Given the large impact of the fuel weight and volume on the total vehicle size,


care must be taken to ensure that the Isp and thrust goals are met for the


TRJ+SCRJ propulsion system.


• Any propulsion system weighing > 6.2 t/eng will increase vehicle size and


weight ! prohibitive fuel and maintenance cost for a commercial transport.


• T/W must be increased to make this aircraft a winner.


• With a TBCC & ETW=12, a/c very similar in Spf and TOGW to EJR+DMR


• NEXT : work wit ONERA to use another vehicle sizing methodology with NtoT


computations.
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Goal


1. LAPCAT II Mission


-  Range: Brussels - Sydney (~ 18,700 km)


-  Cruise Velocity: Mach 8


-  Payload: 300 Pax (60 t)


-  Fuel: Hydrogen


Identify an Optimal Hypersonic M8 Passenger Vehicle Architecture


                                    (with “Minimum” TOGW)


2. Hypersonic Vehicle Design Requirements/Constraints


-  Passenger comfort: horizontal acceleration ax = 0.3 g


-  Compliance with JAR field performance requirements:


a) Take-off (TO) one engine inoperative (OEI) climb requirement


    (Roskam,1985; Torenbeek, 1982)


b) Emergency landing with high fuel load (CLmax, W/S)


         c) Runway length = 10000 ft (as for B747)
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4 STEPS:


1.  IMPLEMENT PROCEDURE AT CRUISE


2. IMPLEMENT PROCEDURE FOR NON-CRUISE CONDITIONS


- TO


- LANDING


- 1 ENGINE OFF AT CLIMB


- EMERGENCY LANDING


3. INTEGRATE TRIMMING DEVICES AND PROPULSION SYSTEMS AND


      RE-ITERATE UNTIL CONVERGENCE


4. PERFORM OPTIMISATION and SENSITIVITY ANALYSIS


based on :  - Structural index, Istr = 15.1 – 21.0 kg/m2


                 - Propulsion Optim: 1. EJR (ETW=22)+DMR 2. TRJ (ETW = 4.5, 8.5, 12.5) +SCRJ


                 - Trajectory Analysis and Optimisation


Implementation - PROCEDURE


Based on subsonic aircraft methodology (Loftin, 1980) and hypersonic approach by J.


Vandenkerckhove (VDK) and P. Czysz (2001) :
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Integrated pre-cooled turbofan/ramjet module


Scramjet module (for  Mach 8 cruise)


(Example: Mach 8 cruise inlet configuration)


TBCC propulsion system
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TBCC propulsion system (H2 fuel)


ATR


PCTF
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DEFINE VARIABLES: 9 + trajectory  (+ engine cycle)


Mission variables: 4


   Mission requirements for LAPCAT II:


• Ma = 8


•   Range = 18728 km
•   N of pax =300 !"Wpay = (30-)60 t


•   Fuel is hydrogen


Performance variables (and their expected range): 2


• Isp=2000 s in cruise (depends on engine cycle, engine efficiency, trajectory…)


•  ETW=T/Wengine=8.5-22


Industrial Technology variables: 3


• Istr=15,18, 21 kg/m2,


• Wsys/W=rsys=0.07 (Wsys= weight of all systems)


•  !v=0.7 (useable volume)


Trajectory variables


Implementation - PROCEDURE
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RESULTS IN CRUISE CONDITIONS


Implementation - PROCEDURE
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Unknowns: 14


1. geometry:                     , Splan, Swet, Vtot, Vpay, Vvoid, Vfuel


2. performance:   L/D=f(Ma,"), Thrust


3. weight :             TOGW, Wsys, Wprop, Wfuel, Wstr


4. technology :      Kw(")


TO DETERMINE UNKNOWNS:


WRITE LINKING EQUATIONS AND SOLVE THEM


tot


1.5


plan


V


S
! =


Implementation - PROCEDURE
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Unknowns: 14


1. geometry:    Splan, Swet, Vtot, Vpay, Vvoid, Vfuel   +


2. performance:   L/D=f(Ma,"), Thrust


3. weight :             TOGW, Wsys, Wprop, Wfuel, Wstr


4. technology :      Kw(")


TO DETERMINE UNKNOWNS:


WRITE LINKING EQUATIONS AND SOLVE THEM


Implementation - PROCEDURE


tot


1.5


plan


V


S
! =
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+ Wstr
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Kw =


Swet/Spf
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                               Into practice


1. FIX a range of tau and Splan:


          tau=0.01-0.2


         Splan=1000-20000ft2


2. From equations CALCULATE all variables: Swet, Vtot,


Vpay, Vvoid, Vfuel, L/D, TOGW, Wsys, Wprop,


Wfuel, Wstr,  Kw(t)


3. ITERATE total volume of vehicle until


volume available (calculated from tau) = volume


required (calculated from TOGW)
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Vtot_av


Vtot req
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 RESULTS FROM T.O. to LANDING


Implementation - PROCEDURE
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Assign:


1. Slenderness parameters


2. Istr=15-18


3. ERJ up to M=3.8 +DMR


The aircraft is simulated from TO to landing:


-  Climb


1. Constant velocity climb-out to 3048 m
2. Constant altitude acceleration to Mach 0.8
3. Constant Mach 0.8 climb to 11000 m
4. Acceleration to max dynamic pressure
5. Constant dynamic pressure climb
  to 30,000 m


- Cruise, including climb to maximum


 altitude


- Descent at maximum L/D


1st Considered (fixed) FLIGHT TRAJECTORY


Vehicle integration (EJR +DMR)
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Along the trajectory L/D and effective Isp changes computed [Czysz, 2001]


Vehicle integration (EJR +DMR)


FLIGHT TRAJECTORY
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Uniroma1/ULB vehicle thrust margin
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!"Impose Constraints: maximum landing weight (MLW) = 70% TOGW for


emergency landing with OEI


! =0.16 to 0.14 is


appropriate
Meets W/S


requirement


for MLW


landing


Meet landing


requirements


while balancing


Spln, Volume


and Weight


Fails W/S requirement


for MLW landing


Vehicle integration (EJR +DMR)


A RANGE OF CONVERGED SOLUTIONS: TO CHOOSE
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 OPTIMISATION - Define the OF


SENSITIVITY ANALYSIS


Implementation - PROCEDURE
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Industrial structural capability Index for cold structures (from HC)


Istr = 15.1 – NASA, 1995


Istr = 18.0 – VDK, circa 1985


Istr = 21.0 – VDK, circa 1970


As the structural index


increases from 15.1 to 21.0,


larger wing areas are


required for emergency


landing (high fuel


weight).


This requires ! to be


reduced accordingly.


TRADE-OFF STUDY:  Structural Index


Vehicle integration (EJR +DMR)
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Compare effect of Istr:


This is a fuel-dominated aircraft: TOGW and size vehicle driven primarily


by fuel weight and volume. Structural technology and payload are second


order design variables for Mach 8 and 18000 km!


TRADE-OFF STUDY:  Structural Index


Vehicle integration (EJR +DMR)
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Objective Function : OF = w1 x TOGW + w2 x Vfuel


Constraints : technology (Istr), TOD, MLW/Spf, Wpay, ...


Methodology : GO with Surrogate Model / Metafunction with ANN


Learning methodology for database (DOE) :


Trajectory & TBCC Engine (performance, mass & vol)


(for 1 engine cycle ! , afterwards other cycles)


Vehicle Size Optimisation - MDO
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TBCC engine perfo data


Mach number (-) Thrust (kN) Fuel Flow (kg/s)


0 248.1 5.9


0.3 245.1 6.2


0.5 268.1 6.8


0.7 306.8 7.7


0.9 285.9 7.1


1.0 271.9 6.5


1.1 256.1 6.1


1.3 238.0 5.5


1.5 237.4 5.3


1.8 192.0 4.6


2.0 195.0 4.6


2.2 199.1 4.7


2.49 198.7 4.7


2.5 173.2 4.1


2.55 198.4 4.7


2.8 196.9 4.7


3.0 202.7 4.8


3.3 167.2 3.8


3.6 158.3 3.7


3.8 152.6 3.6
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TOGW (Tons) 464 532 344 400


Tau 0,1 0,12 0,15 0,187


L/D 4,34 3,94 4,64 4,14


Take-off (T/W)vehicle 0,35 0,4 0,35 0,4 0,35 0,4 0,35 0,4


Number of turbofanramjets


required
6 8 8 8 6 6 6 6


Fan inlet diameter (m) 1,581,46 1,46 1,571,361,451,471,57


TFRJ weight (tons) 4,0 3,4 3,4 3,9 3,0 3,4 3,4 3,9


Full pre-cooler weight (tons) 3,8 3,3 3,3 3,7 2,9 3,2 3,3 3,8


Basic pre-cooler weight (tons)


Festip2 estimation 2,1 1,8 1,8 2,1 1,6 1,8 1,8 2,1


P&W comparison


(same corrected airflow rate


at M=3)


1,4 1,2 1,2 1,4 1,1 1,2 1,3 1,4


Pre-cooled TFRJ weight (tons)


Festip2 full PC  estimation 7,8 6,7 6,7 7,7 5,8 6,6 6,8 7,7


Festip2 basic PC  estimation 6,1 5,2 5,2 6,0 4,5 5,2 5,3 6,0


Rolls-Royce comparison


(same SLS thrust)
5,1 4,4 4,4 5,1 3,8 4,4 4,4 5,1


TBCC engine mass and volume data
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Select Istr=18.0


aircraft as baseline


vehicle due to


moderate


structural technology


level and the minor


weight savings of the


Istr = 15.1 vehicle.


Selected Baseline


Aircraft


TRADE-OFF STUDY:  Structural Index


Vehicle MDO (EJR +DMR)
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Converged weight and volume budgets for given Istr and calculated " !


vehicle geometry and weights defined.


BASELINE AIRCRAFT  [Istr = 18.0] : " = 0.16, TOGW = 476 t, Vfuel = 79 % 


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2


Vehicle MDO (EJR +DMR)
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BASELINE AIRCRAFT PERFORMANCE SUMMARY


(W/S)TO (kg/m2) 448


(T/W)TO 0.73


L/Dcruise 3.2


Ispcruise (s) 2000


ff 0.69


tclimb (min) 14.16


tcruise (min) 108.6


tdescent (min) 24


tflt (min) 147


Rclimb (km) 929


Rcruise (km) 16610


Rdescent (km) 1180


Rtotal (km) 18728


Istr (kg/m2) 18


Ip (kg/m3) 33.74


(CL)Landing 0.95


will require the addition of a retractable canard for landing in order to achieve adequate


trimmed lift coefficient; this enables deflection of the trailing edge control surfaces


downward to increase lift


Vehicle MDO (EJR +DMR)
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Vehicle design (ERJ +DMR)


SKETCH OF NOTIONAL BASELINE AIRCRAFT:


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2
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LAPCAT 2 vehicle and Boeing 747 comparison 
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OPTIMISATION


SENSITIVITY ANALYSIS TO


PROPULSION SYSTEM


MDO
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       For the selected slenderness parameter and assumed Structural


Technology the aircraft is simulated through :


-  Climb-out


1. Constant velocity climb-out to 3,048 m
2. Constant altitude acceleration to Mach 0.8
3. Constant Mach 0.8 climb to 9,000 m
4. Acceleration to Max dynamic pressure


-  Constant dynamic


    pressure climb to 30,000 m


-  Cruise climb


-  Descent at Maximum L/D


Trade-OFF Study : Flight Trajectory


Vehicle MDO (TRJ +SCRJ)
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With Istr = 18.0 the installed Sea Level ISA, engineT/W is:


ETW =   4.5 – Conservative ULB


           (approximately 270 kN net thrust / 6.2 tons engine weight)


ETW =   8.5 – Optimistic, ULB


ETW = 12.5 – Optimistic, [Czysz, 1986]


For ETW ! 4.5


a snowball effect


results in a significant


planform area increase


and TOGW


Convergence fails for ETW=4.5
 and " > 0.12


TRADE-OFF STUDY: propulsion system ETW
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Failed to converge


- Constant Istr assumed. Vary ETW  and " for the same mission trajectory.


Vehicle MDO (TRJ +SCRJ)
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• An ejector ramjet or turbo-


ramjet with ETW>12.5


could provide a significant


reduction in vehicle size


and weight
200000


400000


600000


800000


1000000


1200000


1400000


950 1050 1150 1250 1350 1450 1550


TOGW
(kg)


Spln (m2)


ETW=8.5


ETW=12.5


Ejector Ramjet ETW=22.0


MDO - Propulsion system comparison


ERJ (ETW = 22.0) + DMR TRJ (ETW=12.5) +SCRJ


similar vehicle dimensions and weights!
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Design Trades and Sensitivities


• The original study was done using a propulsion model for an


ejector ramjet with a ETW = 22.0 with a transition to a dual mode


Ram/Scramjet at Mach 3.8. When comparing the turbo-ramjet


vehicle with ejector ramjet vehicle it is clear that a turbo-ramjet


with a ETW=12.5 yields a similar vehicle compared to the ejector


ramjet.


• Thus, either an ejector ramjet or reduced weight turbo-ramjet


could provide a significant reduction in vehicle size and weight


Revised Sizing: some additional notes
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ETW 4.5 8.5 12.5


Geometry
" 0.1 0.14 0.14


Spln (m2) 1987.84 1230.94 1114.68


b (m) 41.96 33.02 31.42


c (m) 8.39 6.60 6.28


L (m) 78.96 62.13 59.13


h (m) 3.48 3.83 3.65


Weight


TOGW (kg) 939972 567437 479348


Wfuel  (kg) 538190 357352 303231


OWE  (kg) 401783 210085 176117


Wpay  (kg) 60000 60000 60000


OEW  (kg) 341783 150085 116117


Wcrew (kg) 1472 1472 1472


Wsys  (kg) 47846 22843 18412


Woper items (kg) 5968 5968 5968


Wstr  (kg) 120833 67104 60766


Wprop (kg) 165663 52699 29499


ff 0.57 0.63 0.63


Wstr/TOGW 0.129 0.118 0.127


Volume


Vtotal (m^3) 8863 6046 5210


Vpay (m^3) 510.0 510.0 510.0


Vfuel (m^3) 7211.4 4788.3 4063.1


VENG (m^3) 492.0 295.6 243.4


Vsys (m^3) 182.3 125.9 109.2


Thrust Requirement


T/W req 0.793 0.789 0.789


Ttotal (kN) 7313 4394 3617


Teng avalible (kN) 270 270 270


Number of Engines Req 27.1 16.3 13.4


Wprop (kg per engine) 6116 3238 2202


Vehicle MDO (TRJ +SCRJ)
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SKETCH OF NOTIONAL BASELINE AIRCRAFT:


Istr (kg/m2) 18


Geometry


t 0.16


Spln (m2) 1064.94


b (m) 30.71


c (m) 6.14


l (m) 57.79


h (m) 4.07


Weight


TOGW (kg) 476736


OWE  (kg) 148426


Wpay  (kg) 29256


OEW  (kg) 117698


Wfuel  (kg) 328310


Wstr  (kg) 56368


ff 0.69


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 5560


Vpay (m^3) 510.0


Vfuel (m^3) 4399.2


VENG (m^3) 209.0


Vsys (m^3) 140.2


Vehicle MDO (TRJ +SCRJ)


ETW 8.5


Geometry
" 0.14


Spln (m2) 1230.94


b (m) 33.02


c (m) 6.60


L (m) 62.13


h (m) 3.83


Weight


TOGW (kg) 567437


Wfuel  (kg) 357352


OWE  (kg) 210085


Wpay  (kg) 60000


OEW  (kg) 150085


Wcrew (kg) 1472


Wsys  (kg) 22843


Woper items (kg) 5968


Wstr  (kg) 67104


Wprop (kg) 52699


ff 0.63


Wstr/TOGW 0.118


Volume


Vtotal (m^3) 6046


Vpay (m^3) 510.0


Vfuel (m^3) 4788.3


VENG (m^3) 295.6


Vsys (m^3) 125.9


Number of Engines Req 16.3


Wprop (kg per engine) 3238
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Solution ...


Successful Configuration found
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Solution ...


Successful Configuration found
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Summary & Conclusions


• Correct balancing of weight and volume critical to select a feasible design.


• Correct selection of optimisation parameters is difficult.


• For LAPCAT II requirements: fuel weight and volume in conjunction with


emergency TO and landing wing area requirements are primary drivers for


aircraft size. In comparison, structural and payload weights are secondary.


• A conservative structural technology level may be selected without a dramatic


impact on vehicle size.


• Given the large impact of the fuel weight and volume on the total vehicle size,


care must be taken to ensure that the Isp and thrust goals are met for the


TRJ+SCRJ propulsion system.


• Any propulsion system weighing > 6.2 t/eng will increase vehicle size and


weight ! prohibitive fuel and maintenance cost for a commercial transport.


• T/W must be increased to make this aircraft a winner.


• With a TBCC & ETW=12, a/c very similar in Spf and TOGW to EJR+DMR


• NEXT : work wit ONERA to use another vehicle sizing methodology with NtoT


computations.
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Case Study 6: Applications on System Level:

Whole Engine Cycle Optimization, Turbine Preliminary Design

Dr. Alexander Karl

2001 South Tibbs Avenue
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Alexander.h.karl@rolls-royce.com

Abstract

This section describes the application of the presented methods to system level problems. The area and features discussed in this paper are: A whole engine cycle design and the turbine preliminary design. This paper is the third one of three papers addressing the application of the methods, tools and processes to component, subsystem and system level tasks (see also Case Study 3 and 4). The introductory sections of the three papers give an overview of the practical application of the presented methods, tools and processes within Rolls-Royce.

1.0 Methods, Tools and Processes

The final paper in the series (case study 3, 4 and 6) describes the last part of the process (robust design) in more detail. The basic aim of robust design is explained in Figure 1.
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Figure 1: Basic aim of robust design


The “mountain” shown in Figure 1 represents the behaviour of a selected performance metric with the setting of two design inputs variables X1, X2. The blue plane represents the requirement for the performance metric and all acceptable design solutions have values above this plane. 

The left graph shows the output of a traditional design process as the design with the highest performance metric is chosen. However, adding variability to the design inputs X1, X2 as indicated by the black arrows results in design solutions delivering performance metrics below the customer requirements as shown by the red coloured area. This results in dissatisfied customers and complaints.

The right graph shows the output of a robust design process. Here a design solution has been picked with variation in mind. This design solution is located on a plateau and applying the same variability of the design inputs does not result in a significant change in the performance metric. This design solution results in a consistent delivery of the performance metric above the customer requirement and hence in satisfied customers and no complaints. The main aim for robust design is to identify these “plateau” areas in the available design space. In reality the problem is  a little bit more complicated as real design tasks are multidimensional and identifying the plateau areas is not straightforward in a high dimensional space.

To perform robust design several pre-requisites need to be in place:


· A good understanding of the customer requirements is essential


· A good understanding of the behaviour of the design (the “mountain”) in the given design space (the ranges of X1, X2) is required


· Knowledge about the expected variability of the design inputs (black arrows) is required


To achieve robust design and to ensure that all the pre-requisites are met a standard Design for Six Sigma process is used. In the case of Rolls-Royce this is the Define – Characterize – Optimize – Verify (DCOV) process. The key steps of this process are described below:

Define:


· Understand what is important to the customer and translate it into engineering language


· Choose design concepts with variation in mind

Characterize:


· Flow high-level requirements down to subsystems, components, design parameters, process parameters


· Generate measurable Critical To Quality (CTQ) characteristics at each level


· For each CTQ:


· Understand the sources of variation 


· Measure the effects of variation 


· Understand how variation is transmitted through the design


· Determine the robustness of the CTQ

Optimize:


· For each CTQ: Choose and implement a strategy to reduce variation

Verify:


· Use knowledge of variation and its effects in constructing a design verification plan


This structured process is supported by many tools. The main tools for each phase are listed in Figure 2. It has to be emphasized that this process is heavily dependent on teamwork as the process cannot be executed by a single area, group or person within a company. The “Define” phase typically involves marketing departments whereas the “Verify” phase involves production areas. The robust design process is the methodology and mind set to ensure that all areas are working together to achieve a high level of customer satisfaction. The previous two papers (case study 3 and 4) have already touched on a lot of these tools like Monte-Carlo simulation or robustness metrics.

The following section will show several examples where the outlined principles were applied to real engine design tasks.


[image: image2]

Figure 2: Main tools of the DCOV process.


2.0 Application examples

2.1 
Using Quality Function Deployment to understand and breakdown requirements


One of the key tools not discussed yet is Quality Function Deployment (QFD) or customer driven engineering. This is a structured approach to 

· Enable a team to understand product/part/process requirements and helps to ensure that these are complete, self-consistent and consistent with meeting customer requirements


· Identify critical to quality characteristics (CTQs), those aspects of the design which must be measured, monitored and controlled to ensure adequate system performance to meet stated and implied customer requirements

The structured process of a QFD also helps to keep the task manageable as the structure helps to break down the big robust design task into manageable work items. The QFD chart itself then summarizes the output of all the individual work items and presents the “big picture”.

A sample QFD on component level is given in Figure 3. The importance for the various requirements is 


[image: image3]

Figure 3: Typical QFD on component level.


deliberately equalized as this is proprietary information.  The QFD lists the various requirements on the left side. The top side of a typical QFD lists the functionality or features. The central area of the QFD records the relationships between the functions/features and the requirements. This relationship information is used to transform the importance of the requirements into the importance of the functions/features. This importance information on function/feature level was used by the team to decide which work items needed to be tackled first. Again the information from the structured design process (robust design) was used to help the team focusing on the right areas.

2.2
Whole Engine Cycle Optimization


Finally the last two examples are showing system level applications of the methods, tools and processes. The fist system level example is the optimization of a whole engine cycle during the preliminary design phase of a gas turbine development project. The process outline for this application is given in Figure 4.



[image: image4]

Figure 4: Process for whole engine cycle optimization.


The CTQ’s considered in this example are the emissions and specific fuel consumption (SFC) of the engine. As secondary targets the unit cost and weight were considered. The basic engine performance data was calculated by the performance team. Data from this calculation was transferred to the combustor and turbine teams. Both teams used the input to calculate critical outputs from their components (emissions, HPT cooling flows and HPT efficiency). These outputs were fed back into the performance team and a converged solution for the whole engine cycle was obtained. Using this standardized cross functional template for calculating the whole engine cycle parameters a simple study was performed to assess the effect of a cycle temperature (SOT) increase. The results of this study are given in Figure 5.


[image: image5]

Figure 5: Typical results for whole engine cycle optimization.


The left shows the effect of increasing cycle temperature (SOT) on the engine specific fuel consumption (SFC). In a traditional thermodynamic view an increased SOT should result in an improved SFC. However, in this study there was no real change observed. The only change of SFC was realized via different shroud styles. The reason for this behaviour is shown on the right of Figure 5. Here the cooling flow requirements for the HPT are given. It can be seen the increase in cycle temperature was accompanied by an increased cooling flow requirement in the HPT turbine. This increased cooling flow is detrimental to the overall performance of the engine and hence no increase in SFC was observed. The integrated multidisciplinary process allowed the design team to make informed decisions about the correct cycle temperatures and shroud options early in the development project.

2.3
Turbine preliminary design


The final example described in this series of papers is the preliminary design of a turbine module. This is a multidisciplinary assessment of the performance of the turbine module focused on turbine layout, turbine efficiency, mass and cost of the turbine module. To achieve such an assessment a multidisciplinary design and analysis process was set-up. This process is shown schematically in Figure 6. There are three main blocks: Aerodynamics, thermo-mechanics and costing. Each of these blocks contained several substeps as shown in Figure 6.

Using this multidisciplinary design and analysis process a basic design exploration and sensitivity study was performed to identify the key parameters for the design of the turbine module. A classical Design of Experiment based approach was used to perform this study. Typical results are given in Figure 7. The lines in each of the graphs are representing the behaviour of the respective CTQ (efficiency, mass and cost) with respect to a certain design input variable. The colour code of the lines is identical for each graph. The red line identified a very powerful parameter as increasing this parameter resulted in an improved efficiency and a reduction in mass and cost. In contrary the green line identified a parameter which had conflicting effects on mass and cost. For an increase in this parameter the cost increased but the mass is reduced. Again the information from a multidisciplinary and automated design process was used very effectively in the early phases of an engine design project.


[image: image6]

Figure 6: Multidisciplinary turbine preliminary design process.



[image: image7]

Figure 7: Typical sensitivity output for the design exploration of a turbine module.


3.0
Conclusion

Several examples have shown the benefits of using a multidisciplinary design processes. Applying simulation and multidisciplinary process integration allows the design teams to perform design explorations and sensitivity analysis. These assessments are especially powerful on system level. The structured processes from the robust design methodology are essential to tackle these system level assessments. The processes help breaking down the system into manageable tasks and features. The robust design process also ensures that the design teams focus on the key drivers to ensure customer satisfaction.
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Generic Process – D C O V

Define



Characterise









Optimise



Verify

Understand what is important to the customer and translate into engineering language

Choose design concepts with variation in mind



Flow high-level requirements down to subsystems, components, design parameters, process parameters

Generate measurable Critical To Quality (CTQ) characteristics at each level

For each CTQ:

Understand the sources of variation 

Measure the effects of variation 

Understand how variation is transmitted through the design

Determine the robustness of the CTQ

For each CTQ:

Choose and implement a strategy to reduce variation



Use knowledge of variation and its effects in constructing a design verification plan
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Tools

CHARACTERISE

process capability, DoE, robustness metrics, surrogate modelling, Monte Carlo simulation

DEFINE

QFD1 & 2, P-diagrams, What-Why tables, Triz, DFMECA, DoE, statistical modelling of variation

OPTIMISE

parameter design, tolerance design, DoE, response surface methods, sensitivity analysis, statistical tolerancing, multi-disciplinary design optimisation, Monte Carlo simulation, PFMECA, design verification test plan, reliability analysis

VERIFY

QFD4, PFMECA, design review, 
physical testing, statistical process control, reliability analysis, service feedback, gauge R&R, hypothesis testing, re-analysis



Teamwork
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Examples

Using QFD to understand and break down requirements



Whole Engine Cycle optimization



Turbine preliminary design
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Using QFD to Cope with Complex 
Systems . . .







Expand "HP Turbine"

Expand "Fan"
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Typical QFD at Component Level



Deliberately equalized



Determine focus for next step of the process
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Whole Engine Cycle Optimisation:
Process 
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SOT-increase has only minimum effect on cycle efficiency due to increased cooling flow requirements, if HPT materials temperature capability or cooling technology is not improved.

Optimisation, Design Exploration in the early stages of an engine development could have much greater benefits on cost, weight and performance







Whole Engine Cycle Optimisation:
Sample Results 
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Turbine Preliminary Design:
Process
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Sensitivity Studies performed via the DOE functionality

Different effects, dependencies and diverging trends clearly identified (see for example red line in efficiency and cost plot)

Efficiency





Mass

Costs

Color code identical

for all plots



Turbine Preliminary Design:
Results
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Summary

Several examples have shown the benefit of using system level assessment to support design decisions

The structured processes from the Robust Design toolkit help tackle these system level assessment by

Breaking them down into manageable chunks

Ensuring focus on the key drivers for the customers
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Questions ?
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Abstract 


A Preliminary Multi-Disciplinary Optimization (PMDO) study is a sub-process supporting higher-level product strategic decision making activities.  The pace of strategic decision making is largely market-driven and so a market-driven timing is imposed to all supporting activities including PMDO. To achieve optimum performance, the PMDO sub-process needs to be specifically designed to merge with the higher level strategic process it is supporting.

             
[image: image1]

PMDO methods aim to rapidly synthesize a complete product and evaluate its attributes over a range of alternative designs. Obtaining the best product level resolution with these accelerated methods is a balance between how much detail needs to be applied to the analyses versus how many iterations with alternate designs need to be completed. The underlying concept discussed in this paper is that it is usually more accurate to achieve closure over a wider range of alternatives with a fast procedure that has a lower resolution than to run out of time, fail to achieve closure or miss key strategic decision milestones by using a slower, process that offers a theoretically higher resolution. 


The context used to illustrate the subject is the preliminary optimization of a gas turbine aircraft engine, starting with the development of a product strategy and proceeding onwards towards the pre-detail and detail design phases.

1.0
DEFINITION OF THE PRODUCT STRATEGY

In the most extreme case, an advanced study starts with a “blank sheet of paper”. To get things moving, a first set of preliminary high level objectives needs to be provided and if necessary invented based on whatever information might be initially available. These imperfect starting assumptions will then be improved as the study delivers more data yielding previously unseen trends and insights. The result is a progressive refinement of engine requirements through a succession of decisions that are increasingly data-driven. 


This is illustrated by Figure 1 which shows that Advanced activities such as Market Research, Technology Development and Advanced Product Studies (which includes PMDO) are conducted concurrently with the validation of product attributes (market drivers) with potential customers. These studies are the object of program reviews to understand the balance between market competitiveness, profitability and risks. These reviews progressively determine a product strategy. From a technical standpoint, the most fundamental objective is to identify the key requirements for the future product and its derivatives. In the case of a new engine family, the main high-level technical attributes would include such parameters as: 


· Initial power or thrust


· growth capability


· program timing & readiness of associated technology level


· fuel consumption


· weight


· dimensions


· noise levels


· gas emissions


· maintenance costs


· production costs 
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Figure 1        Evolution from Product Strategy to Product Definition


This first-pass information is applied to formulate a first tentative product plan which is in turn used as a basis to conduct more in-depth analyses and derive a validated set of coherent technical attributes to provide the decision makers with a first “reality check” against their expectations. This is typically not the end of the process as each new assessment brings new insights that in turn generate new ideas. So more refined product strategies and their associated technical attributes are re-iterated back and forth between the participants until a consensus emerges around a stabilized product plan. At that stage the strategic vision has converged into a clear and quantitative problem statement. At that stage a validation review, shown as a P1 Gate in Fig.1, is conducted to ensure that there is a sound basis to justify the process to move-on to the next phase and to authorise a corresponding escalation in the rate of expenditures.  


The dynamics of the “problem formulation phase”  prior to the P1 Gate (fig.1) requires the PMDO activity to generate decision-making data packages with a timing that allows it to stay synchronous with the rest of the decision making process. In the early stages, time tends to be an input imposed by other external forces and so the PMDO engineer is confronted with the necessity to achieve the best possible resolution level within the time allocated. Experience has shown that it is in general preferable to achieve full analytical closure with a fast process even if that process has a lower resolution level than to run out of time, fail to achieve analytical closure or miss key strategic decision points by applying a slower process with a theoretically higher resolution capability. This is illustrated by figure 2:
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Figure 2.     Keeping the PMDO process synchronous with the other strategic processes


This makes it clear that optimization methodologies are fundamentally sub-processes nested within the remaining organizational processes. In the case of the PMDO sub-process, achieving optimum performance requires that it be specifically tuned to work at a speed that makes it fit smoothly with the higher level strategic process it is supporting. Because of that time dependency, computational tools developed for the preliminary optimization phase cannot be designed independently from the strategic process in which they are to operate. In this context, high process speed is a key enabler. High speed has the added advantage of allowing more alternate solutions to be considered and hence is likely to favour a more robust product strategy to be adopted. 


Once the strategy is determined and feasible product attributes are defined, the process can move-on to the pre-detail and detailing phases where speed becomes less important as the focus progressively shifts to high precision to enable the definition of detail drawings & subsequent fabrication of the hardware. This is the domain of MDO (Multi Disciplinary Optimization) and detailing tools such as 3D CFD and finite element methods which are focused on high resolution rather than speed.

2.0  PMDO TOOL designed to mesh with the dynamics of the Organization


Once it had been concluded that the most critical characteristic of a PMDO tool was its ability to enable a rapid cycling of design iterations, the question arose as to which design processes needed to be incorporated within PMDO at what resolution level and how fast should they be. 


This started with the identification of three critical time paths existing in the preliminary design process:


· The main critical path arose from the relatively long waiting time for the conversion of a preliminary set of thermodynamic data into a CAD-based cross section drawing in order to initiate mechanical design activities and support the downstream assessment of the costs , weight and other engine deliverables. This led to the decision to design PMDO as a fast and easy to use tool for converting Cycle data into an outline of the engine cross section. This essentially amounts to the establishment of a bridge between the performance model and the CAD design environment as illustrated in Fig. 3. Since a number of PMDO iterations are needed before one can converge on an architecture, it was decided to ensure that any single iteration had to be achieved within less than 1 hour of elapsed time in order to keep the elapsed time of the multi iteration convergence process within less than 1 day.  To ensure these response rates were sustainable in the long run, it was necessary to design a low maintenance computational tool  to avoid increasing the programming work load of the analysts and divert them away from the more essential engineering design tasks. This imposed limits to the allowable complexity in the model. And so modeling was simplified to the minimum required to obtain a computationally light tool (PMDO-Lite) with just enough resolution to allow mechanical designers to get started on a valid basis. These simplifications are outlined in Figs 4 & 5.


· The second critical path was found through proof of concept simulations during which it was observed that the time required to manually pre-calibrate the PMDO prior to use quickly escalated with the sophistication of the modeling to a point where this type of maintenance burden could easily prevent its timely re-calibration prior to use.  A tolerable delay for recalibration may be 1 to 2 man-days for small delta adjustments to reflect a change in technology level and about 1 to 2 man-weeks for a complete resetting of the calibration of all computational modules. These elapsed time targets were met by limiting the complexity of the modeling to the level shown in Fig 5 and through the implementation of semi-automated re-calibration capabilities operating in reverse engineering mode on the basis of feedback data from higher resolution sources (Fig. 6).


· The third critical path, also identified during proof of concept simulations was with regards to the time consumed in checking and confirming that more that 200 key parameters were within an acceptable design range. This was solved by developing a graphical diagnostics output format showing visually whether each key parameters falls within a Green, Yellow of Red severity zone (Fig. 7). This visual presentation of the information was found to enable a rapid appreciation of the overall technical risk of a design.


In summary, achieving fast PMDO process speed requires a system capable of fast calibration, fast running and fast verification times.
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Figure 3    PMDO-Lite is fast a link between Thermo analysis and Mechanical Design


3.0  PMDO-Lite Modeling Level 


The preceding section explained why the modeling resolution level in PMDO-Lite has been traded to favour very high speed. The designation “PMDO-Lite” refers to the simplified modeling used in contrast to the comparatively higher resolution computational tools applied by expert groups.


The next question was how far should the simplification effort be pushed ? To answer that it was necessary to find out what was the minimum acceptable resolution level required to enable sound decision making for product family planning purposes, especially with regards to the selection of valid engine cycles and architectures for all members of any hypothetical product family. Investigations showed that this question could be answered to a large extent by determining what dimensional accuracies were required. The dimensional accuracies were selected to achieve an acceptable basis for:


· initiating more a detailed mechanical definition : ie produce: a cross section (Fig.4)


· initiate higher resolution validation assessments by the specialist groups


· producing reasonably accurate weights, costs and noise assessments: ie: to produce a product score card.


· make cycle & architectural decisions that would not be reversed by higher resolution work


And consequently, the complexity of aerodynamic and stress calculations performed for the purposes of dimensioning was limited to the minimum required to achieve the following accuracies:


· Engine Radius dimensions +/- 2.5 %


· Engine Length from inlet to exhaust : +/- 5 %


The resulting level of modeling sophistication as applied to define component sizes can be summarized as follows:


· Parameterized aerodynamic mean-lines for Compressor & Turbines


· Simplified Stress & Dynamics for Blade, Disc, Shaft  & Gearbox sizing


· Rules-based nacelle sizing


 SHAPE  \* MERGEFORMAT 




Figure 4       PMDO-Lite : Outline of an engine Cross-Section  


In addition, a number of post-processors were added-in to calculate figures of merits that can be applied to guide the powerplant optimization process:


· Parametric Weight, Production Cost, Maintenance Cost, Noise & Emission models running as post processors after the basic dimensioning is completed


The figures of merit calculated by those post processors enable the production of design trends & sensitivity data to support the conduct of optimization studies at aircraft level in terms of Specific  Air Range, Take-Off Weight or even Operating Costs when such a model is available. 


4.0  PMDO-Lite  Calculation Sequence


PMDO-Lite assembles the engine geometry sequentially in a manner that mimics the steps followed by aerodynamicists, stress analysts and mechanical designers. In doing so, PMDO fundamentally acts as a process emulator.  


The process starts with the definition of a thermodynamic performance cycle which defines the Mass Flows, Total Pressures and Total Temperatures through the flow path.


PMDO-Lite then uses these flows, pressures and temperatures to perform the necessary aerodynamic and stress calculations to define the dimensions of the main components. The sequence of the calculations follows figure 5. 
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Figure 5     PMDO-Lite Calculation Sequence


The calculation sequence that progressively builds-up the engine cross section starts from the center of the engine and moves outwards axially and radially. 


The calculation starts with the core gas path: The HP Turbine gas path is the first component that gets sized because the design of this component is simultaneously driven by aerodynamic and stress constraints. The HP Turbine stress assessment also determines the rotational speed of the high spool. The next component is the HP compressor gas path whose sizing is driven by aerodynamic considerations. Since the high spool RPM has already been fixed by the HP Turbine, the number of stages specified by the analyst determines what blade radii are necessary to achieve an acceptable loading. Next is the combustor which is sized by volume loading and tilted to properly align with the HP compressor exit and HP Turbine inlet.


The calculation then proceeds with sizing of the low spool gas path: In the case of a turbofan, this starts with the fan aerodynamics which sizes that component, determines the engine’s frontal area and fixes the low spool rotational speed. For high speed LP turbines, such as in a turboprop application, the stresses in the last stage of the power turbine (or LP Turbine), determine the rotational speed. This is because the last stage of the turbine has the tallest blades and hence this is where stresses tend to be more critical. 


At this point, the complete flowpath has been defined, from inlet to exhaust.


The next step is to size the Low Spool shaft:  The flowpath defines the axial distance between the fan and the LP Turbine driving it. This defines the length of the low spool shaft. The diameter and wall thickness of the shaft is sized through a combination of torsional stress assessment and parametric checking of margins against dynamic modes. Because mechanical details are unavailable at this stage to perform a true dynamic assessment, the parametric method simply ensures that the dimensioning leaves enough design space to find a solution. The analysis is not pushed further because the main purpose of the shaft sizing exercise is to define the bore diameter of rotor discs.


The HP Turbine disc(s) are then fitted in the space remaining between the previously defined gaspath and LP shaft. The HP Turbine blade stress assessment performed for sizing the gas path is re-used to set the boundary conditions at the rim of the disc. A stress calculation then determines the disc bore width required to achieve a specified burst margin / stress level. In the case of 3-shaft architectures, a similar assessment is repeated for the Intermediate Pressure (IP) Turbine. Experience has shown that it is not necessary at that point to consider the remaining discs because their dimensioning does not influence the selection of the cycle or the architecture. PMDO-Lite nevertheless provides dimensioning for the LP Turbine discs to give an indication to the analyst about the extent of space utilization in that area where bearings often have to be accommodated. This extra information is mostly useful for turboprop, turboshaft and geared turbofan architectures because these architectures tend to end-up with higher rotational speeds and more bulky discs that use-up more space.


Now that the key components driving the sizing of the turbomachinery have been dimensioned, the calculations shift to the definition of an external envelope for the powerplant. This is done by wrapping a nacelle around the turbomachinery. The nacelle wrapping routine is based on a hybrid set of parametric design rules and aerodynamic calculations.


At that point, all sizing calculations have been completed and the calculation process moves on to post-processors for the parametric assessment of engine attributes such as: 


· Weight


· Noise


· Emissions


· Manufacturing Cost


· Maintenance Cost


These attributes, along with the Thrust (or Power) and fuel consumption (SFC) provided by the cycle performance model constitute a first set of figures of merit for the optimization of the powerplant. 


Parameters like SFC, Weight, Diameter and Costs are values to be minimized. Other parameters tend to have “not to exceed” values such as Noise and Emissions. These “not to exceed” values are typically applied as constraints to limit the range of optimization of the remaining parameters within acceptable limits. 


Currently, the optimization process is conducted outside of PMDO-Lite. The role played by PMDO-Lite is to provide trends for all key engine attributes. One reason for leaving the optimization process out of PMDO-Lite is that the optimization process is not 100% amenable to computerization. Some elements of the product optimization essentially result from strategic decisions. 


Still, some degree of partial optimization can be conducted independently from the strategic decision making process:


· In the case of minor trade studies where only one or two of these parameters vary, it is possible to use the output data directly to make design decisions at the cycle & architectural level.


· For more sophisticated optimization tasks where a greater number of these parameters vary at the same time, there are two basic approaches:


· An aircraft model and sometimes an Operating Cost model can be used to combine the overall effects of the varying attributes into a higher-level figure of merit which captures the effects of all of these. Examples of such higher level figures of merit are : Aircraft Specific Range, Aircraft Take-Off Weight and Aircraft Direct Operating costs.


· The aircraft model and sometimes an Operating Cost model can instead be used to derive so called trade sensitivities (influence coefficients) between each engine attribute. These trade sensitivities are essentially equivalence factors between each pair of engine attributes. An example of such exchange factors for a specific aircraft might look like: 1% SFC is equivalent to 100 lbs of powerplant weight for the same Aircraft Range and Aircraft Take-Off Weight. Applying these exchange factors allows for example the SFC to be converted into a weight-equivalent number, thus enabling optimization trades to be made between weight and SFC. 


5.0   Self-Correcting Calibration Feedback  & Warning System


The aerodynamic calculations described previously for the definition of component dimensions also generate estimates of efficiency that can be compared against the estimates made in the performance model that generated the Flow, Pressure and Temperature inputs into PMDO-Lite at the beginning of the calculation process. If necessary, the cycle may be re-iterated with revised efficiency inputs but this is generally not necessary as the models implemented into the thermodynamic cycle assessment tool are closely aligned with those in PMDO-Lite. The redundancy is however kept as a warning system to detect the cases where the architectural trades made in PMDO-Lite would invalidate efficiencies assumed in the performance model. The aim is to keep a close alignment between the cycle assumptions and the consequences of subsequent architectural & sizing decisions.


Similarly, the PMDO process relies on the existence of a higher resolution feedback loop from the “expert” centers (Fig.6). This is essentially a tool calibration process that consists in periodically having the expert centers conducting a high resolution assessment leading to a definition of performance levels along with the associated component dimensioning, cost, weight, noise, etc… This higher resolution data is used to fine-tune the calibration of PMDO-Lite and keep it close to the predictions of the expert groups. This is fundamentally a reverse engineering process. PMDO-Lite has been expressly designed to support that mode of operation with a suite of auto-calibration features which accelerate the process of re-setting the model to reflect expert center input. These recalibration features are also used for the application of technology deltas to reflect the potential merits of new technologies. One side effect of the acceleration in study speed resulting from the utilization of PMDO-Lite is that it has shifted the process bottle necks to the slower downstream processes which support the recalibration loop. 
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Figure 6     Feedback Process from Specialist Groups makes PMDO-Lite self correcting


A large number of technical parameters have to be monitored to ensure that the risks inherent with the design decisions being made in the course of a PMDO-Lite study are continuously understood.  In the early days of the tool, this was a prohibitive task consuming too much time to make the tool as productive as it could otherwise be. To avoid the need to browse through multiple pages of output in the search of critical parameters amongst thousands of others, PMDO-Lite has been fitted with a post processor that scans and presents the state of more than 200 key parameters in a visual format that gives an almost immediate appreciation of where the risks are. For each PMDO solution, the key parameters (ex: h/U2, Cx/U, AN2, , Bearing DN, cycle thermal , etc…) are displayed along a scale ranging between Green, Yellow and Red as shown in Figure 7.  The low risk Green zone is defined from a database of existing certified engines, the medium risk Yellow zone is defined from a database of successful demonstrators, successful rigs and other sources substantiating successful results. The high risk Red zone is the remaining design space for which there exists no documented evidence of a successful design.
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Figure 7
Built-in Warning system provides visual output


In summary, PMDO-Lite is provided with 3 lines of mistake proofing:


· Recalculation of cycle efficiencies to check against initial cycle values


· Periodic recalibration loops with higher resolution data from the expert centers


· A warning system monitoring the state of more than 200 parameters against the values previously demonstrated by successful designs.


6.0  Summary, Lessons & Opportunities


PMDO-Lite has compressed the elapsed time of advanced engine studies by increasing the speed of the preliminary analyses that define the sizing of key engine features.


It also reduced number of re-iterations with the expert groups by increasing the resolution of the data available in the early stages of a new engine study. It however did not eliminate the need to regularly loop back with the experts because the lean modeling adopted within PMDO-Lite requires occasional re-calibration when the study moves significantly away from the last calibration point.


PMDO-lite improves the quality of decision making in the selection of engine architectures and product plans because speed buys time to consider a wider range of alternate cycles and architectures and see how they all fit into the big picture. This quicker turnover of alternate concepts enables the identification of more robust product strategies, that is strategies that can more easily be re-adapted to potential variations in market requirements.


The ability to quickly model a wide range of engine cycles & architectures opens an opportunity to enhance the technology planning process by making it practical to systematically quantify at engine level the effects of proposed incremental steps in technology.


The nature of the tool demands staff with stronger inter-disciplinary skills. 


The high speed of PMDO-Lite has pushed the preliminary design process bottle neck to downstream activities for which expert centers are slower to follow-on with higher resolution work.


PMDO-Lite can be used to enhance communications because it makes it possible to quickly generate and transfer a well structured data package to another supporting group. This is particularly useful when there is a need to provide a quick start to the definition of mechanical details or to initiate a higher resolution assessment by an expert group.


Experience showed that PMDO is far more a process emulator than a calculation tool. The process emulation element is more critical than the actual computational details because the essence of what PMDO is trying to capture is the high level performance of a process, not the details of specific computations. 


Because PMDO is a process emulator, it needs to be designed specifically for the process stream within which it is to be fitted. The development and deployment of PMDO-Lite turned out to be also a process re-organization effort.


The process re-optimization required to yield the full potential of PMDO-Lite needs to be kept focused on the balancing of 3 key elements: Tools + Skills + Processes (ie: Procedures). In this triangular relationship (Fig.8), the weakest element tends to determine the overall performance of the process. So it is essential to understand at all times what is the weakest link in order to be able to keep the balance as close to optimum as possible.
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Figure 8             Balancing of 3 key elements for success
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Pratt & Whitney Canada – PMDO 
Copyright Statement

PROPRIETARY NOTICE

This document is the property of Pratt & Whitney Canada Corp. (P&WC). You may not possess, use, copy or disclose this document or any information in it, for any purpose, including without limitation to design, manufacture, or repair parts, or obtain FAA or other government approval to do so, without P&WC’s express written permission. Neither receipt nor possession of this document alone, from any source, constitutes such permission. Possession, use, copying or disclosure by anyone without P&WC’s express written permission is not authorized and may result in criminal or civil liability.



NOTICE - DISCLOSURE OF INFORMATION

This document contains trade secrets or other confidential information, the further disclosure of which may be harmful to Pratt & Whitney Canada Corp.  If the head of a Government agency or department intends to disclose any of this information, written notice should be given to: The Vice President - Legal Services, Pratt & Whitney Canada Corp., 1000 Marie Victorin (01BE5), Longueuil, Quebec J4G 1A1.
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MKT-driven Allocated Time

Process-driven Required Time







Study Work not Completed

Key Source of Errors

Response to OEM

Full Process Resolution Level

Full Closure

Pratt & Whitney Canada – PMDO 
Context  -  The market, its needs & Constraints

Product Study Speed is an INPUT imposed by the external world

Speed is adjusted as needed by trading it against accuracy



It is more accurate to achieve closure with a fast process with lower resolution

than to run out of time with a slow process of higher resolution 
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Market 

Research

Market

Drivers 



Advanced

Studies



Pre-Detail

Design



Detail

Design

















Technology 

Development









Advanced activities are conducted concurrently and are re-iterated until the product strategy stabilizes

The PMDO TOOLS developed for the advanced phases are driven by a need to fit a timing & speed imposed by external factors ... the market

Evolving

Product

Strategy 























The MDO TOOLS developed for the detailing phases are driven by a need to achieve precision in all details





P1 GATE

Pratt & Whitney Canada – PMDO 
Context  -  The market, its needs & Constraints

Enabler: hi-resolution

Enabler: hi-speed
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Pratt & Whitney Canada – PMDO
PMDO-Lite





PMDO-Lite is a step towards higher-resolution engine-level optimizer: “PMDO-Full”

A lean engine-level  PMDO:

Multi Disciplinary Design Optimization at engine Level

Resolution traded to favour very high speed 

                                                 ... parameterized aero meanlines

  				                ... simplified stress & dynamics

					   ... parametric noise & emission models

					   ... rules-based nacelle sizing

					   ... parametric weight & cost models

Cross Section Synthesis Mode & First Pass Scorecard
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Pratt & Whitney Canada – PMDO 
PMDO-Lite is … a Process Emulator
 ... hi speed product conceptualization environment






PMDO-Lite ... What is it ?

A computer tool linking and conducting runs of separate analytical tools to emulate part of the Advanced Study Process



At a level of analysis appropriate to an Advanced Engine Study

Gas Path & Key Component Preliminary Sizing

Enough to give a quick start to designers on CATIA definitions

Trade Sensitivities & Optimization at Engine Level  

Performance, Weight, Durability, Cost, Noise, Emissions …

With a Major Time Compression



It is also a means to:

Quantify the merits of New Technologies ... and ranking them

Explore the impact of PMDO on the design process

Test what the next PMDO development steps should be
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Requirements

Initial Assumptions



Thermodynamic 

Analysis Tool 



Preliminary 

Sizing Tool 

(PMDO-Lite)



Cycle Performance Data 

“Design Tables”



CAD Interface 

Tool



CATIA Geometric 

Scale Factors



Gas Path Geometry  & Key Mechanical Dimensions

Stage Counts, Rotational Speeds

Parametric Weights & Costs



CAD



Mechanical Design



















Preliminary Sizing Tool 



The Preliminary Sizing Tool is 

the Core of PMDO-Lite





Key Function:

Quickly Turn Cycle Data into a Geometry 



Pratt & Whitney Canada – PMDO 
PMDO-Lite was designed as a bridge from Thermo Analysis to Mechanical Definition
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Start by Laying-Out the Core Flowpath

  HPC: Aerodynamically Sized

  Combustor: Sized by Volume Loading

  HPT: Sized by Disc max Rim Speed, Blade Stress & Exit Mach Number 

  Core RPM selected by PMDO-Lite

Add the Low Spool Flowpath

  Fan: Aerodynamically Sized

  LPC / Boost Stages: Aerodynamically Sized

  LPT: Sized by Aerodynamics or Last Stage AN2 

 Lo Spool RPM selected by PMDO-Lite

Add the Low Spool Shaft

  Length set by flowpath axial spans

  Dia. Sized by Torque Parametric Dynamics Check

Fit the Disks in the Remaining Space

  Outer Boundary: the Flowpath (drives rim dia.)

  Inner Boundary: the Shaft    (drives bore dia.)

  Disc Stress Calc. (drived disc width)

Wrap the Nacelle

  Around the Engine

  Ruled based Aerolines

  Allowance for AGB 

























Geometry Build-Up Sequence

Pratt & Whitney Canada – PMDO 
PMDO-Lite:  Builds up the Geometry Sequentially





Preliminary Multi-Disciplinary Optimization - Example              9-10 September 2010

P&WC Proprietary Data

8





9





Discrepancy List Post Processor monitors ~200 parameters

Pratt & Whitney Canada – PMDO 
PMDO-Lite needs a built-in Warning System





Enables Tracking of 

an Engine Study 

against a Statistical 

“State

-

of

-

the

-

Art” 

Bandwidth

Enable a consistent assessment 

of key Engine Parameters



D

h/U

2



M

n

rel 

tip



AN

2



Example of Aggregate Statistics

























Green defines range 

covered by successful 

designs







Yellow defines range 

successfully covered by 



Red defines range 

where there are no 

successful 

applications



















Enables Tracking of 

an Engine Study 

against a Statistical 

“State

-

of

-

the

-

Art” 

Bandwidth



PMDO Database of Models



Enable a consistent assessment 

of key Engine Parameters



D

h/U

2



M

n

rel 

tip



AN

2



Example of Aggregate Statistics

























Green defines range 

covered by successful 







Yellow defines range 

successfully covered by 

rigs / demos



Red defines range 

where there are no 

applications
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The PMDO process relies on the existence of a higher resolution  feedback validation loop from the “expert” centers:







Pratt & Whitney Canada – PMDO 
The Feedback Process is what makes PMDO Assumptions Self-Correcting

The deployment of PMDO-Lite shifts         criticality to slower downstream processes
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Compression of Advanced Study time

By Increasing the speed of the preliminary analyses defining sizing



Reduced number of re-iterations with the module centers

By increasing data resolution in the early stages



Improves Quality in selection of Architecture

Flexibility & Speed “Buys time” to consider more alternate architectures

Quicker turnover in review of alternate product concepts to define a product strategy



An Opportunity to enhance Technology Planning

Enables quantifying effects of technology deltas at engine level



Demands staff with stronger inter-disciplinary technical skills



The Bottle Neck has shifted downstream:

“Expert” centers are too slow to follow the process with higher resolution work



Pratt & Whitney Canada – PMDO 
Impact of PMDO-Lite on Advanced Design Process
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Pratt & Whitney Canada – PMDO 
Looking Forward





Continue developing fundamental building blocks

Component-Level MDO’s: ANSYS – detailed geometry optimizers

Module-Level MDO’s: ex: compressor & turbine modules

System-Level MDO’s : ex: integrated aerothermal model

Other Post Processors: ex: parameterized maintenance costs



Execute Proof of Concept Projects on

How to integrate all these building blocks

Explore the envelope of Business to Business possibilities



Re-Optimize the Process Stream

Optimization of the triad: Tools + Skills + Processes  ... as a whole ... 

To exploit the full potential:







Keeping in mind that PMDO’s & MDO’s are Process Emulators

TOOLS

PROCESSES

SKILLS















Weakest Link drives overall performance
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•
Honeywell’s Businesses


•Diverse Businesses, Technologies and Products


2008 Sales


•Total = $36.6B


•$12.7B


•$4.6B


•$14B


•$5.3B


•Aerospace
•Specialty


Materials 


•Automation


•and Control Solutions •Transportation


Systems 
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•


Key Product Families


• Environmental Control Systems


• Electric Power


• Auxiliary Power Units


• Turboshaft Engines


• Turbofan Engines


• Engine Fuel Systems


• Engine Pneumatics


Key Competitors


• Pratt Whitney Canada (UTC)


• Hamilton Sundstrand (UTC)


• Liebherr Aerotechnik


• Smiths Aerospace


• Goodrich


• Parker Aerospace


• SNECMA


• Triumph


• AAR


Key Customers


• Airbus


• Boeing


• Bombardier


• British Aerospace


• Dassault


• GEAE


• Garrett Aviation


• Lockheed Martin


• US Army


• USAF


Airframe  Systems Engine Systems Propulsion


Aftermarket Services HPGProducts


Aerospace Mechanical Product Overview
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•


Key Product Families


• Displays


• Aircraft Management & Control


• Vehicle Reference


• Safety Systems


• Integrated Systems


• Space Systems


• Data Management


• Communication & Navigation


• Aircraft Lighting


Key Competitors


• Rockwell Collins


• Thales


• Northrop


• Smiths


• L3


• Teledyne


• Goodrich


• Garmin


Key Customers


• Boeing


• US Government


• Lockheed Martin


• Airbus


• Cessna


• General Dynamics


• Embraer


• Bombardier


Products


ATS BRGA DSES


Customer Services HTSIFMT


Aerospace Electrical Product Overview
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•
About Richard Benoualid of Honeywell Aerospace 


Richard Benoualid joined Honeywell in 1995. 


Bachelors in mech eng -.  University of Montreal, Polytech, Canada


Masters in Science (MSTM) – Embry Aeronautical University, USA


Live in Arizona


Manager of Process and Tools Integration department at Honeywell Aerospace.


Focus of department:


Analysis Knowledge Management


Design and Analysis Tools development


Repair and Overhaul Tools development


Process integration and optimization 


1993 Pump designer CAD specialist (DS)  Honeywell design  Honeywell Mgr



http://www.google.com/imgres?imgurl=http://www.pointwise.com/images/app_cfturbo_design_250px.png&imgrefurl=http://www.pointwise.com/apps/cfturbo.shtml&usg=__RRFPzO013mOpmGEwiNGzgYvgYVM=&h=200&w=250&sz=48&hl=en&start=446&zoom=0&tbnid=IhgKJmj1GNNZGM:&tbnh=89&tbnw=111&prev=/images%3Fq%3Dpump%2Bdesign%2Bpictures%26start%3D440%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1

http://www.google.com/imgres?imgurl=http://www.lesker.com/newweb/Vacuum_Pumps/jpg/Dwg_BOCEd_XDS5.jpg&imgrefurl=http://www.lesker.com/newweb/Vacuum_Pumps/scrollpump_bocedwards_xds.cfm&usg=__0J9QI3YHY8CUYpxK8jYKFemXVX8=&h=337&w=494&sz=35&hl=en&start=13&zoom=1&tbnid=T8nSuu21MSpA7M:&tbnh=89&tbnw=130&prev=/images%3Fq%3Dpump%2Bdrawing%2Bpictures%26um%3D1%26hl%3Den%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1

http://www.google.com/imgres?imgurl=http://www.aquaplansa.co.za/images/pump-assembly1.gif&imgrefurl=http://www.aquaplansa.co.za/miscellaneous.htm&usg=__w4QvAONZW8i1fX450_S_88EJf8s=&h=206&w=287&sz=45&hl=en&start=179&zoom=1&tbnid=aMGgdII5iIrDBM:&tbnh=83&tbnw=115&prev=/images%3Fq%3Dpump%2Bassembly%26start%3D160%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1

http://www.google.com/imgres?imgurl=http://www.airwork.co.nz/imageGallery/turbines/Garret-TPE-331/IMG_0042.jpg&imgrefurl=http://www.airwork.co.nz/content/turbines/Garret-TPE-331.aspx&usg=__yjQ6xd5qAuMD6f-Ta32PlzfNLI0=&h=250&w=250&sz=25&hl=en&start=39&zoom=1&tbnid=4452GGlI4jof5M:&tbnh=111&tbnw=111&prev=/images%3Fq%3Dcad%2Bturbine%2Bengine%2Bhoneywell%26start%3D20%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1

http://www.google.com/imgres?imgurl=http://www.geomagic.com/en/assets/images/products/blade/bladeweb.jpg&imgrefurl=http://www.geomagic.com/en/products/blade/&usg=__J4mkI0jOuaHL9_8xpLK-FktTIUs=&h=201&w=200&sz=10&hl=en&start=87&zoom=1&tbnid=WNUJpuqblN4uNM:&tbnh=104&tbnw=103&prev=/images%3Fq%3Dcad%2Bturbine%2Bengine%2Bhoneywell%26start%3D80%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1

http://www.google.com/imgres?imgurl=http://www.airwork.co.nz/imageGallery/turbines/honeywell-LTS-101/LTS101-Effusion-Liner-and-Junction-Block-(SB-207)-023.jpg&imgrefurl=http://www.airwork.co.nz/content/turbines/Honeywell-LTS-101.aspx&usg=___fNtd-nUAQo8eBkyCUR9PWAxPNg=&h=250&w=250&sz=27&hl=en&start=58&zoom=1&tbnid=5XXyrVFHwjWFqM:&tbnh=111&tbnw=111&prev=/images%3Fq%3Dcad%2Bengines%2Bhoneywell%26start%3D40%26um%3D1%26hl%3Den%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1
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•


Integration/Opt/DOE/distributed – iSight engine


• Isight/FIPER Computing
- HPCC – high performance computing cluster working with FIPER in production


- MCCS – microsoft compute cluster working with FIPER in production


• Integration and Optimization projects


- Turbo Fan growth engine stator (aero/mech/accoustics)


- Aero impeller/axial


- Aircraft CTQ


- SysDynamics


- Containment


- SoftFOD


- Clearance/secondary flow


- Combustion


- Structural (Spinner, Shaft, Case, GB )


- System modeling


Process integration and optimization
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•
Example #1 – Containment analysis - iCon


What is containment  analysis:


 Containment analysis is to analyze the outer structure of an aircraft engine 


which restricts the blade and hub from damaging other objects outside aircraft 


engines, when there is a blade off or tri-hub burst. 


A typical process of containment analysis includes: 


1) Generate mesh from geometry definition, 


2) Run Prepost to define LSDYNA configuration, 


3) Run LSDYNA analysis, 


4) Calculate failure factors.


Process issues:


 Need ability to quickly predict failures


 The manual process usually needs manipulate the files and 


parameters between the steps. 


 Running DOE process is a more difficult task. Users normally have to a 


generate DOE matrix, and repeat the steps for each of the numbers of 


runs (e.g. 128 runs) for each DOE case. 


 The results will have to be assembled manually and analyzed. 


Managing these steps and the number of runs manually is time 


consuming and prone to errors.


 Methodology missing for analyzing results.


 There is no common design practices and criteria


 Different sites and products have different processes.


 Avoid rework and costly tests. 


 Reduce weight in early design stages.


Axial-Flow Turbine 


Axial-Flow Compressor


Phoenix


Impulse


Turbine 


Axial-Flow 


Turbine 


TempeTorrance


•CONTAINMENT


•RING


Axial-


Flow 


Fan


Yeovil


Velocity project created with containment engineers, 



http://www.google.com/imgres?imgurl=http://www.compositesworld.com/cdn/cms/SB09_compositesthematerials_m.jpg&imgrefurl=http://www.compositesworld.com/articles/fabrication-methods&usg=__UzX6vponUz6dV5ZxKqBFhM4XTdQ=&h=482&w=500&sz=59&hl=en&start=35&zoom=1&tbnid=lckJ3BlSudg9nM:&tbnh=125&tbnw=130&prev=/images%3Fq%3Daircraft%2Bengine%2Bcontainment%26start%3D20%26um%3D1%26hl%3Den%26safe%3Dactive%26sa%3DN%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1
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•


Field issues


Expensive tests
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•
Containment Project Tasks Breakdown


• Automate the analysis process   


- Understand the process. Work with containment analysis engineers to define problem statement.


- Integrate process which includes the creation of a parametric geometric model, generation of mesh,  LS-
DYNA analysis (to generate max strain plots), and calculation of containment factor. 


- Platform independent –Windows, UNIX, and linux, or combination.


- Run multiple configurations (DOE, optimization) on distributed computers.


• Decide the best DOE scheme by investigating various DOE tools, techniques, and post processing methods.


- 7 geometric parameters and 1 rotor speed


- Minitab to generate DOE matrix, iSIGHT-FD to run, and Minitab and iSIGHT-FD to post process.


• Run DOE’s on different product groups


- Three product groups –Phoenix, Tempe, and Torrance


• DOE results to generate models


- Coefficients from factorial fit exported to spreadsheet for fast approximation of new configurations (geometric 
and speed parameters). 


- Optional RBF (Radial Basic Functions based on neural network) in iSIGHT-FD for approximation and 
optimization.


- Used for approximation of optimized design, and starting point for refined optimization.


- Develop understanding of the terms driving failure factor, in order to do cost and performance trade studies 
for future designs


• Enhance pre and post processing interface


- Decide if results are worth enhancing into robust tool
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•


Step 1) Get all groups involved


Step 2) Work with containment engineers to understand process


Process/Tool 


Standardization


Axial-Flow Turbine 


Axial-Flow Compressor


Phoeni


x


Impulse


Turbine 


Axial-Flow 


Turbine 


TempeTorrance


•CONTAINMENT


•RING


Axial-


Flow Fan


Yeovi


l


Getting Started on the containment project
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•
Containment project


Step 3 – Define Geometry and parameters                          Step 4 – Define process inputs and outputs


Automatic Meshing of hub, blades, and containment ring 
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Containment Failure Factor Calculation 


Where:


T.I.E= Maximum Total internal energy of shroud (this also includes the eroded energy)


epf = Plastic Strain to failure


spf = Failure stress corresponding to epf


V= Initial volume of the shroud


R2= containment ring inner radius


R5= rotor rim radius


Containment Factor


Matsum file


D3hsp file


Mat.k


Text file with 


Containment FactorOutput


Input


(R2/R5)x (T.I.E)


[epf x spf x V]


Containment Factor =


User input


Matsum  file


D3hsp file


Mat.k


Containment_ring.k file


Mat.k
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•


•Central Database


•Grid


•HPC


Step 5 – Automate process using iSight-FD


• iSight-FD software was used to integrate and automate the analysis process 


• The process includes Parametric design, meshing, LS-DYNA analysis, and containment factor calculation. 


• Ability to run on different or mixed platforms (Windows, UNIX, linux).


• Multiple DOE runs on distributed computers to reduce cycle time


Containment project



http://www.google.com/imgres?imgurl=http://members.whro.net/~pterry/vwc/week1/computer.gif&imgrefurl=http://members.whro.net/~pterry/vwc/week1/basic_computer.htm&usg=__w6H7ygfLv1hIKsGfOdw11ebORwk=&h=526&w=462&sz=36&hl=en&start=5&zoom=1&tbnid=3kSPOk8l6D73ZM:&tbnh=132&tbnw=116&prev=/images%3Fq%3Dcomputer%26um%3D1%26hl%3Den%26safe%3Dactive%26rlz%3D1T4RNTN_enUS321US322%26tbs%3Disch:1&um=1&itbs=1
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•


Step 6 - RUN DOE


• 8 variables are (L2, L3, R1, R2, R3, R4, R5 & Speed)


• Based on eight factors being investigated and the time for each run being relatively fast, 


• A high resolution orthogonal design (VIII) was selected with 128 runs used to create models


• If the time to run a test was long, then less runs (64) could have been conducted, with a few additional ones to removed any aliasing.


• The original parameter ranges produced invalid geometries. The ranges were modified to eliminate the invalid geometries in order to 
understand statistical significance of the factors and interactions


• The orthogonal designs were created in Minitab (ability to see aliasing) and loaded into FIPER to conduct the DOE


DOE  Results running iSight modelMinitab – 128 runs 
orthogonal array to find 
input parameters


DOE  Range


Containment project
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•


Step 7: Analyze DOE results


• Practical Analysis :  


• The orthogonal design allowed information to be learned about main effects and 2 and 
3 way interactions (3 way interactions were suspected as being significant). Ninety two 
degrees of freedom were required in order to eliminate any aliasing between 
interactions.


• Sorting the data on the response, Failure Factor, showed a range of range for the data 
of .45, 1.58, and 1.76 for each product respectively. This was considered to be a good 
spread in the failure factor response and validated that the factor ranges were good.


• Graphical Analysis:  The data was then sorted in run order and an IM chart was 
created to determine if there were any special cause events that invalidated the 
experiment. The IM charts for all three sites showed the failure factor response to be 
random with only a couple of unusual observations for any data set for the entire 128 
runs.


Getting the response surface factors:


• Minitab software has capabilities in generating orthogonal arrays and analyzing the 
DOE results


• Orthogonal arrays are most efficient to evaluate main effects and interactions


• Minitab is used to analysis the DOE results to obtain an analytical model where Y=f(x)


• Reduction of factor ranges to prevent invalid geometries


• Data transformation on responses to improved the model fit


• The tables show the coefficients of response surfaces for Phoenix and Torrance 
products 


Phx  - engine HPT case            Tor- blower ECS case


Containment project
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•


Step 8: Validate with actual results


Observations


•The comparison of predicted results with the actual results show that they match well as long as the parameters are within 
the specified DOE ranges.


•The DOE ranges are narrower than the initial ranges, which span several product lines in a certain site. The modifications 
were needed to avoid unfeasible geometries.


•The results are less accurate when the parameters are outside of specified DOE ranges.


DOE Lessons Learned


•Full factorial and fractional factorial designs created with original factor ranges had many runs violating constraints, due to invalid geometries that 
were created. Without failure factor results, the orthogonal design was not complete and could not be analyzed to obtain information about 
interactions.


•Use of GOSSET (a free software) for creating design matrix with constraints was attempted to avoid unfeasible geometries. However it could not 
generate orthogonal array and had to be evaluated using regression techniques. This limited the analysis to main effects and precluded information 
about interactions.


•MiniTab was used to generate Orthogonal array and analyze the results. The array generated by iSIGHT is somewhat different than MiniTab. 
Orthogonal arrays generated by iSIGHT were not supported with an aliasing table which shows the terms that are confounded. As such, it is 
impossible to determine additional runs to be able to break the aliasing. In addition, iSIGHT does not plot normal probability chart for analysis of 
results.. Data transformation and reanalysis greatly improved the model fit.


Containment project
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•


Conclusions of initial velocity project


• DOE ranges were modified to be narrower to avoid unfeasible geometries


• Response surfaces were created to predict results


• Predicted results match closely with actual results from testing


Project was successful


• To standardize the containment analysis process across various sites


• To obtain a process that produces a preliminary design in a very short period of time: a Containment Design Surface (CDS)


• The user would plug in his input parameters in the CDS tool and obtain a preliminary design solution in minutes


• The quality and robustness of this simplified preliminary design would be close enough to the one of a detailed design, such 
that it can be called “intelligent”


• The process is applicable for all Aerospace product lines involving design for containment


• The time savings using the new process are considerable enough to warrant introduction


Recommendations:


• To avoid conflict in ranges, the DOE has to be split into number of DOEs with smaller ranges increasing the complexity of 
solution


• Any new design may not fall in the range of any one of the DOE, which requires a whole new DOE to predict failure factor


• The number of input parameters are limited by the DOE process, which leads to approximate model geometry


Next steps


• Address recommendations


• Project and containment engineers want robust tool for  pre and post processing results 


• Funding was made available to continue project. 


Icon tool is born as Honeywell:


Containment project
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•


Create Disk


Freeform Disk


•x


•y


The points are read in as (x,y) coordinates and must be input in 
clockwise order.  A minimum of 3 points is required.


The first point entered is the reference for axial alignment with other 
components.


Point 1


Point 2


Point 3


Point 4


•R
6


•R
4


•T
1


•R
5


•H7


•T
6


•T
7


•H
3


•H
4


•T
3


•R
8


•R
7


•H
5


•H
6


•T
4


•T
5


•H
1


•H
2


•T
2


•x


•y


Containment project
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•
Create blade


Simple


1. 2 planar root points


2. Height


3. Constant thickness


4. Twist angle
This point is the reference for axial alignment


1 3


•h
e
ig


h
t


Twist Angle: Relative angle between the chord line at 
the root of the blade and the tip of the blade.


x


y


Blade profile 


at tip


Blade profile 


at root


Twist 


angle


Input Blade Parameters


Coordinates Thickness


Point X Y


1 X1 Y1 t1


3 X3 Y3


General


1. 6 planar key points


2. 6 thicknesses


3. Simulated curvature


4. Twist angle


Input Blade Parameters


Coordinates Thickness


Point X Y Z


1 X1 Y1 Z1 t1


2 X2 Y2 Z2 t2


3 X3 Y3 Z3 t3


4 Y4 t4


5 t5


6 Y6 t6


1 32


6 5 4


+


X


+


Z


1
2


3


Containment project
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Flanged


L1


R2


R1


x


y


Create Containment ring Freeform


x


y


The points are read in as (x,y) 
coordinates and must be input in 
clockwise order.  A minimum of 3 
points is required.


The first point entered is the reference 
for axial alignment with other 
components.


Point 1


Point 2 Point 3


Point 4
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Containment project
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•


•Icon is a containment analysis tool that integrates the process in early design phases


•Expands iSIght containment process to include Blade geometry, Materials, Easy pre/post 
processing,  Allows quick runs given geometry parameters, Allows runs for DOE generation 
and prediction. First deployment of iCon at Honeywell Q3 2010.


•Reduces cycle time from 3 weeks to 3 days.
Create disk Create blade Create Shroud                Create Containment position and dimensions


Parameters  set up DOE             Materials                           Mesh in Patran and view          analyze mesh


Launch in Lsdyna solver                   View Lsdyna Plots and videos


Containment project leads to iCon tool
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•
Containment project - General Lesson


• Important to spend time with subject matter experts to understand and refine 
analysis process


• Spend time modeling the process in an integration tool before developing further 


• DOE gives a good understanding of problems in solving and finding areas of 
solutions.


• Spend time ensuring the user interface is robust and can be run to reproduce result 
at any time quickly


• Apply predictions form DOE for quick early analysis


• Refine the final solution by rerunning chosen solution


• Approach Optimization once design space well understood and on a case by case, 
as it depends on number of variables, ranges of parameters, materials…etc.
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• Other projects


•
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•
Example #2: Compressor Design Process Integration


• An integrated process used in compressor design. 


- Includes geometry creation, grid generation, solver, post-processing, and report.


- Distributed computers for multiple pressures, DOE, and Optimization


- Mixed platforms


 All codes except Excel can run on UNIX.  


 Solver can run mixed platforms – UNIX, Windows, and Linux.


• Template for DOE and Optimization studies


Compressor process map







25


•


Isight Model and Results


DSPLIT Results
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Example #2: Compressor Design Process Integration
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•
Example #3 Fan Bypass Stator Design Optimization


Honeywell Isight Example (reuse from example #2)


• Integrate multi-disciplinary codes 


- Aerodynamic


- Acoustic


- Mechanical


• Multiple objective optimization to find designs with minimal aerodynamic 
loss and noise, while satisfying mechanical constraints.
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•
Example #3:  Fan Bypass Stator Design Optimization


Flow Charts


Geo-Gen


bypass_opt.inp


geo1


geo2


geo3


Geo-Gen


bypass_approach_inp


bypass_cutback_inp


Flutters


Stresses


Strains


Deflections


Loss


Corrected flow


Minimize: 


1) Stator Loss@Wc_design, 


2) Noise levels at approach and cutback


Subject to:


1) ABS(Min_strain) < sig_strain, 


2) Max_deflection < sig_defl,


3) Flutter_bending > sig_bend


4) Flutter_torsion > sig_torsion,


5) Loss@Wc_design+/-5 – Loss@Wc_design < sig_dwc


Noise_levels


(Approach


& Cutback)


Design 
variables


load


Mech


Acoustic


Aero
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•
Example #3: Fan Bypass Stator Design Optimization 
Isight Model
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•
Example #4: Automation and Optimization of LPC2 DISK


Data Flow and File Mapping


MOVE 


NODES


Post


Felix2


mvnodes.inp


sys2d3d_5b_c10b.db


lpc2d3dmod.db


flx_1,


…, 


flx_22


Solver
run_mod.inp


sys2d3d.s01


...


sys2d3d.s22 sys2d3d.rdb


sys2d3d.rst


felix2.inp


LCP2-LCF-


64stoa.ses
Summary_Res


ult


felix2.ou


t


LCF Life (3 sigma)


Volume
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•


Flow Chart - Optimization


Switched between Optimization and DOE 


Several approximation 
methods can be saved with 
only one activated at a time.


Configuration file to 
provide file paths


Calculate radial coordinates 
(control variables and 
interpolations)


Run Batch ANSYS 
(APDL scripts)


Run  Felix 
program 


log LCF 
(optimization 
purpose)


Example #4: Automation and Optimization of LPC2 DISK
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•


Configuration File


• Template file


- To parse parameters


- Attached to the model


- Download for modifications


- Modify the parameters (file location, file 
names of the DB file and load cases)


- Re-load before it is run


Example #4: Automation and Optimization of LPC2 DISK
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•


Parsing Parameters


Input Parameters Output Parameters


Output from ANSYS Postprocessor


Felix Output


Example #4: Automation and Optimization of LPC2 DISK
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•
Variables


• Design Variables


• Changes of the radii wrt to the baseline are used as the design variables.


• ri = ri
o + ri


• Totally 39 desirable variables


• 9 control variables (independent) to reduce design variables 


• The other 30 variables are linearly interpolated from the axial coordinates. 


• Output Responses


• LCF life = 60,000 cycles is used as the constraint (lower bound)


• Added a margin of 5,000 to 10,000 to account for approximation inaccuracy 


• Alternatively using Log(LCF Life) gets slightly more accurate approximation


• Volume is used as the design objective


• No improvement by using (Volume – 100)


Example #4: Automation and Optimization of LPC2 DISK


•Inputs:


•dx1, … dx9


•Outputs


•3 sigma life


•log(life)
•Volume


•Volume - 100
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•


Radii and Variables Interpolations


x13205=1.5138+dx1


x13204=1.536+dx2-(dx2-dx1)/(-3.695-(-3.8618))*(-3.695-(-3.8329))


x13203=1.5539+dx2-(dx2-dx1)/(-3.695-(-3.8618))*(-3.695-(-3.8011))


x13202=1.5669+dx2-(dx2-dx1)/(-3.695-(-3.8618))*(-3.695-(-3.767))


x13201=1.5748+dx2-(dx2-dx1)/(-3.695-(-3.8618))*(-3.695-(-3.7314))


x13200=1.5775+dx2


x13207=1.5775+dx3-(dx3-dx2)/(-3.4986-(-3.695))*(-3.4986-(-3.6557))


x13208=1.5775+dx3-(dx3-dx2)/(-3.4986-(-3.695))*(-3.4986-(-3.6164))


x13209=1.5775+dx3-(dx3-dx2)/(-3.4986-(-3.695))*(-3.4986-(-3.5771))


x13210=1.5775+dx3-(dx3-dx2)/(-3.4986-(-3.695))*(-3.4986-(-3.5379))


x13211=1.5775+dx3


x13212=1.5775+dx4-(dx4-dx3)/(-3.3414-(-3.4986))*(-3.3414-(-3.4593))


x13213=1.5775+dx4-(dx4-dx3)/(-3.3414-(-3.4986))*(-3.3414-(-3.42))


x13214=1.5775+dx4-(dx4-dx3)/(-3.3414-(-3.4986))*(-3.3414-(-3.3807))


x13215=1.5775+dx4


x13216=1.5775+dx5-(dx5-dx4)/(-3.1843-(-3.3414))*(-3.1843-(-3.3021))


x13217=1.5775+dx5-(dx5-dx4)/(-3.1843-(-3.3414))*(-3.1843-(-3.2629))


x13218=1.5775+dx5-(dx5-dx4)/(-3.1843-(-3.3414))*(-3.1843-(-3.2236))


x13219=1.5775+dx5


x13219=1.5775+dx5


x13220=1.5775+dx6-(dx6-dx5)/(-2.9879-(-3.1843))*(-2.9879-(-3.145))


x13221=1.5775+dx6-(dx6-dx5)/(-2.9879-(-3.1843))*(-2.9879-(-3.1057))


x13222=1.5775+dx6-(dx6-dx5)/(-2.9879-(-3.1843))*(-2.9879-(-3.0664))


x13223=1.5775+dx6-(dx6-dx5)/(-2.9879-(-3.1843))*(-2.9879-(-3.0271))


x13224=1.5775+dx6


x13225=1.5775+dx7-(dx7-dx6)/(-2.7914-(-2.9879))*(-2.7914-(-2.9486))


x13226=1.5775+dx7-(dx7-dx6)/(-2.7914-(-2.9879))*(-2.7914-(-2.9093))


x13227=1.5775+dx7-(dx7-dx6)/(-2.7914-(-2.9879))*(-2.7914-(-2.87))


x13228=1.5775+dx7-(dx7-dx6)/(-2.7914-(-2.9879))*(-2.7914-(-2.8307))


x13229=1.5775+dx7


x13230=1.5775+dx8-(dx8-dx7)/(-2.595-(-2.7914))*(-2.595-(-2.7521))


x13231=1.5775+dx8-(dx8-dx7)/(-2.595-(-2.7914))*(-2.595-(-2.7129))


x13232=1.5775+dx8-(dx8-dx7)/(-2.595-(-2.7914))*(-2.595-(-2.6736))


x13233=1.5775+dx8-(dx8-dx7)/(-2.595-(-2.7914))*(-2.595-(-2.6343))


x13206=1.5775+dx8


x13239=1.5748+dx9-(dx9-dx8)/(-2.4282-(-2.595))*(-2.4282-(-2.5586))


x13238=1.5669+dx9-(dx9-dx8)/(-2.4282-(-2.595))*(-2.4282-(-2.523))


x13237=1.5539+dx9-(dx9-dx8)/(-2.4282-(-2.595))*(-2.4282-(-2.4889))


x13236=1.536+dx9-(dx9-dx8)/(-2.4282-(-2.595))*(-2.4282-(-2.4571))


x13235=1.5138+dx9


Example #4: Automation and Optimization of LPC2 DISK


DOE


•Latin Hypercube


•Design variables:
- 0.015 =< (dx1,…,dx9) =< 0.015


•Output responses:
Life and volume


•80 initial sample points
•Number of sample points is important to get a good 
approximation


•Minimum number is 19


•Recommended number is 146


•Run the points in parallel on PHSBS servers
•Slow to move large ANSYS result files across the 
network
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•


Approximation


• Technique: RBF Model


• 95 sample points are used for error analysis


- Includes 80 initial DOE runs, 5 additional DOE runs, and 10 early approximation runs for error 
analysis.


• 10 additional runs for error analysis are included for the approximation without error 
analysis.


• A good approximation for volume 


- No improvement if using Volume -
100


• A poor approximation for Life


- Slight improvement if using Log(Life)


• Best to run the error analysis runs in local 
computers to avoid large file transfers


- No parallel capability during error 
analysis


Example #4: Automation and Optimization of LPC2 DISK
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•


Optimization


• Optimization technique: NLPQL 


• Design variables:   - 0.015 =< (dx1,…,dx9) =< 0.015


• Constraint:


Log(Life) >= log(65,000)


(or Life >= 65,000)


• Objective: Minimize volume


(or Volume – 100)


• Optimized


- dx2 = 0.0029


- All others = 0.015 


(maximized)


Results:


Successfully 


Reduced volume from 101.9655 to 101.7973


Increased life from 52680 cycles to 61680


LPC2 DISK Inner Radius Optimization
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optimized


Life=61,680 Cycles


(appox: 65,000 cylces)


volume=101.7973


baseline


Life=52,680 Cycles


(approx: 71,998 cycles)


volume=101.9655


dx (radial change wrt to the baseline) 


Example #4: Automation and Optimization of LPC2 DISK
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•


Confirmation Run


• Confirmation runs 


- Baseline geometry (dx1,…, dx9 =0)


 Life = 52,680 Cycles (approximation 71,998 cycles)


- Optimization run (dx1=dx2=dx4., ..., dx9, =0.015, dx2=0.0029)


 The radial change between these points are interpolated based on the axial coordinates.


 Life = 61,680 Cycles (approximation and optimization target 65,000 cycles)


 The result was verified with ANSYS model (manually)


• Accuracy largely depends on approximation, which largely depends on the number of DOE sample 
points.


• Conclusions:
- iSight is effective way to tie ANSYS pre, solver, post, Felix together to obtain LCF life automatically.


- Ideally multiple DOE runs in parallel in distributed computers 


- DOE runs (75 successful runs and 5 failed runs).  Fail runs (due to network issues) can be re-run 
without repeating the whole DOE.


- Error analysis runs during approximation can be included in a new approximation to improve 
approximation accuracy.


• Lessons Learned:


- Design variables should be reduced to a manageable number 


 From 39 to 9 in this case


- To avoid large file across the network if possible


 Combining the ANSYS Solver with the ANSYS Post should help


• Next Step:


- Incorporate the process and lessons learned to other projects.


Example #4: Automation and Optimization of LPC2 DISK
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•
Example #5) Compressor – flank milling problem


• Problem: define two point flank milling in order to get smooth compressor wheel 
surface


• Cutter angle distributions must be smooth because the cutter movement must be 
smooth to avoid scratch on the blade surface


• The distributions will be changed by running an optimization in Isight


•Black, surface 
of input or base 
geometry •M


•Red, sls by 
UTFS


•R*theta


•+ Deviation


•- Deviation


•Blade surfaces along a streamline showing + & - deviations


Blade 


surface


Cutter movements


Cutter 


movement


s along 


other 


blade 


surface


11 such  streamlines


•z


•0,0


•This gives the deviation information by blade 
surfaces, by streamlines (sections) and by 
points.
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•
Example #6) Engine Performance Optimization


• FAST-1D


- All aspects of preliminary engine design


- Incorporation of RCCSM and MSSD codes


- Established FAST framework


• 1-D Engine simulation for overall engine and system performance


- Multiple variables (stages/diameter/configurations)


- Multiple constraints (pressure/temperatures/thrusts/weight)


- Single or multiple objectives
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•
Example #7 - Slinger Rotor Optimization Problem


Description


• Slinger rotor is designed to discharge fuel into the interior of the combustor.


• 131-9D is the APU for which the slinger rotor is being designed.


• Slinger Rotor design is analyzed using a parameterized model built on ANSYS 10.0


Objective


• Main objective of slinger rotor design is to find out a geometry that gives maximum life.


• The material and load are fixed.


• Optimization techniques are required to alter the geometry based on ANSYS 10.0 results


1 Outside radius of the shaft 1.4626 1.4626


2 Total radius of the slinger 2.4921 2.4921


3 Fillet radius of support geometry 0.03 0.03


4 Length of the slinger (Between two curvic couplings) 6.4 6.4


5 Angle of support geometry -15 -15


6 Hole angle 0 0


7 Inside diameter of the shaft 0.807723 0.7995


8 Hole diameter 0.025225 0.025


9 Number of holes 85 86


10 Web thickness 0.20714 0.2


11 Web fillet radius at shaft to web interface 0.25632 0.25


12 Web fillet radius at shaft to web interface 0.10722 0.1


13 Fillet radius at web to support geometry 0.29942 0.3


14 Width of the support geometry 0.29396 0.3


15 Height of the support geometry 0.12694 0.125


16 Width of the cup 0.09661 0.1


17 Height of the cup 0.06721 0.07


18 Fillet radius of the cup 0.039623 0.04


19 Small thickness of the web at inside slinger 0.052685 0.05


20 Fillet radius at inside slinger (left) 0.081646 0.08


21 Fillet radius at inside slinger (right) 0.053803 0.05


22 Length of the inside slinger 0.8768 0.88


23 Height of the inside slinger 0.24588 0.245


24 Chamfering angle for cup 12.362 12.5


25 Height of the hole 0.15405 0.155


Dimensions for 


optimum design


Rounded off dimensions 


for optimum design


Limits used for ANSYS design optimization


S. No. Design Variables
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•
Slinger Rotor - Analysis steps in ANSYS


Start


Create area from 
the given input


Data input 
to create 
geometry


Sweep the area to 
create the sector


Punch the hole at the 
center of the web


Chunk the volume 
to get the hex mesh


Mesh the volumes by 
using Solid70 elements 


(Thermal elements)


Apply the HTC (1000 BTU) & bulk 
temperatures (80 F at fuel impinging  


region & 480 F at other areas)


Apply 480F temperature 
at curvic coupling ends


Perform thermal 
analysis


Switch to structural 
elements (Solid45)


Remove all thermal 
boundary conditions


Apply temperature profile 
from thermal analysis


Apply clamp loads & 
speed


Perform static 
analysis


Post process the results 
and get max stress


End


Creating geometry


Meshing


Thermal analysis


Thermal analysis


Stress analysis


Post-processing
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•
Rotor Slinger Optimization – Complete problem


ANSYS Analysis FELIX


Parameters defining geometry


Parameters defining the material


Load


Stress


Optimization
Slinger rotor lifeAlter geometry  parameters


ANSYS 10.0 analysis and optimization is integrated into FIPER.


FELIX is to be done and so the optimization focuses on minimizing stress.


Variables


Table below lists the Variables in the Slinger Rotor model along-with their lower and upper bounds.
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•
Slinger Rotor – Process Model


• The calculator computes the difference between “Height of the hole” and “Height of the cup.


• The Configure Input component writes the FIPER variable values into the ANSYS Macro file.


• The Macro file is used as input while executing ANSYS through the OS Command 
component.


• The ANSYS macro writes the maximum stress as output as it completes execution.


• The Read result component reads the result and stores it in a FIPER variable.
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•
Slinger Rotor - Optimization setup


• The “Pointer” technique was chosen for optimization as it is a combination of both 
exploratory and numerical search techniques.


• Following table lists the values of the optimization variables along-with their lower 
and upper bounds
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•
Slinger Rotor - Optimization setup


• The constraints setup for optimization are:


- The difference between “height of the hole” and “height of the cup” must have a lower bound of 0.075.


- Also the Max stress had a upper bound of 223000. This was a value that was observed through 
ANSYS optimization, and the intent of this optimization was to better that result. 


• The objective of this optimization is to minimize the maximum stress as analyzed through ANSYS.
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•
Slinger Rotor - Optimization Result


• The optimization for Slinger Rotor was executed in 6 cycles.


• Each cycle had a 5 hour execution time.


• Each new cycle started with the best results from the previous 
cycle.


• Attached excel file contains the results from each cycle.


• Following table shows the values for the variables that resulted in 
the lowest stress of 217440.162
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Conclusion of Presentation


• There are many challenges in the aerospace industry requiring process 
and tool integrations, DOE and Optimization studies.


• Every study is a learning experience that gets reapplied to the next problem


“Everything should be made as simple as possible, but not one bit simpler.” 


Albert Einstein, (German-born) physicist (1879 - 1955)
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•


Honeywell


Thanks you!


Questions






[image: image1.wmf]2


x


[image: image46.wmf][image: image47.jpg]}
A NATO
\4% OTAN








Shape Representation







Shape Representation



Shape Representation


Wahid Ghaly


1455 de Maisonneuve, West


MIE Dept., EV 4.151


Montreal, QC, H3G 1M8, CANADA


Ghaly@encs.concordia.ca


Abstract


Shape representation is an integral part of any shape optimization problem. This representation is usually used in generating the geometric model, referred to as the CAD model that is used later on for generating the computational mesh used in e.g. aerodynamic, thermodynamic or structure simulations. Geometry representation can be feature-based, design parameter-based, global or local, parametric or point-wise. This paper presents and assesses different geometric representations of axial turbine and compressor blades used in gas turbines, and their effect on the design space and the optimization process.


1.0
introduction


The shape representation that is used in a given application should be accurate, flexible and robust; it should involve the minimum number of design parameters (unless an adjoint-based optimization method is used), these parameters are lately used as design variables. Such representation should also be suitable for the intended application, i.e. it should relate to the design parameters and should preferably use a CAD-native parameterization either directly or through e.g. an Application Programming Interface (API). In this paper, we will demonstrate that the geometric representation can make the optimization approach more efficient, moreover it can reduce the complexity of a given design problem.

The applications that are considered in this work are at the component level optimization, e.g. a single or multi-stage turbine or compressor with single or multi-objective. Shapes include airfoils in two-dimensional (2D) flows and complete blades in three-dimensional (3D) flows. The representations vary from a global low fidelity to a local/global high fidelity representation.

Shape representations take almost as many different forms as the number of researchers using automatic shape optimization. They vary from very simplistic ones to fairly complex ones; these representations vary in flexibility, accuracy, smoothness and generality. One way to categorize them is as follows:


· Point-wise representation of geometries, where the surface mesh (on e.g. the blade in internal flow or the wing in external flow) or a geometric representation thereof [1, 2] are taken as the design variables. This approach is used typically in conjunction with adjoint-based optimization methods since the number of design variables does not affect the complexity of the optimization method. The geometry is smoothed out during the optimization process and, in cases where a geometric representation is used, the modified surface mesh is propagated into that geometric representation using a basis space of independent perturbation functions of the Hicks Henne type. Examples of this approach are given in Reuther and Jameson [1] for external flow and in Wang et al. [2] for internal flow.


· Feature-based polynomials, where the geometry is represented by a summation of polynomials that are constructed so as to capture some required geometric features. This approach was introduced by Kulfan [3] and was applied to airplane wings. For example, if the wing is required to have a round leading edge (at x=0), then the polynomial would have a 

[image: image48.png]



behavior near x=0.


· Design parameter-based representation, where the blade parameters (e.g. blade angles, wedge angles, throat area, blade thickness, etc…) are used to generate the blade shape. Examples of this approach to construct axial turbine blades are given in Pierret and Van den Braembussche [4], Öksüz and Akmandor [5] and Mengistu et al. [6]. These approaches generate the blade geometry based on specifying most of the blade parameters and choosing geometric representations to blend these parameters into one blade shape 


· Parametric representations using Non-Uniform Rational B-Splines (NURBS) or a subset thereof such as B-splines or Bezier curves, can represent parametrically almost any geometry to the required level of accuracy, moreover they are becoming the industry standard in shape representation, however it is rather difficult to incorporate geometric features into these representations.


The 2nd and 3rd approaches have some similarities however they differ in terms of the implementation. This paper focuses on the last two representations namely, the design parameter-based and the parametric representations. After presenting the two approaches to approximate the blade shapes, examples of their use in different blade shape optimization problems will be demonstrated for 2D airfoils and 3D blades, for axial compressors and turbines, for single and multi-objective optimization.

2.0
design parameter-based representation


In the global - low fidelity - representation the airfoil is composed of a few sections, each is represented by a low order polynomial that assumes continuity of the shape and the slope with the neighboring sections. This representation is global in the sense that changing any point will affect the entire airfoil shape. In a local/global – high fidelity – representation the airfoil is represented parametrically by a continuous curve such as a Non-Uniform Rational B-Splines (NURBS), a B-splines or a Bezier curve. The global – low fidelity- representation is addressed in this section and the high fidelity one is presented in the next section.

Mansour [7] developed a relatively simple but realistic and practical model for turbine blade geometry representation. The model, identified as the Modified Rapid Axial Turbine Design (MRATD) has its roots in the work of Pritchard [8]. The MRATD model is not only very simple and straightforward to use, it also provides a minimum set of design parameters that can be used to obtain an extensive family of turbine blade profiles. Mansour [7] started with the eleven geometric parameters suggested by Pritchard [8] and added five more as described below. The model basically breaks down the blade into five distinct regions composed of the leading and trailing edge arcs, the suction and pressure side surfaces and the uncovered part of the blade suction surface all of which are conics, see Fig. 2.1a. The 16 geometric parameters are necessary and sufficient in order to model an axial turbine blade using conics. These parameters include: the airfoil radial location, axial and tangential chords, inlet blade and wedge angles (2 for each wedge angle), exit blade and wedge angle, LE ellipse and TE circle, unguided turning, maximum thickness and its location, number of blades, and throat area, see Fig. 2.1b. With the parameters mentioned above, it is possible to determine the locations of the five key points shown in Fig. 2.1a, joining the five blade regions. Moreover, by imposing C0- and C1-continuity of the blade profile at the intersection points, it is possible to determine uniquely the blade shape; more details are given in Mansour [7].


Compared with Pritchard model [8], the MRATD model provides good control on the blades suction and pressure surfaces by splitting the LE and TE wedge angles each into two half angles, which allows an independent modification of these surfaces. A thickness parameter was added so as to allow the optimizer to adjust the suction side profile so as to reach the blade given thickness thus keeping the profile from assuming unrealistic forms. These changes improve the curve smoothness, increase model flexibility, and eliminate most unrealistic shapes. Another important capability of the MRATD model is the choice of leading edge shape, which can be circular as in the original model or elliptical as in current practice. This feature allows for a smoother curvature transition between the leading edge and the pressure and suction sides, and from an aerodynamic point of view, it allows the flow to adjust better to incidence angles. These features of the MRATD model eliminate infeasible airfoil shapes, hence limiting the design space to feasible shapes only.
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Figure 2.1: Modified Rapid Axial Turbine Design (MRATD) model
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Figure 2.2: MRATD representation of typical axial turbine airfoils


With the above-mentioned features, the model becomes suitable for implementation in an automatic shape optimization scheme. The flexibility of the MRATD model is clearly demonstrated from its ability to capture a wide range of existing blade profiles shown in Fig. 2.2.


3.0
parametric representation using nurbs or b-splines


NURBS curves combine high fidelity at the global as well as the local level. They can be used to describe accurately any curve while providing local control over the shape. They are becoming the industry standard and are available in most CAD systems. For a more detailed account of NURBS, Piegl and Tiller [9] provide an interesting and simplified approach to this sometimes-confusing topic. NURBS, or Non-Uniform Rational B-Splines, are defined as:
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(3.1a)

Where 
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 are the x- and y-coordinates of the curve being generated, n is the number of control points
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, wi the weights and Ni,p(u) is the basis function computed based on the knots u. The value of Ni,p(u) is based on two variables, the knot value u, as well as the degree of the function p and is defined as:
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for p > 0
(3.1c)

The key feature of a NURBS curve is that its shape is determined and controlled by the set of control points and the corresponding weights. Moreover, placing and moving either one or more of the control points, the knots or the weights can accomplish either a local or a global change of the target shape. A NURBS curve also represents exactly conics, e.g. circles, ellipses, cylinders, cones. This implies that NURBS functions can represent exactly a much wider family of curves compared with what B-splines or Bézier curves can represent, while simultaneously ensuring the profiles smoothness.
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Figure 3.1: NURBS basis function (left) and NURBS control polygon and curve (right)
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Figure 3.2: NURBS representation of axial turbine airfoils


Examples of NURBS with C2 continuity in representing some typical turbine airfoils are shown in Fig. 3.2, where the approximation of the airfoil shape is accurate to within machining tolerance.

In the following sections, the different approaches to shape representation are used in optimizing compressor and turbine airfoils in 2D flow and full blades in 3D flow. The optimization methodology consists of coupling a Genetic Algorithm GA with a Response Surface Approximation RSA of the Artificial Neural Network type ANN. A CFD solver is used as a high fidelity flow simulation tool to generate the data base needed to train and test the ANN model that is used to generate an approximate value for the objective function during the GA iterations. Figure 3.3 shows the cascade notation and computational domain.
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Figure 3.3: Cascade notation and computational domain


4.0
Compressor Airfoil Optimization using NURBS


Examples of two compressor airfoils are hereby presented: one is an in viscid transonic flow cascade that is optimized using Euler Equations coupled with GA (without involving ANN). The second case is that of a viscous subsonic cascade that is optimized using the RANS Equations coupled with GA and ANN.

The compressor airfoil is represented by the airfoil camber line f(x) which controls the flow turning hence pressure loading, and thickness T(x) which allows for satisfying structural constraints, see Fig. 3.3. NURBS curves are used to represent f(x) and T(x) with 11 and 9 control points, respectively. The y-coordinates of these control points are used as design variables so that the airfoil is controlled by 17 design variables.

Multipoint optimization was carried out for the transonic flow cascade and resulted in an improvement in maximum efficiency of about 1.7%, while the shape has changed very slightly, as shown in Fig. 4.1, which is typical of transonic flow airfoils. 
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Figure 4.1: Original and optimized transonic compressor airfoil
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Figure 4.2: Original and optimized subsonic compressor airfoil

For the subsonic flow cascade, multipoint optimization was carried out and ANN was used to reduce the number of CFD computations hence the CPU time. The optimization resulted in an improvement in the compressor isentropic efficiency over the entire operating range, while the shape has also changed very slightly except for the hook-shaped trailing edge TE. Note that this feature was not present in any of the data base cases used in training the ANN. More details on these cases can be found in Temesgen and Ghaly [10].


These two cases reflect the ability of NURBS to represent airfoils rather effectively and to allow for sweeping the design space, achieving a good improvement in efficiency and capturing a geometric feature that was not present in the original blade.


5.0
Turbine Airfoil Optimization using MRATD and nurbs


The optimization of a turbine airfoil is carried out successively at two geometric levels: it is carried out 1st at the global shape representation level that is a feature-based representation and is based on the design variables; the resulting profile is then refined locally using a high fidelity shape representation using NURBS, B-splines or a subset thereof.

In the global-shape representation, the airfoil is represented by the feature-based representation called MRATD model, presented in Sec. 2, where the MRATD parameters are also the aerodynamic design variables. By construction, the MRATD model eliminates infeasible airfoil shapes. The design parameters are: the number of blades and their radial location, axial and tangential chord, throat, unguided turning, TE radius, inlet and exit metal angles, SS and PS inlet wedge angle, SS and PS exit wedge angle, maximum blade thickness, major and minor diameters of the LE ellipse.

The design intent is to reshape the airfoil suction side so as to improve the aerodynamic efficiency. The optimization variables affecting the suction side are identified as all variables affecting the airfoil suction side, which amount to 6 variables. Moreover, the optimization parameters, being also the design parameters, allow for a physical interpretation of the performance improvement in terms of the design parameters. The optimization results, given in Fig. 5.1, show an improvement in efficiency that is associated with a significant change in shape with as low as 6 design variables. This change could not be accomplished with e.g. a NURBS representation of the airfoil profile, and would not satisfy the designer parameters.
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Figure 5.1: Original and redesigned airfoil using global-shape representation: the MRATD

Local refinement of the airfoil shape can be done in a second phase where regions of potential improvement are identified and are parameterized using NURBS, in this case the improvement region is on the suction side in the first half of the airfoil. With this local change, an additional gain in efficiency is obtained with as low as 6 design variables controlling the local region. See Mengistu et al. [11] for more details.
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Figure 5.2 Original and redesigned airfoil after a local refinement using NURBS

6.0
Blade Representation in 3D Flow


In axial turbines and compressors, the blade is usually defined by several airfoil sections located at different spanwise locations; these airfoils are stacked in the spanwise direction and are used to generate the 3D blade profile. (The representation of the stacking line is discussed in the next section.) When the airfoil sections are optimized to the desired accuracy, a 3-D blade shape can be generated using a technique known as skinning technique [9], where the blade shape is approximated as:
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(6.1)

Where S(u,v) are the x- y- and z-coordinates of any point on the blade surface being generated, n and m are the number of control points Pi,j in the u- and v directions, wi,j the weights, and Ni,p(u) & Nj,q(v) are the basis functions computed based on the knots u and v. The value of Ni,p(u) (or Nj,q(v)) is based on two variables, the knot value u (or v), as well as the degree of the function p and is defined in Eq. (3.1). 


The skinning technique [9] is a simple and intuitive technique to pass a surface through a family of curves that are represented with NURBS or B-splines. For optimization purposes, Polifroni and Ghaly [12] showed that the use of the skinning technique coupled with compatible B-splines [9] to represent the airfoil sections is one of the best approaches to generate the blade surface. They also devised an approach [12] to minimize the number of control points in the resulting approximation of the blade surface. When it was tested with NURBS, the skinning technique produced a smooth surface, Fig. 6.1a, but generated wavy (nonphysical) two-dimensional profiles (Each of these profiles corresponds originally to a constant radius), see Fig. 6.1b. For this reason B-splines were used to represent the 2D airfoils and, for typical axial turbines, compatible B-splines with around 45 control points per airfoil section gave approximation errors within manufacturing tolerance. As a check on the accuracy of the skinning technique, the resulting blade shape reproduced the original 5 sections used in generating the blade surface and showed that all intermediate sections fall at a constant radial location, which is true but it was not explicitly enforced, see Fig. 6.1c. A program was also written [12] in order to produce an IGES file from the given NURBS data. (IGES files provide a means of information exchange between Computer Aided Design (CAD) systems.) Once an IGES file is produced, one can view the 3-D blade surface in CAD packages such as CATIA.

At this point, we see that the 2D airfoil sections can be generated using either the MRATD approach which is a design-parameter-based global approach or using NURBS (or B-splines) and the 3D blade profile can be generated using the Skinning technique with compatible B-splines, which are the industry standard for geometry representation so that the blade shape can now be described fully in any CAD system.
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(a) NURBS

(b) NURBS, close-up of LE region

(c) B-splines


Figure 6.1: 3D blade generation using the skinning technique with NURBS (a) and B-splines (b)

7.0
blade Staking and stagger Representation using QRBC


For axial turbines and compressors, the blade profile is generated by stacking the airfoil sections in the spanwise direction (hub to tip direction). The design of 2D airfoils is rather well understood however the effect of the stacking curve and the spanwise variation of stagger angle, which are the lead parameters affecting three-dimensional flow features, are less understood; therefore they are taken in the present paper as the design variables for optimizing the blade performance in 3D flow.

The base line case is that of a single stage low speed axial turbine stage that was designed and tested in Hanover, Germany, and is referred to as the E/TU-3 turbine stage, see [13]. It is considered for performance improvement through restacking and re-staggering the rotor and stator blades, while keeping the same 2D airfoil sections unchanged. A sketch of the E/TU-3 turbine stage is given in Fig. 7.1.

Three-dimensional flow features are controlled by changing the blades stacking line and stagger angle distribution. In the absence of any guide lines to set the stacking line, it is usually taken as a straight line going from hub to tip and passing through the airfoil CG for rotor blades or the TE for stator blades. As for the blades stagger angle, there are some design criteria based on the chosen spanwise swirl distribution however, these criteria do not incorporate 3D flow effects.
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Figure 7.1 E/TU-3 Single stage low speed turbine [13]


7.1
Quadratic Rational Bezier Curve (QRBC)

The stacking curve and the blades spanwise stagger distribution are represented by a Quadratic Rational Bezier Curve (QRBC) which is a NURBS curve with three control points and a quadratic basis function.
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where 
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gives the Cartesian (or cylindrical) coordinates of any point on the stacking curve in terms of the parameter u, 
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 is the Cartesian (or cylindrical) coordinates of control point i. The QRBC is a smooth second order curve that represents exactly any conic curve e.g. an ellipse, a parabola, a circle or a hyperbola.


The blade lean, sweep and bowing intensity are used as aerodynamic design variables. In the next sections, they are represented in terms of the QRBC parameters namely P1, P2 and w1, so that the design space is identified and the optimum shape is interpreted in terms of the design variables.


7.2
The QRBC representation of the stacking line


Based on the QRBC representation given in Eq. 7.1, the QRBC parameters namely, Pi, and wi for i=0-2, can be selected to parameterize the stacking curve. P0 is fixed at some point on the hub surface (e.g. blade center of gravity for rotor or blade leading edge for stator) and P2 moves on the tip surface, i.e. without loss of generality, the coordinates of P0 and the radial coordinate of P2 are fixed. Since P0 and P2 are the curve endpoints, w0 and w2 are set to 1. Control point P1 and its weight w1 affect the blade bow (as discussed in the next paragraph) however since the inlet blockage for the E/TU-3 turbine stage is negligible, w1 was set to 0 hence excluding bow from the list of design variables. Table 7.1 summarizes the fixed and the varying parameters in the QRBC representation of the stacking line.


Figure 7.2a shows the lean angle , which is set by the circumferential coordinate of P2. According to Fig. 7.2b, the sweep angle is defined as , and is controlled by the axial coordinate of P2. Figures 7.2c and 7.2d show the blade bow which can be controlled by the circumferential and radial coordinates of P1 as well as the weight w1. The circumferential coordinate of P1 is controlled by the angle P1-P0-P2 as shown in Fig. 7.2d. When the blade is leaned towards the suction side it is a positive lean and when it is swept backward it is a positive sweep. With this set up of the QRBC parameters, we end up with 5 design variables per blade row namely the lean angle, sweep angle, the percent span at P1 which specifies its radial location, the angle  which specifies circumferential location of P1 and the bowing intensity which is measured by w1. Table 7.2 lists the QRBC parameters and the corresponding design variables.
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(c) Bow: Radial position of P1



(d) Bow: Tangential position of P1

Figure 7.2 Stacking curve parameterization using QRBC


		QRBC Parameters

		Varying

		Fixed



		P0

		

		r0, 0, x0



		P1

		r1, 1

		x1



		P2

		2, x2

		r2



		w0 and w2

		

		1



		w1

		

		0





Table 7.1: Optimization parameters classification for the stacking line


		Design variables

		QRBC parameters

		Symbol



		Sweep angle

		x-cd. of P2

		°



		Lean angle

		-cd. of P2

		°



		Bow shape in r-dir.

		r-cd. of P1

		°



		Bow shape in -dir.

		 -cd. of P1

		°



		Bow intensity

		weight at P1

		w1





Table 7.2 Stacking line design variables in terms of the QRBC parameters


7.3
Stagger angle representation using QRBC


Figures 7.3 represent the control polygons of QRBC for both stator and rotor. Control points P0, P1 and P2 are assigned at hub, mid-span and tip, respectively, and the design variables are given by the stagger angles at the same spanwise locations, which are the ordinates of the control points in the QRBC. Therefore the blade stagger is generally parameterized with only three stagger angles. In the present work, the stator stagger is taken to be varying linearly, see Fig. 2.b, and is represented by fixing P1 and varying P0 between ±5°. This choice of stagger variation ensures that the stator throat area can be kept approximately constant so as to have a fair comparison between the original and the optimized stage. The rotor stagger angle distribution, plotted in Fig. 7.3a, is represented with three control points that are given by the stagger angles at hub, mid-span and tip; all three angles are allowed to change during optimization. Hence we end up with 4 design variables to describe the variation for stagger for both rotor and stator.

7.4
The E/TU-3 turbine stage redesign


The E/TU-3 is a single stage, subsonic, low speed, axial turbine that was designed and tested in Hanover, Germany. The stage performance was optimized by re-stacking and re-staggering the blades, which implies varying the blade lean, sweep, bow and stagger, the 2D airfoils moved but their shape was kept unchanged.


Table 7.2 shows that the stacking line is defined by 5 design variables per blade row, i.e. 10 for a stage. The sensitivity analysis carried out in [14] showed that, for this turbine stage, the most important ones are the rotor and stator sweep and lean while the blade bowing for both stator and rotor were not considered (due to the low blockage at stage inlet); so that the stator and rotor stacking profiles are represented by 4 design variables. The stagger angle distribution for the stator and rotor profiles is determined by 4 design variables that are described in Sec. 7.3. Therefore we end up with a total of 8 design variables that are given in Table 7.3, together with the resulting optimum stage efficiency.
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       (a) Rotor





       (b) Stator


Figure 7.3 Blades stagger angle parameterization with QRBC


This reduction of design variables is somewhat restrictive for the stacking line, however it resulted in reducing the number of CFD flow simulations required to carry out the ANN-based GA optimization to as low as 36 CFD simulations. Full details of this optimization case including the physical implications of the resulting optimum stacking line and stagger distribution on the flow field and stage performance are given in Arabnia and Ghaly [15].


Optimization was carried out for 2 cases: design point optimization with single objective (Case 1) and multi-objective (Case 2). Table 7.3 shows that the optimum efficiency increased from 87.18% for the original case to 88.30% and to 89.09% for Cases 1 and 2; an increase of 1.12% and 1.89% which is a sizable increase, with as low as 8 design variables.

		

		s°

		s°

		s,h°

		r°

		r°

		r,h°

		r,m°

		r,t°

		tt

		tt



		Min.

		-36

		-10

		40

		0

		-10

		12

		22

		38

		-

		-



		Max.

		0

		10

		50

		20

		10

		22

		38

		48

		-

		-



		Original

		-7.3

		6.9

		45

		0

		0

		16.8

		30.3

		43.8

		87.18%

		-



		Case 1

		-35.1

		3.6

		49.8

		8.6

		-9.7

		21.8

		36.6

		39.6

		88.30%

		1.12



		Case 2

		-31.5

		-7.9

		45

		10.4

		2.3

		20.3

		35.8

		46.8

		89.09%

		1.89





Table 7.3: Design point optimization parameters and isentropic efficiency
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Figure 7.4 Case 1: Design point optimization of total to static efficiency 
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Figure 7.4 Case 2: Design point multi-objective optimization of total to total efficiency, streamwise vorticity at stator and at rotor exit planes


8.0
Concluding remarks


Shape representation can improve the efficiency of the optimization approach; it can also reduce the design problem complexity by: a- reducing the number of design variables and b- eliminating infeasible blade shapes. It is critical to pick the ‘right’ representation and the ‘right’ parameterization for a given shape.
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Outline

Objectives and context

Shape representation/parameterization options

Compressor and turbine airfoil representation

Turbine stage representation in 3D flow

Summary
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Shape Representation

Accurate, flexible and robust shape representation

Most suitable representation for a given shape

Least number of shape parameters that are directly related to the design parameters and are used as optimization variables

Preferably a CAD-native parameterization

Can the geometric representation make the optimization approach more efficient?

Can it reduce the design problem complexity?
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Intended applications

Component level optimization, e.g. turbine or compressor

Single and multiple blade rows, disciplines, objectives, single and multipoint

Airfoils (2D) and blades (3D) profiles 

Global - low fidelity - representation 

Local/Global high fidelity representation







NATO RTO AVT-167



4





5

Low and high fidelity representations

Global - low fidelity – representation

Shape is represented by a few low order polynomials

Change in any point on the curve affects the shape globally

Local/Global high fidelity representation

Shape is represented by a continuous curve with e.g. NURBS, B-splines, Bezier curves, …(Note that the 2nd and 3rd representations are subsets of NURBS)
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Global – low fidelity - representation





Turbine airfoil is represented by 5 Conic sections
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Global – low fidelity - model







E/TU-4
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Global/Local high fidelity rep., NURBS















C	NURBS curve

Pi 	Control points

wi 	Weights

Ni,p 	Basis function

p 	degree of polynomial,

		(p=2 in this work)

U	Knot vector
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Examples of C2 Continuity Curves













DFVLR

VKI

ETU-4
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Shape optimization methodology

Shape representation:

Low order - global - representation

High order representation, e.g. NURBS, B-Splines, Bezier

Optimization method:

Direct: GA, SA

Indirect: Gradient/Newton-based, Control Theory-based

Choice and computation of objective function:

High fidelity simulations (CFD solver of your choice)

Low fidelity using a surrogate model (ANN, RBF, wavelets)
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Compressor airfoils in 2D flow



Inviscid transonic case		viscous subsonic cases
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Geometric description and parameterization

The airfoil shape is described by a camber line and a thickness distribution

Camber line  overall flow turning

Thickness  structural constraints

They are parameterized using a high fidelity NURBS function with 11 control points for camber line, f(x), and 9 for thickness distribution, T(x).

Y-coordinates of the control points are used as the design variables (17 points)
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NACA Transonic compressor redesign







Performance map shows Dh ~ 1.7%

Original and redesigned 

compressor airfoils
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NACA 65 subsonic compressor redesign







Performance map shows Dh ~ 7%





Range of airfoil profiles

explored in the design space

Original and redesigned 

compressor airfoils
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A turbine airfoil profile in 2D flow



Optimization is done successively on two geometric parameterizations:

Starting from a global shape representation of the airfoil using the design parameters, optimization is carried out

The resulting profile is used as input to a high fidelity shape representation so as to refine the profile locally
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The original turbine airfoil

Total pressure loss coeff. = 17.26 %

Adiabatic efficiency = 91.67 %

Pressure ratio (inlet/outlet) =1.518

Inlet flow angle = 57.4o

Exit flow angle = -65.82o

Corrected mass flow rate = 0.191



Note that this is a low subsonic turbine airfoil with over 91% adiabatic efficiency
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Airfoil shape: global representation, MRATD



MRATD model: Feature-based representation.

By construction,  it eliminates infeasible turbine airfoil shapes
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Global-Shape Aerodynamic Optimization

Objectives

Improve efficiency

Maintain or increase pressure ratio

Constraints: Keep the same operating point

Same rotor speed, inlet Pt, Tt, and exit Ps  (CFD)

Fixed corrected mass flow rate and flow angles (penalty terms added to the objective function)

Design variables

All parameters affecting the airfoil SS (6 in all)



Original airfoil: ETU turbine profile

MRATD (design) parameters

Number of blades = 30

Radius = 0.162 m

Axial chord C = 0.0396472 m

Tangential chord = 78.19%

Throat = 33.54%

Unguided turning = 12o

TE radius = 0.55%

Inlet metal angle = 39.4o

Exit metal angle = -66.0o

SS Inlet wedge angle =15o

PS Inlet wedge angle = 30o

PS Outlet wedge angle =2.5o

Maximum thickness = 26.86%

Axial location of maximum thickness = 35%

LE ellipse major diameter = 12.61%

LE ellipse  minor diameter =5.04%
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Global-Shape Optimal profile (MRATD)







  6 design variables

  Dh = 0.4%

Same pressure ratio, reduced mass flow rate and flow angles
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Original vs. Optimal MRATD parameters

		MRATD Design parameters		Original		Optimal

		Tangential chord		0.031m		0.02609m

		Throat		0.01330m		0.01312m

		Unguided turning		12°		9.95°

		SS inlet wedge angle		15°		14.83°

		Maximum thickness		0.01065m		0.0122m

		LE ellipse minor diameter		0.002m		0.001828m
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Airfoil shape: local refinement, NURBS

A close look at the curvature and pressure distributions helps to pinpoint regions where improvements can be made.
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NURBS optimal vs. MRATD optimal profile





Efficiency improved by an additional 0.165%, for the same pressure ratio, reduced mass flow rate and flow angles, using 6 NURBS control points.
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Turbine blade profiles in 3D flow



 Geometry representation:

2D Airfoils: MRATD, B-splines and NURBS

Hub-to-tip: stacking line going through the 2D airfoils

3D blade shape: obtained by skinning the stacked 2D airfoils, using compatible B-splines
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CATIA-CFD integration

NURBS and B-splines are CAD-native parameterizations  can be directly integrated into the CAD system

All blade features are extracted and updated into solid model during the optimization process using:

CAD neutral packages, e.g. CARPI from MIT

CATIA Application Program Interface (API)

Note: MRATD can be integrated into CAD using e.g. CATIA-API
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The Stacking Curve (or line)
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Quadratic Rational Bezier Curve (QRBC)
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QRBC as Stacking Curve
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Leaning the Stacking Curve

















Circumferential Direction
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Sweeping the Stacking Curve















Axial Direction
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Bowing the Stacking Curve















Circumferential Direction
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Circumferential Plane























Meridional Plane







































Design Variables
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		Design Variable		QRBC Parameter		Symbol

		1. Sweep angle		Axial coordinate of P2		b

		2. Lean angle		Circumferential coordinate of P2		a

		3. Bowing shape in radial  direction		Radial coordinate of P1
		g

		4. Bowing shape in circumferential direction		Circumferential coordinate of P1
		q

		5. Bowing intensity 		Weight of P1		w1



Design Variables
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Stator solidity 1.56

Aspect ratio 0.57

Rotor solidity 1.5

Aspect ratio 0.904







Single Stage Turbine (E/TU3)

Low speed subsonic turbine  7800 (rpm) 

Flow coefficient 0.74

Stage loading 1.93

Stage P.R. = 2

Reaction 31%

Reav = 2 Millions
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Stage Optimization

Dh = 1.2% with 5 design variables





Stator



Rotor



				aso   		bso		 a ro		bro		wr		htt

		Min.		-30		-15		-5		-10		0		-

		Max.		10		5		20		15		3		-

		Original		0		0		0		0		0		87.50

		Optimum		-29.5		-9.4		2.2		-9.7		0.05		88.56
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Summary

Geometric representation can improve the efficiency of the optimization approach

It can also reduce the design problem complexity by:

reducing the number of design variables

Eliminating infeasible blade profiles

It is critical to pick the ‘right’ representation and the ‘right’ parameterization for a given shape
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Thank You
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ABSTRACT 


Present lecture describes some of the techniques that are available, to speed up the convergence to the 
optimum geometry when using Evolutionary Strategies. They are: optimum parameter setting of the 
evolutionary search mechanism, the use of a surrogate mode and improvement of the database. The 
different ways to accelerate the convergence are described and illustrated by some practical 
examples. A last section shortly discusses the influence of the coding technique   


1.0 INTRODUCTION 


One of the major problems in optimization is the large computer effort that is often required to 
reach an optimum geometry [1, 2]. One way to reduce it, is by improving the convergence of the 
search mechanism to the optimum geometry. An optimization of the parameters of the Evolutionary 
Algorithm (EA) may not only reduce the computational effort, i.e. the number of performance 
evaluations that are needed to find that optimum (efficiency), but also improve the value of the 
optimum (effectiveness). 


Another way to reduce the problem is by using a metafunction or surrogate model to make a 
two level optimization (Fig.1). The EA is driven by surrogate models of the accurate solvers and only 
the optimized geometry is verified by the accurate analysis tools. Different metafunctions are 
available. Only a few of them will be presented and their characteristics discussed. 


 


 
 


Fig. 1  Optimization scheme with metafunction 


 


RTO-EN-AVT-167 15 - 1 


 


 


Tuning of Optimization Strategies   


 







 


 


The accuracy of the metafunction strongly depends on the quality of the database used for the 
learning of it. The more general and complete this information, the more accurate the ANN can be and 
the closer the first optimized geometry will be to the real optimum. Hence a good database may 
considerably speed up the convergence to the optimum. 


The way of coding the geometrical parameters may also have an impact on convergence 
 


2.0 EA OPTIMAL PARAMETER SETTING 


The advantage of using optimized parameters of the EA algorithm is illustrated here for the GA 
software developed by David L. Carroll [3]. It is known that the “optimum parameter setting” is 
problem dependent and that a correct setting has an impact on the convergence. The optimal 
parameters have been defined here by means of a systematic study on two typical design cases: one 
geometry defined by 7 parameters and one defined by 27 parameters [4]. These values result from the 
experience with typical turbomachinery optimizations. Conclusions are based on the solution quality 
Q, i.e. the degree to which the GA optimum approaches the real one within a given effort (5000 
function evaluations). It is defined by: 


%100
minOFOF


OFOFQ
AV


GAAV


−
−=  


where: OFAV is the average of the objective function over the complete design space, OFmin  is the 
global minimum value of the objective function obtained from a systematic (numerically very 
expensive) scanning of the whole design space, OFEA is the minimum value of the objective function 
obtained from the EA optimization. A Q value of 100% indicates that the GA has found the global 
minimum value.  


The function evaluations for the numerical experiments are made by means of an ANN 
approximation of the NS solver based. Other possibilities to verify the optimum GA parameter setting 
is by means of an analytical test function as shown on Fig. 2. 
 


 
 


Fig. 2  Six hump camel back test function 
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2.1  Optimum Substring Length 
In a standard binary-coded GA, the n real-valued design parameters xi, defining a geometry, are jointly 
represented by one binary string: 


 
 


 
Fig. 3  Impact of substring length 


 
The substring length, denoted by l (number of bits per variable), determines the total number of values 
(2l) that each design parameter can take. Fig. 3 shows how the minimum substring length li  for the ith 
design variable depends on the upper and lower bound respectively xmin and xmax, as well as on the 
desired resolution (εi) for this variable: 
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Fig. 4  Impact of substring length on solution quality 
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Very short substrings (l< 3) result in a too low resolution and the GA may not be able to accurately 
approach the global minimum. Longer substrings (3 < l < 10) enable a sufficiently high resolution but 
cause a larger search space and make it difficult to find the complete optimal binary string. Systematic 
testing has shown that l = 5 is the optimum substring length independent of the number of unknown 
parameters (Fig. 4). 


2.2  Selection scheme 
Different selection schemes can be used. The roulette and tournament selection have been presented in 
another lecture [1]. The criteria for the selection of the main parameters relate to the convergence rate 
and the risk to get stuck in a local minimum. 


2.3  Population size 
Fixing the total number of function evaluations at 5000, the number of generations t is a consequence 
of the population size N (N*t = 5 000). Fig. 5 shows the evaluation of the solution quality at the end of 
the GA run for different values of the population size. The solution quality is maximum for N = 11 to 
20. Small populations (N<10) converge prematurely to suboptimal solutions, due to a lack of diversity 
and high performing samples in the initial population. Larger populations (N>25) have a sluggish 
convergence to the optimal geometry because less generations are allowed 


 
 


Fig. 5   Dependence of GA solution quality on population size for the 27 parameter test case 
 


2.4  Crossover probability 
In a single-point crossover operator, both parent strings are cut at a random place and the right-side 
portions of both strings are swapped. In case of a uniform crossover, the value of pc defines the 
probability that crossover is applied per bit of the complete parent string. High values of pc increase 
mixing of string parts and at the same time, increase disruption of good string parts. Low values limit 
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the search to combinations of samples in the existing design space. Experiments confirm that a single 
point crossover is optimal (Fig. 6). 


 
Fig. 6  Impact of cross over on convergence 


2.5  Mutation probability  
The mutation operator creates new individuals by changing a “1” to a “0” or vice versa in the off-
spring string. The mutation probability pm is defined as the probability a bit of a string is flipped. 
Systematic numerical experiments confirm that the optimum setting for the mutation probability is 
pm=1/(l.N) for all optimizations (Fig. 7). This corresponds to changing on average only one bit at 
every generation. 


 
 


Fig. 7  Optimal mutation probability 
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2.6  New generation 
 


The convergence is also influenced by the way the new generation is defined. The (N,ch) 
definition means that the N best of ch offspring's replace the old population. In this procedure the best 
individuals of the previous generation are lost, even if they are better that the best of present 
generation. 


The (N+ch) generation means that the N best of the ch offspring's and the N members of the old 
population replace the old population (elitism). Members of the old and new generation are in full 
competition. This system has the characteristic of elitism and favors the convergence. Ther best 
samples are never lost. 


The (N/i+ch) generation definition means that only the N/i best of the previous generation 
contribute to new generation. This limits the elitism. 
 


Fig. 8 shows how an optimization of the GA parameter settings can lead to a more efficient and 
more effective GA convergence. 


 


 
 


Fig. 8  GA convergence for a 27 parameter test case (standard versus optimized parameter setting). 
 


 


3.0 METAFUNCTIONS 


Meta-functions need to be fast (to limit the time required to analyze a large number of samples) 
but also accurate to drive the optimizer to the real optimum. Different types of meta-functions have 
been proposed. Only a few of them (ANN, RBF, Kriging) are presented here. 
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Fig. 9  Artificial Neural Network architecture 


An ANN (Fig. 9) is composed of several elementary processing units called neurons or nodes. 
These nodes are organized in layers and joined with connections (synapses) of different intensity, 
called the connection weight (W) to form a parallel architecture. Each node performs two operations: 
the first one is the summation of all the incoming signals and the second one is the transformation of 
the signal by using a transfer function (TF) after a bias bi has been added. 


∑
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Sigmoidal functions )(1
1)( xe


xTF −+
=  are mostly used as transfer function (Fig. 10). These 


functions introduce power series (given implicitly in the form of an exponential term) and do not 
require any hypotheses concerning the type of relationship between the input and the output variables. 
In order to avoid saturation of the function, it is important to verify that the variation takes place in the 
central non zero slope part of the curve. 


 


 
Fig.10  Sigmoid activation function 


The coefficients (weights and bias) are defined by a LEARNING procedure relating for all the 
samples of the database the output (performance i.e.: η, β2 and the Mach number distribution Mi 
,i=1,nM to the input (boundary conditions and geometry parameters xi ,i=1,n ). The purpose is not to 
reproduce the existing database with maximum accuracy but to predict the performance of new 
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geometries i.e. to generalize. This is illustrated on Fig. 11 showing how overfitting can result in a 
higher degree curve with large oscillations between the input data (x) and predict incorrect values (o) 
for the intermediate and extrapolated points (generalization). 


  


 
 


Fig. 11  Properly generalized ___ and overfitted _ _ _ data 
 
Three conditions are necessary, although not sufficient, for good generalization [5]: 
• The first one is that the inputs to the ANN contain sufficient information pertaining to the target, 


so that one can define a mathematical function relating correctly outputs to inputs with the desired 
degree of accuracy. The designer should select design parameters that are relevant, i.e. that have 
an influence on performance 


• The second one is that the function to be learned (relating inputs to the correct outputs) is smooth 
and well defined. In other words, a small change in the inputs should, produce a small change in 
the outputs. Most physical problems are well defined in this respect. 


• The third one requires that the training set is a sufficiently large and a representative sample of all 
cases that one wants to generalize (the "population" in statistical terminology). One should avoid 
that the ANN predictions are extrapolations instead of the more accurate interpolations. As will be 
shown later this condition is more or less taken into account when defining the database.  


 
Generalization of the ANN learning is favored by dividing the available samples into "training", "test" 
and "validation" sets. Each of them has its own purpose. 


The Training set contains the samples used for LEARNING; that is to fit the parameters (i.e., 
weights and bias) of the classifier.  


The Test set contains the samples used only to assess the performance (generalization) of a fully-
specified ANN (given weights and architecture).  


The Validation set contains the samples used to tune the parameters (i.e., architecture, not the 
weights) of a classifier, for example to choose the number of hidden units in a neural network.  


The learning process results in a rapid initial decrease of the training set error and then continues 
to decrease slowly as the network makes its way to a minimum on the error surface (Fig. 12). Good 
generalization can be achieved by the use of cross-validation by the test set. In this procedure, the 
training is periodically stopped (i.e., every so many training epochs), and the network is tested on the 
Test Set. The learning is stopped when the minimum error of the Test Set is reached. 
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Fig. 12   Early stopping method 


A complete design cycle including ANN learning, GA optimization and verification by a Navier 
Stokes solver requires typically 35% more time than a Navier Stokes analysis. 


The Radial Basis Function (RBF) network is a three layer network with a non-linear mapping 
from the input layer to the hidden layer and a linear mapping from the hidden layer to the output layer 
(Fig. 13). The hidden neurons are associated with the so-called RBF centers, which are points in the n-
dimensional space. 


The output of each hidden neuron is computed by a Gaussian function  
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Fig. 13  Radial Basis Function Network Topology 
 


The vector xr  represents the input to the neuron, the vector ir
r


 is the RBF center and σi is the amplitude 


of neuron i. The  operator computes the Euclidian distance between the input vector xr  and the 


RBF center ir
r


 (Fig. 14). The output of an RBF neuron is thus proportional to the distance between the 
input and the RBF center. The amplitude σi determines the activation range, i.e. the distance over 
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which the neurons are active and have a significant output. The weight factor of a sample decreases 
with increasing distance from the RBF center. The weighted sum of all outputs of the hidden neurons 
is the RBF output: 
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Training of the RBF network consists of finding the RBF centers ir
r


, the amplitude σi and the weight 
ωi for each neuron, such that the error on the prediction of the database the samples is minimal. The 
resilient backpropagation (RPROP) [6] is used to train the RBF.  


 
Fig. 14  A 2D RBF interpolation (network mapped on RBF space) 


 
The accuracy of the Metafunctions (ANN and RBF) depends on the information (number 


of samples and distribution of samples) stored in the database and on the structure of the 
networks (number of hidden layers and nodes per layer) as illustrated in Fig. 15. 


 


 
ANN with 2 hidden layers and 10 hidden neurons 


 
RBF with 1 hidden layer and 5 hidden neurons 


 
Fig. 15   Comparison between ANN and RBF predictions of De Jong 2D test function 
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Both the ANN and the RBF have been used for the multi-objective optimization of the cooling 
holes in a HP turbine [1]  where the comparison between the approximate and the accurate predictions 
are shown on Fig. 34). Both optimizations are run for 30 iterations, after which a synchronization of 
the databases is made i.e. all existing samples are put together in one unified database. An additional 
20 optimization iterations are then performed restarting with this extended database.  


Figure 16 shows a different convergence for both metafunctions during the first 30 iterations 
and after merging. The RBF (open circles) shows for the first 30 iterations an almost straightforward 
convergence (red line) to an optimum whereas the ANN shows a more scattered convergence to a 
better optimum (lower value of the OF). Continuing the optimization on the extended database 
(iteration 31-50) shows no further improvement for the ANN (same OF). However the RBF shows a 
further improvement of the optimum to the same level as the ANN one. It is believed that this is the 
consequence of a more monotonic convergence of the RBF towards the optimum by giving more 
weight to the database geometries that are closer (within the activation range) to the geometry for 
which the performance (lifetime and mass flow) has to be predicted. This results in a more accurate 
prediction in the region near to known solution which is similar to what happens in a local gradient 
method. However this increases the risk of getting stuck in a local optimum. Extending the database 
by adding the more randomly distributed geometries defined by the better converged ANN reduces 
that risk and allows reaching a better optimum.  


 


 
 


Fig. 16  Pareto front 
 
Kriging is a model developed by geologists to estimate the concentration of minerals based on 


very scarce data that are available [7, 8]. The main advantage of this technique is the estimation of the 
uncertainty of the prediction as illustrated on Fig. 17 This allows a better judgment of the geometry 
proposed by the optimizer. A detailed evaluation is recommended for optimal geometries (low OF). 
The same applies for geometries with a high OF and high uncertainty because it could well be that 
they are not as bad as predicted by the metamodel. 
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Fig. 17  1D Kriging interpolation with exact prediction of data-points and uncertainty between them 
 


4.0  DATABASE 


The main purpose of the DATABASE is to provide information to the metafunction about the relation 
between the geometrical changes and performance. The more general and complete this information, 
the more accurate may be the metafunction and the closer the first optimum geometry, defined by the 
GA, will be to the real optimum. Hence a good database may considerably speed up the convergence 
to the optimum. 


Making a database is an expensive operation because it requires a large number of expensive 
performance analyses (NS, FEA etc.). Hence one is interested in making the smallest possible 
database containing the maximum amount of information about the whole design domain. This means 
relevant information with a minimum of redundancy, including the impact of every design parameter, 
but only once.  


Any information missing in the database may introduce an erroneous metafunction that could 
drive the GA into a geometry that is not optimum. This is not a problem because the detailed 
performance analysis of that geometry will provide the missing information when it is added to the 
database. However the worst case is when an incomplete database results in an erroneous 
extrapolation by the metafunction predicting a low performance (large OF) in that part of the design 
domain where in reality the OF is low. As a consequence, the corresponding geometry will never be 
selected by the GA and the error may never been detected and corrected. This second shortcoming is 
more difficult to remediate because no mechanism is build-in to correct for it and the error may persist 
during the whole optimization. It is therefore important to assure that the initial database covers the 
whole design domain.  


Design Of Experiment (DOE) refers to the process of planning an experiment so that the 
appropriate data, when analyzed by statistical methods, result in valid and objective conclusions. The 
advantages of using DOE to construct the database have been evaluated in detail in [9].  


4.1  Factorial Design 
Factorial designs are widely used in experiments where it is necessary to study the effect of the 


different factors on a response. The most important one is where each of the k factors has only two 
values corresponding to the “high” or “low” level of a design variable. A complete replicate of such a 
design requires 2k observations/analyses and is called full factorial design. 


Consider a design with 3 design parameters A, B and C. Each of them can be at two levels, 
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indicated by +1 or –1 in Fig. 18. Evaluating all possible geometries requires 23 = 8 Navier Stokes 
evaluations. The 2k factorial designs with each design parameters at two levels, includes k main effects 


(A, B and C ), 
!2)!2(


!
−k
k


 two-factor interactions (AB, BC and AC ),  and one k-factor interaction 


(ABC)  . 
 


 
 


 
 


 
Fig. 18 Full 23 factorial design 


For an increasing number of factors, the number of analyses required for a complete replicate of 
the design, rapidly outgrows the resources of most designers. It reaches 128 or even more than 107 
runs for respectively the 7 and 27 parameter design space. Information on the main effects and low-
order interactions can be obtained by running only a fraction of the complete factorial experiment if 
one can assume that certain high-order interactions are negligible or redundant with lower order 
interactions. This is illustrated on Fig. 18 showing that the same combination of A and B are repeated 
for different value of C. Idem for the combinations B and C but for different values of A. Hence some 
lines can be eliminated without losing much information. 


Reducing the number of samples in the database reduces the information stored in it and hence 
the accuracy of the ANN based on that information. In what follows one will evaluate the loss of 
information by comparing the ANN predictions, based on different fractional factorial designed 
databases, with the exact values for the following test function with 6 variables: 


 
))(()(06,0))((002,0)(001,01 23 AECFFABFECDAR +++−−−++−−=  


 
The results of the databases defined by DOE are compared to those of a database in which the 


geometrical parameters are randomly generated between the prescribed boundaries. The values, 
attributed in present test to each of the 6 parameters A, B, C, D, E, and F are listed in Table 1.  
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Table 1 Variables and limits 
 


variable variable limits 
high low 


A 5. 1. 
B 3. 2. 
C 5. 4. 
D 4. 3. 


E 3. 2. 
F 6. 2. 


 
 
The full factorial design requires 26 = 64 runs to estimate all possible parameter combinations. The 
loss of information is measured by the following error term, expressing the difference between the 
exact function and the predictions by an ANN trained on the different databases. The error is defined 
by the following formula:  
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The results of those calculations are shown on Fig. 19 . The number on top of each column 
indicates the global error obtained with the respective database. 


 


 
Fig. 19   ANN’s global error for different number of training samples 


Comparing the error obtained by means of the DOE technique and by means of randomly selected 
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samples, it becomes clear that the DOE based predictions are consistently more accurate for the same 
number of samples in the database. This is particularly true if the predictions are based on 64 training 
samples resulting in a very high accuracy. The values obtained from the prediction based on 32 
training samples, are still reasonably accurate. Less accurate results are obtained with 16 and 8 
samples, respectively.  


Randomly generated databases are all different and so is the accuracy of the ANN predictions. The 
four randomly generated cases with 8 samples in the database, show an error that varies between 105 
(the same as with the DOE defined database) up to an error that is almost 3 times larger (First 
randomly generated 8 sample database).  


The database quality can be further improved during the design process by adding geometries 
selected on the basis of a merit function. This intends to add information where the uncertainty is 
largest i.e. in those regions where the information is scarce. The merit function m(x) = f(x) -ρm dm(x) is 
minimized, in a way similar to the OF, when defining new geometries that should be analysed and 
added to the database (Fig. 20). 


   


  
 


Fig. 20  Definition of new geometries based on merit function 
 


5.0 CODING 


Binary coding mimics the natural evolution whereby the digits can be assumed to stand 
for the genes. Other methods such as Multi-Objective-Differential-Evolution directly work 
with the discrete digital values. One possible disadvantage of binary coding is the fact that 
design parameters that are almost the same may show very large changes when binary coded 
(Fig. 21). The GA could consider them as very different geometries although they are very 
similar. Other coding techniques, such as gray coding, allow avoiding this. Experiments with 
both coding techniques did not show a noticeable difference between the two in terms of 
convergence. 
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Fig. 21   Binary versus gray coding 


6.0 CONCLUSIONS 


It is shown how the computational effort of an optimization can be reduced by a tuning of the 
parameters of the GA and selecting an appropriate metafunction trained on a representative database 
and that this can be achieved without compromising on the quality of the optimum.  


The availability of powerful parallel computers allows handling large computational effort and 
one could conclude from it that these acceleration techniques are less relevant. However one should 
keep in mind that the optimization jobs become more and more complex (multistage optimization) 
with an increasing number of design parameters. Any gain in computer capacity is quickly absorbed 
by the increasing complexity of the problems and an improved convergence remains attractive. 
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Alt:  Latin Hypercube – Random selection
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2 values (+ -) / variable

	23  =    8 combinations



1, 2, 3 and 4 :  main effect

5, 6, 7 and 8 :  interaction
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Statistical analysis





2 k-3   factorial = 8

k=6   





2 level variables     

	(25% and 75% of non dimensional range)

1 central variable     

	(all variables at 50% of range)

12 to 15 variables         16 runs 

16 to 31 variables         32 runs
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Learning :       define W   (weight)   and   b (bias)







Navier Stokes results

Geometry  & bound. cond.
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Linear least square approximation

Predicts value and uncertainty



Accurate evaluations in regions of high uncertainty

Very time consuming





Click to edit Master text styles

Second level

Third level
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Learning :       define W   (weight)   and   b (bias)





























































Gausian activation function
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			22			5			2			5			3			3			2			61.580			22			0.05			0.02			0.05			0.03			0.03			0.02			0.61580									22			0.65292			0.62620			0.59940			0.58499			0.31692			0.63258			0.67026			0.79226			0.71870			0.09			0.05			0.17			0.63			6.07			0.17			1.11			3.58			2.09


			23			1			3			5			3			3			2			29.564			23			0.01			0.03			0.05			0.03			0.03			0.02			0.29564									23			0.25690			0.22651			0.22286			0.23055			0.29269			0.17036			0.24600			0.27057			0.20987			0.20			0.73			1.54			2.75			0.12			2.65			2.10			1.06			3.63


			24			5			3			5			3			3			2			61.564			24			0.05			0.03			0.05			0.03			0.03			0.02			0.61564									24			0.65251			0.61911			0.58833			0.55952			0.32656			0.64883			0.67554			0.78371			0.71216			0.09			0.02			0.28			1.14			5.87			0.34			1.22			3.41			1.96


			25			1			2			4			4			3			2			26.190			25			0.01			0.02			0.04			0.04			0.03			0.02			0.26190									25			0.21962			0.20628			0.21077			0.23768			0.27969			0.13029			0.19628			0.23921			0.21099			0.25			0.66			1.22			1.16			0.85			3.14			3.13			1.08			2.43


			26			5			2			4			4			3			2			55.750			26			0.05			0.02			0.04			0.04			0.03			0.02			0.55750									26			0.60074			0.58741			0.56989			0.56938			0.31276			0.57309			0.60844			0.75430			0.71405			0.12			0.17			0.14			0.27			5.49			0.17			1.14			4.41			3.51


			27			1			3			4			4			3			2			26.176			27			0.01			0.03			0.04			0.04			0.03			0.02			0.26176									27			0.21969			0.20208			0.20365			0.21942			0.28870			0.13853			0.20019			0.23034			0.20595			0.25			0.71			1.39			2.02			1.29			2.94			2.94			1.50			2.67


			28			5			3			4			4			3			2			55.736			28			0.05			0.03			0.04			0.04			0.03			0.02			0.55736									28			0.60034			0.58014			0.55863			0.54368			0.32234			0.59029			0.61416			0.74469			0.70744			0.12			0.13			0.01			0.31			5.27			0.37			1.27			4.20			3.37


			29			1			2			5			4			3			2			30.190			29			0.01			0.02			0.05			0.04			0.03			0.02			0.30190									29			0.26170			0.22998			0.22601			0.23182			0.28009			0.15887			0.22267			0.26716			0.21113			0.21			0.74			1.57			2.90			0.90			2.96			3.28			1.44			3.76


			30			5			2			5			4			3			2			63.750			30			0.05			0.02			0.05			0.04			0.03			0.02			0.63750									30			0.65894			0.62409			0.59278			0.56134			0.31317			0.62945			0.64617			0.78090			0.71400			0.05			0.07			0.44			1.49			6.36			0.08			0.17			2.81			1.50


			31			1			3			5			4			3			2			30.174			31			0.01			0.03			0.05			0.04			0.03			0.02			0.30174									31			0.26173			0.22540			0.21849			0.21390			0.28911			0.16857			0.22696			0.25758			0.20609			0.21			0.79			1.72			3.64			0.52			2.76			3.10			1.83			3.96


			32			5			3			5			4			3			2			63.734			32			0.05			0.03			0.05			0.04			0.03			0.02			0.63734									32			0.65853			0.61700			0.58166			0.53555			0.32276			0.64576			0.65164			0.77202			0.70739			0.05			0.10			0.55			2.00			6.17			0.08			0.28			2.64			1.37


			33			1			2			4			3			2			6			30.188			33			0.01			0.02			0.04			0.03			0.02			0.06			0.30188									33			0.33738			0.35137			0.38851			0.39788			0.30747			0.33425			0.37352			0.34777			0.43870			0.18			0.51			1.79			3.98			0.23			0.67			2.97			1.90			5.67


			34			5			2			4			3			2			6			76.108			34			0.05			0.02			0.04			0.03			0.02			0.06			0.76108									34			0.74935			0.77685			0.76898			0.73672			0.34229			0.82224			0.79396			0.84013			0.88108			0.02			0.06			0.06			0.40			6.88			0.50			0.54			1.30			1.97


			35			1			3			4			3			2			6			30.176			35			0.01			0.03			0.04			0.03			0.02			0.06			0.30176									35			0.33727			0.34488			0.37791			0.37324			0.31697			0.35021			0.37925			0.33650			0.43095			0.18			0.45			1.58			2.96			0.63			1.00			3.21			1.44			5.35


			36			5			3			4			3			2			6			76.096			36			0.05			0.03			0.04			0.03			0.02			0.06			0.76096									36			0.74888			0.77113			0.76058			0.71614			0.35228			0.83228			0.79783			0.83313			0.87766			0.02			0.04			0.00			0.74			6.71			0.59			0.61			1.19			1.92


			37			1			2			5			3			2			6			33.196			37			0.01			0.02			0.05			0.03			0.02			0.06			0.33196									37			0.39303			0.38599			0.41068			0.39007			0.30788			0.38836			0.41191			0.38222			0.43873			0.29			0.51			1.48			2.19			0.91			1.06			3.01			1.89			4.02


			38			5			2			5			3			2			6			83.116			38			0.05			0.02			0.05			0.03			0.02			0.06			0.83116									38			0.79491			0.80388			0.78560			0.73037			0.34271			0.85416			0.81911			0.85915			0.88103			0.07			0.10			0.34			1.52			7.35			0.17			0.18			0.42			0.75


			39			1			3			5			3			2			6			33.182			39			0.01			0.03			0.05			0.03			0.02			0.06			0.33182									39			0.39286			0.37918			0.39984			0.36562			0.31739			0.40532			0.41784			0.37044			0.43099			0.29			0.45			1.28			1.27			0.54			1.38			3.24			1.45			3.74


			40			5			3			5			3			2			6			83.102			40			0.05			0.03			0.05			0.03			0.02			0.06			0.83102									40			0.79446			0.79864			0.77762			0.70948			0.35271			0.86268			0.82261			0.85284			0.87760			0.07			0.12			0.40			1.83			7.19			0.24			0.13			0.33			0.70


			41			1			2			4			4			2			6			30.798			41			0.01			0.02			0.04			0.04			0.02			0.06			0.30798									41			0.34312			0.34961			0.38217			0.37494			0.30378			0.33131			0.34894			0.33269			0.43301			0.18			0.42			1.51			2.72			0.17			0.47			1.66			1.00			5.07


			42			5			2			4			4			2			6			78.278			42			0.05			0.02			0.04			0.04			0.02			0.06			0.78278									42			0.75440			0.77506			0.76389			0.71764			0.33839			0.82021			0.77587			0.83083			0.87864			0.06			0.03			0.15			1.04			7.10			0.30			0.11			0.77			1.53


			43			1			3			4			4			2			6			30.786			43			0.01			0.03			0.04			0.04			0.02			0.06			0.30786									43			0.34300			0.34314			0.37165			0.35090			0.31322			0.34721			0.35452			0.32167			0.42530			0.18			0.36			1.30			1.75			0.22			0.80			1.89			0.56			4.77


			44			5			3			4			4			2			6			78.266			44			0.05			0.03			0.04			0.04			0.02			0.06			0.78266									44			0.75392			0.76930			0.75537			0.69616			0.34833			0.83035			0.77999			0.82351			0.87516			0.06			0.05			0.22			1.38			6.94			0.38			0.04			0.65			1.48


			45			1			2			5			4			2			6			33.806			45			0.01			0.02			0.05			0.04			0.02			0.06			0.33806									45			0.39918			0.38412			0.40419			0.36731			0.30419			0.38521			0.38635			0.36646			0.43305			0.28			0.43			1.22			1.08			1.25			0.87			1.79			1.05			3.51


			46			5			2			5			4			2			6			85.286			46			0.05			0.02			0.05			0.04			0.02			0.06			0.85286									46			0.79930			0.80222			0.78076			0.71100			0.33881			0.85244			0.80269			0.85077			0.87859			0.10			0.19			0.53			2.08			7.53			0.00			0.74			0.03			0.38


			47			1			3			5			4			2			6			33.792			47			0.01			0.03			0.05			0.04			0.02			0.06			0.33792									47			0.39899			0.37733			0.39343			0.34349			0.31364			0.40213			0.39216			0.35490			0.42534			0.28			0.36			1.03			0.21			0.90			1.19			2.01			0.63			3.23


			48			5			3			5			4			2			6			85.272			48			0.05			0.03			0.05			0.04			0.02			0.06			0.85272									48			0.79885			0.79695			0.77266			0.68923			0.34876			0.86104			0.80643			0.84416			0.87511			0.10			0.20			0.59			2.40			7.39			0.06			0.68			0.13			0.33


			49			1			2			4			3			3			6			40.196			49			0.01			0.02			0.04			0.03			0.03			0.06			0.40196									49			0.41622			0.40914			0.41157			0.40336			0.30880			0.40263			0.37226			0.39630			0.45929			0.06			0.06			0.15			0.04			2.90			0.01			0.92			0.18			1.78


			50			5			2			4			3			3			6			86.116			50			0.05			0.02			0.04			0.03			0.03			0.06			0.86116									50			0.81136			0.82049			0.78636			0.74109			0.34368			0.86144			0.79292			0.86620			0.88948			0.09			0.15			0.54			1.74			7.51			0.00			0.99			0.07			0.41


			51			1			3			4			3			3			6			40.182			51			0.01			0.03			0.04			0.03			0.03			0.06			0.40182									51			0.41601			0.40213			0.40072			0.37858			0.31832			0.41978			0.37799			0.38435			0.45146			0.06			0.00			0.02			0.72			2.60			0.28			0.74			0.54			1.54


			52			5			3			4			3			3			6			86.102			52			0.05			0.03			0.04			0.03			0.03			0.06			0.86102									52			0.81092			0.81556			0.77840			0.72073			0.35369			0.86960			0.79681			0.86016			0.88627			0.09			0.16			0.60			2.04			7.37			0.06			0.93			0.01			0.37


			53			1			2			5			3			3			6			44.204			53			0.01			0.02			0.05			0.03			0.03			0.06			0.44204									53			0.47632			0.44597			0.43419			0.39551			0.30921			0.46022			0.41059			0.43240			0.45931			0.12			0.03			0.11			1.32			3.76			0.26			0.89			0.27			0.49


			54			5			2			5			3			3			6			94.124			54			0.05			0.02			0.05			0.03			0.03			0.06			0.94124									54			0.84829			0.84349			0.80207			0.73480			0.34411			0.88726			0.81817			0.88254			0.88943			0.15			0.32			0.92			2.74			7.93			0.36			1.63			0.78			0.69


			55			1			3			5			3			3			6			44.188			55			0.01			0.03			0.05			0.03			0.03			0.06			0.44188									55			0.47606			0.43875			0.42315			0.37092			0.31874			0.47784			0.41651			0.42010			0.45150			0.12			0.02			0.26			2.01			3.48			0.51			0.72			0.62			0.27


			56			5			3			5			3			3			6			94.108			56			0.05			0.03			0.05			0.03			0.03			0.06			0.94108									56			0.84789			0.83905			0.79453			0.71413			0.35412			0.89407			0.82167			0.87713			0.88622			0.15			0.34			0.97			3.01			7.80			0.31			1.59			0.85			0.73


			57			1			2			4			4			3			6			40.806			57			0.01			0.02			0.04			0.04			0.03			0.06			0.40806									57			0.42250			0.40720			0.40509			0.38030			0.30510			0.39944			0.34773			0.38032			0.45355			0.06			0.01			0.05			0.85			3.15			0.13			1.85			0.85			1.39


			58			5			2			4			4			3			6			88.286			58			0.05			0.02			0.04			0.04			0.03			0.06			0.88286									58			0.81549			0.81892			0.78153			0.72221			0.33978			0.85979			0.77477			0.85817			0.88719			0.12			0.23			0.72			2.27			7.69			0.16			1.53			0.35			0.06


			59			1			3			4			4			3			6			40.792			59			0.01			0.03			0.04			0.04			0.03			0.06			0.40792									59			0.42228			0.40021			0.39430			0.35610			0.31457			0.41655			0.35330			0.36856			0.44575			0.06			0.06			0.21			1.59			2.86			0.13			1.67			1.21			1.16


			60			5			3			4			4			3			6			88.272			60			0.05			0.03			0.04			0.04			0.03			0.06			0.88272									60			0.81505			0.81396			0.77345			0.70094			0.34974			0.86803			0.77890			0.85183			0.88393			0.12			0.24			0.77			2.57			7.55			0.10			1.47			0.44			0.02


			61			1			2			5			4			3			6			44.814			61			0.01			0.02			0.05			0.04			0.03			0.06			0.44814									61			0.48279			0.44394			0.42758			0.37262			0.30552			0.45690			0.38507			0.41595			0.45358			0.12			0.03			0.29			2.11			3.98			0.12			1.76			0.90			0.15


			62			5			2			5			4			3			6			96.294			62			0.05			0.02			0.05			0.04			0.03			0.06			0.96294									62			0.85177			0.84207			0.79749			0.71564			0.34020			0.88587			0.80168			0.87536			0.88715			0.18			0.39			1.07			3.21			8.08			0.50			2.09			1.14			0.98


			63			1			3			5			4			3			6			44.798			63			0.01			0.03			0.05			0.04			0.03			0.06			0.44798									63			0.48251			0.43673			0.41659			0.34864			0.31498			0.47452			0.39087			0.40379			0.44579			0.12			0.08			0.44			2.77			3.71			0.37			1.59			1.23			0.06


			64			5			3			5			4			3			6			96.278			64			0.05			0.03			0.05			0.04			0.03			0.06			0.96278									64			0.85137			0.83759			0.78984			0.69407			0.35017			0.89276			0.80544			0.86967			0.88388			0.18			0.41			1.12			3.49			7.95			0.45			2.04			1.21			1.02


			rand 8


			1			3			2			4			3			2			3			38.172						0.03			0.03			0.04			0.03			0.02			0.03			0.38172


			2			2			2			4			3			2			3			30.202						0.02			0.02			0.04			0.03			0.02			0.03			0.30202


			3			2			2			4			3			2			3			30.202						0.02			0.02			0.04			0.03			0.02			0.03			0.30202


			4			1			2			4			3			2			2			19.58						0.01			0.01			0.04			0.03			0.02			0.02			0.19580


			5			1			2			4			3			2			3			22.412						0.01			0.01			0.04			0.03			0.02			0.03			0.22412


			6			1			2			4			3			2			2			19.58						0.01			0.01			0.04			0.03			0.02			0.02			0.19580


			7			3			2			4			3			2			4			43.124						0.03			0.03			0.04			0.03			0.02			0.04			0.43124


			8			2			2			4			3			2			4			34.034						0.02			0.02			0.04			0.03			0.02			0.04			0.34034


			rand 16 rand 01


			1			5			2			5			3			3			6			94.124						0.05			0.02			0.05			0.03			0.03			0.06			0.94124


			2			3			2			4			3			2			5			47.956						0.03			0.02			0.04			0.03			0.02			0.05			0.47956


			3			3			2			4			3			2			5			47.956						0.03			0.02			0.04			0.03			0.02			0.05			0.47956


			4			5			2			5			3			2			2			54.58						0.05			0.02			0.05			0.03			0.02			0.02			0.54580


			5			1			3			4			3			3			6			40.182						0.01			0.03			0.04			0.03			0.03			0.06			0.40182


			6			1			3			4			4			3			2			26.176						0.01			0.03			0.04			0.04			0.03			0.02			0.26176


			7			5			2			4			4			3			2			55.75						0.05			0.02			0.04			0.04			0.03			0.02			0.55750


			8			1			2			5			3			3			6			44.204						0.01			0.02			0.05			0.03			0.03			0.06			0.44204


			9			5			2			5			3			3			6			94.124						0.05			0.02			0.05			0.03			0.03			0.06			0.94124


			10			5			3			5			3			3			6			94.108						0.05			0.03			0.05			0.03			0.03			0.06			0.94108


			11			5			2			5			3			3			2			61.58						0.05			0.02			0.05			0.03			0.03			0.02			0.61580


			12			5			3			4			4			2			2			49.738						0.05			0.03			0.04			0.04			0.02			0.02			0.49738


			13			5			3			5			3			3			2			61.564						0.05			0.03			0.05			0.03			0.03			0.02			0.61564


			14			1			2			4			3			2			6			30.188						0.01			0.02			0.04			0.03			0.02			0.06			0.30188


			15			5			3			5			3			2			2			54.566						0.05			0.03			0.05			0.03			0.02			0.02			0.54566


			16			5			2			3			3			2			2			40.58						0.05			0.02			0.03			0.03			0.02			0.02			0.40580


			rand 8.3 rand 01


			1			5			2			4			4			3			2			55.75						0.05			0.02			0.04			0.04			0.03			0.02			0.5575


			2			1			3			4			4			2			6			30.786						0.01			0.03			0.04			0.04			0.02			0.06			0.30786


			3			1			3			5			3			3			2			29.564						0.01			0.03			0.05			0.03			0.03			0.02			0.29564


			4			5			2			5			3			2			6			83.116						0.05			0.02			0.05			0.03			0.02			0.06			0.83116


			5			1			2			4			3			3			6			40.196						0.01			0.02			0.04			0.03			0.03			0.06			0.40196


			6			1			2			4			4			2			6			30.798						0.01			0.02			0.04			0.04			0.02			0.06			0.30798


			7			5			3			5			4			2			6			85.272						0.05			0.03			0.05			0.04			0.02			0.06			0.85272


			8			1			2			4			4			3			2			26.19						0.01			0.02			0.04			0.04			0.03			0.02			0.2619


			rand 8.4 rand 01


			1			1			2			5			4			2			2			23.19						0.01			0.02			0.05			0.04			0.02			0.02			0.23190


			2			5			2			4			4			2			6			78.278						0.05			0.02			0.04			0.04			0.02			0.06			0.78278


			3			5			3			4			3			2			6			76.096						0.05			0.03			0.04			0.03			0.02			0.06			0.76096


			4			5			2			5			3			3			6			94.124						0.05			0.02			0.05			0.03			0.03			0.06			0.94124


			5			1			3			5			4			2			2			23.176						0.01			0.03			0.05			0.04			0.02			0.02			0.23176


			6			1			3			4			4			2			6			30.786						0.01			0.03			0.04			0.04			0.02			0.06			0.30786


			7			5			3			5			4			3			6			96.278						0.05			0.03			0.05			0.04			0.03			0.06			0.96278


			8			5			2			4			3			3			6			86.116						0.05			0.02			0.04			0.03			0.03			0.06			0.86116


			rand 8.5 rand 01


			1			5			2			5			3			3			6			94.124						0.05			0.02			0.05			0.03			0.03			0.06			0.94124


			2			5			3			4			3			3			6			86.102						0.05			0.03			0.04			0.03			0.03			0.06			0.86102


			3			1			3			4			3			2			2			19.568						0.01			0.03			0.04			0.03			0.02			0.02			0.19568


			4			1			3			4			4			2			2			20.178						0.01			0.03			0.04			0.04			0.02			0.02			0.20178


			5			5			2			4			4			3			6			88.286						0.05			0.02			0.04			0.04			0.03			0.06			0.88286


			6			1			2			5			3			3			6			44.204						0.01			0.02			0.05			0.03			0.03			0.06			0.44204


			7			1			2			4			4			2			2			20.19						0.01			0.02			0.04			0.04			0.02			0.02			0.20190


			8			5			2			5			4			2			2			56.75						0.05			0.02			0.05			0.04			0.02			0.02			0.56750
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ANN's global error


Number of samples


Global error [%]


ANN's global error for diffrent number of training samples





			Training history																																	Testing history


			cycle			64 samples			32 samples			16 samples			8 samples			8 rand			8.3 rand 01			8.4 rand 01			8.5 rand 01			16 rand 01						cycle			64 samples			32 samples			16 samples			8 samples			8 rand			8.3 rand 01			8.4 rand 01			8.5 rand 01			16 rand 01


			1			3.57647			1.73170			1.38502			0.61032			0.98888			1.14599			1.08521			1.41630			1.57117						1			0.70879			0.29044			0.19376			0.04836			0.04153			0.06719			0.35645			0.01446			0.20640


			21			0.51905			0.25823			0.20326			0.00536			0.00438			0.02080			0.07117			0.00754			0.01500						21			0.48936			0.24297			0.19375			0.00476			0.00389			0.01914			0.06321			0.00733			0.01364


			41			2.95143			1.55976			0.66982			0.24131			0.05344			0.38001			0.68858			0.76828			0.68891						41			0.78654			0.30144			0.24004			0.00154			0.00858			0.00304			0.14348			0.16926			0.03223


			61			2.92131			1.57442			0.67986			0.24072			0.05339			0.37954			0.68575			0.76509			0.68900						61			0.84238			0.25830			0.24552			0.00076			0.00842			0.00285			0.13045			0.16127			0.02947


			81			2.73866			1.54073			0.65540			0.24164			0.05332			0.37582			0.68534			0.76455			0.68681						81			0.55942			0.30978			0.23776			0.00131			0.00884			0.00416			0.12903			0.15926			0.02903


			101			2.88276			1.58906			0.67562			0.24053			0.05328			0.37607			0.68765			0.76475			0.68753						101			0.69880			0.27554			0.25047			0.00106			0.00870			0.00349			0.13282			0.16245			0.03048


			121			2.82521			1.57396			0.67469			0.24135			0.05331			0.37905			0.68136			0.76111			0.68824						121			0.86703			0.28724			0.24343			0.00121			0.00857			0.00223			0.14073			0.16685			0.03775


			141			2.78197			1.59409			0.68070			0.23905			0.05337			0.37831			0.68766			0.76439			0.68243						141			0.92327			0.28075			0.25664			0.00140			0.00836			0.00275			0.13323			0.16370			0.03514


			161			2.84745			1.57295			0.67485			0.24119			0.05331			0.37574			0.68497			0.76296			0.67995						161			0.75656			0.28482			0.24798			0.00129			0.00821			0.00210			0.14117			0.16401			0.03318


			181			2.80680			1.56557			0.67071			0.23991			0.05332			0.37524			0.68569			0.76098			0.67062						181			0.80821			0.29523			0.24471			0.00094			0.00835			0.00210			0.13309			0.16539			0.02285


			201			2.67741			1.57703			0.67536			0.24082			0.05315			0.37804			0.68528			0.76064			0.68515						201			0.61854			0.29510			0.24332			0.00101			0.00841			0.00262			0.13315			0.16111			0.02526


			221			2.72553			1.55131			0.67364			0.24010			0.05334			0.37729			0.68466			0.75875			0.68508						221			0.76650			0.25860			0.24065			0.00102			0.00844			0.00261			0.13914			0.16774			0.02972


			241			2.69693			1.54461			0.67316			0.24037			0.05330			0.37457			0.68093			0.75886			0.68410						241			0.66532			0.29734			0.24992			0.00102			0.00855			0.00365			0.12455			0.15609			0.02915


			261			2.65662			1.57255			0.67549			0.23935			0.05332			0.37790			0.68167			0.75621			0.68288						261			0.70913			0.27885			0.24926			0.00130			0.00830			0.00311			0.12660			0.15335			0.02739


			281			2.64234			1.54857			0.67193			0.24028			0.05323			0.37742			0.68088			0.75755			0.67649						281			0.70745			0.25704			0.24028			0.00111			0.00833			0.00182			0.13813			0.16641			0.03604


			301			2.55772			1.55062			0.65806			0.23974			0.05335			0.37690			0.68262			0.75538			0.68556						301			0.71978			0.25961			0.23194			0.00135			0.00900			0.00279			0.13206			0.16059			0.02801


			321			2.50294			1.52040			0.66772			0.23937			0.05321			0.37721			0.68115			0.74920			0.67860						321			0.60878			0.29827			0.23956			0.00105			0.00820			0.00281			0.13324			0.15058			0.03576


			341			2.49748			1.54813			0.67232			0.23862			0.05318			0.37366			0.68059			0.75356			0.68264						341			0.82566			0.27705			0.24961			0.00133			0.00845			0.00293			0.13328			0.16037			0.03018


			361			2.40954			1.49094			0.66404			0.23965			0.05325			0.37707			0.67880			0.75334			0.68350						361			0.57080			0.24115			0.24051			0.00101			0.00884			0.00307			0.13167			0.16082			0.03269


			381			2.38332			1.54188			0.66990			0.23926			0.05328			0.37502			0.67782			0.74994			0.68006						381			0.66031			0.27283			0.24282			0.00111			0.00861			0.00212			0.13209			0.15694			0.03209


			401			2.30070			1.52990			0.66831			0.23944			0.05297			0.37635			0.67782			0.75165			0.68482						401			0.56504			0.25654			0.25028			0.00098			0.00848			0.00219			0.13574			0.16672			0.02738


			421			2.19112			1.52177			0.66627			0.23924			0.05323			0.37479			0.67844			0.74803			0.68314						421			0.56360			0.27591			0.25428			0.00088			0.00840			0.00180			0.13358			0.16678			0.02787


			441			2.17403			1.51986			0.66670			0.23838			0.05322			0.37605			0.67704			0.74807			0.67782						441			0.62457			0.25680			0.24103			0.00125			0.00825			0.00258			0.13237			0.16448			0.02448


			461			2.11748			1.50146			0.66522			0.23865			0.05325			0.37547			0.67588			0.75037			0.68097						461			0.63662			0.29109			0.24027			0.00115			0.00849			0.00255			0.12567			0.14999			0.03084


			481			1.99037			1.50762			0.66570			0.23859			0.05319			0.37577			0.66979			0.74244			0.68212						481			0.51562			0.27258			0.24313			0.00124			0.00879			0.00261			0.12477			0.15571			0.02625


			501			1.93801			1.45057			0.65932			0.23743			0.05315			0.37528			0.67622			0.74607			0.68268						501			0.63009			0.24752			0.25347			0.00059			0.00829			0.00265			0.12940			0.16022			0.03327


			521			1.81710			1.50138			0.66236			0.23834			0.05318			0.37337			0.67515			0.74117			0.68209						521			0.42483			0.25661			0.24118			0.00114			0.00855			0.00196			0.13511			0.16925			0.02895


			541			1.74050			1.47556			0.65815			0.23853			0.05316			0.37391			0.67339			0.74103			0.68139						541			0.54100			0.26931			0.25024			0.00085			0.00836			0.00295			0.13121			0.15714			0.03173


			561			1.64052			1.44827			0.66243			0.23821			0.05314			0.37454			0.67239			0.74161			0.67949						561			0.41210			0.24779			0.25346			0.00106			0.00835			0.00267			0.13229			0.16718			0.03232


			581			1.58704			1.40770			0.65862			0.23784			0.05313			0.37460			0.66694			0.73879			0.67446						581			0.49385			0.30159			0.24713			0.00104			0.00853			0.00284			0.12101			0.15307			0.03519


			601			1.52579			1.43964			0.65869			0.23776			0.05317			0.37394			0.66848			0.72947			0.67926						601			0.52397			0.27697			0.24990			0.00131			0.00865			0.00305			0.12346			0.15144			0.02914


			621			1.43134			1.46519			0.65828			0.23704			0.05297			0.37327			0.67097			0.73539			0.67856						621			0.51569			0.25599			0.24638			0.00086			0.00829			0.00178			0.14067			0.17036			0.02915


			641			1.33481			1.45238			0.65807			0.23775			0.05315			0.37262			0.67038			0.73751			0.68189						641			0.45352			0.26260			0.24939			0.00097			0.00841			0.00371			0.12919			0.15725			0.03529


			661			1.21494			1.42164			0.65720			0.23763			0.05302			0.37238			0.66908			0.73410			0.67885						661			0.35714			0.23999			0.24526			0.00093			0.00829			0.00223			0.13105			0.15957			0.03182


			681			1.16068			1.39807			0.64471			0.23646			0.05290			0.37370			0.66832			0.73409			0.67339						681			0.39230			0.23480			0.23208			0.00060			0.00840			0.00211			0.12752			0.15544			0.02916


			701			1.08614			1.44009			0.65167			0.23598			0.05306			0.37181			0.66574			0.72898			0.67723						701			0.33139			0.24396			0.24491			0.00057			0.00829			0.00177			0.13802			0.17341			0.03176


			721			0.99766			1.43083			0.64641			0.23658			0.05312			0.37301			0.66554			0.73032			0.67609						721			0.41026			0.26706			0.25520			0.00071			0.00884			0.00236			0.12878			0.16270			0.03464


			741			0.93273			1.38864			0.65158			0.23621			0.05307			0.37314			0.66505			0.72445			0.67570						741			0.31383			0.23816			0.24600			0.00123			0.00849			0.00227			0.12974			0.15340			0.03190


			761			0.84970			1.36833			0.65118			0.23681			0.05296			0.37328			0.66549			0.72268			0.66594						761			0.25921			0.27339			0.23747			0.00089			0.00884			0.00320			0.12401			0.16191			0.02642


			781			0.79026			1.38119			0.64799			0.23680			0.05308			0.37136			0.66256			0.71946			0.67686						781			0.31725			0.25000			0.24511			0.00103			0.00842			0.00313			0.12398			0.14824			0.02815


			801			0.72970			1.37528			0.64435			0.23658			0.05289			0.37157			0.66343			0.72520			0.67305						801			0.37036			0.24080			0.24321			0.00079			0.00833			0.00307			0.12830			0.15456			0.02679


			821			0.65815			1.34491			0.64284			0.23635			0.05306			0.37178			0.65472			0.71579			0.67455						821			0.19222			0.22977			0.24517			0.00122			0.00851			0.00318			0.12202			0.14763			0.03366


			841			0.67083			1.33467			0.64477			0.23609			0.05301			0.37104			0.66145			0.71937			0.67397						841			0.25768			0.25171			0.24204			0.00096			0.00884			0.00293			0.12634			0.15893			0.02927


			861			0.58911			1.29645			0.64059			0.23589			0.05300			0.37168			0.65961			0.71715			0.66887						861			0.27693			0.22059			0.24613			0.00101			0.00828			0.00234			0.12488			0.14956			0.03520


			881			0.56211			1.31226			0.64465			0.23429			0.05302			0.37099			0.65849			0.71889			0.67184						881			0.21191			0.22017			0.23735			0.00148			0.00853			0.00266			0.12580			0.15068			0.02887


			901			0.53314			1.28802			0.64013			0.23572			0.05301			0.36867			0.65351			0.70600			0.67012						901			0.21447			0.25171			0.23610			0.00088			0.00834			0.00250			0.12113			0.14808			0.03052


			921			0.48823			1.29298			0.64016			0.23526			0.05292			0.36945			0.65713			0.71505			0.67247						921			0.16046			0.23198			0.23737			0.00104			0.00814			0.00185			0.12875			0.15660			0.02561


			941			0.46346			1.25530			0.63919			0.23519			0.05301			0.37093			0.65665			0.71237			0.67657						941			0.26169			0.22311			0.24021			0.00118			0.00844			0.00341			0.12098			0.15410			0.03574


			961			0.44689			1.23748			0.63748			0.23525			0.05286			0.36995			0.65337			0.70874			0.67142						961			0.24382			0.20707			0.24349			0.00066			0.00856			0.00221			0.12316			0.15405			0.03031


			981			0.40813			1.25277			0.63611			0.23550			0.05298			0.36753			0.64565			0.70330			0.66871						981			0.13411			0.22368			0.23724			0.00140			0.00851			0.00293			0.12315			0.15424			0.02760


			1001			0.40873			1.18786			0.63491			0.23502			0.05287			0.36865			0.64527			0.70599			0.67278						1001			0.22200			0.20171			0.23236			0.00086			0.00838			0.00179			0.13047			0.15902			0.02788


			1021			0.38479			1.19104			0.62996			0.23325			0.05292			0.36910			0.64846			0.70264			0.67355						1021			0.15014			0.22610			0.24530			0.00106			0.00843			0.00234			0.12259			0.15469			0.03264


			1041			0.36530			1.16262			0.62483			0.23480			0.05292			0.36913			0.64659			0.70144			0.66783						1041			0.17334			0.23430			0.22666			0.00093			0.00855			0.00237			0.12490			0.15244			0.02786


			1061			0.34487			1.15207			0.63077			0.23357			0.05291			0.36727			0.64587			0.70103			0.67201						1061			0.16228			0.22944			0.23618			0.00131			0.00852			0.00171			0.12745			0.15204			0.02759


			1081			0.34411			1.14532			0.62571			0.23433			0.05288			0.36829			0.64574			0.69880			0.66935						1081			0.19140			0.21388			0.23895			0.00106			0.00855			0.00196			0.12086			0.15238			0.02916


			1101			0.34079			1.05121			0.62857			0.23358			0.05274			0.36806			0.64664			0.69675			0.66445						1101			0.14756			0.23489			0.22825			0.00071			0.00849			0.00263			0.12484			0.15893			0.03279


			1121			0.33609			1.08663			0.62181			0.23400			0.05292			0.36693			0.64367			0.69371			0.66838						1121			0.14966			0.21591			0.22732			0.00100			0.00818			0.00161			0.12951			0.15338			0.02851


			1141			0.32246			1.07121			0.62316			0.23238			0.05291			0.36680			0.64067			0.68533			0.66634						1141			0.19887			0.20351			0.23370			0.00125			0.00850			0.00341			0.11780			0.14557			0.02820


			1161			0.30183			1.03770			0.61778			0.23255			0.05290			0.36501			0.63819			0.68437			0.66306						1161			0.12137			0.22326			0.22860			0.00131			0.00839			0.00348			0.11866			0.13995			0.02664


			1181			0.29092			1.03061			0.61941			0.23351			0.05284			0.36754			0.64045			0.68561			0.66491						1181			0.17684			0.18263			0.23074			0.00076			0.00853			0.00226			0.11991			0.14821			0.02702


			1201			0.29262			0.99446			0.60908			0.23375			0.05266			0.36712			0.63818			0.68447			0.66619						1201			0.11330			0.21073			0.22508			0.00124			0.00803			0.00209			0.12916			0.15287			0.02577


			1221			0.29925			0.98565			0.61242			0.23271			0.05287			0.36646			0.63930			0.67675			0.66565						1221			0.14641			0.17424			0.23032			0.00096			0.00846			0.00219			0.11899			0.14374			0.03086


			1241			0.29618			0.95975			0.61437			0.23289			0.05284			0.36439			0.63731			0.67885			0.66740						1241			0.14525			0.17833			0.22536			0.00082			0.00855			0.00176			0.11996			0.15239			0.02937


			1261			0.28456			0.93764			0.61169			0.23314			0.05271			0.36605			0.63582			0.67597			0.66347						1261			0.15415			0.17609			0.22967			0.00130			0.00884			0.00230			0.11980			0.15036			0.03381


			1281			0.27619			0.92515			0.60868			0.23224			0.05268			0.36520			0.63469			0.67390			0.66187						1281			0.10692			0.17967			0.22720			0.00112			0.00818			0.00225			0.11597			0.14468			0.02701


			1301			0.26799			0.87655			0.60251			0.23265			0.05282			0.36617			0.62698			0.67162			0.66622						1301			0.14961			0.15955			0.22602			0.00116			0.00849			0.00332			0.10772			0.13458			0.03324


			1321			0.28242			0.84253			0.60142			0.23150			0.05282			0.36425			0.62740			0.65929			0.66492						1321			0.13084			0.14568			0.22487			0.00106			0.00855			0.00260			0.11605			0.14022			0.02967


			1341			0.26658			0.84150			0.59632			0.23251			0.05269			0.36171			0.63044			0.66454			0.66040						1341			0.16462			0.18189			0.21980			0.00103			0.00829			0.00150			0.12445			0.14688			0.03359


			1361			0.27738			0.81499			0.59633			0.23212			0.05270			0.36487			0.62697			0.65827			0.66211						1361			0.11376			0.17019			0.23752			0.00108			0.00852			0.00203			0.11590			0.13899			0.03147


			1381			0.27215			0.76555			0.58924			0.23199			0.05256			0.36436			0.62551			0.65899			0.65867						1381			0.10550			0.16468			0.23588			0.00089			0.00869			0.00242			0.11573			0.14922			0.03555


			1401			0.26542			0.75257			0.59513			0.23213			0.05269			0.36078			0.62322			0.65653			0.66093						1401			0.12502			0.16022			0.22675			0.00090			0.00827			0.00185			0.11461			0.14075			0.02825


			1421			0.26241			0.74053			0.59355			0.23179			0.05258			0.36297			0.62275			0.64949			0.65961						1421			0.12328			0.17033			0.23335			0.00092			0.00830			0.00223			0.11361			0.13797			0.02760


			1441			0.26389			0.70246			0.58842			0.23132			0.05270			0.36372			0.61946			0.64721			0.64732						1441			0.16691			0.14742			0.23218			0.00111			0.00894			0.00228			0.10965			0.14120			0.03434


			1461			0.25869			0.68770			0.59006			0.23132			0.05264			0.36247			0.61753			0.64522			0.64642						1461			0.17167			0.14088			0.23483			0.00069			0.00811			0.00175			0.11284			0.14156			0.03708


			1481			0.24527			0.65060			0.58556			0.22952			0.05274			0.36272			0.61805			0.64305			0.66293						1481			0.12081			0.13184			0.22796			0.00133			0.00816			0.00189			0.11417			0.13788			0.02782


			1501			0.24450			0.64293			0.58101			0.23077			0.05274			0.36033			0.61560			0.63978			0.65564						1501			0.18457			0.13328			0.22574			0.00126			0.00832			0.00362			0.11497			0.13599			0.02783


			1521			0.26049			0.61886			0.58013			0.23086			0.05258			0.36212			0.61413			0.63290			0.65770						1521			0.09736			0.14325			0.22520			0.00125			0.00867			0.00237			0.11490			0.14687			0.03144


			1541			0.25650			0.59716			0.57893			0.23095			0.05273			0.36152			0.61111			0.63166			0.65192						1541			0.08239			0.12610			0.23153			0.00086			0.00817			0.00237			0.11858			0.13749			0.02811


			1561			0.26266			0.56886			0.57577			0.23055			0.05260			0.36192			0.61177			0.62919			0.65769						1561			0.09400			0.11945			0.22425			0.00067			0.00822			0.00153			0.12257			0.14555			0.03017


			1581			0.24331			0.54391			0.57252			0.23051			0.05267			0.36020			0.60220			0.62494			0.65900						1581			0.13521			0.12637			0.21837			0.00109			0.00842			0.00291			0.10600			0.13250			0.03088


			1601			0.25681			0.52968			0.56619			0.23052			0.05266			0.35860			0.59727			0.61295			0.65651						1601			0.08588			0.12795			0.22807			0.00106			0.00856			0.00306			0.10381			0.12959			0.03255


			1621			0.25115			0.51102			0.56541			0.23049			0.05265			0.36068			0.60133			0.61599			0.65698						1621			0.11372			0.10907			0.22841			0.00068			0.00850			0.00178			0.11982			0.14686			0.02663


			1641			0.23730			0.48095			0.56349			0.23011			0.05262			0.35588			0.59932			0.60825			0.65392						1641			0.06959			0.11153			0.21920			0.00076			0.00839			0.00249			0.11278			0.13557			0.03310


			1661			0.24542			0.46667			0.55435			0.22850			0.05267			0.35892			0.59558			0.60823			0.65225						1661			0.10328			0.09373			0.21583			0.00130			0.00835			0.00163			0.11450			0.13180			0.03411


			1681			0.25553			0.44709			0.55931			0.22980			0.05237			0.35886			0.59824			0.60325			0.65299						1681			0.09739			0.11447			0.22913			0.00106			0.00902			0.00253			0.10456			0.13447			0.03071


			1701			0.23578			0.42688			0.54046			0.22928			0.05265			0.35874			0.59418			0.59997			0.65412						1701			0.13555			0.08927			0.21107			0.00105			0.00828			0.00194			0.11407			0.13370			0.03140


			1721			0.24030			0.42946			0.54134			0.22908			0.05253			0.35927			0.59296			0.59537			0.65453						1721			0.09892			0.10802			0.23027			0.00074			0.00815			0.00180			0.11326			0.13053			0.03216


			1741			0.25584			0.39411			0.54618			0.22876			0.05255			0.35651			0.58500			0.59155			0.65356						1741			0.10741			0.11108			0.22208			0.00096			0.00857			0.00256			0.10010			0.13108			0.02634


			1761			0.24881			0.38802			0.54269			0.22908			0.05257			0.35730			0.58545			0.57734			0.64774						1761			0.11915			0.09778			0.22376			0.00078			0.00808			0.00238			0.10026			0.11614			0.03568


			1781			0.23443			0.34250			0.54013			0.22876			0.05248			0.35743			0.58416			0.58124			0.64976						1781			0.09119			0.06726			0.20945			0.00101			0.00810			0.00202			0.11448			0.13222			0.03533


			1801			0.23128			0.36136			0.53766			0.22743			0.05260			0.35697			0.58425			0.57324			0.64926						1801			0.06185			0.09663			0.21727			0.00052			0.00870			0.00222			0.10147			0.13010			0.03345


			1821			0.24183			0.34517			0.52985			0.22804			0.05257			0.35573			0.58065			0.56895			0.65156						1821			0.12644			0.07634			0.20785			0.00079			0.00836			0.00246			0.10321			0.13457			0.02634


			1841			0.23952			0.33593			0.52358			0.22614			0.05252			0.35634			0.57794			0.56673			0.65131						1841			0.11315			0.09032			0.21983			0.00105			0.00827			0.00199			0.11150			0.13616			0.02778


			1861			0.23836			0.31956			0.52281			0.22796			0.05243			0.35558			0.57656			0.56297			0.65020						1861			0.08033			0.06875			0.22157			0.00078			0.00796			0.00203			0.10569			0.12028			0.02888


			1881			0.25015			0.30711			0.52275			0.22805			0.05256			0.35214			0.57403			0.55866			0.64900						1881			0.10430			0.07215			0.20719			0.00141			0.00845			0.00289			0.10753			0.12799			0.03153


			1901			0.23112			0.29105			0.51825			0.22798			0.05256			0.35458			0.57106			0.55284			0.64797						1901			0.11520			0.07850			0.20561			0.00092			0.00860			0.00196			0.10211			0.12697			0.02836


			1921			0.24490			0.28698			0.49956			0.22762			0.05251			0.35396			0.56767			0.54748			0.64461						1921			0.10264			0.07342			0.22229			0.00070			0.00851			0.00216			0.09905			0.13427			0.03523


			1941			0.23496			0.25999			0.50762			0.22683			0.05254			0.35480			0.56414			0.54300			0.64481						1941			0.12860			0.06537			0.20309			0.00085			0.00831			0.00215			0.10731			0.12453			0.03380


			1961			0.24011			0.26874			0.50872			0.22679			0.05249			0.35355			0.55629			0.52385			0.64623						1961			0.09342			0.06278			0.21278			0.00090			0.00853			0.00277			0.09199			0.10882			0.03127


			1981			0.24380			0.26106			0.50376			0.22576			0.05252			0.35304			0.56000			0.53174			0.64549						1981			0.08812			0.07428			0.20383			0.00057			0.00824			0.00231			0.09692			0.12114			0.02831


			2001			0.23101			0.24569			0.49939			0.22694			0.05243			0.35300			0.55767			0.52550			0.64368						2001			0.07755			0.09043			0.19881			0.00081			0.00809			0.00177			0.10336			0.12980			0.02835


			2021			0.23625			0.23132			0.49480			0.22606			0.05245			0.35284			0.55377			0.51901			0.64570						2021			0.11615			0.05310			0.20578			0.00110			0.00812			0.00196			0.09885			0.12227			0.03651


			2041			0.23151			0.22404			0.47945			0.22597			0.05232			0.35224			0.55069			0.51668			0.63571						2041			0.08619			0.10209			0.21499			0.00067			0.00861			0.00207			0.09877			0.12501			0.03668


			2061			0.23967			0.22499			0.48819			0.22457			0.05246			0.35053			0.54398			0.50257			0.63084						2061			0.08561			0.05835			0.19477			0.00102			0.00837			0.00215			0.08920			0.10900			0.02577


			2081			0.23075			0.22355			0.48152			0.22569			0.05245			0.35097			0.54129			0.49169			0.64214						2081			0.06650			0.07525			0.19839			0.00060			0.00841			0.00141			0.09889			0.12814			0.03151


			2101			0.23627			0.22027			0.45854			0.22583			0.05241			0.35136			0.54028			0.49879			0.63462						2101			0.09508			0.05690			0.21324			0.00079			0.00828			0.00232			0.09301			0.11273			0.03463


			2121			0.20767			0.21191			0.47565			0.22545			0.05229			0.35063			0.53948			0.49423			0.64000						2121			0.06451			0.07758			0.18875			0.00100			0.00857			0.00170			0.09765			0.11852			0.02993


			2141			0.22872			0.20757			0.47237			0.22553			0.05227			0.34995			0.53277			0.48651			0.63513						2141			0.10884			0.06276			0.19125			0.00103			0.00838			0.00226			0.09331			0.10758			0.02939


			2161			0.23261			0.19699			0.46880			0.22551			0.05235			0.34520			0.52714			0.47978			0.63613						2161			0.09048			0.05182			0.19089			0.00062			0.00858			0.00223			0.08729			0.10890			0.02575


			2181			0.23669			0.19737			0.45116			0.22502			0.05236			0.34848			0.51972			0.47385			0.62627						2181			0.09244			0.05739			0.20042			0.00089			0.00824			0.00143			0.10124			0.11726			0.03447


			2201			0.22156			0.19305			0.45453			0.22476			0.05230			0.34873			0.52304			0.46979			0.61954						2201			0.11926			0.07010			0.19081			0.00088			0.00882			0.00227			0.08388			0.11192			0.02523


			2221			0.22268			0.18592			0.43560			0.22424			0.05230			0.34823			0.52382			0.46151			0.62897						2221			0.08319			0.05226			0.18414			0.00092			0.00844			0.00209			0.08279			0.09927			0.02444


			2241			0.23095			0.18057			0.44685			0.22442			0.05233			0.34624			0.51894			0.45496			0.63330						2241			0.06956			0.05568			0.19093			0.00088			0.00812			0.00230			0.08848			0.09921			0.03063


			2261			0.23134			0.17670			0.44155			0.22362			0.05224			0.34726			0.51610			0.44827			0.63138						2261			0.08870			0.07095			0.19110			0.00076			0.00823			0.00176			0.08167			0.09617			0.03661


			2281			0.21864			0.17838			0.42911			0.22392			0.05214			0.34688			0.50912			0.44346			0.63073						2281			0.10306			0.07289			0.17663			0.00120			0.00843			0.00182			0.08469			0.09820			0.02861


			2301			0.23223			0.16977			0.42663			0.22375			0.05227			0.34622			0.50647			0.43885			0.63123						2301			0.09606			0.06238			0.19385			0.00073			0.00818			0.00198			0.07975			0.09942			0.03235


			2321			0.22418			0.16379			0.42892			0.22272			0.05215			0.34608			0.50499			0.43251			0.62924						2321			0.08968			0.05700			0.19080			0.00054			0.00799			0.00154			0.08506			0.10135			0.02860


			2341			0.22228			0.16864			0.41856			0.22284			0.05235			0.34591			0.49667			0.42271			0.62868						2341			0.08413			0.06774			0.18046			0.00071			0.00793			0.00111			0.07759			0.09169			0.03550


			2361			0.23070			0.16857			0.41699			0.22303			0.05232			0.34408			0.49697			0.42110			0.62666						2361			0.09033			0.05679			0.19100			0.00089			0.00857			0.00175			0.08389			0.09521			0.02838


			2381			0.22239			0.16591			0.40055			0.22134			0.05229			0.34375			0.49292			0.41032			0.62857						2381			0.06725			0.06317			0.18948			0.00065			0.00845			0.00154			0.08298			0.10482			0.02810


			2401			0.22603			0.14497			0.39272			0.22213			0.05233			0.34280			0.48272			0.40823			0.62671						2401			0.07962			0.03729			0.16527			0.00098			0.00841			0.00176			0.08597			0.09957			0.02673


			2421			0.22156			0.16297			0.40390			0.22215			0.05231			0.34296			0.48564			0.38960			0.62520						2421			0.08399			0.05547			0.18468			0.00106			0.00845			0.00228			0.07220			0.08227			0.02993


			2441			0.21404			0.15823			0.40007			0.22208			0.05223			0.34288			0.48210			0.39004			0.61739						2441			0.09675			0.06178			0.17997			0.00099			0.00848			0.00186			0.08081			0.09006			0.02675


			2461			0.22455			0.14433			0.38897			0.22161			0.05221			0.34152			0.47639			0.38570			0.62429						2461			0.08014			0.07246			0.18479			0.00088			0.00805			0.00128			0.08275			0.08919			0.03045


			2481			0.21041			0.14232			0.38773			0.22174			0.05225			0.34129			0.47519			0.37723			0.62236						2481			0.07066			0.07528			0.17513			0.00075			0.00835			0.00151			0.07842			0.10064			0.03120


			2501			0.21814			0.14505			0.37851			0.22147			0.05227			0.33946			0.47078			0.37561			0.61613						2501			0.09972			0.04212			0.16805			0.00085			0.00813			0.00204			0.07795			0.08740			0.03247


			2521			0.22152			0.14990			0.37827			0.22135			0.05222			0.33982			0.46456			0.37044			0.61534						2521			0.09554			0.06251			0.17135			0.00085			0.00844			0.00187			0.06845			0.08627			0.03126


			2541			0.21260			0.14258			0.36305			0.22140			0.05205			0.33961			0.45815			0.36412			0.61933						2541			0.08686			0.03807			0.18471			0.00098			0.00783			0.00140			0.08386			0.09005			0.03059


			2561			0.21302			0.14555			0.36521			0.21984			0.05222			0.33897			0.45747			0.35488			0.61865						2561			0.06888			0.05036			0.17254			0.00067			0.00812			0.00232			0.07258			0.08769			0.03090


			2581			0.22188			0.14398			0.36270			0.22038			0.05218			0.33769			0.45368			0.34798			0.61554						2581			0.09085			0.04847			0.16828			0.00080			0.00835			0.00309			0.06968			0.07936			0.02631


			2601			0.21527			0.14344			0.35606			0.22068			0.05221			0.33759			0.44967			0.34358			0.61359						2601			0.08193			0.05703			0.16859			0.00083			0.00821			0.00178			0.07092			0.08554			0.02986


			2621			0.22472			0.13846			0.34747			0.21991			0.05220			0.33694			0.44457			0.32616			0.61457						2621			0.07966			0.04363			0.16008			0.00082			0.00822			0.00160			0.06939			0.07370			0.02936


			2641			0.22272			0.14257			0.34402			0.21970			0.05211			0.33741			0.43868			0.33138			0.60993						2641			0.09592			0.05059			0.15770			0.00081			0.00820			0.00107			0.06990			0.08268			0.03109


			2661			0.21401			0.14075			0.34128			0.21791			0.05221			0.33575			0.43522			0.32581			0.61242						2661			0.08168			0.05522			0.16047			0.00046			0.00807			0.00144			0.06383			0.07669			0.03075


			2681			0.21189			0.14074			0.33597			0.21951			0.05215			0.33564			0.42783			0.31850			0.61023						2681			0.09422			0.05501			0.16481			0.00070			0.00844			0.00153			0.07151			0.08366			0.02853


			2701			0.20948			0.13856			0.32111			0.21934			0.05210			0.33414			0.42764			0.31297			0.60948						2701			0.11949			0.05519			0.17070			0.00096			0.00830			0.00195			0.05851			0.08069			0.03334


			2721			0.21163			0.13417			0.32435			0.21923			0.05196			0.33522			0.42068			0.30635			0.60608						2721			0.07753			0.03834			0.15890			0.00102			0.00819			0.00262			0.06506			0.07717			0.02964


			2741			0.21625			0.13204			0.31406			0.21905			0.05215			0.33279			0.41917			0.29702			0.60688						2741			0.08422			0.06460			0.14918			0.00103			0.00830			0.00207			0.06387			0.07985			0.03235


			2761			0.21388			0.13438			0.31354			0.21814			0.05212			0.33296			0.40455			0.28778			0.60518						2761			0.07691			0.06442			0.16155			0.00068			0.00835			0.00109			0.07140			0.08598			0.03259


			2781			0.21069			0.13350			0.30950			0.21745			0.05210			0.32716			0.40707			0.28915			0.60165						2781			0.08393			0.05150			0.16038			0.00087			0.00810			0.00236			0.05250			0.06668			0.03187


			2801			0.20764			0.12693			0.30585			0.21798			0.05207			0.33037			0.39914			0.28449			0.60167						2801			0.09484			0.03586			0.15619			0.00058			0.00837			0.00175			0.05361			0.07113			0.03310


			2821			0.20810			0.12205			0.29691			0.21752			0.05206			0.32918			0.39489			0.27350			0.59703						2821			0.07634			0.03405			0.14512			0.00102			0.00841			0.00180			0.04914			0.06317			0.02627


			2841			0.21048			0.13306			0.29826			0.21757			0.05212			0.32874			0.39782			0.27220			0.59482						2841			0.08276			0.05404			0.15279			0.00083			0.00827			0.00116			0.05229			0.06730			0.02687


			2861			0.19946			0.13069			0.28880			0.21739			0.05209			0.32876			0.39223			0.26326			0.59965						2861			0.07065			0.05029			0.14176			0.00082			0.00828			0.00147			0.05383			0.06045			0.02541


			2881			0.21679			0.12499			0.27673			0.21682			0.05191			0.32873			0.38845			0.25954			0.59744						2881			0.10064			0.05345			0.13877			0.00051			0.00837			0.00157			0.06035			0.07388			0.03291


			2901			0.21043			0.13021			0.27998			0.21673			0.05203			0.32721			0.38313			0.25325			0.59017						2901			0.08529			0.05159			0.14990			0.00110			0.00839			0.00147			0.05372			0.06813			0.03572


			2921			0.21049			0.12923			0.27786			0.21533			0.05207			0.32782			0.37450			0.24670			0.59272						2921			0.08288			0.05276			0.14252			0.00050			0.00817			0.00141			0.04763			0.06100			0.03487


			2941			0.20790			0.11444			0.27277			0.21619			0.05201			0.32553			0.37629			0.24091			0.58933						2941			0.07891			0.07745			0.14143			0.00076			0.00827			0.00119			0.05985			0.07355			0.03088


			2961			0.20032			0.12437			0.26720			0.21600			0.05201			0.32571			0.36512			0.23998			0.59017						2961			0.08276			0.06250			0.14222			0.00066			0.00840			0.00138			0.04876			0.06398			0.03117


			2981			0.20614			0.12354			0.26237			0.21507			0.05198			0.32326			0.36180			0.23476			0.58799						2981			0.08410			0.04960			0.13476			0.00111			0.00796			0.00100			0.06158			0.06320			0.03167


			3001			0.20376			0.12045			0.25636			0.21537			0.05202			0.32161			0.35350			0.22865			0.58425						3001			0.06232			0.06457			0.14454			0.00072			0.00819			0.00195			0.04156			0.05495			0.03228


			3021			0.20641			0.12365			0.25316			0.21474			0.05185			0.32417			0.35638			0.22350			0.58474						3021			0.07431			0.03720			0.13259			0.00083			0.00814			0.00139			0.04817			0.05846			0.03077


			3041			0.20682			0.12690			0.24869			0.21391			0.05187			0.32341			0.35090			0.21879			0.58073						3041			0.07331			0.04165			0.13687			0.00060			0.00818			0.00142			0.04651			0.05812			0.02477


			3061			0.19331			0.11357			0.24249			0.21431			0.05201			0.32212			0.34285			0.21505			0.58166						3061			0.07824			0.07545			0.13511			0.00074			0.00846			0.00197			0.05082			0.05972			0.02864


			3081			0.18553			0.12648			0.23740			0.21411			0.05194			0.31828			0.33360			0.20898			0.57692						3081			0.11236			0.05684			0.12743			0.00075			0.00859			0.00255			0.03613			0.05392			0.03214


			3101			0.20474			0.12442			0.23686			0.21388			0.05190			0.32050			0.33901			0.20196			0.57444						3101			0.09664			0.05623			0.12942			0.00067			0.00835			0.00162			0.04047			0.05102			0.03165


			3121			0.19904			0.12273			0.22869			0.21156			0.05196			0.31917			0.33567			0.19975			0.57454						3121			0.09421			0.05849			0.13267			0.00060			0.00822			0.00113			0.04904			0.05565			0.03180


			3141			0.20895			0.12635			0.22366			0.21253			0.05196			0.31925			0.32780			0.19409			0.57471						3141			0.07379			0.05237			0.13539			0.00047			0.00836			0.00210			0.03900			0.05255			0.03147


			3161			0.19921			0.12303			0.22229			0.21225			0.05196			0.31824			0.32331			0.18754			0.57173						3161			0.08769			0.05589			0.12692			0.00074			0.00827			0.00128			0.04200			0.04852			0.03259


			3181			0.20657			0.12206			0.20231			0.21177			0.05191			0.31523			0.32030			0.18655			0.56182						3181			0.08312			0.04694			0.13892			0.00076			0.00808			0.00214			0.03619			0.05138			0.03501


			3201			0.19141			0.11637			0.21466			0.21260			0.05195			0.31603			0.31584			0.17843			0.56717						3201			0.05834			0.03619			0.11888			0.00083			0.00824			0.00199			0.04101			0.05436			0.03254


			3221			0.20260			0.11572			0.20456			0.21222			0.05191			0.31491			0.30825			0.17760			0.56637						3221			0.07812			0.04887			0.13136			0.00069			0.00834			0.00119			0.03543			0.05169			0.02924


			3241			0.18873			0.11670			0.20706			0.21195			0.05195			0.31417			0.30526			0.17208			0.56458						3241			0.06196			0.06230			0.12463			0.00095			0.00861			0.00195			0.03262			0.05227			0.03105


			3261			0.19817			0.12252			0.20136			0.21122			0.05192			0.31278			0.29963			0.17057			0.55195						3261			0.06676			0.04717			0.12546			0.00083			0.00818			0.00188			0.03677			0.04522			0.03850


			3281			0.20484			0.11816			0.20276			0.21142			0.05190			0.31342			0.29706			0.16469			0.55482						3281			0.08560			0.04642			0.12330			0.00050			0.00813			0.00155			0.02936			0.04686			0.03280


			3301			0.19933			0.11807			0.19348			0.21048			0.05189			0.31032			0.29142			0.16181			0.55176						3301			0.07358			0.04015			0.11568			0.00058			0.00826			0.00087			0.03776			0.04394			0.02518


			3321			0.19753			0.11653			0.19046			0.20995			0.05169			0.31069			0.28904			0.15852			0.54540						3321			0.07341			0.05554			0.11889			0.00086			0.00813			0.00105			0.03846			0.04506			0.02623


			3341			0.19452			0.12093			0.18717			0.20983			0.05187			0.31028			0.28002			0.14861			0.55443						3341			0.08242			0.04714			0.11688			0.00072			0.00821			0.00177			0.02569			0.03637			0.03324


			3361			0.19887			0.11964			0.17743			0.20993			0.05169			0.30885			0.28016			0.15230			0.55202						3361			0.10169			0.04795			0.10648			0.00088			0.00837			0.00146			0.03272			0.04249			0.02881


			3381			0.19999			0.12142			0.18349			0.20892			0.05182			0.30894			0.27438			0.14578			0.54282						3381			0.09210			0.05222			0.11046			0.00103			0.00824			0.00114			0.03266			0.03973			0.03772


			3401			0.19954			0.11642			0.17754			0.20944			0.05152			0.30704			0.27149			0.14401			0.54101						3401			0.07337			0.04271			0.10860			0.00084			0.00807			0.00132			0.03156			0.04138			0.02780


			3421			0.19882			0.11622			0.17277			0.20779			0.05180			0.30561			0.26224			0.14058			0.54021						3421			0.08772			0.03819			0.11628			0.00048			0.00829			0.00159			0.02611			0.03882			0.03545


			3441			0.19132			0.11232			0.17183			0.20737			0.05170			0.30321			0.26353			0.13719			0.53612						3441			0.06122			0.04216			0.10849			0.00096			0.00846			0.00198			0.02722			0.04161			0.02802


			3461			0.19575			0.11998			0.16481			0.20770			0.05179			0.30308			0.25808			0.13247			0.54061						3461			0.07042			0.04385			0.11736			0.00068			0.00818			0.00141			0.02780			0.04528			0.03282


			3481			0.19762			0.11985			0.16292			0.20780			0.05168			0.30416			0.25547			0.12676			0.53041						3481			0.09646			0.04281			0.11832			0.00041			0.00836			0.00120			0.02286			0.03504			0.03968


			3501			0.19331			0.11684			0.16379			0.20769			0.05177			0.30417			0.24545			0.12681			0.53882						3501			0.07220			0.05453			0.10511			0.00094			0.00855			0.00179			0.01911			0.03580			0.02818


			3521			0.19403			0.12011			0.15960			0.20584			0.05160			0.30038			0.24693			0.12549			0.53384						3521			0.07289			0.05052			0.10470			0.00090			0.00853			0.00202			0.02279			0.03754			0.03374


			3541			0.19461			0.11817			0.15532			0.20474			0.05176			0.30095			0.24420			0.12044			0.53187						3541			0.06345			0.05069			0.10139			0.00111			0.00821			0.00108			0.02860			0.03898			0.03141


			3561			0.18115			0.11416			0.14939			0.20660			0.05152			0.29996			0.23848			0.11947			0.52903						3561			0.11894			0.03757			0.10912			0.00047			0.00853			0.00125			0.01858			0.03573			0.02847


			3581			0.18756			0.11689			0.14860			0.20391			0.05177			0.29909			0.23652			0.11661			0.52482						3581			0.07204			0.04791			0.10513			0.00044			0.00822			0.00077			0.02279			0.03399			0.03364


			3601			0.19406			0.11854			0.14974			0.20576			0.05169			0.29789			0.23270			0.10907			0.52535						3601			0.06144			0.04862			0.10379			0.00074			0.00827			0.00094			0.02087			0.03024			0.03427


			3621			0.19606			0.11634			0.14487			0.20486			0.05172			0.29761			0.22769			0.11145			0.51825						3621			0.08755			0.04366			0.10338			0.00075			0.00838			0.00129			0.02573			0.03306			0.02695


			3641			0.17089			0.11413			0.14379			0.20531			0.05175			0.29230			0.22350			0.10730			0.51277						3641			0.09488			0.05562			0.09351			0.00080			0.00807			0.00056			0.02531			0.03696			0.02644


			3661			0.19518			0.11309			0.13655			0.20435			0.05169			0.29445			0.21635			0.10655			0.49566						3661			0.06353			0.04882			0.09174			0.00060			0.00808			0.00119			0.02271			0.03370			0.02158


			3681			0.18735			0.11742			0.13684			0.20427			0.05170			0.29372			0.21868			0.10378			0.51454						3681			0.08673			0.05500			0.09311			0.00053			0.00821			0.00117			0.02413			0.03284			0.03200


			3701			0.18477			0.11426			0.13029			0.20381			0.05172			0.29315			0.20935			0.10081			0.50890						3701			0.10392			0.05388			0.10188			0.00079			0.00796			0.00118			0.01463			0.02903			0.02803


			3721			0.18936			0.11213			0.13079			0.20338			0.05163			0.28780			0.20487			0.09835			0.50716						3721			0.08017			0.05385			0.09679			0.00064			0.00837			0.00127			0.01414			0.03058			0.03422


			3741			0.19117			0.10895			0.13039			0.20167			0.05161			0.29135			0.20865			0.09668			0.50028						3741			0.07149			0.06550			0.09385			0.00067			0.00816			0.00069			0.01936			0.03415			0.03053


			3761			0.18431			0.11357			0.12427			0.20290			0.05164			0.28696			0.20264			0.09465			0.50296						3761			0.10206			0.04686			0.09916			0.00078			0.00825			0.00181			0.01401			0.02863			0.02932


			3781			0.18455			0.11258			0.12526			0.20241			0.05159			0.28915			0.20053			0.09295			0.49970						3781			0.09034			0.04153			0.08946			0.00063			0.00805			0.00072			0.01555			0.03076			0.03304


			3801			0.18516			0.11046			0.12132			0.20190			0.05151			0.28714			0.19633			0.09014			0.48330						3801			0.10663			0.03799			0.08651			0.00051			0.00787			0.00106			0.01765			0.02748			0.02435


			3821			0.19152			0.11205			0.12199			0.20149			0.05159			0.28780			0.19693			0.08682			0.49527						3821			0.09717			0.06444			0.08992			0.00073			0.00843			0.00170			0.01297			0.02659			0.03213


			3841			0.18775			0.11354			0.12087			0.20119			0.05159			0.28577			0.19349			0.08540			0.49332						3841			0.07627			0.05697			0.08859			0.00051			0.00841			0.00152			0.01210			0.03142			0.03260


			3861			0.18627			0.11208			0.12073			0.20105			0.05163			0.28385			0.18867			0.08136			0.48824						3861			0.06591			0.04579			0.08575			0.00033			0.00831			0.00048			0.01460			0.03135			0.03118


			3881			0.18658			0.11292			0.11550			0.20053			0.05162			0.28231			0.18434			0.08246			0.48011						3881			0.09633			0.04739			0.09201			0.00073			0.00820			0.00131			0.01201			0.03046			0.03171


			3901			0.18914			0.11393			0.11667			0.19999			0.05157			0.28172			0.18214			0.08163			0.48514						3901			0.08455			0.04441			0.09127			0.00046			0.00781			0.00066			0.01269			0.02937			0.03770


			3921			0.17878			0.10778			0.11311			0.19968			0.05159			0.27697			0.17989			0.07879			0.47930						3921			0.09157			0.05616			0.08804			0.00066			0.00813			0.00024			0.01777			0.03027			0.03000


			3941			0.18673			0.11072			0.10966			0.19855			0.05154			0.27930			0.17655			0.07826			0.47438						3941			0.08310			0.04330			0.08426			0.00088			0.00840			0.00093			0.01225			0.02670			0.03670


			3961			0.18591			0.11119			0.10930			0.19853			0.05155			0.27847			0.17403			0.07680			0.47165						3961			0.06489			0.05100			0.08368			0.00067			0.00791			0.00094			0.01396			0.02639			0.03496


			3981			0.17339			0.10872			0.10731			0.19827			0.05149			0.27682			0.17153			0.07156			0.46242						3981			0.06584			0.06170			0.08425			0.00054			0.00811			0.00069			0.01151			0.02383			0.03435


			4001			0.17467			0.10838			0.10478			0.19771			0.05153			0.27635			0.17040			0.07294			0.45032						4001			0.10299			0.03593			0.07947			0.00055			0.00843			0.00101			0.00939			0.02430			0.02040


			4021			0.17104			0.10933			0.10314			0.19767			0.05157			0.27451			0.16678			0.06888			0.46612						4021			0.06860			0.05116			0.08752			0.00046			0.00800			0.00104			0.01063			0.02756			0.03257


			4041			0.18320			0.10963			0.10168			0.19733			0.05157			0.27400			0.16223			0.06998			0.46486						4041			0.08706			0.04472			0.07727			0.00040			0.00791			0.00046			0.00891			0.02475			0.03745


			4061			0.18371			0.10900			0.10004			0.19669			0.05143			0.27131			0.15549			0.06940			0.46006						4061			0.05817			0.04379			0.08195			0.00064			0.00803			0.00028			0.01546			0.02583			0.02989


			4081			0.18113			0.11151			0.09499			0.19599			0.05150			0.27086			0.15495			0.06783			0.45540						4081			0.08661			0.04146			0.08319			0.00052			0.00815			0.00133			0.00772			0.02364			0.03032


			4101			0.18397			0.11022			0.09878			0.19598			0.05142			0.26971			0.15749			0.06637			0.45429						4101			0.06451			0.05389			0.08178			0.00037			0.00805			0.00035			0.00932			0.02412			0.03021


			4121			0.18066			0.10780			0.09438			0.19470			0.05144			0.27000			0.15535			0.06511			0.44570						4121			0.07227			0.04973			0.08438			0.00043			0.00817			0.00032			0.01120			0.02402			0.03743


			4141			0.18378			0.10998			0.09646			0.19444			0.05150			0.26415			0.14734			0.06400			0.44315						4141			0.08209			0.04809			0.07590			0.00075			0.00813			0.00131			0.00724			0.02163			0.02535


			4161			0.17852			0.10974			0.09514			0.19354			0.05146			0.26677			0.15048			0.06258			0.43595						4161			0.07083			0.04083			0.07733			0.00032			0.00823			0.00053			0.00949			0.02164			0.02412


			4181			0.17335			0.09882			0.09435			0.19316			0.05148			0.26343			0.14411			0.06098			0.44273						4181			0.07317			0.03190			0.07209			0.00020			0.00802			0.00030			0.01108			0.02289			0.02864


			4201			0.18283			0.11114			0.09211			0.19364			0.05148			0.26556			0.14793			0.05763			0.43362						4201			0.07657			0.04424			0.07582			0.00066			0.00802			0.00021			0.00959			0.02473			0.02613


			4221			0.18300			0.09998			0.09124			0.19185			0.05147			0.26278			0.14200			0.05848			0.43211						4221			0.07744			0.06276			0.07566			0.00044			0.00827			0.00113			0.00507			0.02009			0.02854


			4241			0.17890			0.10693			0.08367			0.19263			0.05125			0.26153			0.14142			0.05828			0.42975						4241			0.06636			0.04072			0.08120			0.00067			0.00790			0.00043			0.00970			0.02173			0.04163


			4261			0.18041			0.10910			0.08873			0.19061			0.05140			0.25795			0.13508			0.05687			0.42629						4261			0.05925			0.04213			0.07352			0.00039			0.00806			0.00045			0.00912			0.02109			0.02773


			4281			0.18447			0.10455			0.08652			0.19060			0.05142			0.25670			0.13707			0.05494			0.42478						4281			0.07255			0.04367			0.07227			0.00042			0.00807			0.00026			0.00707			0.01951			0.03872


			4301			0.17781			0.10836			0.08633			0.19152			0.05123			0.25688			0.13465			0.05459			0.41853						4301			0.06758			0.04345			0.07050			0.00057			0.00803			0.00066			0.00698			0.02091			0.03741


			4321			0.17912			0.10809			0.08417			0.19110			0.05141			0.25259			0.12749			0.05408			0.41435						4321			0.07988			0.05228			0.06975			0.00037			0.00790			0.00057			0.00481			0.01913			0.03473


			4341			0.17877			0.10132			0.08338			0.19065			0.05138			0.25402			0.13171			0.05241			0.41665						4341			0.05727			0.03425			0.07347			0.00043			0.00823			0.00051			0.00586			0.01813			0.03205


			4361			0.17006			0.10615			0.08207			0.18994			0.05128			0.25310			0.12842			0.05194			0.41170						4361			0.06562			0.04063			0.06792			0.00055			0.00823			0.00040			0.00526			0.02035			0.02969


			4381			0.17509			0.10523			0.08194			0.18870			0.05134			0.25087			0.12648			0.04997			0.40792						4381			0.06107			0.04272			0.07092			0.00072			0.00817			0.00023			0.00625			0.01854			0.03507


			4401			0.17127			0.11048			0.08106			0.18887			0.05139			0.25000			0.12413			0.04918			0.40470						4401			0.07506			0.04581			0.06963			0.00026			0.00802			0.00014			0.00657			0.02015			0.03250


			4421			0.18060			0.10526			0.08171			0.18742			0.05136			0.24523			0.12028			0.04912			0.40137						4421			0.06857			0.05040			0.07269			0.00024			0.00800			0.00003			0.00777			0.01924			0.02965


			4441			0.17836			0.10249			0.08069			0.18699			0.05131			0.24828			0.12023			0.04847			0.39681						4441			0.07040			0.03395			0.06615			0.00033			0.00804			0.00013			0.00576			0.01880			0.03555


			4461			0.17689			0.10464			0.07842			0.18716			0.05131			0.24543			0.11608			0.04776			0.39567						4461			0.07459			0.03831			0.07051			0.00066			0.00823			0.00041			0.00554			0.01810			0.02662


			4481			0.17835			0.10305			0.07663			0.18724			0.05130			0.24433			0.11847			0.04718			0.38820						4481			0.07859			0.03759			0.06550			0.00054			0.00845			0.00028			0.00473			0.01895			0.03104


			4501			0.17704			0.10724			0.07909			0.18654			0.05132			0.24030			0.11530			0.04489			0.38674						4501			0.06855			0.04131			0.06763			0.00039			0.00801			0.00054			0.00329			0.01603			0.03450


			4521			0.17504			0.10134			0.07762			0.18502			0.05102			0.24142			0.11589			0.04516			0.36427						4521			0.07988			0.05841			0.06848			0.00029			0.00791			0.00016			0.00453			0.01712			0.04224


			4541			0.17357			0.10679			0.07741			0.18545			0.05111			0.24113			0.11421			0.04384			0.37987						4541			0.08388			0.04713			0.06347			0.00060			0.00793			0.00052			0.00403			0.01617			0.02754


			4561			0.17114			0.10248			0.07621			0.18394			0.05126			0.23267			0.11012			0.04404			0.37601						4561			0.06988			0.05907			0.06490			0.00054			0.00825			0.00090			0.00264			0.01735			0.02641


			4581			0.17226			0.10543			0.07541			0.18454			0.05129			0.23425			0.10727			0.04332			0.37744						4581			0.08470			0.04139			0.06602			0.00044			0.00833			0.00070			0.00186			0.01800			0.04206


			4601			0.17649			0.10639			0.07472			0.18388			0.05120			0.23641			0.10956			0.04233			0.37149						4601			0.06439			0.04838			0.06430			0.00031			0.00785			0.00006			0.00460			0.01647			0.03558


			4621			0.17649			0.09179			0.07391			0.18324			0.05129			0.23536			0.10930			0.04185			0.36798						4621			0.06451			0.02665			0.06516			0.00037			0.00787			0.00029			0.00318			0.01700			0.03197


			4641			0.17194			0.09878			0.07312			0.18259			0.05124			0.22747			0.10479			0.04127			0.33883						4641			0.05715			0.05563			0.06434			0.00038			0.00819			0.00002			0.00400			0.01683			0.02511


			4661			0.17039			0.10437			0.06993			0.18209			0.05105			0.23166			0.10576			0.04059			0.35961						4661			0.06500			0.04535			0.06143			0.00027			0.00778			0.00002			0.00361			0.01637			0.03365


			4681			0.17314			0.10089			0.07181			0.18135			0.05120			0.22908			0.10446			0.03974			0.35325						4681			0.06882			0.05731			0.06284			0.00024			0.00817			0.00008			0.00351			0.01653			0.02384


			4701			0.15916			0.10628			0.07149			0.18098			0.05105			0.23068			0.10431			0.03957			0.35565						4701			0.07701			0.04234			0.06268			0.00035			0.00789			0.00042			0.00219			0.01652			0.03100


			4721			0.17155			0.10588			0.07135			0.17803			0.05122			0.22714			0.10197			0.03909			0.33660						4721			0.05583			0.04800			0.06382			0.00070			0.00823			0.00050			0.00165			0.01590			0.01948


			4741			0.16880			0.10481			0.06910			0.18033			0.05110			0.22686			0.09954			0.03857			0.34662						4741			0.05898			0.04610			0.06448			0.00042			0.00817			0.00009			0.00360			0.01564			0.02510


			4761			0.16951			0.10236			0.06515			0.17950			0.05115			0.22332			0.09936			0.03774			0.34693						4761			0.05464			0.03749			0.05806			0.00028			0.00832			0.00006			0.00272			0.01553			0.03719


			4781			0.16906			0.10380			0.06950			0.17873			0.05099			0.22277			0.09851			0.03742			0.33657						4781			0.07377			0.04572			0.06019			0.00039			0.00761			0.00005			0.00267			0.01530			0.03714


			4801			0.16778			0.10466			0.06672			0.17895			0.05112			0.22242			0.09642			0.03685			0.33635						4801			0.05958			0.04742			0.06516			0.00062			0.00826			0.00015			0.00259			0.01577			0.03093


			4821			0.16760			0.10375			0.06782			0.17651			0.05116			0.21843			0.09386			0.03600			0.30884						4821			0.07839			0.04813			0.06350			0.00030			0.00811			0.00006			0.00274			0.01571			0.04993


			4841			0.17436			0.10298			0.06758			0.17568			0.05107			0.21917			0.09585			0.03541			0.32312						4841			0.08006			0.04222			0.06013			0.00049			0.00833			0.00004			0.00182			0.01580			0.01957


			4861			0.16235			0.10318			0.06603			0.17613			0.05107			0.21657			0.09274			0.03524			0.32240						4861			0.07011			0.03510			0.06299			0.00046			0.00797			0.00010			0.00229			0.01324			0.03741


			4881			0.16191			0.10348			0.06472			0.17544			0.05098			0.21583			0.09224			0.03473			0.32183						4881			0.06961			0.04652			0.06367			0.00041			0.00798			0.00001			0.00233			0.01404			0.02982


			4901			0.16864			0.10110			0.06788			0.17581			0.05095			0.21405			0.09246			0.03455			0.30802						4901			0.07339			0.05370			0.05983			0.00054			0.00803			0.00019			0.00187			0.01401			0.02170


			4921			0.17102			0.09986			0.06682			0.17507			0.05109			0.21293			0.09142			0.03261			0.30241						4921			0.07411			0.05496			0.06060			0.00043			0.00842			0.00001			0.00128			0.01558			0.02270


			4941			0.16932			0.09723			0.06554			0.17427			0.05090			0.21251			0.08990			0.03297			0.31613						4941			0.07022			0.04863			0.05680			0.00041			0.00777			0.00003			0.00209			0.01299			0.03563


			4961			0.16587			0.10187			0.06669			0.17409			0.05105			0.21014			0.08858			0.03283			0.29698						4961			0.07179			0.04051			0.05832			0.00058			0.00822			0.00046			0.00062			0.01304			0.01873


			4981			0.16759			0.10438			0.06614			0.17304			0.05103			0.20726			0.08754			0.03277			0.30428						4981			0.05670			0.04368			0.05873			0.00013			0.00800			0.00001			0.00209			0.01314			0.02595


			5001			0.17018			0.10128			0.06423			0.17274			0.05101			0.20798			0.08869			0.03154			0.29952						5001			0.07750			0.04718			0.05734			0.00023			0.00791			0.00000			0.00183			0.01467			0.03895


			5021			0.16494			0.10267			0.06463			0.17194			0.05085			0.20588			0.08674			0.03193			0.30191						5021			0.07756			0.05460			0.05832			0.00040			0.00781			0.00000			0.00144			0.01365			0.03167


			5041			0.16648			0.10131			0.06405			0.17084			0.05105			0.20559			0.08610			0.03161			0.29311						5041			0.08644			0.04504			0.05824			0.00018			0.00810			0.00000			0.00113			0.01406			0.02509


			5061			0.16769			0.10031			0.06378			0.17129			0.05083			0.20218			0.08471			0.03094			0.29050						5061			0.07111			0.04426			0.05960			0.00021			0.00826			0.00009			0.00080			0.01455			0.01830


			5081			0.16499			0.10149			0.06404			0.17045			0.05093			0.20140			0.08330			0.03071			0.29361						5081			0.07412			0.03888			0.05862			0.00034			0.00812			0.00009			0.00061			0.01294			0.02738


			5101			0.16573			0.10151			0.06073			0.16985			0.05103			0.19840			0.08186			0.02987			0.28470						5101			0.06347			0.04876			0.06143			0.00029			0.00773			0.00007			0.00050			0.01376			0.03580


			5121			0.15120			0.10054			0.06299			0.16934			0.05102			0.19816			0.08310			0.02981			0.28587						5121			0.06927			0.04740			0.05674			0.00026			0.00795			0.00002			0.00065			0.01277			0.02314


			5141			0.16344			0.10171			0.06390			0.16863			0.05089			0.19726			0.08112			0.02908			0.28043						5141			0.06274			0.03887			0.05598			0.00021			0.00827			0.00005			0.00048			0.01344			0.03841


			5161			0.15976			0.09274			0.06226			0.16802			0.05096			0.19290			0.08050			0.02900			0.27725						5161			0.07240			0.02809			0.05569			0.00048			0.00816			0.00050			0.00024			0.01234			0.03186


			5181			0.16407			0.10121			0.06059			0.16614			0.05094			0.18944			0.07933			0.02886			0.27558						5181			0.06862			0.04487			0.05338			0.00037			0.00799			0.00032			0.00021			0.01316			0.03000


			5201			0.16112			0.09845			0.06138			0.16655			0.05093			0.18848			0.07877			0.02850			0.26833						5201			0.06672			0.03677			0.05332			0.00017			0.00812			0.00012			0.00043			0.01263			0.03763


			5221			0.16607			0.09748			0.06124			0.16628			0.05074			0.19106			0.07836			0.02789			0.26583						5221			0.06150			0.04794			0.05805			0.00009			0.00767			0.00002			0.00076			0.01188			0.03606


			5241			0.15521			0.09859			0.06240			0.16566			0.05088			0.18796			0.07814			0.02736			0.26080						5241			0.04782			0.03299			0.05429			0.00031			0.00818			0.00000			0.00038			0.01300			0.04259


			5261			0.16362			0.09977			0.05804			0.16493			0.05093			0.18763			0.07619			0.02772			0.26190						5261			0.06055			0.03499			0.05264			0.00026			0.00804			0.00003			0.00085			0.01192			0.03895


			5281			0.16195			0.10090			0.06208			0.16449			0.05084			0.18631			0.07697			0.02761			0.25941						5281			0.05068			0.04739			0.05278			0.00024			0.00820			0.00004			0.00020			0.01332			0.03397


			5301			0.16304			0.10175			0.06124			0.16194			0.05091			0.18425			0.07605			0.02693			0.26084						5301			0.07098			0.04105			0.05344			0.00006			0.00803			0.00001			0.00068			0.01100			0.03785


			5321			0.16587			0.10243			0.06154			0.16229			0.05091			0.18230			0.07470			0.02662			0.25512						5321			0.07740			0.04092			0.05374			0.00020			0.00818			0.00005			0.00015			0.01187			0.02485


			5341			0.16092			0.09988			0.06097			0.16259			0.05085			0.17955			0.07520			0.02612			0.24462						5341			0.06462			0.04235			0.05394			0.00046			0.00789			0.00020			0.00025			0.01137			0.03582


			5361			0.16178			0.10164			0.05644			0.16072			0.05082			0.18049			0.07457			0.02622			0.25627						5361			0.05932			0.04151			0.05654			0.00026			0.00814			0.00007			0.00016			0.01176			0.03520


			5381			0.16525			0.09846			0.05797			0.16121			0.05069			0.17758			0.07337			0.02554			0.23580						5381			0.06052			0.04093			0.05684			0.00035			0.00785			0.00004			0.00051			0.01109			0.04718


			5401			0.15586			0.10105			0.05979			0.16019			0.05076			0.17588			0.07254			0.02565			0.23342						5401			0.04763			0.03919			0.05434			0.00022			0.00815			0.00000			0.00020			0.01224			0.04723


			5421			0.15668			0.10000			0.05981			0.16016			0.05076			0.16936			0.06941			0.02512			0.23262						5421			0.07245			0.03803			0.05271			0.00034			0.00811			0.00022			0.00053			0.01141			0.03355


			5441			0.16194			0.09978			0.06079			0.15904			0.05082			0.17277			0.07063			0.02521			0.23817						5441			0.06579			0.03876			0.05333			0.00018			0.00799			0.00021			0.00050			0.01133			0.03318


			5461			0.16169			0.09316			0.05819			0.15803			0.05065			0.17248			0.07097			0.02506			0.23543						5461			0.06597			0.05072			0.05409			0.00033			0.00831			0.00015			0.00002			0.01149			0.03086


			5481			0.16291			0.10194			0.05937			0.15794			0.05078			0.16707			0.06950			0.02474			0.23250						5481			0.06712			0.04040			0.05267			0.00026			0.00786			0.00008			0.00027			0.01114			0.02986


			5501			0.16092			0.09969			0.05800			0.15710			0.05076			0.16974			0.06937			0.02392			0.22481						5501			0.06218			0.04061			0.05448			0.00044			0.00805			0.00004			0.00025			0.01057			0.03651


			5521			0.16228			0.10021			0.05741			0.15635			0.05079			0.16785			0.06819			0.02412			0.22650						5521			0.05894			0.04358			0.05015			0.00027			0.00829			0.00015			0.00036			0.01107			0.03119


			5541			0.14486			0.09573			0.05846			0.15349			0.05075			0.16604			0.06896			0.02416			0.22325						5541			0.04637			0.03577			0.05159			0.00043			0.00837			0.00000			0.00005			0.01116			0.02548


			5561			0.15801			0.09914			0.05814			0.15523			0.05079			0.16532			0.06896			0.02338			0.22116						5561			0.05577			0.04774			0.05214			0.00018			0.00789			0.00003			0.00027			0.00958			0.02116


			5581			0.15871			0.09806			0.05269			0.15459			0.05076			0.16161			0.06701			0.02376			0.21356						5581			0.06019			0.03631			0.05737			0.00021			0.00777			0.00000			0.00004			0.01083			0.04054


			5601			0.15848			0.09995			0.05355			0.15383			0.05077			0.16108			0.06653			0.02345			0.21030						5601			0.07854			0.04071			0.04925			0.00018			0.00813			0.00002			0.00001			0.01154			0.02236


			5621			0.15468			0.09818			0.05811			0.15051			0.05077			0.15883			0.06613			0.02337			0.21502						5621			0.06508			0.04064			0.05227			0.00003			0.00781			0.00003			0.00012			0.01010			0.02618


			5641			0.16257			0.09189			0.05594			0.15249			0.05052			0.15900			0.06559			0.02261			0.21092						5641			0.06902			0.03536			0.05430			0.00021			0.00762			0.00011			0.00018			0.00978			0.03040


			5661			0.15992			0.10037			0.05499			0.15107			0.05054			0.15814			0.06640			0.02271			0.21304						5661			0.06926			0.04587			0.04892			0.00021			0.00771			0.00026			0.00012			0.01031			0.02359


			5681			0.15499			0.09590			0.05730			0.15097			0.05072			0.15757			0.06616			0.02233			0.20330						5681			0.06579			0.04809			0.04925			0.00013			0.00802			0.00021			0.00005			0.01085			0.02404


			5701			0.15581			0.09719			0.05199			0.15020			0.05048			0.15522			0.06534			0.02257			0.20432						5701			0.05538			0.03587			0.05561			0.00023			0.00764			0.00017			0.00021			0.00957			0.03660


			5721			0.15167			0.09251			0.05614			0.14884			0.05067			0.15371			0.06517			0.02225			0.19658						5721			0.08392			0.03685			0.05273			0.00021			0.00825			0.00005			0.00000			0.01014			0.02217


			5741			0.16007			0.09780			0.05775			0.14961			0.05050			0.15175			0.06399			0.02168			0.19982						5741			0.06236			0.03771			0.05044			0.00049			0.00840			0.00001			0.00000			0.01116			0.02515


			5761			0.16187			0.09875			0.05763			0.14755			0.05065			0.14722			0.06308			0.02157			0.18894						5761			0.05131			0.04241			0.05045			0.00034			0.00804			0.00003			0.00000			0.01089			0.04286


			5781			0.16002			0.09204			0.05705			0.14735			0.05059			0.14806			0.06312			0.02146			0.17958						5781			0.06572			0.04779			0.04981			0.00010			0.00782			0.00021			0.00013			0.00912			0.02129


			5801			0.15412			0.09650			0.05592			0.14692			0.05052			0.14712			0.06326			0.02167			0.19016						5801			0.07056			0.03675			0.05030			0.00021			0.00763			0.00015			0.00003			0.00946			0.02262


			5821			0.14894			0.09770			0.05626			0.14609			0.05060			0.14501			0.06278			0.02138			0.18865						5821			0.05722			0.03904			0.05090			0.00010			0.00792			0.00001			0.00005			0.01056			0.03643


			5841			0.15304			0.09770			0.05485			0.14577			0.05060			0.14415			0.06195			0.02142			0.18815						5841			0.05990			0.03636			0.04712			0.00014			0.00785			0.00008			0.00000			0.00958			0.02656


			5861			0.15155			0.09674			0.05461			0.14497			0.05063			0.14379			0.06216			0.02031			0.18808						5861			0.06997			0.04313			0.05053			0.00007			0.00780			0.00033			0.00008			0.00898			0.03419


			5881			0.15485			0.09607			0.05545			0.14329			0.05058			0.13517			0.05942			0.02067			0.17521						5881			0.05528			0.03587			0.05031			0.00024			0.00829			0.00000			0.00006			0.01013			0.01793


			5901			0.15539			0.09659			0.05695			0.14361			0.05061			0.13640			0.05974			0.02082			0.16436						5901			0.06289			0.04150			0.05008			0.00023			0.00785			0.00065			0.00009			0.00958			0.04416


			5921			0.15449			0.09243			0.05324			0.14305			0.05050			0.13959			0.06081			0.02037			0.18243						5921			0.06628			0.04727			0.04678			0.00009			0.00807			0.00005			0.00005			0.00998			0.02806


			5941			0.15377			0.09661			0.05579			0.14162			0.05044			0.13804			0.06055			0.02041			0.17538						5941			0.07746			0.04414			0.04831			0.00039			0.00803			0.00017			0.00000			0.00941			0.02602


			5961			0.15614			0.09372			0.05676			0.14164			0.05047			0.13673			0.05998			0.02052			0.17116						5961			0.05985			0.04101			0.04700			0.00005			0.00777			0.00056			0.00005			0.00903			0.02171


			5981			0.15729			0.09667			0.05401			0.14025			0.05051			0.13166			0.05905			0.02021			0.17621						5981			0.06216			0.03351			0.04730			0.00010			0.00791			0.00130			0.00011			0.00888			0.02586


			6001			0.14710			0.09551			0.05646			0.13808			0.05053			0.13405			0.05978			0.01993			0.17260						6001			0.07421			0.03357			0.04804			0.00006			0.00800			0.00019			0.00001			0.00939			0.02639


			6021			0.14597			0.09476			0.05540			0.13790			0.05050			0.13052			0.05871			0.01998			0.17013						6021			0.05638			0.04128			0.04844			0.00005			0.00777			0.00037			0.00001			0.00835			0.02282


			6041			0.15112			0.09206			0.05562			0.13823			0.05049			0.13074			0.05847			0.01965			0.17017						6041			0.04798			0.03720			0.04802			0.00007			0.00818			0.00016			0.00010			0.00984			0.02705


			6061			0.15042			0.09257			0.05334			0.13727			0.05050			0.12558			0.05735			0.01964			0.16799						6061			0.04908			0.04819			0.05149			0.00002			0.00827			0.00011			0.00006			0.00926			0.02994


			6081			0.13961			0.08827			0.05552			0.13680			0.05028			0.12767			0.05821			0.01946			0.16338						6081			0.06082			0.05185			0.04800			0.00003			0.00754			0.00062			0.00000			0.00881			0.03005


			6101			0.15154			0.08661			0.05333			0.13638			0.05048			0.12693			0.05811			0.01896			0.16221						6101			0.07558			0.03054			0.04683			0.00013			0.00795			0.00019			0.00004			0.00891			0.02553


			6121			0.15133			0.08928			0.05560			0.13595			0.05039			0.12528			0.05741			0.01900			0.15763						6121			0.07299			0.05125			0.04717			0.00002			0.00800			0.00038			0.00001			0.00849			0.03511


			6141			0.14817			0.09475			0.05482			0.13433			0.05044			0.12174			0.05651			0.01903			0.16000						6141			0.07502			0.03358			0.04632			0.00033			0.00782			0.00009			0.00009			0.00887			0.02646


			6161			0.15312			0.09393			0.05495			0.13310			0.05032			0.12323			0.05691			0.01914			0.15716						6161			0.05566			0.03413			0.04643			0.00004			0.00799			0.00019			0.00005			0.00856			0.02892


			6181			0.14726			0.09589			0.05469			0.13174			0.05044			0.12106			0.05603			0.01896			0.14767						6181			0.06898			0.04309			0.04626			0.00002			0.00809			0.00036			0.00002			0.00846			0.01975


			6201			0.15223			0.09692			0.05269			0.13171			0.05015			0.12080			0.05647			0.01835			0.15758						6201			0.05187			0.04077			0.04484			0.00009			0.00782			0.00039			0.00006			0.00869			0.03091


			6221			0.14528			0.09294			0.05422			0.13138			0.05041			0.11976			0.05615			0.01823			0.15496						6221			0.06639			0.03988			0.04731			0.00003			0.00770			0.00052			0.00006			0.00900			0.02234


			6241			0.15286			0.09616			0.05400			0.12958			0.05027			0.11795			0.05600			0.01852			0.15092						6241			0.06329			0.04008			0.04804			0.00009			0.00817			0.00062			0.00002			0.00859			0.02851


			6261			0.15438			0.09436			0.05392			0.13059			0.05041			0.11270			0.05416			0.01830			0.14976						6261			0.05938			0.03598			0.04728			0.00001			0.00780			0.00147			0.00000			0.00860			0.02268


			6281			0.14709			0.08858			0.05200			0.12859			0.05040			0.11083			0.05430			0.01817			0.14938						6281			0.06710			0.03332			0.04460			0.00030			0.00777			0.00007			0.00019			0.00843			0.02883


			6301			0.14990			0.08701			0.05495			0.12863			0.05035			0.11112			0.05466			0.01799			0.14301						6301			0.06045			0.05397			0.04539			0.00012			0.00783			0.00011			0.00012			0.00787			0.03840


			6321			0.15151			0.09213			0.05365			0.12825			0.05036			0.11255			0.05507			0.01789			0.14416						6321			0.06597			0.04625			0.04565			0.00002			0.00789			0.00053			0.00006			0.00837			0.02182


			6341			0.15021			0.09178			0.05493			0.12716			0.05020			0.11092			0.05406			0.01749			0.13957						6341			0.06556			0.03715			0.04591			0.00000			0.00770			0.00087			0.00003			0.00812			0.01978


			6361			0.14317			0.09347			0.05242			0.12654			0.05034			0.11141			0.05444			0.01780			0.14373						6361			0.06678			0.03465			0.04476			0.00009			0.00788			0.00101			0.00000			0.00805			0.02427


			6381			0.14459			0.09700			0.05365			0.12453			0.05031			0.10752			0.05353			0.01748			0.14209						6381			0.05742			0.03028			0.04578			0.00015			0.00823			0.00012			0.00035			0.00884			0.02677


			6401			0.15032			0.09323			0.05484			0.12460			0.05032			0.10778			0.05333			0.01760			0.13407						6401			0.05612			0.04331			0.04655			0.00029			0.00804			0.00130			0.00003			0.00839			0.01710


			6421			0.14955			0.08941			0.05364			0.12331			0.05030			0.10653			0.05310			0.01726			0.13766						6421			0.07415			0.04654			0.04595			0.00007			0.00787			0.00030			0.00023			0.00845			0.02901


			6441			0.14621			0.09319			0.05398			0.12303			0.05027			0.10435			0.05206			0.01699			0.13447						6441			0.04953			0.03568			0.04697			0.00002			0.00772			0.00088			0.00005			0.00781			0.03195


			6461			0.14866			0.08836			0.05410			0.12269			0.05028			0.10500			0.05331			0.01725			0.13574						6461			0.07313			0.03603			0.04730			0.00020			0.00806			0.00022			0.00030			0.00833			0.02807


			6481			0.14985			0.09415			0.05280			0.12235			0.05027			0.10072			0.05201			0.01717			0.13470						6481			0.05966			0.04095			0.04780			0.00005			0.00811			0.00030			0.00028			0.00801			0.02132


			6501			0.14779			0.09289			0.05322			0.12124			0.05027			0.10249			0.05223			0.01650			0.13258						6501			0.05534			0.03843			0.04680			0.00007			0.00804			0.00046			0.00012			0.00760			0.02991


			6521			0.14852			0.09064			0.05263			0.12043			0.05020			0.10124			0.05258			0.01667			0.13205						6521			0.06572			0.03176			0.04723			0.00000			0.00773			0.00044			0.00015			0.00734			0.02360


			6541			0.14580			0.09341			0.05313			0.11795			0.05017			0.10090			0.05211			0.01663			0.12685						6541			0.07256			0.03777			0.04462			0.00001			0.00801			0.00079			0.00012			0.00754			0.03309


			6561			0.14631			0.09589			0.05315			0.11918			0.05024			0.09864			0.05208			0.01665			0.12982						6561			0.05806			0.03806			0.04607			0.00002			0.00814			0.00094			0.00035			0.00866			0.02556


			6581			0.14512			0.09354			0.05161			0.11839			0.05020			0.09807			0.05146			0.01662			0.12657						6581			0.07637			0.03328			0.04804			0.00000			0.00791			0.00083			0.00022			0.00787			0.01968


			6601			0.14670			0.09251			0.05267			0.11651			0.05007			0.09771			0.05158			0.01664			0.12808						6601			0.04810			0.03139			0.04516			0.00000			0.00770			0.00123			0.00018			0.00808			0.02296


			6621			0.14612			0.09104			0.05295			0.11630			0.05017			0.09726			0.05174			0.01642			0.12557						6621			0.05584			0.03229			0.04557			0.00000			0.00774			0.00147			0.00012			0.00784			0.02641


			6641			0.15095			0.09305			0.05042			0.11577			0.05008			0.09413			0.05083			0.01642			0.12422						6641			0.05725			0.04183			0.04729			0.00013			0.00801			0.00065			0.00028			0.00795			0.02129


			6661			0.14611			0.08635			0.05185			0.11335			0.05018			0.09305			0.05055			0.01653			0.12156						6661			0.05583			0.05141			0.04707			0.00000			0.00786			0.00123			0.00010			0.00730			0.02570


			6681			0.14796			0.09123			0.05222			0.11294			0.05008			0.09335			0.05099			0.01595			0.12175						6681			0.06676			0.04316			0.04337			0.00001			0.00772			0.00106			0.00014			0.00733			0.02331


			6701			0.14594			0.09063			0.05254			0.11368			0.05016			0.09200			0.05067			0.01621			0.12110						6701			0.05392			0.03558			0.04368			0.00000			0.00801			0.00193			0.00008			0.00755			0.02020


			6721			0.14182			0.08878			0.04982			0.11050			0.05010			0.09051			0.04990			0.01589			0.12137						6721			0.06776			0.04082			0.04257			0.00017			0.00810			0.00082			0.00033			0.00787			0.01864


			6741			0.14385			0.09167			0.05227			0.11141			0.05010			0.08960			0.05001			0.01603			0.11840						6741			0.06117			0.03458			0.04445			0.00001			0.00783			0.00071			0.00027			0.00714			0.01959


			6761			0.14466			0.08913			0.05318			0.11058			0.05008			0.08981			0.04982			0.01570			0.11695						6761			0.04787			0.02954			0.04490			0.00006			0.00787			0.00155			0.00008			0.00721			0.02251


			6781			0.14163			0.09060			0.05273			0.11039			0.05005			0.08675			0.04991			0.01566			0.10637						6781			0.04982			0.03598			0.04469			0.00002			0.00808			0.00182			0.00028			0.00792			0.02781


			6801			0.14522			0.09060			0.05318			0.11055			0.05006			0.08474			0.04933			0.01557			0.11607						6801			0.05673			0.03568			0.04436			0.00005			0.00790			0.00053			0.00041			0.00717			0.02060


			6821			0.14782			0.08950			0.05281			0.10869			0.05005			0.08657			0.04917			0.01565			0.11329						6821			0.05967			0.03479			0.04491			0.00001			0.00790			0.00124			0.00026			0.00733			0.01757


			6841			0.14351			0.08718			0.05258			0.10694			0.05004			0.08434			0.04829			0.01522			0.11325						6841			0.06156			0.04829			0.04353			0.00003			0.00771			0.00202			0.00010			0.00690			0.01895


			6861			0.13889			0.09082			0.04779			0.10756			0.04984			0.08414			0.04877			0.01546			0.11234						6861			0.04892			0.03667			0.04218			0.00000			0.00814			0.00125			0.00032			0.00741			0.02053


			6881			0.14463			0.09007			0.05199			0.10695			0.05004			0.08344			0.04885			0.01507			0.10563						6881			0.05894			0.04274			0.04310			0.00006			0.00812			0.00149			0.00023			0.00710			0.01749


			6901			0.14638			0.08939			0.05201			0.10607			0.04991			0.08296			0.04837			0.01513			0.10760						6901			0.05644			0.04669			0.04287			0.00001			0.00821			0.00092			0.00064			0.00793			0.02746


			6921			0.15245			0.08987			0.05288			0.10528			0.04998			0.08231			0.04851			0.01513			0.10627						6921			0.06172			0.03884			0.04259			0.00004			0.00809			0.00136			0.00030			0.00695			0.01720


			6941			0.14088			0.09365			0.05189			0.10442			0.04985			0.07995			0.04846			0.01506			0.10544						6941			0.07051			0.03826			0.04406			0.00003			0.00769			0.00090			0.00041			0.00720			0.02509


			6961			0.14290			0.08904			0.05197			0.10298			0.05000			0.08011			0.04818			0.01505			0.10851						6961			0.05297			0.04079			0.04409			0.00006			0.00771			0.00166			0.00033			0.00720			0.02020


			6981			0.14087			0.09280			0.05071			0.10195			0.04992			0.07960			0.04776			0.01496			0.10603						6981			0.06588			0.04052			0.04379			0.00002			0.00769			0.00151			0.00019			0.00659			0.01897


			7001			0.14460			0.08989			0.05074			0.10257			0.04995			0.07847			0.04777			0.01500			0.10457						7001			0.06290			0.04264			0.04678			0.00001			0.00816			0.00070			0.00072			0.00732			0.02158


			7021			0.13984			0.08923			0.05155			0.10251			0.04992			0.07836			0.04790			0.01489			0.10739						7021			0.06489			0.04383			0.04275			0.00002			0.00772			0.00267			0.00021			0.00724			0.02410


			7041			0.14571			0.09022			0.05218			0.10103			0.04988			0.07669			0.04750			0.01466			0.10268						7041			0.06727			0.03823			0.04348			0.00001			0.00804			0.00213			0.00023			0.00684			0.01903


			7061			0.14355			0.08878			0.04778			0.10059			0.04984			0.07569			0.04735			0.01479			0.10559						7061			0.06216			0.04414			0.04157			0.00000			0.00795			0.00116			0.00046			0.00693			0.01991


			7081			0.13726			0.09250			0.05224			0.09912			0.04987			0.07446			0.04707			0.01446			0.10244						7081			0.05157			0.03718			0.04576			0.00001			0.00788			0.00133			0.00036			0.00687			0.02440


			7101			0.13981			0.08382			0.04964			0.09712			0.04987			0.07311			0.04692			0.01470			0.10209						7101			0.06452			0.03032			0.04506			0.00004			0.00767			0.00345			0.00013			0.00684			0.01990


			7121			0.13999			0.09152			0.05013			0.09807			0.04987			0.07365			0.04686			0.01448			0.10166						7121			0.04770			0.03730			0.04196			0.00000			0.00777			0.00191			0.00019			0.00651			0.02309


			7141			0.13898			0.09041			0.05034			0.09784			0.04978			0.07264			0.04664			0.01450			0.09836						7141			0.04929			0.03749			0.04197			0.00003			0.00747			0.00239			0.00022			0.00678			0.01775


			7161			0.13771			0.09024			0.05102			0.09611			0.04979			0.07115			0.04607			0.01432			0.10171						7161			0.04867			0.03719			0.04341			0.00003			0.00798			0.00101			0.00080			0.00725			0.01967


			7181			0.14223			0.08844			0.05206			0.09596			0.04984			0.07126			0.04591			0.01429			0.10077						7181			0.06706			0.03546			0.04512			0.00000			0.00796			0.00278			0.00013			0.00640			0.02118


			7201			0.14292			0.08993			0.05025			0.09522			0.04976			0.06745			0.04535			0.01420			0.09853						7201			0.05422			0.03541			0.04223			0.00000			0.00759			0.00291			0.00020			0.00644			0.01859


			7221			0.14104			0.08525			0.04983			0.09435			0.04980			0.06990			0.04598			0.01423			0.09980						7221			0.05066			0.03720			0.04480			0.00000			0.00754			0.00206			0.00033			0.00684			0.02009


			7241			0.13645			0.08830			0.05080			0.09353			0.04964			0.06914			0.04603			0.01414			0.09503						7241			0.05256			0.03622			0.04375			0.00000			0.00836			0.00211			0.00049			0.00708			0.02525


			7261			0.13308			0.08683			0.05043			0.09308			0.04967			0.06729			0.04528			0.01386			0.09549						7261			0.07778			0.03206			0.04466			0.00000			0.00806			0.00116			0.00078			0.00714			0.01874


			7281			0.13878			0.08900			0.05140			0.09063			0.04978			0.06556			0.04520			0.01401			0.09314						7281			0.05669			0.03828			0.04231			0.00001			0.00777			0.00142			0.00056			0.00691			0.01817


			7301			0.14059			0.08426			0.05100			0.09156			0.04974			0.06485			0.04485			0.01394			0.09407						7301			0.06440			0.02861			0.04244			0.00004			0.00785			0.00361			0.00020			0.00635			0.01712


			7321			0.14031			0.08408			0.05138			0.08927			0.04963			0.06565			0.04484			0.01366			0.09152						7321			0.05131			0.03365			0.04223			0.00000			0.00795			0.00161			0.00055			0.00684			0.01570


			7341			0.14145			0.08764			0.05019			0.09008			0.04968			0.06585			0.04544			0.01385			0.09034						7341			0.06183			0.03161			0.04541			0.00002			0.00789			0.00186			0.00045			0.00674			0.02365


			7361			0.13941			0.08854			0.05042			0.08956			0.04973			0.06438			0.04523			0.01371			0.09183						7361			0.04703			0.03989			0.04232			0.00003			0.00769			0.00286			0.00036			0.00662			0.01876


			7381			0.14064			0.08413			0.05087			0.08896			0.04975			0.06463			0.04476			0.01332			0.08998						7381			0.05025			0.03046			0.04579			0.00000			0.00777			0.00203			0.00042			0.00637			0.01735


			7401			0.13414			0.08823			0.04992			0.08700			0.04966			0.06535			0.04516			0.01348			0.09102						7401			0.05103			0.04327			0.04430			0.00000			0.00808			0.00284			0.00042			0.00674			0.01889


			7421			0.14273			0.08890			0.05215			0.08645			0.04971			0.06185			0.04397			0.01329			0.09115						7421			0.05937			0.03956			0.04165			0.00000			0.00790			0.00151			0.00077			0.00690			0.01924


			7441			0.13753			0.08499			0.04827			0.08684			0.04963			0.06276			0.04470			0.01358			0.08830						7441			0.05965			0.04298			0.04112			0.00000			0.00794			0.00131			0.00071			0.00645			0.01732


			7461			0.14141			0.08527			0.04900			0.08547			0.04972			0.06020			0.04430			0.01341			0.08322						7461			0.05800			0.03043			0.04439			0.00005			0.00757			0.00181			0.00049			0.00624			0.02833


			7481			0.12854			0.08797			0.05073			0.08557			0.04964			0.06058			0.04376			0.01347			0.08763						7481			0.04224			0.04108			0.04254			0.00001			0.00758			0.00176			0.00085			0.00689			0.02234


			7501			0.13497			0.08676			0.05117			0.08248			0.04965			0.06024			0.04411			0.01331			0.08670						7501			0.06843			0.04198			0.04225			0.00001			0.00777			0.00191			0.00066			0.00680			0.01935


			7521			0.13905			0.08767			0.04579			0.08387			0.04963			0.06003			0.04412			0.01332			0.08370						7521			0.04848			0.03864			0.04020			0.00011			0.00780			0.00349			0.00029			0.00606			0.02479


			7541			0.13892			0.08549			0.05104			0.08338			0.04962			0.06008			0.04433			0.01322			0.08574						7541			0.05779			0.04074			0.04515			0.00001			0.00797			0.00192			0.00084			0.00689			0.02148


			7561			0.13691			0.08672			0.05032			0.08213			0.04961			0.05940			0.04374			0.01310			0.08646						7561			0.05657			0.03515			0.04257			0.00007			0.00781			0.00301			0.00030			0.00616			0.01941


			7581			0.14095			0.08740			0.04965			0.08186			0.04932			0.05822			0.04356			0.01310			0.08657						7581			0.05705			0.04042			0.04122			0.00003			0.00810			0.00290			0.00054			0.00660			0.01644


			7601			0.13269			0.08457			0.05094			0.08110			0.04962			0.05806			0.04327			0.01296			0.08282						7601			0.06483			0.04174			0.04178			0.00007			0.00790			0.00237			0.00079			0.00666			0.01454


			7621			0.13741			0.08733			0.05037			0.07985			0.04959			0.05729			0.04258			0.01278			0.07899						7621			0.05449			0.04180			0.04211			0.00000			0.00804			0.00247			0.00046			0.00620			0.01130


			7641			0.13872			0.08606			0.05121			0.07994			0.04959			0.05458			0.04321			0.01299			0.08373						7641			0.04923			0.03032			0.04309			0.00001			0.00800			0.00185			0.00071			0.00645			0.01634


			7661			0.13393			0.08306			0.04985			0.07927			0.04953			0.05593			0.04342			0.01277			0.08253						7661			0.04313			0.02774			0.04385			0.00000			0.00806			0.00278			0.00075			0.00677			0.01802


			7681			0.13602			0.08705			0.04941			0.07762			0.04950			0.05342			0.04283			0.01286			0.08028						7681			0.06599			0.03649			0.04299			0.00002			0.00764			0.00182			0.00066			0.00616			0.01307


			7701			0.13407			0.08489			0.04857			0.07754			0.04951			0.05395			0.04242			0.01282			0.08118						7701			0.04512			0.03170			0.04221			0.00012			0.00808			0.00440			0.00027			0.00620			0.02090


			7721			0.13359			0.08882			0.04778			0.07716			0.04925			0.05474			0.04289			0.01284			0.08150						7721			0.04798			0.03320			0.04036			0.00002			0.00738			0.00271			0.00044			0.00580			0.02069


			7741			0.13866			0.08624			0.05035			0.07661			0.04948			0.05322			0.04283			0.01262			0.07691						7741			0.05413			0.03645			0.04137			0.00000			0.00786			0.00218			0.00065			0.00610			0.01200


			7761			0.13466			0.08629			0.04979			0.07603			0.04947			0.05355			0.04262			0.01267			0.07964						7761			0.05604			0.03771			0.04189			0.00002			0.00786			0.00229			0.00073			0.00652			0.01965


			7781			0.13776			0.08548			0.04937			0.07471			0.04934			0.05337			0.04253			0.01248			0.08025						7781			0.04432			0.03232			0.04095			0.00000			0.00802			0.00265			0.00072			0.00652			0.01510


			7801			0.13017			0.08450			0.04615			0.07430			0.04935			0.05231			0.04262			0.01261			0.07937						7801			0.06935			0.03164			0.04542			0.00000			0.00755			0.00213			0.00061			0.00586			0.01515


			7821			0.13194			0.08676			0.04995			0.07348			0.04942			0.05189			0.04153			0.01232			0.07803						7821			0.06234			0.03665			0.04131			0.00029			0.00763			0.00419			0.00026			0.00559			0.01569


			7841			0.13357			0.08456			0.04932			0.07242			0.04943			0.05208			0.04237			0.01233			0.07593						7841			0.04723			0.03400			0.04304			0.00018			0.00788			0.00252			0.00065			0.00577			0.01161


			7861			0.13323			0.08654			0.04948			0.07205			0.04944			0.04985			0.04164			0.01246			0.07650						7861			0.04336			0.03832			0.04093			0.00009			0.00788			0.00385			0.00046			0.00618			0.01960


			7881			0.13354			0.08323			0.04993			0.07154			0.04936			0.05075			0.04143			0.01232			0.07388						7881			0.04518			0.04333			0.04149			0.00007			0.00785			0.00258			0.00088			0.00620			0.02309


			7901			0.13750			0.08405			0.04828			0.06977			0.04943			0.05039			0.04147			0.01200			0.07702						7901			0.04796			0.04438			0.04363			0.00022			0.00781			0.00368			0.00040			0.00582			0.01374


			7921			0.13385			0.07986			0.04968			0.06961			0.04931			0.04986			0.04214			0.01229			0.07561						7921			0.05610			0.02686			0.04075			0.00003			0.00732			0.00261			0.00044			0.00575			0.01267


			7941			0.13401			0.08613			0.04861			0.06908			0.04941			0.04803			0.04125			0.01222			0.07514						7941			0.07186			0.03696			0.04261			0.00000			0.00766			0.00167			0.00093			0.00622			0.01389


			7961			0.12822			0.08099			0.04941			0.06949			0.04920			0.04919			0.04073			0.01199			0.07625						7961			0.04877			0.04621			0.04121			0.00007			0.00768			0.00374			0.00041			0.00574			0.01371


			7981			0.13554			0.08547			0.04950			0.06893			0.04934			0.04896			0.04103			0.01183			0.07564						7981			0.05089			0.03875			0.04086			0.00008			0.00766			0.00299			0.00054			0.00572			0.01354


			8001			0.12967			0.08585			0.05053			0.06828			0.04929			0.04869			0.04157			0.01215			0.07489						8001			0.05177			0.03342			0.04257			0.00021			0.00768			0.00425			0.00041			0.00575			0.01382


			8021			0.13653			0.08417			0.04926			0.06781			0.04917			0.04851			0.04169			0.01209			0.07442						8021			0.05308			0.04210			0.03967			0.00003			0.00822			0.00266			0.00086			0.00624			0.01489


			8041			0.13231			0.08293			0.04987			0.06682			0.04915			0.04724			0.04104			0.01177			0.07419						8041			0.05965			0.04095			0.04102			0.00006			0.00758			0.00235			0.00054			0.00548			0.01704


			8061			0.13069			0.08207			0.04803			0.06640			0.04928			0.04660			0.04095			0.01199			0.07403						8061			0.05854			0.02931			0.04103			0.00010			0.00770			0.00379			0.00046			0.00589			0.01409


			8081			0.13820			0.08610			0.05004			0.06597			0.04926			0.04691			0.04129			0.01198			0.07176						8081			0.06126			0.03509			0.04059			0.00007			0.00767			0.00371			0.00053			0.00592			0.01776


			8101			0.13611			0.08280			0.04984			0.06425			0.04925			0.04646			0.04113			0.01188			0.07070						8101			0.05536			0.03111			0.04120			0.00007			0.00786			0.00359			0.00059			0.00586			0.01252


			8121			0.13497			0.08395			0.04893			0.06462			0.04905			0.04593			0.04041			0.01170			0.07214						8121			0.05296			0.04217			0.04038			0.00016			0.00802			0.00313			0.00084			0.00613			0.01450


			8141			0.13276			0.08422			0.04913			0.06407			0.04925			0.04613			0.04073			0.01168			0.07220						8141			0.04608			0.04197			0.04109			0.00015			0.00783			0.00289			0.00065			0.00570			0.01278


			8161			0.13464			0.08262			0.04708			0.06346			0.04911			0.04438			0.04073			0.01174			0.07112						8161			0.05306			0.03919			0.03940			0.00011			0.00788			0.00409			0.00059			0.00594			0.01738


			8181			0.13527			0.08252			0.04954			0.06280			0.04923			0.04532			0.04014			0.01163			0.06842						8181			0.04994			0.04105			0.04143			0.00022			0.00762			0.00361			0.00077			0.00587			0.01026


			8201			0.13599			0.08272			0.04946			0.06132			0.04924			0.04474			0.04068			0.01161			0.07076						8201			0.05316			0.04126			0.04051			0.00006			0.00792			0.00345			0.00053			0.00572			0.01274


			8221			0.13193			0.08403			0.04780			0.06168			0.04914			0.04416			0.04055			0.01168			0.07053						8221			0.05713			0.03859			0.03975			0.00017			0.00792			0.00334			0.00064			0.00581			0.01660


			8241			0.13170			0.08258			0.04916			0.06035			0.04912			0.04316			0.04012			0.01153			0.06910						8241			0.06599			0.02862			0.04024			0.00009			0.00792			0.00314			0.00075			0.00599			0.01222


			8261			0.12941			0.08163			0.05051			0.06069			0.04919			0.04350			0.04023			0.01157			0.07011						8261			0.05637			0.02491			0.03930			0.00027			0.00774			0.00383			0.00058			0.00552			0.01463


			8281			0.12247			0.08429			0.04699			0.05947			0.04915			0.04087			0.03861			0.01139			0.06871						8281			0.04531			0.03764			0.03995			0.00030			0.00762			0.00512			0.00037			0.00535			0.01643


			8301			0.13843			0.08370			0.04848			0.05937			0.04909			0.04263			0.03992			0.01123			0.06900						8301			0.05678			0.03146			0.03980			0.00027			0.00743			0.00379			0.00043			0.00522			0.01598


			8321			0.12863			0.08151			0.05025			0.05880			0.04915			0.04164			0.03967			0.01147			0.06453						8321			0.07073			0.04382			0.03968			0.00025			0.00756			0.00306			0.00070			0.00568			0.01837


			8341			0.13034			0.08361			0.04910			0.05851			0.04912			0.04178			0.03996			0.01127			0.06806						8341			0.04408			0.03632			0.03926			0.00013			0.00789			0.00411			0.00069			0.00601			0.01410


			8361			0.13258			0.08351			0.04925			0.05753			0.04909			0.04107			0.03926			0.01141			0.06816						8361			0.05021			0.03603			0.04157			0.00026			0.00785			0.00345			0.00083			0.00562			0.01874


			8381			0.13286			0.07717			0.04791			0.05670			0.04897			0.04193			0.03928			0.01125			0.06593						8381			0.06145			0.02695			0.03978			0.00014			0.00750			0.00349			0.00058			0.00541			0.01717


			8401			0.13357			0.08088			0.04751			0.05680			0.04908			0.04129			0.03939			0.01108			0.06705						8401			0.05428			0.02744			0.03927			0.00018			0.00781			0.00364			0.00067			0.00543			0.01507


			8421			0.13138			0.08481			0.04882			0.05542			0.04906			0.03992			0.03971			0.01121			0.06582						8421			0.05340			0.03411			0.04082			0.00005			0.00777			0.00261			0.00077			0.00559			0.01092


			8441			0.12078			0.08401			0.04697			0.05559			0.04905			0.04016			0.03957			0.01121			0.06541						8441			0.07166			0.03675			0.03935			0.00019			0.00806			0.00432			0.00073			0.00585			0.01301


			8461			0.12933			0.07769			0.04754			0.05501			0.04906			0.03859			0.03915			0.01120			0.06750						8461			0.05149			0.04153			0.04176			0.00027			0.00754			0.00530			0.00046			0.00537			0.01312


			8481			0.13232			0.08336			0.04723			0.05299			0.04900			0.03984			0.03884			0.01082			0.06519						8481			0.04899			0.03588			0.04222			0.00042			0.00780			0.00388			0.00064			0.00543			0.01783


			8501			0.13197			0.08382			0.04785			0.05421			0.04898			0.04020			0.03922			0.01102			0.06431						8501			0.05225			0.03900			0.03965			0.00022			0.00761			0.00495			0.00047			0.00530			0.01265


			8521			0.12612			0.08212			0.04792			0.05229			0.04902			0.03954			0.03928			0.01103			0.06514						8521			0.04742			0.04079			0.04077			0.00013			0.00778			0.00353			0.00072			0.00544			0.01340


			8541			0.13265			0.08292			0.04859			0.05312			0.04881			0.03962			0.03929			0.01101			0.06376						8541			0.05462			0.03841			0.04035			0.00042			0.00762			0.00414			0.00048			0.00516			0.01280


			8561			0.12341			0.08232			0.04879			0.05140			0.04892			0.03756			0.03875			0.01096			0.06441						8561			0.07122			0.04229			0.04040			0.00014			0.00770			0.00302			0.00089			0.00579			0.01255


			8581			0.12672			0.08217			0.04777			0.05193			0.04896			0.03913			0.03875			0.01063			0.06436						8581			0.06158			0.03024			0.04065			0.00034			0.00747			0.00347			0.00058			0.00510			0.01593


			8601			0.12018			0.08343			0.04866			0.05074			0.04890			0.03855			0.03846			0.01067			0.06415						8601			0.04526			0.03170			0.04015			0.00075			0.00782			0.00524			0.00045			0.00521			0.01121


			8621			0.13072			0.08260			0.04777			0.05127			0.04882			0.03883			0.03859			0.01084			0.06367						8621			0.05973			0.03635			0.04044			0.00026			0.00746			0.00341			0.00061			0.00530			0.01159


			8641			0.12025			0.08191			0.04665			0.05004			0.04873			0.03809			0.03857			0.01079			0.06324						8641			0.04123			0.02902			0.04169			0.00023			0.00744			0.00432			0.00051			0.00537			0.01162


			8661			0.13174			0.08165			0.04812			0.04933			0.04882			0.03823			0.03845			0.01052			0.06346						8661			0.05831			0.03027			0.03948			0.00054			0.00764			0.00455			0.00053			0.00512			0.01366


			8681			0.12955			0.07556			0.04844			0.04932			0.04890			0.03638			0.03771			0.01067			0.06278						8681			0.06180			0.02921			0.03953			0.00015			0.00765			0.00302			0.00085			0.00550			0.01429


			8701			0.13065			0.07571			0.04841			0.04881			0.04885			0.03607			0.03814			0.01074			0.06194						8701			0.05742			0.02687			0.04099			0.00028			0.00765			0.00353			0.00080			0.00548			0.01504


			8721			0.12461			0.08124			0.04698			0.04887			0.04876			0.03684			0.03828			0.01070			0.06264						8721			0.04125			0.03522			0.04154			0.00058			0.00776			0.00517			0.00061			0.00550			0.01209


			8741			0.13165			0.07644			0.04875			0.04816			0.04866			0.03722			0.03794			0.01054			0.06077						8741			0.05568			0.02492			0.03945			0.00021			0.00759			0.00407			0.00044			0.00508			0.01217


			8761			0.13100			0.08176			0.04248			0.04778			0.04879			0.03680			0.03752			0.01045			0.06116						8761			0.05278			0.03858			0.04405			0.00017			0.00745			0.00446			0.00040			0.00518			0.01541


			8781			0.12824			0.08134			0.04916			0.04734			0.04881			0.03653			0.03811			0.01056			0.06101						8781			0.05621			0.03829			0.04053			0.00035			0.00783			0.00435			0.00060			0.00534			0.01409


			8801			0.12898			0.08024			0.04940			0.04666			0.04875			0.03616			0.03800			0.01056			0.06023						8801			0.06463			0.04004			0.03985			0.00033			0.00745			0.00425			0.00083			0.00550			0.01259


			8821			0.12865			0.08212			0.04596			0.04635			0.04876			0.03587			0.03767			0.01035			0.05960						8821			0.05187			0.03593			0.04241			0.00053			0.00748			0.00494			0.00042			0.00503			0.01095


			8841			0.12737			0.07885			0.04836			0.04619			0.04878			0.03633			0.03824			0.01035			0.05990						8841			0.05412			0.03127			0.04072			0.00032			0.00757			0.00471			0.00058			0.00533			0.01426


			8861			0.12682			0.07969			0.04762			0.04532			0.04873			0.03493			0.03748			0.01041			0.05869						8861			0.04392			0.04189			0.04151			0.00010			0.00764			0.00253			0.00096			0.00516			0.00831


			8881			0.12876			0.08306			0.04496			0.04534			0.04871			0.03504			0.03771			0.01042			0.05980						8881			0.05558			0.03714			0.03814			0.00045			0.00746			0.00548			0.00042			0.00515			0.01175


			8901			0.12538			0.08211			0.04741			0.04451			0.04870			0.03399			0.03694			0.01038			0.06022						8901			0.04324			0.03856			0.03985			0.00067			0.00772			0.00550			0.00048			0.00512			0.01079


			8921			0.13150			0.08149			0.04787			0.04342			0.04869			0.03342			0.03702			0.01026			0.05767						8921			0.05692			0.03205			0.04008			0.00021			0.00763			0.00327			0.00088			0.00535			0.01722


			8941			0.12639			0.08011			0.04644			0.04381			0.04870			0.03423			0.03741			0.01031			0.05869						8941			0.04531			0.02980			0.03913			0.00039			0.00767			0.00347			0.00077			0.00517			0.00865


			8961			0.12875			0.07958			0.04672			0.04376			0.04861			0.03475			0.03754			0.01016			0.04946						8961			0.05698			0.03504			0.03901			0.00033			0.00758			0.00427			0.00074			0.00508			0.02041


			8981			0.12718			0.07832			0.04699			0.04299			0.04864			0.03380			0.03751			0.01017			0.05514						8981			0.04834			0.02881			0.03955			0.00039			0.00763			0.00513			0.00067			0.00537			0.01440


			9001			0.13042			0.08178			0.04709			0.04287			0.04864			0.03447			0.03725			0.01011			0.05635						9001			0.06084			0.03275			0.03951			0.00032			0.00761			0.00411			0.00079			0.00512			0.00744


			9021			0.12699			0.08200			0.04782			0.04239			0.04862			0.03415			0.03645			0.01001			0.05812						9021			0.05770			0.03550			0.04052			0.00032			0.00761			0.00485			0.00047			0.00504			0.00869


			9041			0.12689			0.07688			0.04768			0.04145			0.04854			0.03393			0.03704			0.00981			0.05709						9041			0.04875			0.02571			0.04081			0.00052			0.00763			0.00415			0.00072			0.00498			0.01515


			9061			0.13046			0.08104			0.04777			0.04093			0.04849			0.03326			0.03676			0.00997			0.05540						9061			0.04956			0.03402			0.04051			0.00073			0.00743			0.00487			0.00031			0.00460			0.00722


			9081			0.12845			0.07925			0.04789			0.04090			0.04857			0.03297			0.03709			0.01004			0.05731						9081			0.05938			0.03295			0.04133			0.00057			0.00770			0.00547			0.00054			0.00516			0.01287


			9101			0.12705			0.07904			0.04611			0.04061			0.04861			0.03283			0.03659			0.01008			0.05743						9101			0.05538			0.03713			0.03862			0.00049			0.00776			0.00533			0.00047			0.00520			0.00948


			9121			0.12622			0.07982			0.04594			0.04006			0.04856			0.03256			0.03682			0.01000			0.05852						9121			0.06873			0.02825			0.03834			0.00029			0.00742			0.00347			0.00084			0.00519			0.01346


			9141			0.12837			0.07876			0.04515			0.03985			0.04850			0.03245			0.03662			0.00986			0.05279						9141			0.04571			0.02781			0.03806			0.00048			0.00739			0.00491			0.00064			0.00486			0.01590


			9161			0.11648			0.07996			0.04733			0.03960			0.04851			0.03256			0.03661			0.00999			0.05673						9161			0.05783			0.03622			0.04036			0.00066			0.00752			0.00543			0.00055			0.00508			0.01254


			9181			0.12791			0.08127			0.04761			0.03884			0.04853			0.03187			0.03671			0.00995			0.05659						9181			0.04864			0.03530			0.03922			0.00057			0.00763			0.00516			0.00068			0.00512			0.00987


			9201			0.12520			0.07697			0.04257			0.03803			0.04852			0.03280			0.03674			0.00988			0.05652						9201			0.04773			0.03866			0.03775			0.00032			0.00787			0.00436			0.00071			0.00520			0.01092


			9221			0.12448			0.08092			0.04411			0.03855			0.04845			0.03255			0.03643			0.00967			0.05735						9221			0.04380			0.03528			0.03785			0.00048			0.00768			0.00474			0.00058			0.00487			0.01049


			9241			0.12562			0.07432			0.04508			0.03749			0.04847			0.03192			0.03550			0.00966			0.05599						9241			0.04506			0.02492			0.04051			0.00072			0.00764			0.00512			0.00039			0.00483			0.00818


			9261			0.12701			0.07728			0.04797			0.03763			0.04845			0.03236			0.03613			0.00976			0.05497						9261			0.05632			0.03946			0.03968			0.00064			0.00745			0.00488			0.00073			0.00512			0.01288


			9281			0.12684			0.07936			0.04552			0.03635			0.04844			0.03173			0.03591			0.00957			0.05590						9281			0.04433			0.03196			0.03802			0.00082			0.00759			0.00547			0.00046			0.00467			0.01047


			9301			0.12783			0.08061			0.04638			0.03724			0.04834			0.03212			0.03562			0.00966			0.05617						9301			0.05379			0.03278			0.04083			0.00061			0.00765			0.00473			0.00089			0.00505			0.00955


			9321			0.12842			0.07845			0.04490			0.03685			0.04840			0.03169			0.03592			0.00964			0.05476						9321			0.04854			0.04159			0.04183			0.00035			0.00765			0.00372			0.00096			0.00525			0.00949


			9341			0.12342			0.08016			0.04512			0.03644			0.04841			0.03106			0.03630			0.00955			0.05468						9341			0.04833			0.03512			0.03792			0.00070			0.00765			0.00526			0.00085			0.00528			0.01181


			9361			0.12634			0.07989			0.04394			0.03600			0.04831			0.03143			0.03551			0.00955			0.05514						9361			0.04222			0.03490			0.04131			0.00050			0.00733			0.00435			0.00041			0.00473			0.01097


			9381			0.12780			0.07682			0.04673			0.03455			0.04835			0.02964			0.03614			0.00965			0.05221						9381			0.04893			0.03777			0.03879			0.00028			0.00759			0.00345			0.00065			0.00481			0.00776


			9401			0.11688			0.07780			0.04405			0.03530			0.04834			0.03064			0.03577			0.00956			0.05461						9401			0.04139			0.04209			0.04181			0.00062			0.00749			0.00532			0.00059			0.00504			0.00890


			9421			0.12562			0.07940			0.04675			0.03498			0.04827			0.03102			0.03543			0.00932			0.05566						9421			0.06161			0.02810			0.03993			0.00042			0.00748			0.00451			0.00059			0.00485			0.00898


			9441			0.12631			0.07747			0.04718			0.03490			0.04835			0.03098			0.03592			0.00957			0.05258						9441			0.05870			0.03218			0.03920			0.00049			0.00734			0.00452			0.00070			0.00489			0.00989


			9461			0.12527			0.07994			0.04620			0.03364			0.04824			0.02964			0.03500			0.00924			0.05281						9461			0.05316			0.03483			0.03946			0.00069			0.00738			0.00543			0.00046			0.00465			0.01284


			9481			0.12652			0.07976			0.04583			0.03421			0.04831			0.03064			0.03578			0.00934			0.05330						9481			0.04701			0.03300			0.04068			0.00054			0.00764			0.00440			0.00066			0.00465			0.00692


			9501			0.12650			0.07677			0.04692			0.03309			0.04830			0.02895			0.03509			0.00942			0.05370						9501			0.05600			0.02409			0.03900			0.00025			0.00755			0.00289			0.00091			0.00503			0.00880


			9521			0.12666			0.07563			0.04682			0.03332			0.04827			0.03040			0.03538			0.00933			0.05185						9521			0.05150			0.03196			0.04024			0.00069			0.00771			0.00480			0.00061			0.00488			0.00641


			9541			0.12889			0.07946			0.04684			0.03285			0.04826			0.02976			0.03525			0.00926			0.05130						9541			0.05394			0.02857			0.03941			0.00046			0.00731			0.00374			0.00052			0.00443			0.00637


			9561			0.12609			0.07280			0.04671			0.03159			0.04825			0.02830			0.03499			0.00934			0.05244						9561			0.05295			0.04099			0.03912			0.00102			0.00769			0.00638			0.00051			0.00485			0.01153


			9581			0.12339			0.07785			0.04572			0.03216			0.04808			0.02951			0.03539			0.00933			0.05223						9581			0.04640			0.03194			0.03801			0.00051			0.00732			0.00460			0.00060			0.00477			0.00790


			9601			0.12081			0.08014			0.04622			0.03242			0.04806			0.02998			0.03544			0.00922			0.05252						9601			0.05294			0.03449			0.03825			0.00039			0.00731			0.00341			0.00078			0.00471			0.00763


			9621			0.12551			0.07880			0.04596			0.03109			0.04817			0.02914			0.03461			0.00899			0.05157						9621			0.04381			0.03095			0.03831			0.00084			0.00746			0.00539			0.00046			0.00459			0.01022


			9641			0.12622			0.07672			0.04422			0.03167			0.04819			0.02907			0.03502			0.00922			0.05235						9641			0.04715			0.02764			0.03928			0.00063			0.00758			0.00422			0.00070			0.00479			0.01001


			9661			0.12710			0.07705			0.04907			0.03143			0.04799			0.02973			0.03516			0.00920			0.05348						9661			0.05677			0.02897			0.03829			0.00085			0.00774			0.00558			0.00064			0.00483			0.00936


			9681			0.12563			0.07559			0.04754			0.03076			0.04811			0.02918			0.03513			0.00901			0.05093						9681			0.06114			0.04372			0.04031			0.00093			0.00752			0.00557			0.00052			0.00462			0.00618


			9701			0.12505			0.07779			0.04520			0.03068			0.04811			0.02889			0.03493			0.00920			0.05200						9701			0.04710			0.02901			0.03774			0.00064			0.00736			0.00481			0.00071			0.00488			0.01010


			9721			0.12055			0.08073			0.04627			0.03072			0.04812			0.02954			0.03506			0.00907			0.04934						9721			0.06103			0.03631			0.03971			0.00051			0.00753			0.00380			0.00087			0.00468			0.00652


			9741			0.12302			0.07431			0.04676			0.02991			0.04812			0.02765			0.03426			0.00917			0.04670						9741			0.04265			0.02784			0.03894			0.00079			0.00750			0.00601			0.00042			0.00463			0.01275


			9761			0.12597			0.07345			0.04556			0.02962			0.04807			0.02793			0.03493			0.00908			0.05141						9761			0.05891			0.03632			0.03806			0.00085			0.00750			0.00575			0.00076			0.00479			0.01043


			9781			0.12559			0.07656			0.04663			0.02986			0.04794			0.02904			0.03394			0.00886			0.05174						9781			0.05258			0.03992			0.03850			0.00074			0.00743			0.00497			0.00041			0.00454			0.00852


			9801			0.12488			0.07719			0.04520			0.02880			0.04808			0.02835			0.03416			0.00879			0.05147						9801			0.05445			0.02978			0.03913			0.00089			0.00726			0.00487			0.00045			0.00440			0.00671


			9821			0.12364			0.07860			0.04487			0.02870			0.04806			0.02817			0.03477			0.00904			0.05083						9821			0.05069			0.03006			0.04149			0.00110			0.00763			0.00581			0.00064			0.00479			0.00678


			9841			0.12354			0.07648			0.04653			0.02851			0.04801			0.02729			0.03384			0.00898			0.05167						9841			0.05645			0.02640			0.03831			0.00122			0.00771			0.00668			0.00042			0.00471			0.00824


			9861			0.12467			0.07739			0.04501			0.02879			0.04803			0.02852			0.03465			0.00881			0.05084						9861			0.05459			0.02902			0.04041			0.00068			0.00758			0.00506			0.00066			0.00491			0.00790


			9881			0.12276			0.07747			0.04483			0.02840			0.04794			0.02820			0.03460			0.00896			0.05076						9881			0.06049			0.03308			0.03775			0.00081			0.00755			0.00495			0.00070			0.00477			0.00887


			9901			0.12197			0.07742			0.04620			0.02754			0.04802			0.02756			0.03456			0.00898			0.05034						9901			0.05651			0.02950			0.03866			0.00099			0.00720			0.00547			0.00061			0.00457			0.00752


			9921			0.12547			0.07586			0.04311			0.02806			0.04793			0.02863			0.03445			0.00876			0.04996						9921			0.04627			0.04023			0.03724			0.00125			0.00756			0.00583			0.00049			0.00449			0.01182


			9941			0.12509			0.07613			0.04308			0.02745			0.04796			0.02768			0.03452			0.00873			0.05015						9941			0.04334			0.02874			0.03688			0.00090			0.00742			0.00532			0.00058			0.00483			0.01039


			9961			0.12007			0.07509			0.04411			0.02717			0.04787			0.02704			0.03442			0.00884			0.04776						9961			0.04401			0.02519			0.03785			0.00097			0.00746			0.00602			0.00068			0.00470			0.01468


			9981			0.12495			0.08017			0.04583			0.02648			0.04791			0.02656			0.03294			0.00867			0.04952						9981			0.04642			0.04218			0.03976			0.00088			0.00741			0.00568			0.00042			0.00462			0.00674


			10001			0.12239			0.07718			0.04533			0.02671			0.04788			0.02735			0.03317			0.00873			0.04840						10001			0.05083			0.03588			0.03893			0.00067			0.00765			0.00455			0.00085			0.00476			0.00723


			10021			0.12465			0.07845			0.04514			0.02655			0.04786			0.02703			0.03428			0.00869			0.04802						10021			0.04510			0.03527			0.03866			0.00081			0.00765			0.00518			0.00069			0.00485			0.01236


			10041			0.12461			0.07777			0.04490			0.02592			0.04785			0.02646			0.03339			0.00876			0.04980						10041			0.04562			0.02953			0.04057			0.00111			0.00751			0.00587			0.00040			0.00456			0.00745


			10061			0.12232			0.07578			0.04495			0.02584			0.04777			0.02695			0.03404			0.00861			0.05044						10061			0.04143			0.03005			0.03939			0.00129			0.00723			0.00658			0.00032			0.00430			0.00910


			10081			0.12476			0.07552			0.04568			0.02662			0.04781			0.02771			0.03412			0.00867			0.04912						10081			0.05235			0.02622			0.03807			0.00054			0.00742			0.00461			0.00081			0.00491			0.00624


			10101			0.12532			0.07637			0.04379			0.02580			0.04779			0.02661			0.03328			0.00846			0.04518						10101			0.05754			0.03067			0.04045			0.00095			0.00746			0.00590			0.00044			0.00450			0.00512


			10121			0.11984			0.07388			0.04519			0.02571			0.04778			0.02756			0.03355			0.00856			0.04825						10121			0.06217			0.03011			0.03785			0.00108			0.00759			0.00534			0.00045			0.00449			0.00957


			10141			0.12501			0.07678			0.04407			0.02533			0.04777			0.02648			0.03405			0.00848			0.04842						10141			0.04479			0.03369			0.03763			0.00057			0.00759			0.00371			0.00078			0.00455			0.01100


			10161			0.11903			0.07409			0.04154			0.02529			0.04776			0.02709			0.03372			0.00856			0.04778						10161			0.04942			0.02731			0.03653			0.00068			0.00749			0.00398			0.00085			0.00442			0.01204


			10181			0.12272			0.07311			0.04606			0.02459			0.04754			0.02646			0.03383			0.00856			0.04879						10181			0.06166			0.04091			0.03824			0.00097			0.00765			0.00525			0.00080			0.00459			0.00788


			10201			0.11500			0.07412			0.04186			0.02478			0.04772			0.02687			0.03388			0.00853			0.04874						10201			0.05651			0.03991			0.04079			0.00115			0.00742			0.00624			0.00039			0.00455			0.00770


			10221			0.11912			0.07120			0.04541			0.02465			0.04771			0.02667			0.03348			0.00846			0.04508						10221			0.05773			0.04456			0.03816			0.00070			0.00757			0.00414			0.00076			0.00448			0.00502


			10241			0.12302			0.07560			0.04596			0.02446			0.04766			0.02681			0.03363			0.00846			0.04733						10241			0.04270			0.03522			0.03828			0.00081			0.00741			0.00470			0.00063			0.00468			0.00536


			10261			0.11857			0.07709			0.04272			0.02427			0.04757			0.02652			0.03333			0.00828			0.04760						10261			0.05844			0.03275			0.04105			0.00068			0.00704			0.00434			0.00062			0.00431			0.00899


			10281			0.12469			0.07599			0.04493			0.02377			0.04766			0.02663			0.03355			0.00848			0.04798						10281			0.04747			0.03377			0.03911			0.00058			0.00714			0.00433			0.00059			0.00448			0.00679


			10301			0.12315			0.07559			0.04590			0.02372			0.04763			0.02665			0.03351			0.00841			0.04685						10301			0.04641			0.03848			0.03877			0.00081			0.00737			0.00508			0.00055			0.00448			0.00582


			10321			0.11513			0.07547			0.04472			0.02360			0.04763			0.02655			0.03337			0.00831			0.04801						10321			0.04410			0.02929			0.03803			0.00054			0.00742			0.00408			0.00071			0.00462			0.00721


			10341			0.12214			0.07299			0.04540			0.02244			0.04763			0.02436			0.03286			0.00827			0.04817						10341			0.05326			0.02569			0.03892			0.00105			0.00730			0.00576			0.00042			0.00428			0.00765


			10361			0.11986			0.07243			0.04518			0.02319			0.04755			0.02592			0.03335			0.00832			0.04746						10361			0.04659			0.03137			0.03872			0.00090			0.00741			0.00548			0.00073			0.00459			0.00843


			10381			0.12375			0.07708			0.04252			0.02304			0.04758			0.02605			0.03326			0.00823			0.04616						10381			0.04494			0.03116			0.04078			0.00091			0.00742			0.00458			0.00050			0.00433			0.01285


			10401			0.12339			0.07374			0.04543			0.02285			0.04749			0.02571			0.03268			0.00812			0.04619						10401			0.04746			0.02818			0.03866			0.00088			0.00720			0.00528			0.00043			0.00430			0.00490


			10421			0.11935			0.07447			0.04480			0.02198			0.04751			0.02466			0.03318			0.00831			0.04725						10421			0.04080			0.03242			0.03954			0.00106			0.00749			0.00586			0.00063			0.00458			0.00846


			10441			0.12227			0.07255			0.04389			0.02256			0.04734			0.02612			0.03305			0.00826			0.04712						10441			0.04894			0.03468			0.03842			0.00074			0.00699			0.00398			0.00049			0.00417			0.00727


			10461			0.12001			0.07450			0.04475			0.02208			0.04743			0.02566			0.03250			0.00805			0.04804						10461			0.05159			0.02600			0.03740			0.00114			0.00736			0.00573			0.00044			0.00419			0.00908


			10481			0.12089			0.07577			0.04314			0.02235			0.04750			0.02580			0.03285			0.00815			0.04593						10481			0.04687			0.03470			0.03975			0.00070			0.00746			0.00450			0.00080			0.00479			0.01021


			10501			0.12162			0.07160			0.04120			0.02186			0.04749			0.02574			0.03297			0.00812			0.04693						10501			0.04361			0.02478			0.03704			0.00104			0.00725			0.00488			0.00061			0.00422			0.00624


			10521			0.12308			0.07519			0.04500			0.02167			0.04726			0.02551			0.03276			0.00815			0.04660						10521			0.04828			0.03772			0.03731			0.00068			0.00730			0.00423			0.00048			0.00434			0.00896


			10541			0.12365			0.07567			0.04516			0.02086			0.04742			0.02460			0.03246			0.00802			0.04597						10541			0.04541			0.03396			0.03777			0.00149			0.00730			0.00665			0.00032			0.00418			0.00641


			10561			0.11848			0.07497			0.04462			0.02114			0.04741			0.02473			0.03279			0.00806			0.04623						10561			0.05278			0.02933			0.03827			0.00071			0.00738			0.00389			0.00073			0.00429			0.00791


			10581			0.11762			0.07577			0.04488			0.02134			0.04738			0.02564			0.03220			0.00800			0.04497						10581			0.04863			0.03512			0.03751			0.00078			0.00707			0.00493			0.00034			0.00429			0.01087


			10601			0.11653			0.07232			0.04528			0.02108			0.04739			0.02510			0.03236			0.00805			0.04561						10601			0.04134			0.04231			0.03812			0.00118			0.00753			0.00548			0.00065			0.00446			0.00845


			10621			0.11977			0.07385			0.04412			0.02101			0.04722			0.02547			0.03244			0.00806			0.04636						10621			0.05215			0.02785			0.03746			0.00087			0.00739			0.00464			0.00078			0.00437			0.00702


			10641			0.11948			0.07334			0.04555			0.02104			0.04724			0.02558			0.03257			0.00794			0.04391						10641			0.04522			0.03621			0.03817			0.00073			0.00704			0.00446			0.00069			0.00435			0.01232


			10661			0.12255			0.07294			0.04372			0.02074			0.04725			0.02503			0.03234			0.00790			0.04395						10661			0.04424			0.02373			0.03930			0.00101			0.00723			0.00537			0.00046			0.00421			0.00387


			10681			0.12024			0.07523			0.04358			0.02039			0.04707			0.02492			0.03224			0.00802			0.04524						10681			0.04147			0.03231			0.03715			0.00101			0.00778			0.00522			0.00056			0.00455			0.00839


			10701			0.12362			0.07500			0.04403			0.02032			0.04726			0.02486			0.03215			0.00793			0.04573						10701			0.04291			0.03078			0.03719			0.00075			0.00764			0.00415			0.00081			0.00457			0.00924


			10721			0.11907			0.07273			0.04417			0.02024			0.04724			0.02508			0.03227			0.00792			0.04565						10721			0.05035			0.02882			0.03719			0.00088			0.00743			0.00442			0.00077			0.00460			0.00729


			10741			0.12256			0.06937			0.04475			0.02018			0.04726			0.02513			0.03242			0.00786			0.04532						10741			0.04778			0.04086			0.03814			0.00096			0.00708			0.00483			0.00052			0.00449			0.00560


			10761			0.11895			0.06980			0.04419			0.01919			0.04725			0.02345			0.03236			0.00792			0.04473						10761			0.05825			0.02459			0.03719			0.00054			0.00730			0.00335			0.00069			0.00432			0.00677


			10781			0.12163			0.07385			0.04380			0.01982			0.04721			0.02469			0.03224			0.00792			0.04506						10781			0.05091			0.03723			0.03727			0.00099			0.00733			0.00443			0.00055			0.00414			0.00877


			10801			0.11933			0.07173			0.04359			0.01956			0.04713			0.02466			0.03216			0.00790			0.04553						10801			0.05506			0.04165			0.03845			0.00115			0.00731			0.00563			0.00048			0.00428			0.00589


			10821			0.11267			0.07147			0.04406			0.01949			0.04705			0.02468			0.03185			0.00788			0.04544						10821			0.05803			0.02382			0.03796			0.00109			0.00748			0.00505			0.00059			0.00424			0.00612


			10841			0.11850			0.07164			0.04493			0.01936			0.04703			0.02476			0.03218			0.00778			0.04444						10841			0.05072			0.03983			0.03826			0.00091			0.00693			0.00483			0.00039			0.00405			0.00714


			10861			0.12123			0.07518			0.04227			0.01926			0.04717			0.02426			0.03206			0.00785			0.04495						10861			0.04621			0.02974			0.03653			0.00107			0.00727			0.00532			0.00053			0.00424			0.00812


			10881			0.09764			0.07525			0.04419			0.01896			0.04716			0.02469			0.03148			0.00772			0.04540						10881			0.06675			0.02515			0.03857			0.00090			0.00751			0.00490			0.00069			0.00448			0.00658


			10901			0.12182			0.07638			0.04530			0.01852			0.04713			0.02418			0.03141			0.00751			0.04510						10901			0.04569			0.03271			0.03902			0.00116			0.00719			0.00503			0.00039			0.00413			0.00570


			10921			0.12147			0.07562			0.04297			0.01851			0.04709			0.02349			0.03183			0.00777			0.04247						10921			0.05029			0.03586			0.03632			0.00114			0.00721			0.00558			0.00047			0.00421			0.00844


			10941			0.12064			0.06953			0.04326			0.01849			0.04709			0.02429			0.03140			0.00776			0.04340						10941			0.04896			0.02689			0.03670			0.00074			0.00723			0.00449			0.00067			0.00439			0.00752


			10961			0.12386			0.07421			0.04496			0.01826			0.04707			0.02354			0.03185			0.00773			0.04443						10961			0.04569			0.02942			0.03874			0.00110			0.00712			0.00535			0.00061			0.00422			0.00727


			10981			0.11511			0.07431			0.04310			0.01848			0.04698			0.02402			0.03135			0.00752			0.04265						10981			0.05833			0.02884			0.03954			0.00097			0.00710			0.00500			0.00041			0.00417			0.00379


			11001			0.11897			0.07319			0.04423			0.01768			0.04701			0.02269			0.03176			0.00768			0.04436						11001			0.04674			0.02878			0.03871			0.00057			0.00761			0.00317			0.00066			0.00430			0.00537


			11021			0.11659			0.07444			0.04435			0.01838			0.04696			0.02433			0.03152			0.00752			0.04350						11021			0.05834			0.03251			0.03729			0.00120			0.00697			0.00482			0.00030			0.00391			0.00556


			11041			0.12092			0.07158			0.04416			0.01788			0.04698			0.02374			0.03172			0.00750			0.04050						11041			0.04452			0.02456			0.03832			0.00073			0.00710			0.00401			0.00050			0.00413			0.01218


			11061			0.11651			0.07247			0.04351			0.01783			0.04684			0.02386			0.03167			0.00766			0.04407						11061			0.03920			0.03816			0.03742			0.00104			0.00741			0.00475			0.00042			0.00420			0.00660


			11081			0.11317			0.06840			0.04371			0.01785			0.04699			0.02410			0.03163			0.00750			0.04296						11081			0.05947			0.02244			0.03851			0.00114			0.00695			0.00514			0.00048			0.00405			0.00393


			11101			0.11853			0.07004			0.04371			0.01771			0.04691			0.02386			0.03159			0.00761			0.04431						11101			0.04757			0.03665			0.03705			0.00119			0.00708			0.00549			0.00059			0.00421			0.00696


			11121			0.11202			0.06951			0.04425			0.01730			0.04685			0.02342			0.03148			0.00752			0.03747						11121			0.06786			0.02512			0.03696			0.00057			0.00737			0.00337			0.00080			0.00442			0.01651


			11141			0.11321			0.07359			0.04388			0.01752			0.04687			0.02368			0.03139			0.00751			0.04381						11141			0.04305			0.02580			0.03868			0.00120			0.00706			0.00564			0.00048			0.00427			0.00460


			11161			0.11109			0.07643			0.04407			0.01724			0.04689			0.02326			0.03142			0.00754			0.04412						11161			0.05674			0.03472			0.03778			0.00084			0.00711			0.00388			0.00051			0.00422			0.00979


			11181			0.11550			0.07110			0.04352			0.01715			0.04688			0.02381			0.03146			0.00743			0.04286						11181			0.03980			0.02546			0.03663			0.00089			0.00712			0.00448			0.00047			0.00431			0.00894


			11201			0.11197			0.07123			0.04345			0.01717			0.04682			0.02331			0.03090			0.00749			0.04397						11201			0.04176			0.02752			0.03886			0.00130			0.00733			0.00598			0.00037			0.00420			0.00676


			11221			0.12236			0.06867			0.04013			0.01682			0.04682			0.02318			0.03110			0.00744			0.04338						11221			0.04624			0.02569			0.03585			0.00105			0.00748			0.00484			0.00072			0.00432			0.00517


			11241			0.11143			0.07220			0.04545			0.01693			0.04682			0.02341			0.03115			0.00726			0.04335						11241			0.06009			0.03333			0.03736			0.00093			0.00704			0.00412			0.00033			0.00397			0.00556


			11261			0.11298			0.07220			0.04341			0.01673			0.04673			0.02313			0.03106			0.00742			0.04366						11261			0.05947			0.03287			0.03873			0.00107			0.00707			0.00525			0.00028			0.00406			0.00654


			11281			0.11572			0.07162			0.04377			0.01682			0.04658			0.02354			0.03120			0.00730			0.04265						11281			0.05268			0.03746			0.03728			0.00099			0.00692			0.00435			0.00044			0.00393			0.00862


			11301			0.11747			0.07423			0.04314			0.01678			0.04676			0.02367			0.03121			0.00735			0.04255						11301			0.04992			0.02968			0.03932			0.00117			0.00729			0.00492			0.00042			0.00391			0.00425


			11321			0.11891			0.07422			0.04360			0.01636			0.04660			0.02315			0.03095			0.00726			0.04258						11321			0.05675			0.02685			0.03686			0.00131			0.00699			0.00524			0.00037			0.00400			0.00671


			11341			0.11716			0.07389			0.04366			0.01626			0.04672			0.02332			0.03024			0.00732			0.04202						11341			0.04184			0.02853			0.03733			0.00076			0.00760			0.00412			0.00084			0.00429			0.00417


			11361			0.11504			0.06831			0.04267			0.01611			0.04670			0.02199			0.03104			0.00738			0.04243						11361			0.05928			0.02356			0.03753			0.00128			0.00728			0.00570			0.00041			0.00404			0.00438


			11381			0.11962			0.06683			0.04167			0.01564			0.04667			0.02163			0.03066			0.00722			0.04153						11381			0.04247			0.03953			0.03913			0.00156			0.00724			0.00632			0.00031			0.00399			0.00388


			11401			0.11665			0.06928			0.04413			0.01600			0.04650			0.02338			0.03050			0.00719			0.04040						11401			0.04238			0.02938			0.03771			0.00101			0.00730			0.00457			0.00051			0.00421			0.01114


			11421			0.11750			0.07183			0.04395			0.01597			0.04641			0.02316			0.03062			0.00709			0.04259						11421			0.05297			0.03464			0.03717			0.00120			0.00702			0.00485			0.00035			0.00395			0.00459


			11441			0.11469			0.07200			0.04092			0.01545			0.04662			0.02198			0.03035			0.00718			0.04336						11441			0.05112			0.03332			0.03767			0.00138			0.00703			0.00600			0.00030			0.00396			0.00738


			11461			0.11926			0.06458			0.04372			0.01564			0.04662			0.02297			0.03061			0.00725			0.04258						11461			0.04495			0.04265			0.03728			0.00080			0.00723			0.00426			0.00063			0.00406			0.00513


			11481			0.11667			0.07479			0.04377			0.01560			0.04655			0.02256			0.03059			0.00714			0.04100						11481			0.04465			0.02661			0.03673			0.00114			0.00741			0.00513			0.00056			0.00428			0.00836


			11501			0.11599			0.07257			0.04239			0.01495			0.04657			0.02210			0.02984			0.00715			0.04057						11501			0.05437			0.02871			0.03597			0.00069			0.00740			0.00368			0.00066			0.00428			0.00952


			11521			0.11317			0.06940			0.04306			0.01541			0.04649			0.02282			0.03031			0.00704			0.04280						11521			0.04633			0.03830			0.03863			0.00124			0.00710			0.00524			0.00035			0.00398			0.00549


			11541			0.11804			0.06943			0.04332			0.01552			0.04638			0.02289			0.03018			0.00710			0.04241						11541			0.04874			0.02352			0.03690			0.00102			0.00686			0.00456			0.00027			0.00394			0.00754


			11561			0.11419			0.07078			0.04098			0.01517			0.04653			0.02259			0.03015			0.00717			0.04213						11561			0.04189			0.02818			0.03891			0.00068			0.00701			0.00363			0.00073			0.00408			0.00502


			11581			0.11831			0.06605			0.04292			0.01527			0.04643			0.02273			0.03043			0.00707			0.04194						11581			0.04219			0.02122			0.03655			0.00130			0.00732			0.00503			0.00037			0.00382			0.00462


			11601			0.11703			0.07108			0.04127			0.01509			0.04633			0.02282			0.03012			0.00700			0.04195						11601			0.04123			0.03132			0.03642			0.00118			0.00698			0.00457			0.00033			0.00385			0.00493


			11621			0.11767			0.07286			0.04358			0.01503			0.04640			0.02192			0.03047			0.00707			0.04195						11621			0.05211			0.02674			0.03695			0.00110			0.00696			0.00509			0.00042			0.00401			0.00483


			11641			0.11345			0.07262			0.04199			0.01520			0.04642			0.02310			0.02998			0.00705			0.04213						11641			0.04223			0.02912			0.03578			0.00123			0.00700			0.00517			0.00026			0.00392			0.00600


			11661			0.11402			0.06744			0.04346			0.01472			0.04634			0.02191			0.03042			0.00703			0.04182						11661			0.03819			0.03157			0.03736			0.00129			0.00696			0.00516			0.00033			0.00390			0.00498


			11681			0.11602			0.07157			0.04311			0.01478			0.04632			0.02220			0.03048			0.00707			0.03842						11681			0.05407			0.02777			0.03769			0.00156			0.00712			0.00605			0.00038			0.00404			0.01023


			11701			0.11412			0.07164			0.04305			0.01487			0.04636			0.02255			0.03012			0.00701			0.04195						11701			0.04934			0.03066			0.03780			0.00109			0.00706			0.00409			0.00022			0.00381			0.00603


			11721			0.11487			0.06786			0.04359			0.01493			0.04631			0.02286			0.03036			0.00704			0.04190						11721			0.04745			0.02259			0.03769			0.00076			0.00728			0.00359			0.00061			0.00427			0.00538


			11741			0.11336			0.07200			0.04434			0.01465			0.04631			0.02243			0.03016			0.00704			0.04075						11741			0.03854			0.03345			0.03858			0.00110			0.00708			0.00498			0.00061			0.00409			0.00420


			11761			0.11862			0.07276			0.04275			0.01392			0.04632			0.02199			0.02951			0.00693			0.04154						11761			0.04663			0.03372			0.03718			0.00070			0.00716			0.00338			0.00064			0.00415			0.00380


			11781			0.11570			0.07123			0.04385			0.01447			0.04629			0.02241			0.03022			0.00696			0.04128						11781			0.04119			0.02950			0.03710			0.00107			0.00730			0.00477			0.00042			0.00405			0.00737


			11801			0.11572			0.07058			0.03888			0.01421			0.04624			0.02202			0.02941			0.00692			0.04063						11801			0.05398			0.03074			0.03547			0.00134			0.00720			0.00472			0.00027			0.00384			0.00737


			11821			0.11423			0.06928			0.04181			0.01434			0.04623			0.02233			0.03009			0.00690			0.04054						11821			0.04790			0.02635			0.03611			0.00100			0.00728			0.00431			0.00048			0.00401			0.00792


			11841			0.11833			0.06835			0.04305			0.01413			0.04619			0.02233			0.02998			0.00688			0.03904						11841			0.04615			0.03336			0.03837			0.00115			0.00718			0.00447			0.00044			0.00378			0.00295


			11861			0.11805			0.07113			0.04315			0.01413			0.04621			0.02199			0.03001			0.00684			0.04052						11861			0.04698			0.03205			0.03590			0.00108			0.00737			0.00448			0.00048			0.00419			0.00568


			11881			0.11917			0.07073			0.04217			0.01404			0.04616			0.02176			0.02982			0.00694			0.04167						11881			0.04623			0.03401			0.03818			0.00103			0.00708			0.00389			0.00038			0.00385			0.00447


			11901			0.11478			0.07178			0.04310			0.01395			0.04619			0.02209			0.02973			0.00689			0.03848						11901			0.04845			0.02855			0.03746			0.00106			0.00709			0.00436			0.00047			0.00408			0.00991


			11921			0.11521			0.07088			0.04248			0.01380			0.04608			0.02170			0.02982			0.00682			0.04138						11921			0.04138			0.02766			0.03779			0.00139			0.00724			0.00540			0.00029			0.00380			0.00377


			11941			0.10977			0.06870			0.04276			0.01390			0.04599			0.02207			0.02966			0.00674			0.04126						11941			0.03903			0.03524			0.03572			0.00111			0.00687			0.00458			0.00036			0.00382			0.00575


			11961			0.11519			0.06765			0.04342			0.01397			0.04593			0.02250			0.02982			0.00677			0.03918						11961			0.04514			0.03545			0.03603			0.00118			0.00722			0.00474			0.00042			0.00415			0.00426


			11981			0.11196			0.06990			0.04189			0.01382			0.04609			0.02210			0.02974			0.00677			0.03971						11981			0.04379			0.03417			0.03610			0.00132			0.00701			0.00455			0.00027			0.00383			0.00834


			12001			0.11688			0.07147			0.04300			0.01303			0.04604			0.02043			0.02938			0.00668			0.03965						12001			0.04082			0.02839			0.03731			0.00148			0.00723			0.00591			0.00031			0.00384			0.00850


			12021			0.11849			0.06713			0.04292			0.01358			0.04599			0.02193			0.02952			0.00678			0.04082						12021			0.05294			0.03072			0.03718			0.00093			0.00707			0.00423			0.00045			0.00415			0.00611


			12041			0.11618			0.06984			0.04303			0.01337			0.04597			0.02148			0.02971			0.00673			0.04052						12041			0.04470			0.02476			0.03719			0.00130			0.00724			0.00529			0.00045			0.00386			0.00376


			12061			0.11476			0.06902			0.04247			0.01353			0.04583			0.02177			0.02957			0.00667			0.04082						12061			0.04910			0.02593			0.03684			0.00112			0.00702			0.00428			0.00032			0.00365			0.00566


			12081			0.11542			0.06917			0.04259			0.01341			0.04587			0.02182			0.02963			0.00669			0.04005						12081			0.04470			0.02671			0.03686			0.00127			0.00723			0.00511			0.00039			0.00402			0.00319


			12101			0.11554			0.07212			0.04320			0.01332			0.04597			0.02148			0.02960			0.00672			0.04041						12101			0.04398			0.03052			0.03631			0.00083			0.00711			0.00317			0.00039			0.00390			0.00420


			12121			0.11235			0.07099			0.04228			0.01336			0.04580			0.02201			0.02963			0.00672			0.03943						12121			0.04773			0.03026			0.03678			0.00119			0.00691			0.00452			0.00036			0.00392			0.00598


			12141			0.10200			0.06860			0.04098			0.01334			0.04589			0.02171			0.02937			0.00673			0.04000						12141			0.04275			0.02296			0.03552			0.00106			0.00690			0.00418			0.00038			0.00391			0.00706


			12161			0.11392			0.06885			0.04214			0.01325			0.04579			0.02173			0.02938			0.00669			0.03980						12161			0.04425			0.02824			0.03621			0.00102			0.00723			0.00441			0.00068			0.00409			0.00686


			12181			0.11160			0.06584			0.04261			0.01262			0.04590			0.02010			0.02932			0.00664			0.03638						12181			0.03829			0.02275			0.03668			0.00153			0.00695			0.00581			0.00027			0.00371			0.01096


			12201			0.10488			0.06776			0.04300			0.01307			0.04584			0.02156			0.02948			0.00666			0.04009						12201			0.03763			0.02093			0.03633			0.00106			0.00735			0.00397			0.00051			0.00409			0.00379


			12221			0.11266			0.06818			0.04132			0.01274			0.04581			0.02092			0.02920			0.00654			0.03933						12221			0.04132			0.03672			0.03545			0.00163			0.00706			0.00636			0.00025			0.00377			0.00792


			12241			0.11609			0.07052			0.04242			0.01300			0.04579			0.02146			0.02948			0.00665			0.04049						12241			0.04797			0.02915			0.03654			0.00105			0.00699			0.00356			0.00030			0.00386			0.00558


			12261			0.12031			0.06909			0.04180			0.01289			0.04578			0.02149			0.02922			0.00664			0.03977						12261			0.04787			0.02959			0.03603			0.00126			0.00716			0.00518			0.00035			0.00383			0.00622


			12281			0.11237			0.06764			0.04238			0.01271			0.04579			0.02117			0.02940			0.00665			0.04095						12281			0.04322			0.02732			0.03659			0.00145			0.00680			0.00543			0.00031			0.00377			0.00552


			12301			0.11219			0.07015			0.04211			0.01284			0.04579			0.02117			0.02915			0.00642			0.03950						12301			0.04275			0.02773			0.03691			0.00113			0.00732			0.00374			0.00031			0.00373			0.00596


			12321			0.10662			0.06805			0.04267			0.01271			0.04574			0.02137			0.02898			0.00650			0.04022						12321			0.04346			0.03362			0.03685			0.00109			0.00675			0.00455			0.00032			0.00390			0.00413


			12341			0.11195			0.07028			0.04146			0.01208			0.04566			0.02006			0.02913			0.00655			0.03932						12341			0.05221			0.02817			0.03820			0.00077			0.00706			0.00333			0.00056			0.00400			0.00664


			12361			0.11835			0.06834			0.04237			0.01262			0.04568			0.02124			0.02897			0.00656			0.03936						12361			0.04646			0.02940			0.03718			0.00104			0.00695			0.00480			0.00055			0.00390			0.00297


			12381			0.10684			0.06962			0.04073			0.01252			0.04566			0.02039			0.02909			0.00651			0.03976						12381			0.05369			0.02865			0.03585			0.00099			0.00698			0.00323			0.00033			0.00370			0.00400


			12401			0.11408			0.06508			0.04115			0.01250			0.04560			0.02152			0.02868			0.00647			0.03940						12401			0.04486			0.02956			0.03804			0.00075			0.00717			0.00368			0.00066			0.00408			0.00642


			12421			0.11492			0.07001			0.03913			0.01225			0.04558			0.02097			0.02860			0.00653			0.03825						12421			0.04041			0.03071			0.03525			0.00135			0.00676			0.00419			0.00016			0.00361			0.00671


			12441			0.10595			0.06952			0.04051			0.01239			0.04556			0.02080			0.02913			0.00650			0.03909						12441			0.03779			0.02736			0.03853			0.00119			0.00699			0.00504			0.00051			0.00387			0.00352


			12461			0.11366			0.06881			0.04161			0.01222			0.04560			0.02115			0.02881			0.00644			0.03868						12461			0.04576			0.03325			0.03545			0.00116			0.00717			0.00432			0.00033			0.00403			0.00651


			12481			0.11009			0.06904			0.04061			0.01229			0.04559			0.02125			0.02884			0.00634			0.03945						12481			0.04180			0.02829			0.03865			0.00106			0.00668			0.00414			0.00034			0.00362			0.00333


			12501			0.11411			0.06421			0.04142			0.01167			0.04553			0.02002			0.02867			0.00643			0.03641						12501			0.03935			0.02729			0.03776			0.00083			0.00714			0.00325			0.00045			0.00402			0.00187


			12521			0.11359			0.06854			0.04208			0.01211			0.04554			0.02068			0.02877			0.00643			0.03940						12521			0.04932			0.03089			0.03759			0.00102			0.00709			0.00340			0.00034			0.00385			0.00470


			12541			0.11421			0.06781			0.04007			0.01205			0.04547			0.02091			0.02872			0.00633			0.03866						12541			0.05501			0.03390			0.03542			0.00122			0.00682			0.00462			0.00037			0.00370			0.00356


			12561			0.11179			0.06547			0.04206			0.01194			0.04542			0.02044			0.02883			0.00645			0.03947						12561			0.04958			0.03784			0.03616			0.00135			0.00700			0.00504			0.00025			0.00371			0.00387


			12581			0.11648			0.06945			0.04216			0.01200			0.04537			0.02075			0.02842			0.00638			0.03962						12581			0.04462			0.02661			0.03638			0.00109			0.00706			0.00394			0.00041			0.00381			0.00385


			12601			0.11466			0.06725			0.04166			0.01198			0.04544			0.02089			0.02874			0.00630			0.03875						12601			0.04191			0.02728			0.03753			0.00091			0.00713			0.00356			0.00042			0.00371			0.00392


			12621			0.11413			0.06856			0.04235			0.01189			0.04536			0.02091			0.02867			0.00632			0.03842						12621			0.05254			0.02621			0.03694			0.00102			0.00687			0.00408			0.00033			0.00388			0.00331


			12641			0.11313			0.06270			0.04226			0.01165			0.04535			0.02054			0.02860			0.00634			0.03928						12641			0.04401			0.02112			0.03664			0.00138			0.00718			0.00470			0.00029			0.00388			0.00314


			12661			0.11255			0.06971			0.04081			0.01197			0.04536			0.02091			0.02849			0.00619			0.03881						12661			0.04207			0.03130			0.03759			0.00126			0.00688			0.00399			0.00020			0.00358			0.00672


			12681			0.11239			0.06966			0.04119			0.01183			0.04533			0.02103			0.02806			0.00625			0.03887						12681			0.05448			0.02842			0.03609			0.00119			0.00705			0.00415			0.00027			0.00372			0.00514


			12701			0.10874			0.06660			0.04078			0.01170			0.04519			0.02062			0.02843			0.00622			0.03936						12701			0.03806			0.02036			0.03761			0.00131			0.00663			0.00468			0.00024			0.00361			0.00544


			12721			0.11698			0.06766			0.04269			0.01139			0.04532			0.02046			0.02853			0.00630			0.03904						12721			0.04157			0.02431			0.03598			0.00081			0.00678			0.00339			0.00038			0.00383			0.00454


			12741			0.10658			0.06820			0.04089			0.01151			0.04521			0.02062			0.02808			0.00625			0.03912						12741			0.05359			0.03410			0.03761			0.00080			0.00738			0.00355			0.00060			0.00406			0.00393


			12761			0.10322			0.06871			0.04142			0.01163			0.04511			0.02055			0.02847			0.00623			0.03889						12761			0.03785			0.03005			0.03676			0.00115			0.00682			0.00439			0.00034			0.00377			0.00344


			12781			0.11399			0.06932			0.04171			0.01168			0.04519			0.02049			0.02842			0.00625			0.03926						12781			0.04376			0.02769			0.03672			0.00114			0.00699			0.00372			0.00034			0.00380			0.00456


			12801			0.11320			0.06917			0.04055			0.01157			0.04519			0.02076			0.02820			0.00624			0.03863						12801			0.05216			0.02861			0.03744			0.00127			0.00687			0.00518			0.00026			0.00382			0.00320


			12821			0.11564			0.06772			0.04014			0.01110			0.04520			0.01894			0.02832			0.00626			0.03489						12821			0.04293			0.02407			0.03568			0.00133			0.00705			0.00541			0.00035			0.00385			0.00964


			12841			0.11341			0.06559			0.04091			0.01151			0.04501			0.02064			0.02830			0.00617			0.03812						12841			0.04678			0.02235			0.03563			0.00088			0.00656			0.00366			0.00034			0.00367			0.00265


			12861			0.11178			0.06497			0.04167			0.01114			0.04517			0.02054			0.02810			0.00620			0.03585						12861			0.03957			0.03625			0.03623			0.00098			0.00673			0.00409			0.00030			0.00365			0.00846


			12881			0.11372			0.06827			0.03816			0.01131			0.04511			0.01992			0.02824			0.00620			0.03964						12881			0.05069			0.02502			0.03488			0.00097			0.00694			0.00327			0.00029			0.00366			0.00457


			12901			0.10955			0.06085			0.04075			0.01143			0.04510			0.02054			0.02816			0.00612			0.03901						12901			0.04714			0.02063			0.03775			0.00134			0.00711			0.00509			0.00027			0.00364			0.00478


			12921			0.11137			0.06684			0.04078			0.01134			0.04507			0.02052			0.02810			0.00616			0.03840						12921			0.05390			0.03302			0.03718			0.00107			0.00692			0.00365			0.00034			0.00386			0.00448


			12941			0.11577			0.06973			0.04166			0.01091			0.04506			0.01983			0.02802			0.00614			0.03792						12941			0.03962			0.02950			0.03683			0.00075			0.00682			0.00280			0.00035			0.00374			0.00675


			12961			0.11483			0.06889			0.04035			0.01104			0.04499			0.02035			0.02786			0.00614			0.03865						12961			0.05301			0.02736			0.03836			0.00097			0.00670			0.00365			0.00032			0.00372			0.00440


			12981			0.11230			0.06871			0.04147			0.01109			0.04502			0.02001			0.02803			0.00607			0.03897						12981			0.03982			0.03134			0.03629			0.00128			0.00676			0.00436			0.00024			0.00363			0.00505


			13001			0.11119			0.06916			0.03554			0.01106			0.04492			0.02076			0.02729			0.00608			0.03694						13001			0.04071			0.03079			0.03431			0.00109			0.00683			0.00457			0.00043			0.00372			0.00480


			13021			0.10818			0.06726			0.04075			0.01111			0.04496			0.02032			0.02801			0.00600			0.03790						13021			0.03832			0.03262			0.03775			0.00107			0.00703			0.00365			0.00035			0.00362			0.00252


			13041			0.10385			0.06826			0.04169			0.01069			0.04493			0.01952			0.02802			0.00609			0.03809						13041			0.04534			0.02627			0.03657			0.00082			0.00687			0.00286			0.00032			0.00365			0.00519


			13061			0.11476			0.06852			0.04121			0.01084			0.04488			0.01943			0.02800			0.00607			0.03723						13061			0.04130			0.03056			0.03527			0.00096			0.00671			0.00323			0.00027			0.00368			0.00599


			13081			0.11505			0.06366			0.03876			0.01085			0.04489			0.01962			0.02795			0.00611			0.03672						13081			0.04599			0.03406			0.03885			0.00139			0.00705			0.00486			0.00026			0.00362			0.00314


			13101			0.11464			0.06830			0.04155			0.01097			0.04488			0.02017			0.02787			0.00602			0.03803						13101			0.04789			0.02643			0.03599			0.00126			0.00692			0.00402			0.00022			0.00375			0.00432


			13121			0.11309			0.06737			0.03793			0.01103			0.04465			0.02029			0.02778			0.00600			0.03849						13121			0.04141			0.03013			0.03871			0.00131			0.00660			0.00459			0.00019			0.00349			0.00534


			13141			0.10954			0.06731			0.04120			0.01088			0.04481			0.01986			0.02772			0.00601			0.03655						13141			0.05122			0.02824			0.03666			0.00095			0.00686			0.00271			0.00024			0.00353			0.00553


			13161			0.10842			0.06612			0.04174			0.01052			0.04481			0.01933			0.02781			0.00601			0.03755						13161			0.05435			0.02313			0.03604			0.00083			0.00678			0.00288			0.00031			0.00369			0.00312


			13181			0.11204			0.06492			0.03804			0.01074			0.04477			0.01955			0.02769			0.00594			0.03784						13181			0.04563			0.02112			0.03456			0.00130			0.00668			0.00500			0.00019			0.00364			0.00392


			13201			0.10818			0.06724			0.04071			0.01082			0.04466			0.02001			0.02756			0.00596			0.03622						13201			0.04303			0.02459			0.03668			0.00098			0.00681			0.00357			0.00030			0.00359			0.00224


			13221			0.10790			0.06804			0.04115			0.01072			0.04469			0.02016			0.02727			0.00585			0.03668						13221			0.04147			0.02651			0.03659			0.00128			0.00683			0.00435			0.00020			0.00351			0.00228


			13241			0.11182			0.05990			0.04129			0.01076			0.04472			0.02022			0.02774			0.00591			0.03751						13241			0.04438			0.02132			0.03543			0.00093			0.00705			0.00341			0.00034			0.00362			0.00608


			13261			0.11246			0.06587			0.04154			0.01030			0.04463			0.01936			0.02736			0.00596			0.03642						13261			0.04566			0.02614			0.03611			0.00069			0.00663			0.00278			0.00046			0.00357			0.00509


			13281			0.11313			0.06843			0.04087			0.01053			0.04451			0.01963			0.02726			0.00577			0.03708						13281			0.04036			0.02779			0.03582			0.00113			0.00676			0.00389			0.00020			0.00354			0.00542


			13301			0.11261			0.06757			0.04068			0.01045			0.04459			0.02000			0.02740			0.00591			0.03792						13301			0.04648			0.02659			0.03531			0.00094			0.00662			0.00402			0.00038			0.00359			0.00409


			13321			0.11304			0.06678			0.04079			0.01059			0.04458			0.02000			0.02751			0.00593			0.03694						13321			0.03971			0.02813			0.03536			0.00109			0.00696			0.00316			0.00026			0.00367			0.00270


			13341			0.10984			0.06645			0.04059			0.01064			0.04456			0.01972			0.02736			0.00594			0.03656						13341			0.04602			0.03273			0.03686			0.00092			0.00717			0.00410			0.00042			0.00371			0.00250


			13361			0.10183			0.06490			0.04020			0.01009			0.04453			0.01916			0.02725			0.00580			0.03493						13361			0.03722			0.02394			0.03507			0.00147			0.00678			0.00466			0.00017			0.00348			0.00773


			13381			0.10794			0.06857			0.04023			0.01048			0.04452			0.01954			0.02726			0.00592			0.03683						13381			0.04034			0.02750			0.03747			0.00126			0.00673			0.00441			0.00016			0.00365			0.00408


			13401			0.11365			0.06674			0.04135			0.01019			0.04450			0.01950			0.02732			0.00592			0.03690						13401			0.04713			0.02614			0.03565			0.00128			0.00671			0.00431			0.00024			0.00354			0.00563


			13421			0.11489			0.06352			0.04003			0.01039			0.04451			0.01921			0.02744			0.00587			0.03487						13421			0.04058			0.03013			0.03506			0.00092			0.00695			0.00288			0.00030			0.00364			0.00810


			13441			0.10984			0.06762			0.03929			0.01016			0.04433			0.01950			0.02691			0.00569			0.03742						13441			0.03836			0.02802			0.03492			0.00124			0.00681			0.00410			0.00017			0.00353			0.00408


			13461			0.11083			0.06657			0.04082			0.01038			0.04441			0.01992			0.02735			0.00574			0.03745						13461			0.04742			0.02700			0.03583			0.00115			0.00686			0.00391			0.00025			0.00349			0.00407


			13481			0.10689			0.06565			0.04005			0.01026			0.04437			0.01988			0.02702			0.00586			0.03751						13481			0.03785			0.03282			0.03704			0.00132			0.00672			0.00452			0.00016			0.00361			0.00329


			13501			0.11177			0.06408			0.04119			0.00996			0.04440			0.01907			0.02672			0.00578			0.03782						13501			0.04153			0.02218			0.03764			0.00137			0.00654			0.00467			0.00010			0.00356			0.00495


			13521			0.11175			0.06725			0.04052			0.00959			0.04438			0.01833			0.02703			0.00575			0.03586						13521			0.04678			0.02778			0.03608			0.00150			0.00678			0.00503			0.00011			0.00342			0.00192


			13541			0.10571			0.06626			0.04024			0.01025			0.04419			0.01946			0.02708			0.00578			0.03748						13541			0.05332			0.02802			0.03528			0.00084			0.00655			0.00286			0.00022			0.00347			0.00307


			13561			0.11094			0.06527			0.04124			0.00987			0.04433			0.01948			0.02664			0.00577			0.03671						13561			0.04677			0.02449			0.03662			0.00130			0.00666			0.00400			0.00015			0.00347			0.00262


			13581			0.10770			0.06680			0.04057			0.00961			0.04431			0.01910			0.02623			0.00570			0.03607						13581			0.03901			0.02853			0.03576			0.00146			0.00680			0.00456			0.00011			0.00351			0.00609


			13601			0.11232			0.06716			0.03658			0.01005			0.04424			0.01887			0.02715			0.00575			0.03604						13601			0.04153			0.02304			0.03790			0.00095			0.00697			0.00291			0.00022			0.00346			0.00226


			13621			0.10453			0.06596			0.03958			0.01017			0.04410			0.01956			0.02687			0.00575			0.03757						13621			0.04196			0.02341			0.03757			0.00108			0.00691			0.00343			0.00028			0.00360			0.00318


			13641			0.11242			0.06667			0.04054			0.01006			0.04424			0.01959			0.02708			0.00575			0.03672						13641			0.04623			0.02518			0.03642			0.00105			0.00672			0.00354			0.00028			0.00375			0.00446


			13661			0.11334			0.06175			0.04092			0.01003			0.04420			0.01905			0.02705			0.00566			0.03705						13661			0.04962			0.02065			0.03592			0.00087			0.00671			0.00305			0.00027			0.00341			0.00440


			13681			0.09975			0.06499			0.03896			0.01005			0.04417			0.01908			0.02692			0.00574			0.03630						13681			0.03707			0.02299			0.03646			0.00105			0.00665			0.00462			0.00029			0.00354			0.00256


			13701			0.11181			0.06516			0.04005			0.00954			0.04413			0.01867			0.02681			0.00567			0.03679						13701			0.04895			0.03186			0.03466			0.00155			0.00685			0.00527			0.00014			0.00344			0.00466


			13721			0.11240			0.06663			0.03888			0.00986			0.04412			0.01958			0.02669			0.00571			0.03532						13721			0.04130			0.02878			0.03503			0.00066			0.00678			0.00293			0.00044			0.00352			0.00214


			13741			0.10853			0.06433			0.04086			0.01002			0.04407			0.01946			0.02691			0.00564			0.03673						13741			0.05028			0.03447			0.03595			0.00125			0.00663			0.00428			0.00022			0.00342			0.00402


			13761			0.10319			0.06489			0.04060			0.00995			0.04409			0.01945			0.02674			0.00565			0.03599						13761			0.06087			0.03019			0.03641			0.00096			0.00634			0.00362			0.00020			0.00357			0.00194


			13781			0.11005			0.06604			0.04165			0.00969			0.04402			0.01885			0.02672			0.00568			0.03516						13781			0.04557			0.03058			0.03580			0.00065			0.00654			0.00245			0.00047			0.00356			0.00194


			13801			0.11287			0.06480			0.04047			0.00939			0.04401			0.01873			0.02622			0.00568			0.03581						13801			0.04166			0.02705			0.03515			0.00138			0.00652			0.00454			0.00011			0.00350			0.00487


			13821			0.10733			0.06745			0.03969			0.00987			0.04397			0.01942			0.02664			0.00565			0.03693						13821			0.05397			0.02719			0.03486			0.00137			0.00660			0.00374			0.00008			0.00338			0.00383


			13841			0.10788			0.06612			0.03963			0.00987			0.04398			0.01899			0.02675			0.00560			0.03638						13841			0.03713			0.02678			0.03481			0.00093			0.00667			0.00279			0.00028			0.00350			0.00253


			13861			0.11243			0.06509			0.04004			0.00964			0.04393			0.01861			0.02686			0.00571			0.03654						13861			0.04394			0.03198			0.03512			0.00133			0.00661			0.00462			0.00019			0.00340			0.00318


			13881			0.10658			0.06870			0.04012			0.00954			0.04390			0.01918			0.02631			0.00564			0.03647						13881			0.05200			0.02557			0.03673			0.00083			0.00671			0.00373			0.00039			0.00364			0.00294


			13901			0.10464			0.06614			0.03911			0.00983			0.04388			0.01917			0.02670			0.00563			0.03593						13901			0.05068			0.02646			0.03745			0.00129			0.00676			0.00412			0.00016			0.00349			0.00213


			13921			0.11083			0.06110			0.04039			0.00978			0.04388			0.01917			0.02676			0.00557			0.03657						13921			0.04706			0.02836			0.03555			0.00100			0.00660			0.00309			0.00023			0.00357			0.00266


			13941			0.10903			0.06290			0.03910			0.00971			0.04383			0.01889			0.02672			0.00562			0.03663						13941			0.04311			0.02260			0.03609			0.00081			0.00658			0.00292			0.00029			0.00354			0.00307


			13961			0.11086			0.06577			0.03841			0.00939			0.04377			0.01819			0.02661			0.00558			0.03594						13961			0.03981			0.02906			0.03675			0.00134			0.00663			0.00464			0.00017			0.00336			0.00216


			13981			0.11128			0.06590			0.03887			0.00976			0.04359			0.01930			0.02640			0.00551			0.03676						13981			0.03899			0.03005			0.03709			0.00100			0.00634			0.00339			0.00013			0.00334			0.00349


			14001			0.10674			0.06695			0.04032			0.00957			0.04376			0.01880			0.02664			0.00558			0.03614						14001			0.04093			0.02720			0.03602			0.00089			0.00643			0.00276			0.00022			0.00341			0.00327


			14021			0.11306			0.06583			0.04079			0.00961			0.04372			0.01916			0.02603			0.00546			0.03613						14021			0.04091			0.02490			0.03445			0.00124			0.00666			0.00393			0.00008			0.00337			0.00386


			14041			0.10790			0.06416			0.03937			0.00942			0.04368			0.01884			0.02635			0.00546			0.03581						14041			0.03792			0.02421			0.03673			0.00088			0.00675			0.00335			0.00037			0.00368			0.00388


			14061			0.11186			0.06458			0.03977			0.00960			0.04360			0.01840			0.02653			0.00554			0.03675						14061			0.04920			0.02087			0.03624			0.00089			0.00687			0.00256			0.00024			0.00354			0.00361


			14081			0.10838			0.06449			0.04009			0.00956			0.04368			0.01807			0.02650			0.00556			0.03630						14081			0.04633			0.02382			0.03563			0.00111			0.00677			0.00463			0.00025			0.00355			0.00272


			14101			0.10804			0.06481			0.03983			0.00925			0.04359			0.01765			0.02648			0.00553			0.03573						14101			0.04855			0.03063			0.03548			0.00150			0.00680			0.00485			0.00011			0.00341			0.00375


			14121			0.11228			0.06513			0.04035			0.00941			0.04353			0.01902			0.02596			0.00550			0.03601						14121			0.04517			0.02645			0.03592			0.00091			0.00671			0.00354			0.00034			0.00354			0.00321


			14141			0.10754			0.06430			0.03740			0.00919			0.04359			0.01777			0.02651			0.00556			0.03673						14141			0.04535			0.02389			0.03727			0.00140			0.00651			0.00511			0.00014			0.00336			0.00309


			14161			0.11192			0.06186			0.03981			0.00909			0.04352			0.01864			0.02589			0.00545			0.03603						14161			0.03961			0.02080			0.03590			0.00071			0.00663			0.00294			0.00037			0.00357			0.00413


			14181			0.10868			0.06640			0.04040			0.00932			0.04351			0.01882			0.02619			0.00542			0.03594						14181			0.05210			0.02824			0.03433			0.00116			0.00667			0.00354			0.00019			0.00341			0.00313


			14201			0.10873			0.06500			0.03880			0.00935			0.04341			0.01897			0.02618			0.00545			0.03473						14201			0.04068			0.02639			0.03542			0.00089			0.00668			0.00313			0.00026			0.00353			0.00501


			14221			0.10899			0.06441			0.04022			0.00932			0.04347			0.01883			0.02634			0.00543			0.03465						14221			0.04900			0.02755			0.03499			0.00116			0.00678			0.00389			0.00023			0.00334			0.00196


			14241			0.10561			0.06460			0.03994			0.00944			0.04343			0.01889			0.02593			0.00544			0.03546						14241			0.04732			0.02754			0.03547			0.00140			0.00645			0.00455			0.00007			0.00335			0.00262


			14261			0.10770			0.06458			0.03929			0.00881			0.04341			0.01718			0.02596			0.00547			0.03589						14261			0.04224			0.02678			0.03482			0.00132			0.00643			0.00440			0.00011			0.00336			0.00312


			14281			0.11260			0.06487			0.03953			0.00925			0.04334			0.01878			0.02604			0.00539			0.03583						14281			0.04751			0.03061			0.03530			0.00110			0.00646			0.00330			0.00013			0.00331			0.00288


			14301			0.10829			0.06253			0.03838			0.00912			0.04338			0.01869			0.02603			0.00544			0.03521						14301			0.04527			0.02540			0.03763			0.00090			0.00640			0.00336			0.00025			0.00334			0.00386


			14321			0.10292			0.06423			0.03954			0.00930			0.04320			0.01879			0.02616			0.00534			0.03537						14321			0.03680			0.02361			0.03526			0.00120			0.00628			0.00351			0.00010			0.00324			0.00473


			14341			0.11248			0.06272			0.03751			0.00930			0.04312			0.01867			0.02620			0.00541			0.03565						14341			0.04234			0.02173			0.03642			0.00090			0.00646			0.00331			0.00024			0.00346			0.00224


			14361			0.11007			0.06375			0.03884			0.00918			0.04328			0.01822			0.02593			0.00539			0.03580						14361			0.04047			0.02245			0.03649			0.00118			0.00663			0.00428			0.00010			0.00348			0.00390


			14381			0.11120			0.06418			0.03972			0.00920			0.04326			0.01855			0.02604			0.00538			0.03520						14381			0.04055			0.02079			0.03537			0.00092			0.00656			0.00404			0.00027			0.00334			0.00631


			14401			0.10223			0.06538			0.03685			0.00926			0.04323			0.01874			0.02600			0.00538			0.03525						14401			0.05601			0.02672			0.03376			0.00106			0.00658			0.00334			0.00017			0.00352			0.00467


			14421			0.10902			0.06469			0.03909			0.00905			0.04320			0.01818			0.02615			0.00542			0.03545						14421			0.03865			0.02720			0.03539			0.00141			0.00649			0.00491			0.00011			0.00333			0.00288


			14441			0.10750			0.06463			0.03964			0.00923			0.04318			0.01865			0.02588			0.00538			0.03456						14441			0.04665			0.02475			0.03531			0.00089			0.00671			0.00326			0.00034			0.00353			0.00225


			14461			0.10838			0.06473			0.03899			0.00932			0.04299			0.01884			0.02610			0.00535			0.03558						14461			0.04124			0.02890			0.03465			0.00133			0.00663			0.00380			0.00012			0.00341			0.00275


			14481			0.10817			0.06046			0.03901			0.00895			0.04314			0.01831			0.02586			0.00539			0.03572						14481			0.04356			0.02061			0.03523			0.00074			0.00641			0.00282			0.00025			0.00338			0.00278


			14501			0.10775			0.06421			0.03909			0.00871			0.04308			0.01753			0.02585			0.00532			0.03554						14501			0.05654			0.02649			0.03505			0.00064			0.00650			0.00222			0.00029			0.00342			0.00225


			14521			0.10904			0.06442			0.03727			0.00918			0.04292			0.01814			0.02588			0.00532			0.03336						14521			0.04324			0.02668			0.03410			0.00109			0.00664			0.00424			0.00019			0.00339			0.00676


			14541			0.11180			0.06396			0.03954			0.00869			0.04303			0.01846			0.02505			0.00531			0.03552						14541			0.04086			0.02860			0.03545			0.00077			0.00653			0.00308			0.00033			0.00351			0.00268


			14561			0.11110			0.06407			0.03833			0.00901			0.04302			0.01790			0.02596			0.00529			0.03268						14561			0.04062			0.02364			0.03490			0.00079			0.00674			0.00239			0.00021			0.00340			0.00698


			14581			0.11114			0.06400			0.03884			0.00890			0.04293			0.01840			0.02531			0.00526			0.03511						14581			0.04077			0.02612			0.03519			0.00087			0.00639			0.00359			0.00033			0.00340			0.00351


			14601			0.10924			0.06307			0.03852			0.00903			0.04293			0.01847			0.02583			0.00529			0.03544						14601			0.03997			0.03141			0.03647			0.00105			0.00632			0.00347			0.00015			0.00343			0.00279


			14621			0.10779			0.06316			0.03959			0.00878			0.04295			0.01828			0.02533			0.00530			0.03486						14621			0.03822			0.02607			0.03532			0.00063			0.00657			0.00265			0.00038			0.00343			0.00380


			14641			0.11261			0.06382			0.03968			0.00898			0.04286			0.01838			0.02583			0.00528			0.03425						14641			0.04034			0.03045			0.03550			0.00104			0.00652			0.00338			0.00017			0.00332			0.00373


			14661			0.11173			0.06440			0.03548			0.00894			0.04290			0.01838			0.02576			0.00524			0.03474						14661			0.04007			0.02778			0.03808			0.00088			0.00651			0.00345			0.00018			0.00318			0.00302


			14681			0.10661			0.06436			0.03988			0.00899			0.04284			0.01840			0.02567			0.00527			0.03527						14681			0.05356			0.02406			0.03437			0.00097			0.00662			0.00323			0.00030			0.00349			0.00278


			14701			0.10934			0.06440			0.03893			0.00888			0.04281			0.01834			0.02543			0.00527			0.03511						14701			0.03823			0.02522			0.03432			0.00077			0.00666			0.00340			0.00031			0.00347			0.00206


			14721			0.11252			0.06236			0.03887			0.00864			0.04278			0.01779			0.02566			0.00525			0.03441						14721			0.04232			0.02096			0.03593			0.00146			0.00634			0.00466			0.00008			0.00339			0.00159


			14741			0.10915			0.05894			0.03904			0.00883			0.04273			0.01827			0.02563			0.00516			0.03499						14741			0.04364			0.03512			0.03503			0.00111			0.00652			0.00326			0.00017			0.00324			0.00311


			14761			0.10614			0.06611			0.03718			0.00839			0.04273			0.01707			0.02532			0.00516			0.03463						14761			0.04441			0.02692			0.03694			0.00130			0.00626			0.00449			0.00012			0.00330			0.00424


			14781			0.10885			0.06156			0.03833			0.00886			0.04256			0.01838			0.02541			0.00520			0.03526						14781			0.03915			0.02267			0.03605			0.00112			0.00657			0.00338			0.00021			0.00342			0.00254


			14801			0.10567			0.06246			0.03449			0.00840			0.04266			0.01795			0.02513			0.00513			0.03505						14801			0.03965			0.02260			0.03814			0.00133			0.00631			0.00384			0.00007			0.00321			0.00259


			14821			0.10815			0.06406			0.03832			0.00846			0.04266			0.01710			0.02545			0.00519			0.03447						14821			0.04154			0.02753			0.03393			0.00079			0.00655			0.00264			0.00026			0.00344			0.00361


			14841			0.10751			0.06315			0.03842			0.00866			0.04254			0.01777			0.02549			0.00522			0.03483						14841			0.03793			0.02270			0.03415			0.00104			0.00617			0.00319			0.00009			0.00336			0.00350


			14861			0.10602			0.06357			0.03955			0.00869			0.04252			0.01823			0.02504			0.00515			0.03490						14861			0.04812			0.02784			0.03415			0.00082			0.00646			0.00331			0.00035			0.00339			0.00300


			14881			0.10779			0.05948			0.03818			0.00873			0.04256			0.01791			0.02513			0.00509			0.03487						14881			0.03907			0.02025			0.03430			0.00110			0.00652			0.00285			0.00009			0.00330			0.00324


			14901			0.11150			0.06323			0.03931			0.00878			0.04235			0.01825			0.02551			0.00517			0.03425						14901			0.04316			0.02671			0.03503			0.00090			0.00656			0.00280			0.00016			0.00341			0.00169


			14921			0.10877			0.06391			0.03813			0.00863			0.04249			0.01805			0.02529			0.00517			0.03372						14921			0.04665			0.02366			0.03420			0.00106			0.00635			0.00327			0.00011			0.00341			0.00180


			14941			0.11013			0.05895			0.03611			0.00872			0.04250			0.01791			0.02543			0.00508			0.03486						14941			0.04001			0.01977			0.03690			0.00094			0.00633			0.00299			0.00019			0.00323			0.00284


			14961			0.11200			0.06180			0.03835			0.00868			0.04243			0.01751			0.02543			0.00515			0.03447						14961			0.04622			0.02962			0.03441			0.00095			0.00614			0.00389			0.00018			0.00338			0.00253


			14981			0.10859			0.05649			0.03845			0.00873			0.04224			0.01756			0.02550			0.00512			0.03411						14981			0.04113			0.03522			0.03432			0.00115			0.00661			0.00338			0.00012			0.00344			0.00424


			15001			0.10491			0.05988			0.03911			0.00867			0.04242			0.01722			0.02544			0.00513			0.03465						15001			0.03709			0.02351			0.03513			0.00109			0.00658			0.00259			0.00012			0.00328			0.00193


			15021			0.10773			0.06196			0.03643			0.00864			0.04239			0.01798			0.02537			0.00506			0.03466						15021			0.04085			0.02316			0.03380			0.00079			0.00628			0.00306			0.00019			0.00328			0.00253


			15041			0.11281			0.06260			0.03848			0.00863			0.04232			0.01788			0.02541			0.00509			0.03292						15041			0.04153			0.02960			0.03399			0.00127			0.00628			0.00326			0.00004			0.00313			0.00624


			15061			0.10828			0.05899			0.03714			0.00858			0.04231			0.01788			0.02521			0.00510			0.03423						15061			0.04060			0.02220			0.03534			0.00093			0.00647			0.00385			0.00021			0.00324			0.00216


			15081			0.10994			0.06020			0.03985			0.00847			0.04225			0.01759			0.02527			0.00505			0.03432						15081			0.04013			0.01973			0.03468			0.00125			0.00640			0.00433			0.00012			0.00317			0.00179


			15101			0.10370			0.06328			0.03662			0.00849			0.04226			0.01805			0.02530			0.00506			0.03328						15101			0.04751			0.02561			0.03372			0.00075			0.00627			0.00323			0.00020			0.00328			0.00262


			15121			0.10927			0.06212			0.03809			0.00851			0.04217			0.01741			0.02529			0.00505			0.03431						15121			0.04573			0.02278			0.03375			0.00107			0.00655			0.00373			0.00014			0.00322			0.00440


			15141			0.11023			0.05972			0.03856			0.00852			0.04216			0.01763			0.02527			0.00508			0.03442						15141			0.04136			0.01839			0.03578			0.00080			0.00644			0.00252			0.00013			0.00333			0.00211


			15161			0.10874			0.06151			0.03997			0.00850			0.04213			0.01765			0.02495			0.00502			0.03434						15161			0.03899			0.02711			0.03427			0.00099			0.00637			0.00259			0.00009			0.00315			0.00232


			15181			0.10918			0.06277			0.03843			0.00848			0.04189			0.01781			0.02501			0.00505			0.03425						15181			0.04109			0.02203			0.03591			0.00109			0.00668			0.00357			0.00014			0.00332			0.00244


			15201			0.11033			0.06329			0.03872			0.00855			0.04200			0.01776			0.02512			0.00500			0.03346						15201			0.04712			0.02387			0.03552			0.00090			0.00629			0.00368			0.00018			0.00328			0.00125


			15221			0.10829			0.06283			0.03888			0.00844			0.04207			0.01726			0.02527			0.00507			0.03433						15221			0.04296			0.02651			0.03604			0.00128			0.00617			0.00413			0.00009			0.00326			0.00314


			15241			0.10749			0.06440			0.03670			0.00850			0.04189			0.01729			0.02507			0.00503			0.03412						15241			0.05298			0.02743			0.03394			0.00081			0.00606			0.00237			0.00011			0.00326			0.00323


			15261			0.10743			0.06067			0.03853			0.00834			0.04198			0.01763			0.02503			0.00501			0.03451						15261			0.04104			0.03189			0.03368			0.00139			0.00637			0.00412			0.00009			0.00319			0.00159


			15281			0.10591			0.06219			0.03879			0.00847			0.04191			0.01758			0.02509			0.00499			0.03359						15281			0.03935			0.02704			0.03489			0.00092			0.00620			0.00322			0.00012			0.00308			0.00167


			15301			0.10846			0.06055			0.03635			0.00841			0.04183			0.01765			0.02500			0.00497			0.03318						15301			0.04223			0.02387			0.03741			0.00086			0.00660			0.00300			0.00019			0.00343			0.00436


			15321			0.10925			0.05920			0.03614			0.00837			0.04175			0.01732			0.02505			0.00502			0.03400						15321			0.03969			0.02150			0.03337			0.00092			0.00609			0.00341			0.00016			0.00322			0.00266


			15341			0.10100			0.06280			0.03855			0.00834			0.04187			0.01801			0.02473			0.00494			0.03411						15341			0.04515			0.02757			0.03499			0.00093			0.00638			0.00338			0.00019			0.00340			0.00195


			15361			0.10634			0.06452			0.03906			0.00845			0.04165			0.01741			0.02502			0.00494			0.03431						15361			0.03815			0.02501			0.03385			0.00089			0.00617			0.00330			0.00018			0.00325			0.00241


			15381			0.10902			0.06280			0.03816			0.00838			0.04182			0.01758			0.02485			0.00500			0.03449						15381			0.04053			0.02193			0.03503			0.00122			0.00624			0.00347			0.00005			0.00326			0.00305


			15401			0.10781			0.06287			0.03820			0.00824			0.04170			0.01756			0.02480			0.00499			0.03416						15401			0.04063			0.02359			0.03437			0.00106			0.00643			0.00304			0.00011			0.00333			0.00229


			15421			0.11011			0.06084			0.03890			0.00827			0.04173			0.01721			0.02492			0.00496			0.03390						15421			0.04661			0.02956			0.03395			0.00104			0.00642			0.00370			0.00013			0.00318			0.00272


			15441			0.10360			0.06299			0.03753			0.00837			0.04160			0.01754			0.02491			0.00495			0.03376						15441			0.03949			0.02271			0.03439			0.00100			0.00640			0.00275			0.00012			0.00332			0.00347


			15461			0.09580			0.05945			0.03859			0.00836			0.04157			0.01743			0.02476			0.00490			0.03345						15461			0.05822			0.03058			0.03531			0.00092			0.00596			0.00301			0.00011			0.00320			0.00335


			15481			0.10774			0.05985			0.03912			0.00801			0.04171			0.01688			0.02467			0.00497			0.03339						15481			0.04514			0.03117			0.03463			0.00056			0.00649			0.00187			0.00027			0.00342			0.00144


			15501			0.10241			0.06003			0.03834			0.00807			0.04169			0.01586			0.02476			0.00492			0.03391						15501			0.03728			0.02814			0.03480			0.00109			0.00647			0.00400			0.00013			0.00325			0.00216


			15521			0.10275			0.06278			0.03827			0.00828			0.04159			0.01747			0.02483			0.00497			0.03374						15521			0.03862			0.02466			0.03383			0.00105			0.00634			0.00260			0.00011			0.00329			0.00256


			15541			0.10548			0.06049			0.03765			0.00798			0.04157			0.01745			0.02428			0.00490			0.03434						15541			0.04876			0.02852			0.03393			0.00110			0.00609			0.00293			0.00008			0.00311			0.00289


			15561			0.10707			0.06250			0.03736			0.00830			0.04141			0.01734			0.02476			0.00494			0.03364						15561			0.04559			0.02299			0.03668			0.00091			0.00625			0.00302			0.00013			0.00323			0.00372


			15581			0.10934			0.06142			0.03891			0.00829			0.04157			0.01740			0.02464			0.00490			0.03386						15581			0.04756			0.02726			0.03477			0.00085			0.00611			0.00317			0.00020			0.00312			0.00313


			15601			0.10886			0.06179			0.03807			0.00817			0.04150			0.01733			0.02460			0.00486			0.03343						15601			0.04063			0.02590			0.03487			0.00101			0.00603			0.00244			0.00008			0.00308			0.00208


			15621			0.10437			0.05760			0.03805			0.00807			0.04143			0.01690			0.02469			0.00490			0.03332						15621			0.04681			0.01987			0.03527			0.00074			0.00631			0.00224			0.00013			0.00324			0.00129


			15641			0.10936			0.06222			0.03646			0.00781			0.04146			0.01687			0.02465			0.00491			0.03397						15641			0.04290			0.02602			0.03343			0.00120			0.00610			0.00369			0.00009			0.00323			0.00172


			15661			0.10823			0.06078			0.03835			0.00822			0.04138			0.01771			0.02465			0.00487			0.03360						15661			0.03805			0.02157			0.03451			0.00101			0.00603			0.00353			0.00011			0.00324			0.00340


			15681			0.10721			0.06200			0.03892			0.00824			0.04123			0.01749			0.02470			0.00489			0.03363						15681			0.03944			0.02681			0.03413			0.00097			0.00651			0.00308			0.00012			0.00330			0.00283


			15701			0.10729			0.06296			0.03803			0.00802			0.04131			0.01636			0.02469			0.00491			0.03293						15701			0.04286			0.02601			0.03429			0.00117			0.00624			0.00362			0.00009			0.00317			0.00171


			15721			0.10753			0.06156			0.03789			0.00819			0.04134			0.01701			0.02458			0.00481			0.03309						15721			0.04486			0.02546			0.03530			0.00086			0.00625			0.00358			0.00016			0.00315			0.00136


			15741			0.10905			0.06198			0.03775			0.00806			0.04111			0.01740			0.02454			0.00487			0.03393						15741			0.04622			0.02557			0.03471			0.00086			0.00592			0.00330			0.00014			0.00309			0.00230


			15761			0.10640			0.06032			0.03777			0.00805			0.04126			0.01710			0.02441			0.00480			0.03395						15761			0.04048			0.02126			0.03531			0.00063			0.00625			0.00263			0.00024			0.00337			0.00212


			15781			0.10772			0.06162			0.03845			0.00814			0.04118			0.01718			0.02444			0.00488			0.03305						15781			0.04500			0.02549			0.03457			0.00085			0.00646			0.00227			0.00014			0.00322			0.00141


			15801			0.10275			0.05986			0.03593			0.00810			0.04117			0.01705			0.02448			0.00482			0.03326						15801			0.04942			0.02144			0.03635			0.00088			0.00606			0.00240			0.00008			0.00309			0.00275


			15821			0.10002			0.05918			0.03693			0.00812			0.04094			0.01713			0.02449			0.00483			0.03372						15821			0.03632			0.03122			0.03592			0.00093			0.00633			0.00293			0.00012			0.00323			0.00250


			15841			0.10807			0.06128			0.03762			0.00767			0.04115			0.01644			0.02446			0.00482			0.03325						15841			0.03759			0.02388			0.03403			0.00062			0.00631			0.00227			0.00017			0.00321			0.00328


			15861			0.10799			0.06246			0.03833			0.00814			0.04102			0.01716			0.02442			0.00484			0.03349						15861			0.03948			0.02622			0.03604			0.00126			0.00632			0.00359			0.00004			0.00320			0.00165


			15881			0.10661			0.05989			0.03798			0.00795			0.04109			0.01708			0.02388			0.00472			0.03162						15881			0.04051			0.02050			0.03445			0.00097			0.00616			0.00267			0.00007			0.00309			0.00544


			15901			0.10918			0.05921			0.03793			0.00799			0.04100			0.01710			0.02445			0.00476			0.03360						15901			0.04100			0.02207			0.03366			0.00086			0.00637			0.00313			0.00010			0.00331			0.00221


			15921			0.10796			0.06232			0.03799			0.00750			0.04102			0.01582			0.02423			0.00482			0.03322						15921			0.03712			0.02526			0.03401			0.00064			0.00606			0.00198			0.00015			0.00321			0.00188


			15941			0.10513			0.06114			0.03830			0.00805			0.04098			0.01683			0.02433			0.00483			0.03307						15941			0.04618			0.02249			0.03368			0.00064			0.00593			0.00314			0.00019			0.00318			0.00365


			15961			0.10485			0.05994			0.03780			0.00796			0.04090			0.01694			0.02431			0.00477			0.03368						15961			0.04162			0.02462			0.03464			0.00091			0.00602			0.00308			0.00015			0.00319			0.00179


			15981			0.10452			0.06202			0.03756			0.00785			0.04089			0.01704			0.02428			0.00479			0.03235						15981			0.03626			0.02628			0.03464			0.00074			0.00597			0.00279			0.00014			0.00306			0.00226


			16001			0.10592			0.06294			0.03539			0.00759			0.04089			0.01560			0.02427			0.00478			0.03356						16001			0.03890			0.02406			0.03647			0.00056			0.00606			0.00208			0.00018			0.00320			0.00209


			16021			0.10665			0.06073			0.03789			0.00797			0.04074			0.01705			0.02409			0.00470			0.03230						16021			0.04622			0.02947			0.03403			0.00111			0.00600			0.00323			0.00003			0.00299			0.00356


			16041			0.10435			0.06003			0.03695			0.00787			0.04073			0.01710			0.02421			0.00477			0.03326						16041			0.04215			0.02616			0.03538			0.00085			0.00616			0.00326			0.00009			0.00319			0.00168


			16061			0.10971			0.06118			0.03496			0.00807			0.04074			0.01700			0.02387			0.00472			0.03333						16061			0.03908			0.02377			0.03667			0.00124			0.00594			0.00364			0.00000			0.00302			0.00250


			16081			0.10884			0.06108			0.03822			0.00799			0.04074			0.01690			0.02417			0.00477			0.03321						16081			0.04030			0.02674			0.03443			0.00076			0.00610			0.00288			0.00020			0.00325			0.00248


			16101			0.10690			0.06177			0.03530			0.00795			0.04046			0.01683			0.02416			0.00476			0.03286						16101			0.04355			0.02604			0.03324			0.00084			0.00617			0.00300			0.00009			0.00314			0.00136


			16121			0.10658			0.06030			0.03764			0.00788			0.04066			0.01680			0.02410			0.00468			0.03300						16121			0.03997			0.02492			0.03406			0.00073			0.00601			0.00202			0.00010			0.00308			0.00237


			16141			0.10771			0.06120			0.03688			0.00755			0.04065			0.01642			0.02375			0.00472			0.03327						16141			0.04104			0.02271			0.03545			0.00060			0.00621			0.00214			0.00021			0.00330			0.00256


			16161			0.10779			0.06078			0.03642			0.00785			0.04051			0.01707			0.02402			0.00473			0.03272						16161			0.03887			0.02468			0.03364			0.00062			0.00581			0.00231			0.00017			0.00312			0.00367


			16181			0.10683			0.06115			0.03734			0.00782			0.04056			0.01677			0.02419			0.00471			0.03319						16181			0.03719			0.02618			0.03507			0.00091			0.00606			0.00302			0.00006			0.00315			0.00261


			16201			0.10707			0.06158			0.03661			0.00786			0.04058			0.01675			0.02414			0.00469			0.03246						16201			0.03810			0.02412			0.03349			0.00093			0.00621			0.00235			0.00010			0.00311			0.00120


			16221			0.10641			0.06138			0.03593			0.00761			0.04055			0.01578			0.02402			0.00473			0.03321						16221			0.04039			0.02340			0.03526			0.00108			0.00625			0.00412			0.00008			0.00316			0.00197


			16241			0.10780			0.06091			0.03727			0.00761			0.04047			0.01673			0.02352			0.00467			0.03297						16241			0.03924			0.02246			0.03389			0.00125			0.00614			0.00295			0.00001			0.00306			0.00165


			16261			0.10520			0.06104			0.03759			0.00748			0.04048			0.01671			0.02373			0.00474			0.03246						16261			0.03888			0.02515			0.03427			0.00062			0.00578			0.00253			0.00017			0.00303			0.00112


			16281			0.10800			0.05603			0.03781			0.00783			0.04038			0.01619			0.02403			0.00473			0.03296						16281			0.03733			0.01880			0.03376			0.00081			0.00594			0.00222			0.00015			0.00313			0.00236


			16301			0.10223			0.05694			0.03737			0.00777			0.04030			0.01644			0.02382			0.00466			0.03250						16301			0.04244			0.02928			0.03476			0.00092			0.00575			0.00237			0.00003			0.00298			0.00145


			16321			0.10458			0.05444			0.03754			0.00781			0.04033			0.01596			0.02401			0.00466			0.03308						16321			0.04641			0.01980			0.03380			0.00078			0.00596			0.00375			0.00013			0.00310			0.00255


			16341			0.10310			0.05884			0.03778			0.00777			0.04034			0.01693			0.02402			0.00465			0.03323						16341			0.04406			0.02231			0.03393			0.00085			0.00587			0.00332			0.00008			0.00319			0.00365


			16361			0.10844			0.05977			0.03760			0.00779			0.04022			0.01674			0.02401			0.00470			0.03312						16361			0.04051			0.02121			0.03448			0.00089			0.00608			0.00270			0.00012			0.00310			0.00242


			16381			0.10776			0.06073			0.03699			0.00773			0.04027			0.01644			0.02379			0.00470			0.03245						16381			0.04303			0.02377			0.03357			0.00081			0.00609			0.00321			0.00006			0.00319			0.00411


			16401			0.10055			0.06079			0.03555			0.00770			0.04024			0.01642			0.02392			0.00462			0.03307						16401			0.03676			0.02477			0.03327			0.00071			0.00612			0.00254			0.00015			0.00330			0.00154


			16421			0.10961			0.06081			0.03773			0.00771			0.04022			0.01608			0.02383			0.00466			0.03242						16421			0.04135			0.02218			0.03426			0.00083			0.00565			0.00236			0.00005			0.00298			0.00263


			16441			0.10543			0.05892			0.03662			0.00777			0.04018			0.01660			0.02392			0.00458			0.03203						16441			0.04165			0.01834			0.03544			0.00083			0.00586			0.00236			0.00007			0.00298			0.00374


			16461			0.10691			0.05942			0.03630			0.00780			0.04014			0.01691			0.02380			0.00464			0.03288						16461			0.04422			0.02769			0.03485			0.00102			0.00607			0.00328			0.00004			0.00315			0.00187


			16481			0.10197			0.05913			0.03753			0.00763			0.04003			0.01650			0.02382			0.00459			0.03279						16481			0.04360			0.02623			0.03413			0.00069			0.00608			0.00283			0.00017			0.00324			0.00211


			16501			0.10682			0.05945			0.03535			0.00772			0.04006			0.01662			0.02393			0.00466			0.03164						16501			0.04210			0.02172			0.03561			0.00080			0.00576			0.00240			0.00004			0.00312			0.00449


			16521			0.10785			0.05830			0.03571			0.00771			0.03989			0.01640			0.02384			0.00464			0.03197						16521			0.03924			0.02568			0.03488			0.00079			0.00609			0.00210			0.00011			0.00318			0.00095


			16541			0.10410			0.06023			0.03672			0.00770			0.04002			0.01653			0.02385			0.00456			0.03323						16541			0.03705			0.02462			0.03284			0.00081			0.00600			0.00304			0.00009			0.00302			0.00207


			16561			0.10919			0.05629			0.03713			0.00766			0.03993			0.01654			0.02381			0.00456			0.03272						16561			0.04136			0.01952			0.03387			0.00080			0.00607			0.00272			0.00010			0.00297			0.00158


			16581			0.10305			0.05797			0.03723			0.00731			0.03991			0.01619			0.02368			0.00462			0.03216						16581			0.04672			0.02242			0.03367			0.00057			0.00608			0.00231			0.00022			0.00320			0.00264


			16601			0.10233			0.06073			0.03726			0.00767			0.03990			0.01603			0.02362			0.00458			0.03289						16601			0.03987			0.02603			0.03373			0.00085			0.00597			0.00221			0.00011			0.00299			0.00256


			16621			0.10693			0.06112			0.03715			0.00739			0.03980			0.01572			0.02360			0.00454			0.03219						16621			0.04232			0.02462			0.03322			0.00108			0.00579			0.00340			0.00003			0.00301			0.00162


			16641			0.10716			0.05140			0.03246			0.00760			0.03981			0.01647			0.02362			0.00461			0.03262						16641			0.04073			0.01678			0.03252			0.00079			0.00576			0.00260			0.00004			0.00314			0.00277


			16661			0.10771			0.05937			0.03505			0.00762			0.03982			0.01614			0.02375			0.00454			0.03238						16661			0.04640			0.02768			0.03305			0.00096			0.00574			0.00237			0.00004			0.00301			0.00336


			16681			0.10735			0.05762			0.03516			0.00756			0.03973			0.01640			0.02368			0.00462			0.03260						16681			0.04372			0.02129			0.03304			0.00067			0.00576			0.00243			0.00007			0.00296			0.00148


			16701			0.09693			0.05895			0.03499			0.00764			0.03973			0.01602			0.02364			0.00457			0.03206						16701			0.05186			0.02056			0.03550			0.00079			0.00563			0.00315			0.00010			0.00309			0.00144


			16721			0.10760			0.05673			0.03679			0.00753			0.03971			0.01638			0.02340			0.00459			0.03249						16721			0.04399			0.02916			0.03351			0.00097			0.00599			0.00268			0.00002			0.00312			0.00168


			16741			0.10800			0.05869			0.03661			0.00745			0.03965			0.01628			0.02336			0.00459			0.03229						16741			0.04059			0.02984			0.03283			0.00094			0.00580			0.00278			0.00004			0.00307			0.00311


			16761			0.10138			0.05902			0.03743			0.00752			0.03963			0.01608			0.02354			0.00450			0.03243						16761			0.04506			0.02806			0.03359			0.00076			0.00590			0.00306			0.00009			0.00301			0.00150


			16781			0.10137			0.05868			0.03697			0.00721			0.03959			0.01536			0.02349			0.00457			0.03226						16781			0.03809			0.02776			0.03472			0.00052			0.00598			0.00157			0.00013			0.00310			0.00126


			16801			0.10211			0.05968			0.03600			0.00752			0.03937			0.01624			0.02361			0.00450			0.03238						16801			0.05077			0.02627			0.03327			0.00077			0.00556			0.00246			0.00009			0.00299			0.00200


			16821			0.10136			0.05935			0.03774			0.00747			0.03947			0.01605			0.02360			0.00453			0.03168						16821			0.04335			0.02581			0.03371			0.00097			0.00573			0.00337			0.00006			0.00297			0.00341


			16841			0.10207			0.05877			0.03652			0.00718			0.03946			0.01624			0.02285			0.00451			0.03256						16841			0.03885			0.02501			0.03294			0.00110			0.00567			0.00270			0.00000			0.00293			0.00171


			16861			0.10305			0.05933			0.03730			0.00747			0.03940			0.01582			0.02355			0.00451			0.03250						16861			0.04627			0.02500			0.03414			0.00087			0.00592			0.00305			0.00008			0.00297			0.00136


			16881			0.10611			0.05974			0.03666			0.00743			0.03944			0.01622			0.02352			0.00450			0.03179						16881			0.03742			0.02606			0.03322			0.00074			0.00591			0.00250			0.00006			0.00299			0.00088


			16901			0.10665			0.05435			0.03569			0.00759			0.03920			0.01617			0.02361			0.00454			0.03216						16901			0.04012			0.03354			0.03523			0.00092			0.00547			0.00244			0.00002			0.00285			0.00280


			16921			0.10454			0.05838			0.03690			0.00725			0.03933			0.01589			0.02304			0.00455			0.03288						16921			0.03632			0.02241			0.03366			0.00117			0.00569			0.00379			0.00001			0.00300			0.00208


			16941			0.10136			0.06037			0.03620			0.00721			0.03932			0.01628			0.02336			0.00451			0.03228						16941			0.04043			0.02310			0.03368			0.00054			0.00569			0.00200			0.00007			0.00302			0.00220


			16961			0.09979			0.05909			0.03603			0.00732			0.03925			0.01583			0.02326			0.00447			0.03228						16961			0.05253			0.02255			0.03402			0.00095			0.00574			0.00289			0.00003			0.00289			0.00168


			16981			0.10391			0.05987			0.03617			0.00754			0.03918			0.01603			0.02355			0.00448			0.03057						16981			0.04054			0.02601			0.03336			0.00086			0.00566			0.00297			0.00003			0.00290			0.00479


			17001			0.10545			0.05493			0.03587			0.00744			0.03920			0.01605			0.02338			0.00451			0.03245						17001			0.03983			0.01910			0.03623			0.00091			0.00581			0.00271			0.00006			0.00296			0.00229


			17021			0.10787			0.05739			0.03717			0.00747			0.03909			0.01596			0.02335			0.00450			0.03205						17021			0.04031			0.02049			0.03305			0.00073			0.00581			0.00230			0.00010			0.00307			0.00169


			17041			0.10718			0.05693			0.03686			0.00740			0.03911			0.01606			0.02339			0.00448			0.03194						17041			0.03910			0.02662			0.03404			0.00080			0.00575			0.00244			0.00005			0.00308			0.00107


			17061			0.10236			0.05655			0.03659			0.00744			0.03892			0.01581			0.02317			0.00446			0.03258						17061			0.04031			0.01896			0.03433			0.00088			0.00561			0.00234			0.00003			0.00299			0.00110


			17081			0.10619			0.05583			0.03596			0.00742			0.03906			0.01590			0.02315			0.00448			0.03189						17081			0.04189			0.02999			0.03317			0.00081			0.00579			0.00210			0.00009			0.00302			0.00249


			17101			0.10636			0.05797			0.03527			0.00742			0.03901			0.01574			0.02340			0.00442			0.03232						17101			0.04438			0.02403			0.03506			0.00095			0.00562			0.00261			0.00002			0.00285			0.00161


			17121			0.10283			0.05780			0.03686			0.00738			0.03885			0.01597			0.02304			0.00446			0.03244						17121			0.03902			0.02206			0.03451			0.00085			0.00559			0.00238			0.00003			0.00294			0.00171


			17141			0.10762			0.05929			0.03693			0.00744			0.03893			0.01531			0.02332			0.00449			0.03075						17141			0.04150			0.02720			0.03439			0.00096			0.00577			0.00372			0.00005			0.00301			0.00357


			17161			0.10778			0.05852			0.03624			0.00735			0.03889			0.01599			0.02311			0.00446			0.03273						17161			0.04128			0.02156			0.03261			0.00099			0.00568			0.00274			0.00002			0.00291			0.00213


			17181			0.10548			0.05661			0.03676			0.00734			0.03892			0.01598			0.02328			0.00446			0.03228						17181			0.04059			0.02661			0.03326			0.00087			0.00559			0.00267			0.00007			0.00303			0.00191


			17201			0.10556			0.05740			0.03598			0.00710			0.03889			0.01569			0.02296			0.00448			0.03212						17201			0.04268			0.02799			0.03276			0.00103			0.00550			0.00330			0.00001			0.00299			0.00146


			17221			0.10392			0.05939			0.03747			0.00711			0.03882			0.01569			0.02317			0.00445			0.03207						17221			0.04585			0.02239			0.03454			0.00054			0.00573			0.00225			0.00009			0.00295			0.00201


			17241			0.09470			0.05873			0.03644			0.00736			0.03874			0.01592			0.02317			0.00440			0.03090						17241			0.05177			0.02578			0.03428			0.00070			0.00598			0.00226			0.00007			0.00295			0.00344


			17261			0.10625			0.06079			0.03673			0.00733			0.03874			0.01589			0.02310			0.00448			0.03191						17261			0.03935			0.02406			0.03349			0.00051			0.00590			0.00267			0.00019			0.00314			0.00122


			17281			0.10141			0.05338			0.03616			0.00742			0.03864			0.01586			0.02308			0.00447			0.03215						17281			0.04316			0.01830			0.03327			0.00094			0.00534			0.00249			0.00000			0.00286			0.00191


			17301			0.10264			0.05756			0.03693			0.00733			0.03854			0.01553			0.02303			0.00437			0.03197						17301			0.04027			0.02597			0.03340			0.00086			0.00551			0.00259			0.00002			0.00283			0.00174


			17321			0.10514			0.05766			0.03642			0.00729			0.03861			0.01579			0.02316			0.00437			0.03248						17321			0.03832			0.02713			0.03407			0.00073			0.00574			0.00240			0.00006			0.00292			0.00282


			17341			0.10165			0.05738			0.03620			0.00723			0.03860			0.01555			0.02311			0.00443			0.03187						17341			0.03768			0.02713			0.03550			0.00070			0.00552			0.00208			0.00003			0.00293			0.00246


			17361			0.10414			0.05510			0.03550			0.00728			0.03855			0.01561			0.02315			0.00442			0.03129						17361			0.04058			0.02960			0.03419			0.00090			0.00556			0.00220			0.00005			0.00303			0.00243


			17381			0.10320			0.05338			0.03608			0.00726			0.03844			0.01510			0.02307			0.00442			0.03179						17381			0.03699			0.01835			0.03303			0.00063			0.00544			0.00182			0.00005			0.00295			0.00173


			17401			0.10549			0.05795			0.03596			0.00714			0.03847			0.01584			0.02299			0.00437			0.03164						17401			0.04154			0.02324			0.03306			0.00059			0.00567			0.00241			0.00013			0.00315			0.00131


			17421			0.10465			0.05936			0.03458			0.00732			0.03843			0.01579			0.02300			0.00438			0.03047						17421			0.04583			0.02547			0.03241			0.00085			0.00546			0.00245			0.00004			0.00292			0.00371


			17441			0.10472			0.05821			0.03634			0.00722			0.03840			0.01505			0.02306			0.00437			0.03196						17441			0.04125			0.02341			0.03290			0.00081			0.00574			0.00316			0.00007			0.00290			0.00143


			17461			0.09980			0.05750			0.03388			0.00720			0.03834			0.01535			0.02310			0.00442			0.03145						17461			0.04794			0.02133			0.03223			0.00071			0.00571			0.00206			0.00004			0.00300			0.00174


			17481			0.10506			0.05852			0.03745			0.00693			0.03826			0.01567			0.02281			0.00434			0.03174						17481			0.03741			0.02337			0.03332			0.00095			0.00566			0.00252			0.00004			0.00294			0.00116


			17501			0.10184			0.05883			0.03588			0.00711			0.03827			0.01591			0.02298			0.00436			0.03171						17501			0.03936			0.02475			0.03330			0.00057			0.00569			0.00257			0.00011			0.00293			0.00158


			17521			0.09453			0.05734			0.03589			0.00718			0.03799			0.01577			0.02293			0.00439			0.03188						17521			0.03591			0.02520			0.03290			0.00081			0.00536			0.00258			0.00004			0.00289			0.00139


			17541			0.09923			0.05883			0.03714			0.00718			0.03822			0.01521			0.02299			0.00437			0.03126						17541			0.03555			0.02263			0.03410			0.00075			0.00525			0.00256			0.00007			0.00294			0.00265


			17561			0.10426			0.05854			0.03621			0.00708			0.03820			0.01548			0.02278			0.00431			0.03150						17561			0.03697			0.02009			0.03329			0.00064			0.00556			0.00223			0.00008			0.00302			0.00142


			17581			0.10095			0.05654			0.03634			0.00719			0.03816			0.01554			0.02289			0.00437			0.03176						17581			0.04178			0.02141			0.03353			0.00083			0.00545			0.00256			0.00002			0.00299			0.00208


			17601			0.10566			0.05502			0.03662			0.00716			0.03811			0.01559			0.02290			0.00436			0.03039						17601			0.04489			0.02862			0.03351			0.00078			0.00553			0.00231			0.00005			0.00306			0.00407


			17621			0.10632			0.05883			0.03604			0.00720			0.03805			0.01543			0.02294			0.00431			0.03167						17621			0.03917			0.02130			0.03256			0.00081			0.00555			0.00212			0.00003			0.00289			0.00161


			17641			0.10252			0.05735			0.03646			0.00708			0.03794			0.01516			0.02286			0.00437			0.03179						17641			0.04335			0.02728			0.03327			0.00095			0.00571			0.00300			0.00002			0.00295			0.00146


			17661			0.10795			0.04972			0.03575			0.00716			0.03791			0.01566			0.02285			0.00435			0.03172						17661			0.04360			0.03312			0.03293			0.00067			0.00544			0.00263			0.00003			0.00286			0.00114


			17681			0.08789			0.05723			0.03549			0.00711			0.03798			0.01511			0.02292			0.00434			0.03118						17681			0.03732			0.02269			0.03273			0.00076			0.00556			0.00267			0.00007			0.00300			0.00115


			17701			0.10532			0.05431			0.03626			0.00719			0.03794			0.01525			0.02284			0.00436			0.03159						17701			0.03899			0.02087			0.03342			0.00075			0.00547			0.00206			0.00002			0.00294			0.00134


			17721			0.10170			0.05767			0.03545			0.00710			0.03789			0.01554			0.02287			0.00432			0.03166						17721			0.03689			0.02596			0.03342			0.00076			0.00517			0.00239			0.00004			0.00277			0.00182


			17741			0.10555			0.05802			0.03595			0.00713			0.03786			0.01554			0.02266			0.00434			0.03142						17741			0.03650			0.02268			0.03431			0.00074			0.00549			0.00212			0.00003			0.00286			0.00142


			17761			0.10106			0.05443			0.03600			0.00710			0.03772			0.01525			0.02280			0.00433			0.03041						17761			0.03617			0.02988			0.03350			0.00086			0.00576			0.00298			0.00004			0.00296			0.00436


			17781			0.10133			0.05396			0.03581			0.00699			0.03782			0.01504			0.02285			0.00436			0.03205						17781			0.04247			0.02003			0.03407			0.00102			0.00537			0.00348			0.00001			0.00287			0.00188


			17801			0.10423			0.05832			0.03549			0.00708			0.03764			0.01550			0.02254			0.00429			0.02994						17801			0.04818			0.02429			0.03279			0.00065			0.00548			0.00231			0.00003			0.00290			0.00447


			17821			0.10309			0.05659			0.03638			0.00677			0.03768			0.01446			0.02262			0.00432			0.03161						17821			0.03841			0.01947			0.03345			0.00059			0.00548			0.00155			0.00007			0.00296			0.00399


			17841			0.10416			0.05723			0.03623			0.00714			0.03770			0.01535			0.02262			0.00431			0.03157						17841			0.04575			0.02348			0.03263			0.00082			0.00545			0.00287			0.00008			0.00300			0.00119


			17861			0.10142			0.05729			0.03639			0.00706			0.03761			0.01533			0.02270			0.00435			0.03134						17861			0.03627			0.02131			0.03329			0.00083			0.00545			0.00215			0.00003			0.00288			0.00196


			17881			0.09959			0.05657			0.03540			0.00687			0.03759			0.01526			0.02270			0.00431			0.03159						17881			0.03573			0.02350			0.03507			0.00090			0.00551			0.00272			0.00004			0.00287			0.00153


			17901			0.10557			0.05734			0.03659			0.00712			0.03752			0.01539			0.02257			0.00430			0.03145						17901			0.04215			0.02376			0.03251			0.00076			0.00547			0.00241			0.00005			0.00294			0.00145


			17921			0.10223			0.05702			0.03380			0.00700			0.03754			0.01449			0.02271			0.00432			0.03037						17921			0.04209			0.02639			0.03187			0.00066			0.00560			0.00168			0.00003			0.00298			0.00333


			17941			0.10065			0.05724			0.03362			0.00703			0.03740			0.01530			0.02264			0.00429			0.03181						17941			0.03972			0.02395			0.03546			0.00082			0.00573			0.00250			0.00002			0.00296			0.00251


			17961			0.10115			0.05675			0.03552			0.00711			0.03732			0.01536			0.02257			0.00429			0.03150						17961			0.03624			0.02364			0.03465			0.00061			0.00518			0.00222			0.00008			0.00285			0.00233


			17981			0.10164			0.05510			0.03562			0.00703			0.03743			0.01526			0.02270			0.00429			0.03268						17981			0.04632			0.01984			0.03285			0.00076			0.00551			0.00249			0.00003			0.00293			0.00232


			18001			0.09978			0.05593			0.03499			0.00698			0.03739			0.01534			0.02245			0.00428			0.03126						18001			0.03621			0.02338			0.03409			0.00070			0.00548			0.00255			0.00003			0.00294			0.00158


			18021			0.10160			0.04925			0.03589			0.00690			0.03722			0.01536			0.02239			0.00424			0.03116						18021			0.03825			0.01681			0.03291			0.00060			0.00545			0.00224			0.00008			0.00295			0.00153


			18041			0.10503			0.05815			0.03587			0.00681			0.03725			0.01510			0.02260			0.00427			0.03098						18041			0.04019			0.02146			0.03377			0.00086			0.00540			0.00291			0.00005			0.00288			0.00090


			18061			0.10382			0.05353			0.03583			0.00694			0.03726			0.01516			0.02260			0.00429			0.03069						18061			0.03594			0.02595			0.03235			0.00045			0.00546			0.00169			0.00007			0.00299			0.00115


			18081			0.10271			0.05554			0.03488			0.00665			0.03719			0.01516			0.02234			0.00425			0.03007						18081			0.04193			0.02821			0.03257			0.00097			0.00543			0.00241			0.00001			0.00282			0.00071


			18101			0.10294			0.05807			0.03597			0.00698			0.03716			0.01472			0.02251			0.00425			0.03118						18101			0.04192			0.02114			0.03273			0.00095			0.00551			0.00308			0.00001			0.00290			0.00211


			18121			0.10469			0.05697			0.03513			0.00694			0.03715			0.01497			0.02249			0.00425			0.03125						18121			0.04186			0.02412			0.03286			0.00075			0.00510			0.00210			0.00002			0.00277			0.00124


			18141			0.10417			0.05621			0.03628			0.00681			0.03710			0.01517			0.02234			0.00426			0.03132						18141			0.03677			0.02255			0.03327			0.00058			0.00565			0.00236			0.00007			0.00300			0.00130


			18161			0.09979			0.05633			0.03601			0.00703			0.03687			0.01506			0.02258			0.00424			0.02885						18161			0.03819			0.02666			0.03367			0.00084			0.00552			0.00269			0.00002			0.00294			0.00512


			18181			0.10401			0.05429			0.03524			0.00659			0.03701			0.01492			0.02226			0.00422			0.03009						18181			0.03805			0.01780			0.03249			0.00055			0.00545			0.00204			0.00006			0.00286			0.00315


			18201			0.09978			0.05688			0.03531			0.00680			0.03700			0.01491			0.02246			0.00426			0.03143						18201			0.03532			0.01992			0.03354			0.00060			0.00541			0.00184			0.00004			0.00280			0.00138


			18221			0.10424			0.05276			0.03421			0.00690			0.03687			0.01507			0.02249			0.00422			0.03123						18221			0.04126			0.02682			0.03215			0.00078			0.00525			0.00218			0.00004			0.00291			0.00161


			18241			0.10538			0.05801			0.03577			0.00687			0.03686			0.01525			0.02212			0.00421			0.03088						18241			0.03758			0.02328			0.03260			0.00051			0.00536			0.00172			0.00010			0.00294			0.00243


			18261			0.10515			0.05659			0.03543			0.00699			0.03671			0.01510			0.02247			0.00419			0.03067						18261			0.04150			0.02567			0.03296			0.00061			0.00518			0.00219			0.00005			0.00279			0.00174


			18281			0.10697			0.05472			0.03483			0.00694			0.03680			0.01495			0.02222			0.00424			0.03100						18281			0.03819			0.02499			0.03211			0.00058			0.00547			0.00215			0.00010			0.00295			0.00177


			18301			0.10362			0.05411			0.03564			0.00686			0.03678			0.01475			0.02235			0.00424			0.03096						18301			0.04257			0.02785			0.03272			0.00059			0.00545			0.00185			0.00006			0.00293			0.00110


			18321			0.10441			0.05613			0.03225			0.00682			0.03670			0.01503			0.02237			0.00419			0.03077						18321			0.03858			0.02284			0.03554			0.00084			0.00529			0.00227			0.00001			0.00283			0.00219


			18341			0.10260			0.05178			0.03525			0.00673			0.03669			0.01417			0.02240			0.00424			0.03021						18341			0.03683			0.01926			0.03407			0.00091			0.00521			0.00304			0.00001			0.00282			0.00299


			18361			0.10457			0.05497			0.03403			0.00691			0.03657			0.01508			0.02199			0.00419			0.03037						18361			0.04090			0.02947			0.03186			0.00074			0.00510			0.00237			0.00000			0.00286			0.00138


			18381			0.10200			0.05585			0.03534			0.00656			0.03663			0.01461			0.02227			0.00423			0.03101						18381			0.04063			0.02101			0.03279			0.00091			0.00519			0.00257			0.00003			0.00292			0.00135


			18401			0.10313			0.05802			0.03502			0.00655			0.03659			0.01440			0.02237			0.00423			0.03092						18401			0.03900			0.02367			0.03357			0.00055			0.00531			0.00168			0.00002			0.00277			0.00122


			18421			0.10115			0.05778			0.03595			0.00684			0.03649			0.01495			0.02232			0.00422			0.03083						18421			0.04616			0.02035			0.03267			0.00077			0.00506			0.00280			0.00001			0.00281			0.00156


			18441			0.10354			0.05627			0.03549			0.00685			0.03639			0.01475			0.02234			0.00423			0.02959						18441			0.03944			0.02124			0.03237			0.00077			0.00529			0.00184			0.00002			0.00284			0.00417


			18461			0.10329			0.05499			0.03377			0.00682			0.03645			0.01493			0.02221			0.00412			0.03098						18461			0.04290			0.02715			0.03232			0.00084			0.00507			0.00225			0.00001			0.00271			0.00148


			18481			0.10233			0.05441			0.03316			0.00687			0.03642			0.01495			0.02228			0.00417			0.03041						18481			0.04033			0.01877			0.03455			0.00070			0.00524			0.00190			0.00003			0.00271			0.00123


			18501			0.10336			0.05581			0.03495			0.00679			0.03622			0.01509			0.02214			0.00415			0.03078						18501			0.03651			0.02183			0.03322			0.00061			0.00538			0.00223			0.00007			0.00297			0.00094


			18521			0.10235			0.05413			0.03541			0.00676			0.03628			0.01475			0.02192			0.00417			0.03084						18521			0.04254			0.01811			0.03320			0.00074			0.00500			0.00184			0.00001			0.00268			0.00131


			18541			0.10411			0.05578			0.03545			0.00679			0.03633			0.01469			0.02226			0.00417			0.03171						18541			0.04206			0.01958			0.03308			0.00068			0.00533			0.00233			0.00002			0.00292			0.00132


			18561			0.10442			0.05403			0.03549			0.00684			0.03622			0.01404			0.02222			0.00417			0.03048						18561			0.03814			0.02051			0.03327			0.00069			0.00514			0.00267			0.00004			0.00280			0.00080


			18581			0.09450			0.05596			0.03537			0.00675			0.03623			0.01486			0.02209			0.00418			0.03068						18581			0.03564			0.02499			0.03294			0.00068			0.00502			0.00238			0.00002			0.00293			0.00135


			18601			0.10381			0.05620			0.03465			0.00659			0.03616			0.01343			0.02205			0.00415			0.03193						18601			0.03724			0.02498			0.03244			0.00082			0.00504			0.00301			0.00002			0.00275			0.00113


			18621			0.10474			0.05479			0.03477			0.00673			0.03597			0.01475			0.02212			0.00415			0.03082						18621			0.03760			0.02167			0.03208			0.00085			0.00543			0.00229			0.00002			0.00290			0.00207


			18641			0.09807			0.05635			0.03530			0.00666			0.03605			0.01460			0.02218			0.00418			0.02974						18641			0.04737			0.02212			0.03383			0.00061			0.00508			0.00190			0.00003			0.00287			0.00324


			18661			0.10285			0.05573			0.03509			0.00656			0.03601			0.01429			0.02200			0.00410			0.03066						18661			0.04154			0.02487			0.03165			0.00089			0.00505			0.00306			0.00001			0.00282			0.00169


			18681			0.10244			0.05471			0.03546			0.00671			0.03600			0.01468			0.02220			0.00414			0.03073						18681			0.03918			0.02496			0.03200			0.00062			0.00514			0.00251			0.00001			0.00272			0.00059


			18701			0.10105			0.05579			0.03595			0.00673			0.03592			0.01478			0.02213			0.00415			0.02991						18701			0.03608			0.02413			0.03206			0.00054			0.00514			0.00211			0.00004			0.00282			0.00316


			18721			0.10243			0.05680			0.03509			0.00676			0.03591			0.01445			0.02212			0.00417			0.03082						18721			0.04289			0.02267			0.03235			0.00091			0.00504			0.00278			0.00002			0.00283			0.00165


			18741			0.10207			0.05273			0.03548			0.00658			0.03590			0.01476			0.02211			0.00416			0.03042						18741			0.04134			0.02840			0.03277			0.00057			0.00533			0.00214			0.00002			0.00288			0.00153


			18761			0.09850			0.05398			0.03557			0.00670			0.03578			0.01368			0.02204			0.00411			0.03067						18761			0.04175			0.02584			0.03306			0.00075			0.00517			0.00296			0.00002			0.00282			0.00202


			18781			0.10410			0.05444			0.03528			0.00673			0.03585			0.01454			0.02198			0.00412			0.03043						18781			0.04322			0.01869			0.03289			0.00070			0.00528			0.00176			0.00004			0.00284			0.00088


			18801			0.10315			0.05637			0.03268			0.00668			0.03582			0.01467			0.02190			0.00412			0.02993						18801			0.04030			0.02320			0.03122			0.00063			0.00502			0.00219			0.00002			0.00284			0.00300


			18821			0.09830			0.05490			0.03527			0.00663			0.03576			0.01467			0.02162			0.00410			0.03063						18821			0.04115			0.02646			0.03252			0.00061			0.00515			0.00230			0.00009			0.00294			0.00206


			18841			0.09988			0.05550			0.03509			0.00674			0.03547			0.01455			0.02196			0.00411			0.03005						18841			0.03979			0.01951			0.03293			0.00068			0.00509			0.00185			0.00002			0.00286			0.00303


			18861			0.10139			0.05608			0.03543			0.00667			0.03565			0.01459			0.02202			0.00407			0.03052						18861			0.03618			0.02276			0.03174			0.00063			0.00537			0.00231			0.00002			0.00293			0.00210


			18881			0.09924			0.05628			0.03262			0.00666			0.03562			0.01463			0.02157			0.00406			0.02936						18881			0.04198			0.02209			0.03142			0.00076			0.00503			0.00229			0.00000			0.00275			0.00364


			18901			0.09677			0.05568			0.03516			0.00634			0.03558			0.01458			0.02168			0.00411			0.03226						18901			0.04486			0.02355			0.03291			0.00045			0.00496			0.00189			0.00010			0.00280			0.00220


			18921			0.10129			0.05465			0.03383			0.00670			0.03554			0.01465			0.02196			0.00409			0.03054						18921			0.03720			0.02415			0.03438			0.00066			0.00519			0.00185			0.00004			0.00280			0.00180


			18941			0.09996			0.05506			0.03392			0.00648			0.03553			0.01470			0.02168			0.00410			0.03039						18941			0.03801			0.02192			0.03399			0.00081			0.00510			0.00224			0.00001			0.00284			0.00104


			18961			0.10009			0.05447			0.03498			0.00661			0.03545			0.01374			0.02196			0.00411			0.03021						18961			0.04049			0.02069			0.03382			0.00058			0.00521			0.00133			0.00002			0.00276			0.00133


			18981			0.10311			0.05578			0.03425			0.00665			0.03540			0.01365			0.02192			0.00411			0.03049						18981			0.04417			0.02287			0.03331			0.00064			0.00525			0.00160			0.00003			0.00284			0.00095


			19001			0.09922			0.05672			0.03341			0.00668			0.03537			0.01456			0.02184			0.00412			0.02951						19001			0.04708			0.02122			0.03186			0.00079			0.00510			0.00262			0.00003			0.00282			0.00356


			19021			0.09914			0.05570			0.03501			0.00644			0.03525			0.01412			0.02187			0.00412			0.03079						19021			0.04506			0.02110			0.03295			0.00081			0.00477			0.00268			0.00001			0.00270			0.00152


			19041			0.10172			0.05506			0.03585			0.00667			0.03530			0.01448			0.02180			0.00410			0.03048						19041			0.03532			0.02013			0.03271			0.00062			0.00517			0.00225			0.00001			0.00288			0.00169


			19061			0.10202			0.05442			0.03433			0.00664			0.03515			0.01435			0.02186			0.00405			0.03035						19061			0.04016			0.02613			0.03312			0.00061			0.00481			0.00228			0.00003			0.00273			0.00193


			19081			0.09868			0.05474			0.03471			0.00658			0.03510			0.01443			0.02171			0.00411			0.02964						19081			0.03553			0.02159			0.03172			0.00072			0.00460			0.00198			0.00000			0.00268			0.00295


			19101			0.09875			0.05445			0.03567			0.00662			0.03516			0.01449			0.02164			0.00410			0.03005						19101			0.03620			0.02541			0.03248			0.00069			0.00513			0.00192			0.00000			0.00283			0.00074


			19121			0.10215			0.05479			0.03273			0.00624			0.03514			0.01407			0.02134			0.00409			0.03000						19121			0.03725			0.02296			0.03147			0.00098			0.00523			0.00265			0.00000			0.00276			0.00268


			19141			0.10050			0.05333			0.03390			0.00641			0.03515			0.01415			0.02182			0.00409			0.02964						19141			0.04188			0.02234			0.03242			0.00052			0.00530			0.00174			0.00006			0.00281			0.00069


			19161			0.10311			0.05581			0.03474			0.00620			0.03504			0.01428			0.02139			0.00408			0.03018						19161			0.03726			0.02195			0.03278			0.00042			0.00499			0.00158			0.00005			0.00285			0.00114


			19181			0.10149			0.05460			0.03334			0.00654			0.03495			0.01443			0.02157			0.00405			0.02992						19181			0.03772			0.02512			0.03376			0.00049			0.00518			0.00222			0.00014			0.00292			0.00087


			19201			0.09958			0.05404			0.03491			0.00666			0.03481			0.01434			0.02177			0.00406			0.03028						19201			0.04049			0.01987			0.03256			0.00074			0.00497			0.00267			0.00003			0.00275			0.00063


			19221			0.10174			0.05392			0.03449			0.00657			0.03494			0.01466			0.02174			0.00403			0.02972						19221			0.03680			0.02488			0.03337			0.00077			0.00525			0.00241			0.00001			0.00270			0.00220


			19241			0.10213			0.05342			0.03432			0.00652			0.03485			0.01421			0.02161			0.00404			0.03038						19241			0.03984			0.01874			0.03170			0.00080			0.00480			0.00281			0.00000			0.00268			0.00159


			19261			0.09575			0.05474			0.03492			0.00657			0.03466			0.01440			0.02175			0.00404			0.03008						19261			0.03509			0.02175			0.03259			0.00064			0.00473			0.00233			0.00001			0.00271			0.00207


			19281			0.10035			0.05475			0.03440			0.00662			0.03472			0.01429			0.02168			0.00402			0.02763						19281			0.03537			0.02303			0.03230			0.00054			0.00500			0.00137			0.00002			0.00275			0.00356


			19301			0.09675			0.05420			0.03404			0.00640			0.03476			0.01314			0.02160			0.00402			0.03024						19301			0.04462			0.02164			0.03148			0.00079			0.00495			0.00297			0.00001			0.00272			0.00133


			19321			0.10006			0.05123			0.03434			0.00636			0.03473			0.01339			0.02156			0.00406			0.03009						19321			0.03940			0.01894			0.03310			0.00047			0.00505			0.00153			0.00005			0.00280			0.00114


			19341			0.09993			0.05469			0.03507			0.00648			0.03469			0.01399			0.02170			0.00406			0.03029						19341			0.03911			0.02235			0.03287			0.00056			0.00477			0.00169			0.00002			0.00268			0.00071


			19361			0.10061			0.05581			0.03444			0.00650			0.03460			0.01415			0.02168			0.00406			0.02995						19361			0.04740			0.02182			0.03324			0.00048			0.00482			0.00163			0.00002			0.00278			0.00170


			19381			0.09432			0.05171			0.03111			0.00654			0.03456			0.01336			0.02156			0.00402			0.03052						19381			0.04654			0.01814			0.03098			0.00072			0.00480			0.00297			0.00001			0.00267			0.00079


			19401			0.10367			0.05167			0.03495			0.00644			0.03447			0.01423			0.02163			0.00403			0.02978						19401			0.03734			0.01813			0.03253			0.00050			0.00498			0.00182			0.00002			0.00274			0.00076


			19421			0.09929			0.05404			0.03464			0.00637			0.03443			0.01424			0.02132			0.00400			0.03048						19421			0.03539			0.02019			0.03247			0.00049			0.00522			0.00202			0.00006			0.00289			0.00129


			19441			0.10036			0.05414			0.03485			0.00616			0.03442			0.01419			0.02136			0.00397			0.03007						19441			0.04245			0.02230			0.03238			0.00085			0.00487			0.00232			0.00000			0.00271			0.00200


			19461			0.10128			0.05310			0.03522			0.00627			0.03439			0.01402			0.02150			0.00405			0.02998						19461			0.03628			0.01895			0.03254			0.00046			0.00478			0.00161			0.00003			0.00267			0.00068


			19481			0.10190			0.05286			0.03367			0.00645			0.03424			0.01383			0.02155			0.00403			0.02982						19481			0.03627			0.02339			0.03161			0.00076			0.00518			0.00229			0.00002			0.00280			0.00065


			19501			0.10299			0.05398			0.03410			0.00650			0.03418			0.01390			0.02161			0.00403			0.02952						19501			0.04033			0.02014			0.03302			0.00046			0.00446			0.00153			0.00005			0.00269			0.00219


			19521			0.08703			0.05408			0.03390			0.00630			0.03427			0.01438			0.02141			0.00401			0.02947						19521			0.04801			0.01911			0.03172			0.00054			0.00506			0.00242			0.00005			0.00274			0.00192


			19541			0.09368			0.05452			0.03376			0.00623			0.03422			0.01425			0.02127			0.00402			0.02864						19541			0.03678			0.02427			0.03151			0.00039			0.00472			0.00156			0.00009			0.00271			0.00034


			19561			0.10070			0.05357			0.03493			0.00649			0.03413			0.01414			0.02151			0.00402			0.02981						19561			0.03597			0.02435			0.03187			0.00071			0.00467			0.00213			0.00003			0.00278			0.00069


			19581			0.10027			0.05482			0.03468			0.00648			0.03405			0.01360			0.02154			0.00404			0.02998						19581			0.04197			0.02387			0.03248			0.00064			0.00479			0.00255			0.00002			0.00274			0.00162


			19601			0.10165			0.05249			0.03431			0.00653			0.03414			0.01390			0.02155			0.00401			0.03008						19601			0.03636			0.02501			0.03190			0.00052			0.00501			0.00196			0.00003			0.00282			0.00080


			19621			0.10037			0.05463			0.03299			0.00642			0.03393			0.01370			0.02149			0.00402			0.03010						19621			0.03547			0.02241			0.03296			0.00077			0.00499			0.00251			0.00002			0.00275			0.00090


			19641			0.09863			0.05396			0.03465			0.00609			0.03403			0.01326			0.02124			0.00402			0.02955						19641			0.04371			0.02267			0.03170			0.00047			0.00470			0.00127			0.00003			0.00273			0.00158


			19661			0.09961			0.05309			0.03429			0.00644			0.03395			0.01366			0.02149			0.00399			0.02920						19661			0.03569			0.02063			0.03134			0.00067			0.00471			0.00275			0.00002			0.00278			0.00212


			19681			0.10247			0.05156			0.03429			0.00637			0.03393			0.01368			0.02144			0.00400			0.02973						19681			0.03611			0.02469			0.03210			0.00064			0.00494			0.00250			0.00005			0.00277			0.00199


			19701			0.10122			0.05341			0.03368			0.00641			0.03386			0.01303			0.02139			0.00400			0.02992						19701			0.03733			0.01831			0.03144			0.00064			0.00467			0.00273			0.00002			0.00266			0.00171


			19721			0.10109			0.05416			0.03383			0.00605			0.03387			0.01346			0.02132			0.00400			0.02970						19721			0.03948			0.02053			0.03332			0.00044			0.00464			0.00152			0.00004			0.00278			0.00063


			19741			0.10105			0.05387			0.03427			0.00637			0.03384			0.01395			0.02138			0.00395			0.02992						19741			0.04118			0.02308			0.03134			0.00057			0.00469			0.00150			0.00003			0.00285			0.00155


			19761			0.10273			0.05527			0.03412			0.00607			0.03377			0.01371			0.02074			0.00400			0.03017						19761			0.03956			0.02300			0.03165			0.00049			0.00481			0.00166			0.00006			0.00277			0.00155


			19781			0.10290			0.05201			0.03359			0.00632			0.03373			0.01408			0.02132			0.00397			0.02886						19781			0.03862			0.01714			0.03281			0.00054			0.00487			0.00218			0.00004			0.00284			0.00405


			19801			0.09808			0.05540			0.03257			0.00642			0.03347			0.01400			0.02142			0.00398			0.02991						19801			0.03717			0.02425			0.03298			0.00063			0.00499			0.00215			0.00003			0.00279			0.00081


			19821			0.10172			0.05500			0.03337			0.00633			0.03363			0.01417			0.02127			0.00396			0.02991						19821			0.03832			0.02211			0.03184			0.00067			0.00482			0.00161			0.00001			0.00271			0.00116


			19841			0.10146			0.05316			0.03410			0.00629			0.03348			0.01369			0.02129			0.00397			0.02987						19841			0.03769			0.01983			0.03180			0.00055			0.00437			0.00170			0.00002			0.00265			0.00072


			19861			0.09782			0.05471			0.03366			0.00641			0.03354			0.01433			0.02123			0.00397			0.02982						19861			0.03759			0.02433			0.03153			0.00063			0.00469			0.00254			0.00002			0.00268			0.00088


			19881			0.10084			0.05340			0.03434			0.00613			0.03351			0.01387			0.02115			0.00399			0.02958						19881			0.04162			0.02124			0.03262			0.00094			0.00451			0.00225			0.00000			0.00272			0.00081


			19901			0.09694			0.05400			0.03460			0.00634			0.03332			0.01416			0.02133			0.00396			0.02787						19901			0.03789			0.02411			0.03214			0.00059			0.00425			0.00217			0.00001			0.00260			0.00327


			19921			0.10457			0.05474			0.03419			0.00628			0.03343			0.01367			0.02126			0.00395			0.02958						19921			0.04052			0.01843			0.03264			0.00056			0.00456			0.00220			0.00002			0.00277			0.00068


			19941			0.10277			0.05046			0.03331			0.00624			0.03336			0.01355			0.02133			0.00399			0.02990						19941			0.03761			0.02594			0.03274			0.00078			0.00456			0.00212			0.00001			0.00273			0.00101


			19961			0.09769			0.05448			0.03211			0.00630			0.03330			0.01354			0.02127			0.00397			0.02972						19961			0.03651			0.02007			0.03095			0.00071			0.00471			0.00174			0.00002			0.00281			0.00101


			19981			0.10000			0.05570			0.03432			0.00636			0.03317			0.01364			0.02131			0.00394			0.02929						19981			0.03800			0.02258			0.03297			0.00058			0.00468			0.00160			0.00003			0.00279			0.00048


			20001			0.09987			0.05413			0.03344			0.00618			0.03316			0.01348			0.02123			0.00394			0.02963						20001			0.03670			0.02170			0.03299			0.00077			0.00456			0.00259			0.00001			0.00268			0.00262
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Abstract


Gas turbine manufacturers face many business, technical, and cultural challenges in today’s brutally competitive global market environment. Companies must constantly strive to improve quality and performance while their customers place increasingly stringent requirements on them to reduce design cycle time and lifecycle cost. The solution to meeting these challenges is to build automated multidisciplinary design optimization systems that enable companies to capture design processes and expert knowledge, collaborate seamlessly across engineering disciplines, organizations, and suppliers, and achieve the best possible balance among often conflicting customer goals, requirements, and constraints in the shortest possible time. While the technical challenges can be daunting, it is often cultural issues that prevent companies from successfully building and implementing such design systems. This paper addresses these cultural issues and barriers to implementation and suggests steps that can be taken to break through the barriers to achieve success based on the author’s personal experience over more than 30 years of building and promoting such systems.


1.0
introduction


This is not a traditional technical paper. Instead, it is a somewhat informal paper largely based on my own personal experiences in addressing the cultural issues associated with implementing new design systems and strategies for the automated design and optimization of turbomachinery over a period of thirty years. My first optimization project in 1980 involved using numerical optimization algorithms to improve the performance of heat recovery steam generators, and since no commercial optimization codes existed at the time, I had to write the code myself. It was a successful project, and it proved to me (not to mention my management) that automated numerical optimization was a viable and beneficial approach to improving performance in a short amount of time. In 1980, that project took several months to implement – in 2010, I could implement the same system in only a few days with modern commercial process integration and design optimization (PIDO) tools. 


As a steam turbine design engineer and manager, I have been directly involved in the planning, development, and implementation of automated optimization systems for a variety of steam turbine components [1] [2], and have also investigated the use of these systems for robust design [3]. As an engineering manager with a strong desire to develop better products faster and with fewer resources, I had to convince upper management that the business benefits of these systems more than justified the development costs. It did not take long to encounter many firmly entrenched institutional and cultural barriers that inhibit the development and adoption of such systems, as described in this paper.


As a sales and marketing professional for commercial PIDO software, I have spent the last ten years attempting to convince engineers and their management at literally dozens of companies to spend significant sums of money on these systems, because they do indeed work and provide huge business benefits and a large return on investment – references [4] – [13] provide but a few examples. It was in this role that I realized that all companies erect these same barriers. Resistance to change is the norm, not the exception. This realization was later validated by Tim Ambridge from Bombardier Aerospace, who has documented his own remarkably similar encounters with the barriers [14] [15] and his successful efforts to dispatch them during the implementation of new highly integrated and automated design systems. In this paper I hope to point out the more common barriers and how you can knock them down or get around them to implement successful automated turbomachinery design optimization systems that will allow you to achieve better and cheaper designs much faster.


2.0
GAS TURBINE BUSINESS CHALLENGES

Gas turbine manufacturers face many business, technical, and cultural challenges every day. The competition is brutal and global, especially in the current economic downturn. To stay competitive, companies must constantly strive to improve quality and performance, while their customers place increasingly stringent requirements on them to reduce design cycle time and lifecycle cost. Design and manufacturing sites are frequently located all over the world, putting tremendous strain on communications. Companies more and more must rely on suppliers for critical components to reduce costs, thus adding risk to delivery cycles, performance, and reliability. Engineering manpower increasingly is being outsourced on a global basis, leading to significant management challenges. Even within a given company, design resources may be spread out over several widely dispersed locations. On top of all this, the Internet has dramatically increased the pace of business, straining existing legacy design systems, databases, and computer resources. And finally, companies are finding it harder to keep up with the pace of rapidly changing technologies in the face of shrinking resources.


2.1
The Engineering Manager’s Challenges


Engineering managers in turbomachinery companies face a special set of challenges. They no longer have control over all of the resources needed to get the job done, and they must frequently work with multiple teams across departmental, organizational, and geographical boundaries. Experts in the key engineering disciplines – aerodynamics, structural mechanics, heat transfer, materials – are harder to find and harder to retain. The “greybeards” who have been with the companies for decades and who retain much of the institutional and technical knowledge in their heads – information that is not written down anywhere – are retiring and the younger engineers coming up behind them simply do not have as much experience. This expert knowledge is lost forever if it is not captured in the design process before the retirements occur.


As more engineering tasks are outsourced to other company divisions or to contractors and vendors who are often on the other side of the world, it is more difficult to coordinate design activities. Controlling the quality of engineering resources is also more difficult, especially if they are contractors or vendors. Often forced to reduce staffing to cut costs during economic downturns, managers must find new ways to do more work with fewer highly experienced engineers. 


2.2
The Design Engineer’s Challenges


Turbomachinery design engineers face an equally daunting set of challenges. The nature of the turbomachinery design environment itself provides significant challenges. For example, most turbomachines operate in extreme conditions of temperature, pressure, and stress. The forces are extremely high in the rotating components, and the consequences of failure are often catastrophic. This extreme environment put many disciplines in conflict, such as aerodynamics, mechanical stress and vibration, heat transfer, material properties, reliability, and life prediction, among others. And on top of that, customers want everything – they demand highly efficient operation and long life with short delivery cycles and low design, manufacturing, and maintenance costs.


In most companies, the turbomachinery design processes and procedures also present big challenges. They are often ill-defined and mostly trial-and-error, guided by each individual engineer’s own experience. As a result, the processes are executed differently by each engineer, and significant variations in the design can occur from one engineer to the next. The processes are often time-consuming and error-prone. Engineers spend most of their time preparing data, typing input files, running analysis codes, and chasing output files, with little time left over to actually think about the problem at hand. As a result, only a limited number of design evaluations can be done in the available time, and an optimum is seldom achieved before time runs out.


3.0
 GAS TURBINE design process


Figure 1 outlines the overall gas turbine design process and illustrates the technical challenges faced by the design engineers and their managers. At the beginning of the process, the customer requirements are specified for performance, operating cost, reliability and life, noise, emissions, and delivery. These requirements are often in conflict – for example to maximize performance and reliability while minimizing cost and emissions – but all of them must be addressed in the final design.


The overall gas turbine cycle is also an exercise in balancing multiple conflicting objectives, in that the individual sections and components of the gas turbine – the inlet, the compressor, the combustor, the turbine, various heat exchangers, the casing, rotors and bearings, and the exhaust – must all work together to achieve the best overall design and meet the customer requirements. The cycle must be designed to meet requirements for stability, surge margin and range, design and off-design performance, and controls and numerous auxiliary systems must be considered. In addition to meeting all of the engineering technical requirements, the engineers also have to make sure they meet manufacturing requirements and create final drawings.


In short, this process is highly complex and multidisciplinary with many tradeoffs. Whether the design engineers realize it or not, gas turbine design is a massive multidisciplinary design optimization problem. As my friend Brent Staubach from Pratt & Whitney says [9], “Modern gas turbine design is an exercise in managing complexity. It is also a brutally multidisciplinary affair.”
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Figure 1: Overview of the gas turbine design process


4.0
 the engineer’s reality and the engineer’s dream


4.1
The Engineer’s Reality


Now let’s look a little deeper into the daily life of the typical gas turbine design engineer. As he sits in front of his computer screen facing the challenge of a new design, here are some of his thoughts:


· The input file formats for all of these codes are different!


· What directory is that executable in?


· My fingers are sore from all this typing!


· #@%$, another bad run due to a typo! I just wasted half a day!

· The server went down and I lost all my data!

· I’ll never solve this problem! I can’t keep track of all the variables and constraints!


· Where is the stress analyst when I need him? (Or, why is the aero guy taking so long?)

· That vendor won’t call me back and I need his input!


· I’ll be lucky if I can do five runs before my deadline, and that’s not enough!


· My manager is always beating on me to hurry up! I’m working as fast as I can!


· If I only had more time, I’m sure I could find a better design ...

Needless to say, the life of the gas turbine design engineer is filled with frustration and anxiety.

4.2
The Engineer’s Dream


Now let’s imagine that the overworked design engineer falls into a dream state at her desk due to extreme lack of sleep. Here is the stress-free utopia she might dream of:


· I can access all of the simulation codes and CPUs I need with the click of a mouse!


· I can mix and match the codes to create an ideal design process on the fly!


· I can interface directly with my suppliers’ codes! 


· I can use the same consistent graphical interface for all of the codes! 


· Data transfer between codes is automatic so I don’t have to worry about it – and I don’t have to type my fingers to the bone!


· I have time to evaluate as many design alternatives as I need to make sure I have the best possible design! 


· I can be more creative and innovative!


· I can spend more time improving models and understanding the physics, not to mention exercising my brain!


· I can keep my manager happy and he will give me a raise!


· Ah, wouldn’t it be nice! 


5.0
 achieving the dream


5.1
Meeting the Challenge


You do not need to be in a utopian dream state to know that this dream can be achieved. To meet all of these challenges and transform the dream into reality, companies must find ways to:


· Collaborate seamlessly across engineering disciplines, organizations, and suppliers to take advantage of all available global resources in manpower, computing power, and manufacturing capacity. 


· Automate the design processes to reduce design cycle time and cost.


· Capture expert knowledge, design rules, and manufacturing requirements in the design process itself, especially in the preliminary design phase, since 70-80% of the machine’s costs are captured during preliminary design.


· Implement flexible, automated systems for multidisciplinary design exploration and optimization to achieve design goals with the best balance across multiple disciplines to meet customer needs.


Now how do we meet these daunting business and engineering challenges? I’m not saying it will be easy, but based on my experience working with many companies, the clear solution is to implement collaborative automated multidisciplinary design exploration, optimization, and data management systems. 


This is not a pipe dream – new automated design optimization systems can and do meet all of these challenges. Figure 2 [9] illustrates one such system developed by Pratt & Whitney. It captures all of the various design processes from preliminary multidisciplinary design optimization (PMDO) to the detailed design of the airfoils using commercial PIDO software.
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Figure 2: Automated processes for aircraft engine design optimization


However, this is very disruptive technology that upsets the status quo, which naturally generates resistance. It often requires a major rethinking of the way you do things, and major changes to existing systems.


So, how do you get people – including the engineers and their managers – to accept change and embrace new ways of doing things? How do you get people to break down the walls between disciplines, departments, and engineering and manufacturing?


5.2
Nothing Is Ever Easy…


Well, nothing is ever easy. As has been noted throughout history, it is never easy to implement change. As Niccolo Machiavelli (1469-1527) said more than 500 years ago:


“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in its success, than to take the lead in the introduction of a new order of things. Because the innovator has for his enemies all those who have done well under the old conditions and lukewarm, indifferent, uninterested defenders in those who may do well under the new.” 


350 years later, it had not become any easier to implement change according to Charles Babbage (1791-1871), an English mathematician, philosopher, and mechanical engineer. In 1822 he invented the world’s first automatic mechanical calculator, called the difference engine, and in 1835 he invented the first programmable computer that used punch cards, called the analytical engine – so he knew something about disruptive technology. About 150 years ago, at the height of the First Industrial Revolution, he said:


“Propose to an Englishman any principle, or any instrument, however admirable, and you will observe that the whole effort of the English mind is directed to find a difficulty, a defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel a potato with it before his eyes, he will declare it useless, because it will not slice a pineapple.” 


Hundreds of years later, you would think we would learn to accept change. But here’s a quote from Tim Ambridge, Director of PLM Business Processes at Bombardier Aerospace, who recently led a major effort to re-architect their design systems. Only four years ago he said:


“Never, ever underestimate the difficulty in getting people to change. Under stress, people revert to what they know.” 

5.3
Barriers to Achieving the Dream


There are many barriers to achieving the dream, but the most common barriers are listed below. I have seen every one of these many times, in my own workplaces as well as in many others.


· The lack of definition or understanding of the entire design process is often the first barrier you face. It’s hard to change what you don’t understand in the first place.


· “Not Invented Here” Syndrome – “We didn’t invent it, so it can’t be any good.” (I worked at GE in Schenectady, NY, the original steam turbine plant founded by Thomas Edison – and I think this syndrome was invented there in about 1895.)

· The weight of History – “We have always done it this way.” The reason why we have always done it this way may be lost in antiquity, but there must have been a good reason!


· Inertia – “Why change when what we have now works OK?” This is about as good an example of Newton’s First law as you will see, and given the huge mass of most organizations, Newton’s second law will tell you a massive force is required to get it to change direction.


· Fear of risk – “What if it doesn’t work?” This one is particularly common among managers.


· Managers who feel threatened if existing design systems are rendered obsolete. Many of them helped build the existing systems and are reluctant to admit that they have outlived their usefulness.


· Barriers between departments or divisions and resistance to integration. Everyone has carved out their own fiefdoms, and they don’t want to cede power to anyone else.


· Engineers who feel that they will be “automated” out of a job. This can be the biggest barrier of all at the design engineer level. Of course, this is not a problem for management. (Fortunately, I am not aware of a single engineer who has lost his job as the result of implementing automated design systems. Instead, they are put to better use.)

· “We are so busy we don’t have time to consider anything new.” I’ve seen this one many times, and it is a recipe for the slow death of a company in the face of competitors who do find the time.


· Natural skepticism of engineers - “It sounds too good to be true.” Engineers by nature are not gamblers, so there is always some natural skepticism to overcome when something new looks really good.

5.4
However, There Is Hope…


However, all is not lost and there is hope. As has also been noted throughout history, it is possible to implement change…


Recall Charge Babbage’s comment on the English mind in Section 5.2:


“Propose to an Englishman any principle, or any instrument, however admirable, and you will observe that the whole effort of the English mind is directed to find a difficulty, a defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel a potato with it before his eyes, he will declare it useless, because it will not slice a pineapple…” 


And here is the completion of that comment:


“…Impart the same principle or show the same machine to an American or to one of our Colonists, and you will observe that the whole effort of his mind is to find some new application of the principle, some new use for the instrument.” 


Those of us who work to break through the barriers and implement new automated design optimization systems must embrace the pioneering spirit of the early 19th century and use it to forge ahead into the frontier of the 21st.  

5.5
Addressing the Skeptic


One of the most powerful barriers to change in any organization is the professional skeptic, and every company has these people. If an engineer or manager expresses skepticism about the need to implement new design processes or systems, or says something like “our products are so good there is no need for improvement,” ask him these five questions:


1. Does the product operate at 100% efficiency and reliability?


2. Can you design it in zero time?


3. Can you make it at zero cost?


4. Can you make it in zero time?


5. Do you have 100% market share?


If the answer to any of these questions is “No,” then there is room for improvement through automation and optimization.

You will always encounter skeptics, but do not let them deter you. In 1901, two years before the first successful flight of the Wright Flyer at Kitty Hawk on December 17, 1903, Wilbur Wright was deeply discouraged after numerous disappointing full-scale glider tests. He said to his brother, Orville, “Nobody will fly for a thousand years.” But he and Orville persevered and overcame their own skepticism. They re-thought how they were going to achieve their goal – and built a wind tunnel so they wouldn’t have to build so many prototypes. Two years later they were successful, as illustrated in Figure 3.

Skepticism can be a power motivator for people with a strong desire to implement change. For these people, they cannot stand to have someone tell them “it can’t be done,” and they are powerfully motivated to prove the skeptic wrong. A case in point – the invention of the world’s leading PIDO software, Isight, owes its development to a professional skeptic. The story begins with Dr. Siu Tong as he was completing his PhD work on compressor aerodynamics at the Massachusetts Institute of Technology. The summer before he was to give his oral dissertation, he attempted to get a summer job at the GE Aircraft Engines plant north of Boston. He interviewed with a manager in the engine performance group, and asked the manager what he would be doing all summer if he got the job. The manager told him he would be running a computer program for engine performance prediction over and over for different operating points to generate hundreds of data points to plot on performance maps. Dr. Tong thought for a second, and then told the manager he could write a program that would automate this process and save a lot of time. The manager, the professional skeptic, said that this couldn’t be done, and that was why he had 40 engineers in his group running the code over and over. It was simply impossible. Dr. Tong persisted, and said it was not impossible; on the contrary, he could do it in a couple of weeks. Needless to say, Dr. Tong did not get the job. The manager did not believe him.


Dr. Tong was so upset that the manager did not believe him that he went to his thesis advisor and told him he was dropping his compressor aerodynamics work and starting over to develop the concept of a software robot – a program that runs other programs. To make a long story short, a recruiter at the GE Corporate R&D Center saw Dr. Tong’s completed thesis and thought that the idea of the “software robot” was intriguing. The Center hired Dr. Tong, gave him a team of people, solicited funding from all of the GE businesses, and together they invented what eventually became Isight. Within a few years, it was widely used within GE for the design optimization of many products, from light bulbs to aircraft engines, and became available to all companies with Dr. Tong’s founding of Engineous Software in 1996. (In the interest of full disclosure, I was Dr. Tong’s principal funding source from GE Power Systems and worked with his team to develop many successful steam turbine applications [1] [2]. I worked for Engineous from 1999 until its acquisition by SIMULIA in 2008.)
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Figure 3: First successful flight of the Wright Flyer – the skeptics proven wrong!

5.6
Steps to Successful Implementation of an Automated Design Environment


Once you have gotten past the skeptics and have a green light to make changes, here are some steps you can take to successfully implement an automated design environment.


1. Have confidence that it can be done!


· Remember that design automation and optimization is a proven technology that has been successfully implemented on a large scale in many global gas turbine companies such as GE Aircraft Engines [5], Honeywell Aerospace [11], P&W [4] [6] [9], and Rolls-Royce [7] [12].


· These systems have been tested and validated by hundreds of skeptical engineers worldwide.


· Significant benefits have been reported – many millions of dollars have been saved and 10-times cycle time reductions have been achieved, all while improving performance, reducing cost, and increasing market share. [1] – [13]

2. Understand the landscape and set the stage for success.


· Identify champions to lead the effort – the “pioneers” - at multiple levels and in multiple functions, including manufacturing.

· Find people with the “vision,” energy, and will to build a better design process. They will quickly find that their careers can be built on their successes with these systems.

· Get the support of the design engineers and their first line managers who are willing and eager to lead the charge.

· Enlist the support of VPs who can write the checks and dedicate the resources.

· Identify the resistance. This is very important – there may be only a few of them, but they can make a lot of noise. Sometimes management must make it happen by “fiat” to overcome entrenched resistance.


· Find reasons to give everyone a stake in the success by appealing to their own self-interest.


· Demonstrate to them how their own selfish interests will be served by the success of the implementation. Do all you can to make them look good, and give them credit for supporting you when you achieve success.


· The success of the champions will gradually overcome the negativity of the resisters, who will finally realize they must get aboard or be left behind.


3. Dedicate resources.

· Dedicate the necessary resources so that they can focus on implementation without other distractions.


· Management must encourage and engage the engineers – the principal users of the design system – to be part of the solution, to use their critical thinking skills to define and improve the design process and build the system.


4. Build the system.

· The first thing you must do is define the design process! (Companies that are ISO 9000 certified have generally already done this.)


· Develop a roadmap for implementation and get first line and VP-level management to buy-in and support it.


· Think big, but start small! Do not try to do too much all at once. Start with a part of the overall process that produces significant pain, but that can produce a big gain if addressed, such as preliminary design or airfoil aerodynamic design. Then add more automation as you achieve successes that get more management support.

· Take a “building block” approach - bring in one block at a time and add more as successes are achieved and you develop confidence in the system.


· Fix flaws in your simulation codes, processes, and network as they are discovered, and examine your design rules and constraints to make sure they make sense. Don’t be constrained by history and inertia!


· Be flexible and willing to modify your process and optimization strategy as the system helps you explore your design space.


5. Communicate successes.

· This is extremely important. Communicate success stories to multiple levels in the organization as widely as possible as soon as they occur to build management support for future success. This will help the VPs feel good about giving you all that money and engineering resource. If you make them look good, you look good!

6.0
 the engineer of tomorrow


To capitalize on new design systems and to ensure that the best possible products enter the marketplace, the engineers of the future will be managers of advanced technology, and not just number crunchers. They will be knowledgeable in multiple disciplines. They will understand the entire design process and the interactions between all of its elements. They will assemble the right tools and computing resources from many available sources through web-based networks. They will understand the entire product lifecycle and its economics, from design to manufacturing to service in the field. They will work with many suppliers and outsourcing contractors. They will have a good understanding of the underlying physics to be able to assess the validity of the design solutions. This is essential – you don’t want to get bad designs out of your system 10 times faster. Fortunately, the time you save through automation will allow you to spend more time understanding the problem and formulating the best solution. And lastly, they will be proficient in multidisciplinary design optimization so that they can understand the design space and the trade-offs among multiple competing objectives. 


In closing, recall this quote from Charles Darwin (1809-1882):


“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.” 


As engineers, it is incumbent on all of us to be the agents of change – the pioneers – within our companies, to ensure that we develop the most efficient, reliable, cost effective, and clean gas turbine engines to meet the needs of our customers, to contribute to the security of our countries, and to improve the health of our planet.
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Today’s Business Challenges

Competition is brutal and global

To stay competitive, companies must constantly strive to improve quality and performance, and reduce design cycle time and cost

Design and manufacturing sites are frequently separated by great distances geographically, putting tremendous strain on communications

Companies must rely on suppliers for critical components to reduce costs, thus adding risk to delivery cycles, performance, and reliability

Engineering manpower increasingly is being outsourced on a global basis, leading to significant management challenges

The Internet has dramatically increased the pace of business, straining existing legacy design systems, databases, and computer resources

Companies are finding it harder to keep up with the pace of rapidly changing technologies in the face of shrinking resources
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This slide addresses some of the business challenges that our customers face every day.  These are some of the challenges that drove the development of FIPER.
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The Engineering Manager’s Challenges

Managers no longer have control over all of the resources needed to get the job done

They must work with multiple teams across departmental and organizational boundaries

Experts in key engineering disciplines are harder to find and harder to retain

The “greybeards” are retiring and the younger engineers coming up behind them are not as experienced

Expert knowledge is lost if it is not captured in the design process

As more engineering tasks are outsourced, often to the other side of the world, it is more difficult to coordinate design activities

Controlling the quality of engineering resources is also more difficult

Forced to reduce staffing to cut costs, managers must find new ways to do more work with fewer highly experienced engineers
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The Design Engineer’s Challenges

The turbomachinery design environment:

Most turbomachines operate in extreme conditions of temperature, pressure, and stress

Forces are extremely high in rotating components

This extreme environment put many disciplines in conflict

Aerodynamics, mechanical stress and vibration, heat transfer, material properties, reliability, life prediction, etc.

Customers demand highly efficient operation and long life with short delivery cycles and low design, manufacturing, and maintenance costs

The turbomachinery design process:

Mostly trial-and-error, guided by engineer’s experience

Time-consuming, error-prone  

Engineers spend most of their time preparing data, typing input files, chasing output files

Limited number of design evaluations can be done in the available time

An optimum is seldom achieved before time runs out
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Gas Turbine Design: An Exercise in Managing Complexity

Customer Requirements

Cycle Optimization

Inlet/Exhaust  Design

Compressor Design

Turbine Design

Rotor/Bearing Design

Casing Design

Heat Exchanger Design

Combustor Design

Layout Drawings

Detailed Drawings

Meet Requirements?

Data to Manufacturing

YES

NO

Performance

Operating Cost

Reliability/Life

Noise

Emissions

Delivery

Stability

-- Surge Margin

-- Range

Performance

-- Design

-- Off-Design

Controls

Aux. Systems

Multidisciplinary and

very complex

“Modern gas turbine design is an exercise in managing complexity. It is also a brutally multidisciplinary affair.”

 Brent Staubach

Manager, Systems Optimization

Pratt & Whitney
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The Engineer’s Reality …

The input file formats for all of these codes are different!

What directory is that executable in?

My fingers are sore from all this typing!

#@%$, another bad run due to a typo!

I’ll never solve this problem! I can’t keep track of all the variables and constraints!

Where is the stress analyst when I need him?

That vendor won’t call me back and I need his input!

I’ll be lucky if I can do five runs before my deadline, and that’s not enough!

My manager is always beating on me to hurry up! I’m working as fast as I can!

If I only had more time, I’m sure I could find a better design ...

Aarrgh!!!
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The Engineer’s Dream …

I can access all of the simulation codes and CPUs I need with the click of a mouse.

I can mix and match the codes to create a design process on the fly.

I can interface with my suppliers’ codes. 

I can use the same consistent graphical interface for all of the codes. 

Data transfer between codes is automatic so I don’t have to worry about it – and I don’t have to type my fingers to the bone!

I have time to evaluate as many design alternatives as I need to make sure I have the best design.

I can be more creative and innovative.

I can spend more time improving models and understanding the physics.

I can keep my manager happy and he will give me a raise!

Wouldn’t that be nice...
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Achieving the Dream

	To meet all of these challenges and achieve the dream, companies must find ways to:

Collaborate seamlessly across engineering disciplines, organizations, and suppliers to take advantage of all available global resources in manpower, computing power, and manufacturing capacity

Automate the design processes to reduce design cycle time and cost

Capture expert knowledge, design rules, and manufacturing requirements

Implement automated systems for multidisciplinary design exploration and optimization to achieve design goals with the best balance across multiple disciplines to meet customer needs
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Meeting the Challenge

The clear solution to meeting the business and engineering challenges is to implement collaborative automated multidisciplinary design exploration, optimization, and data management systems

However, this is disruptive technology that upsets the status quo, which naturally generates resistance

How do you get people - engineers and their managers - to accept change and embrace new ways of doing things?

How do you get people to break down the walls between disciplines, departments, and engineering and manufacturing?
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Nothing Is Ever Easy…

	As has been noted throughout history, it is never easy to implement change…

“There is nothing more difficult to take in hand, more perilous to conduct, or more uncertain in it’s success, than to take the lead in the introduction of a new order of things. Because the innovator has for his enemies all those who have done well under the old conditions and lukewarm, indifferent, uninterested defenders in those who may do well under the new.” 

	- Niccolo Machiavelli (1469-1527)

“Propose to an Englishman any principle, or any instrument, however admirable, and you will observe that the whole effort of the English mind is directed to find a difficulty, a defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel a potato with it before his eyes, he will declare it useless, because it will not slice a pineapple.” 

	- Charles Babbage (1791-1871)

“Never, ever underestimate the difficulty in getting people to change. Under stress, people revert to what they know.” 

	– Tim Ambridge, Director, PLM Business Processes, Bombardier Aerospace  (2006 Engineous User’s Conference)
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Barriers to Achieving the Dream

Lack of definition or understanding of the design process

“Not Invented Here” Syndrome - “We didn’t invent it, so it can’t be any good”

The weight of History - “We have always done it this way”

Inertia - “Why change when what we have now works OK?”

Fear of risk - “What if it doesn’t work?”

Managers who feel threatened if existing design systems are rendered obsolete

Barriers between departments or divisions - resistance to integration

Engineers who feel that they will be “automated” out of a job

“We are so busy we don’t have time to consider anything new”

Natural skepticism of engineers - “It sounds too good to be true”
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However, There Is Hope…

	As has been also been noted throughout history, it is possible to implement change…



Recall Charge Babbage’s comment on the English mind (i.e. the skeptic):

	“Propose to an Englishman any principle, or any instrument, however admirable, and you will observe that the whole effort of the English mind is directed to find a difficulty, a defect, or an impossibility in it. If you speak to him of a machine for peeling a potato, he will pronounce it impossible: if you peel a potato with it before his eyes, he will declare it useless, because it will not slice a pineapple…” 

And here is the completion of that comment:

	“…Impart the same principle or show the same machine to an American or to one of our Colonists, and you will observe that the whole effort of his mind is to find some new application of the principle, some new use for the instrument.” 

	- Charles Babbage (1791-1871)
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We must all embrace the pioneering spirit of the early 19th century and use it to forge ahead into the frontier of the 21st! 
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Addressing the Skeptic

If an engineer or manager expresses skepticism, or says “our products are so good there is no need for improvement,” ask him these five questions:

Does the product operate at 100% efficiency and reliability?

Can you design it in zero time?

Can you make it at zero cost?

Can you make it in zero time?

Do you have 100% market share?

If the answer to any of these questions is “No,” then there is room for improvement through automation and optimization!
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“Nobody will fly for a thousand years.” 

-- Wilbur Wright, 1901 

Two years before Orville’s first successful flight 

Do Not Let the Skeptics Deter You!
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Steps to Successful Implementation of
an Automated Design Environment (1 of 2)

Have confidence that it can be done!

Remember that design automation/optimization is a proven technology that has been successfully implemented on a large scale in many global gas turbine companies such as GE Aircraft Engines, Honeywell, P&W, Rolls-Royce, and Siemens

These systems have been tested by hundreds of skeptical engineers worldwide

Significant benefits have been reported - $M’s saved, 10X cycle time reduction, improved performance, increased market share

Understand the landscape and set the stage for success

Identify champions to lead the effort – the “pioneers” - at multiple levels and in multiple functions, including manufacturing

People with the “vision,” energy, and will to build a better design process

Engineers and first line managers who are willing and eager to lead the charge

VPs who can write the checks and dedicate the resources

Identify the resistance. Sometimes management must make it happen by fiat to overcome entrenched resistance.

Find reasons to give everyone a stake in the success – appeal to their own self-interest

The success of the champions will gradually overcome the negativity of the resisters, who will finally realize they must get aboard or be left behind.
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Steps to Successful Implementation of
an Automated Design Environment (2 of 2)

Dedicate resources

Dedicate resources to focus on implementation without other distractions

Management must encourage and engage the engineers – the principal users – to be part of the solution, to use their critical thinking skills to define and improve the design process and build the system

Build the system

Define the design process! (Companies that are ISO 9000 certified have already done this)

Develop a roadmap for implementation and get first line and VP-level management buy-in

Think big, but start small! Do not try to do too much all at once. Start with a part of the overall process that produces significant pain, but that can produce a big gain if addressed, such as preliminary design or airfoil aerodynamic design.

Take a “building block” approach - bring in one block at a time and add more as successes are achieved and you develop confidence in the system.

Fix flaws in your simulation codes, processes, and network as they are discovered, and examine your design rules and constraints to make sure they make sense.

Be flexible and willing to modify your process and optimization strategy as the system helps you explore your design space.

Communicate successes

Communicate success stories to multiple levels as widely as possible as soon as they occur to build management support for future success.
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	To ensure that the best possible products enter the marketplace, the engineers of the future will be managers of advanced technology, and not just number crunchers.

They will be knowledgeable in multiple disciplines

They will understand the entire design process and 

	the interactions between all of its elements

They will assemble the right tools and computing resources from many available sources through web-based networks

They will understand the entire product lifecycle and its economics, from design to manufacturing to service in the field

They will work with many suppliers and outsourcing contractors

They will have a good understanding of the underlying physics to be able to assess the validity of design solutions

They will be proficient in multidisciplinary design optimization

17

The Engineer of Tomorrow – 
A Manager of Advanced Technology
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Closing Comments

“It is not the strongest of the species that survives, nor the most intelligent that survives. It is the one that is the most adaptable to change.” 

	– Charles Darwin (1809-1882)



As engineers, it is incumbent on all of us to be the agents of change – the pioneers – within our companies, to ensure that we develop the most efficient, reliable, cost effective, and clean gas turbine engines to meet the needs of our customers, to contribute to the security of our countries, and to improve the health of our planet.
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jack.cofer@3ds.com

Thank you!
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Future developments

TOOLS



Multi-objective optimisation - Robustness

High fidelity CAD parametrisation

Surrogate / Metafunction model ? Approximation method ? POD (PCA) techniques ? Several in parallel ?

Improved convergence of GA : optimal parameter setting

Hybrid search technique

DoE : space filling techniques, multiple DoE in parallel

MDO integrated in robust design and automated process



Tools + Skills + Processes



In complex systems, helps the designers & helps in identifying the important parameters

Open innovative design options / Exploration of new solution spaces

But needs to capture the expert know-how

Define clearly the design process

Cost models + reliability models + value analysis



Next



Automatic generation of preliminary design data

Integrated multi-discipline process optimisation
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Was it useful for you and your company?

What do we need to change to make it better?
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Introduction
4Blade Design Objectives


• To reduce costs and development times for blade design
Target : 20% reduction for detailed blade design timespan of new turbo engines project


• To improve qualities of HPC blade design
responsible for better operability and specific fuel consumption (SPC) :


+1% HPC efficiency ~ -0.7% SFC


è Challenging in multi-disciplinary design such as HPC blade design
High aerodynamic performance : efficiency, stall margin
Mechanical constraints : operating lifetime (control of vibrations and stress margins)


è Antagonistic Objectives


A Solution :
Introduction of Multi-disciplinary Design


and Optimization


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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HPC Blade Design
4Old blade design process:


• Sequential, mono-disciplinary, several blade geometries (mechanical sections, 
aerodynamic sections, CAD 3D geometry…) 
è Unadapted to the introduction of integrated multi-disciplinary design 


Introduction I.


HPC blade design process II.
GAP III.


HPC blade Optimization IV.
Conclusion V.
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HPC blade design
4New blade design process


• Parallel, multi-disciplinary, one common surfacic blade geometry
è Ready for the introduction of automated Multi-Disciplinary Optimization


Introduction I.


HPC blade design process II.
GAP III.


HPC blade Optimization IV.
Conclusion V.
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Surfacic blade design
4Interpolation of blade surfaces


• From initial sections of points, TurboGeom creates a surfacic blade with smoothing 
possibilities and curvature continuity at leading & trailing edge between suction and 
pressure side.
• NURBS is selected for its abilities to generate high quality surfaces
• B-spline objects are compatible with CAD commercial Tools (CATIAV5)


Introduction I.


HPC blade design process II.
GAP III.


HPC blade Optimization IV.
Conclusion V.


Example of 
surfacic blade in 
TurboGeom 
tools


We also can 
compute blade 
camber-line, 
interpolate 
annulus and 
computing fillet


Blade 
surfaces are 
exactly the 
same objects 
in these two 
CAD tools
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Surfacic blade design
4Blade model : SuMo


• Efficient blade modification  
è Few Optimization parameters because of parameters based on design


è Few Optimization parameters because of delta modification


è Common blade shape modeling for aero and mechanical engineer


Introduction I.


HPC blade design process II.
GAP III.


HPC blade Optimization IV.
Conclusion V.


Scalar parameters on aero sections (based on flow path line)


Axial and tangential stacking line of the blade
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Blade Optimization 
4Strategies


• Direct Optimization 
- Stochastic optimization (evolutionary, PSO, simulated annealing…) is too expensive


if directly used because of computation cost due to NS3D stage calculations
- Gradient  computation is only local and efficient with adjoint techniques


• Using Surrogate Model
- Many surrogate model available : Response Surface model (polynomial), Kriging, Artificial 
Neural Network, Radial Basis Function ...


è Possibility to use all optimization algorithm with a surrogate model because the cost of 
function evaluation is nearly free 


• Surrogate model selection : Multi-layer Perceptron
- Abilities to fit non-linear function with few sampling data with regards to parameters number 
- Qualities for generalization


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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GAP 
4Global Assimilation Process


• 3 layers neural network with supervised training phases 
• Several regularization techniques to assume generalization qualities :


- Weigh factors take bounded values
- Optimization of the number of neurons in the hidden layer


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.


:  input parameters


:  response of the ANN


with :
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GAP and Optimization
4On-line trained metamodel integrated into optimization


4Modular Program 
• Selection of  optimization algorithm (gradient-based, evolutionary) and of the strategy to update the 
ANN for each iteration.


4Two usual Optimization strategies (phase 1+2)
• Smooth approximation to avoid local minima then multiple gradient optimization to reach the optimum
• Accurate approximation everywhere with control of over-fitting then global optimization


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.


: Initial input sample


: Result of Optimization using ANN 


: Exact output evaluation of X*


: ANN evaluation of X*
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GAP and Optimization 
4New strategies for ANN update (phase 3)


• Essential to algorithm performance to select best point:
- to avoid oscillations in the approximation quality as new experiment is added
- to speed up convergence specializing ANN close to optimum 


• Trust domain


• A better distribution of successive optimum


• Selection of the maximum of the function to catch 
global tendencies


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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GAP and Optimization 
4Analytical Example


Rastrigin function :


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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New Blade Optimization Process
4New tools for compressor blade design process


4Aerodynamics and mechanical Modelling


Introduction I.
HPC blade design process II.


GAP III.


HPC blade Optimization IV.
Conclusion V.


• One stage : rotor & stator


• O- 4H topology


• 2 M cells


• Init pressure field to
speed up the convergence


• Super-Element of Disk 


• Cyclically symmetric 
approach and several 
diameter numbers taken in 
account


• Crossing between high 
frequencies and harmonics  
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Optimization objectives
4Aerodynamics Optimization under mechanical constraints


4Constraints


Introduction I.
HPC blade design process II.


GAP III.


HPC blade Optimization IV.
Conclusion V.


Objective Constraints
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Optimization results
4Parameters and algorithm


• Xg, Yg : blade stacking, Chord and maximal thickness with 4 degree of freedom to 
control every delta law


4Optimization strategies


4Convergence
• GAP V1 :  KO


Do not respect mechanical constraints 
while improving efficiency è approximation do not
predict frequencies margins precisely enough 


• GAP V2 : OK
Best result at iteration n°16


Introduction I.
HPC blade design process II.


GAP III.


HPC blade Optimization IV.
Conclusion V.


Regularization Input 
layer


Output
layer


Hidden 
layer


Initial learning 
data


Pair for 
generalization


Number of
added experiments


GAP_1 YES 16 10 7 32 2 25


GAP_2 NO 16 10 7 40 0 25
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Optimization results
4Aerodynamic improvement


• forward sweep 
• local positive lean at casing


improve  
• efficiency : +1.2% at DP
• surge margin : better numerical 


stability


Introduction I.
HPC blade design process II.


GAP III.


HPC blade Optimization IV.
Conclusion V.
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Optimization results
4Mechanical constraints 


• Balancing of sweep effect 
on static mechanical stresses 
with new chord and thickness 
laws


• Frequencies margin evolution Static maximal stress evolution


Introduction I.
HPC blade design process II.


GAP III.


HPC blade Optimization IV.
Conclusion V.
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4Introduction


4New High Pressure Compressor (HPC)  blade design process


• New HPC blade design process 


• Surfacic blade modeling


4An efficient optimization algorithm : GAP


• GAP principles


• GAP improvement


4HPC blade Optimization at Snecma
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Conclusion
4Promising results


• Optimization of a HPC rotor Blade : gain of 1.12% on efficiency preserving others initial 
off-design aerodynamic characteristics and improving dynamics margins 


• Validation of new automated blade design process with modern and efficient CAD, 
analysis and optimization algorithm tools


4Work in progress to improve current design 
• Initial DOE becomes an adaptative sampling with an automated identification of sensitive 
parameters to improve quality of first metamodel iteration èseveral possibilities :


* Identification of area with biggest error on approximation (like Krigging approach)
* Adaptative sampling strongly linked with interpolation techniques such as Sparse Grid


Example of adaptative 
Sparse grid interpolation


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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Conclusion
4Work in progress to improve current design 


• Multi-Objectives Optimization for several rotor speeds 


4Future work around blade optimization
• Optimization with multi-fidelity approach


- Combined use of several metamodels and direct evaluation with optimization algorithm
adapted to the management of the two levels of function evaluations.


- Combined use of several physical models with a low fidelity model (e.g. : Euler equation,
NS3D with analytical wall function), serving as “metamodel”, and a high physical fidelity
model and management of interaction between the two levels


• Adjoint method for turbomachinery application in order to compute gradient
information with few computing time, independent of parameters number


• Introduction of Robust Design to take in account the uncertainties on boundary
conditions and geometrical tolerances


Introduction I.
HPC blade design process II.


GAP III.
HPC blade Optimization IV.


Conclusion V.
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Reducing costs and development times are two of the main challenges for aircraft engine 
designers. In particular, multi-disciplinary design is a very time-consumming process. 
Effectively this kind of design must solve antagonistic objectives handled by different specialists 
and it is often a challenge to converge towards a satisfying trade-off between disciplines within 
the planned timespan. 


Here we describe different complementary methods based on high pressure compressor 
(HPC) blade design. We have developed a new common geometrical model and a fully 
automated aerodynamic and mechanical design process which enables us to carry out multi-
disciplinary optimizations with powerful algorithms.


The methodology available with these new numerical tools has been successfully applied to 
the design of the first stage of a HPC at Snecma. Promising results validating the gain provided 
by this approach are then discussed and compared to HPC blade design common experience.


Nomenclature


ANN = Artificial Neural Network
CAD-CAM = Computer Aided Design and Manufacturing
DOE = Design Of Experiments
FEA = Finite Element Analysis
GAP = Global Assimilation Process
HPC = High Pressure Compressor
LE / TE = Leading / Trailing Edge 
MDO = Multi-Disciplinary Optimization
NS3D = Navier-Stokes 3D
NURBS = Non Uniform Rational B-Splines
SM = Surge Margin


iβ = fluid inlet/outlet angle


Ω = rotor angular speed
m& = mass flow
η = isentropic efficiency 
Π = pressure ratio
σ = Von Mises stress
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I. Introduction


With the improving performance of both computers and numerical methods, parametric optimization is now 
often introduced in the design cycle of simple isolated parts.  However, optimization remains difficult to use in the 
case of multi-disciplinary and complex design such as HPC blade design. Effectively this design is still a complex 
iterative process with several goals to reach  – mass flow, pressure ratio, efficiency, stall margin, operating lifetime–
which requires highly expert skills in the associated disciplines: aerodynamics, mechanics and thermics. 


Consequently, we cannot optimize directly all standard design parameters of each discipline because they would 
be too numerous in the context of industrial design cycle. Moreover, we must transform the current process, 
independant aerodynamic and mechanical optimizations, into a parallel and integrated process by introducing a cost 
function relevant with a multi-disciplinary approach. Finally we have to solve complex coupled non-linear 
optimization problems.    


Snecma is involved in two complementary projects to overcome these difficulties.
The first one deals with the improvement of the iterative design process. We have succeeded in providing a new 


common definition for blade geometries based on a continuous surface, better than the previous definition based on 
sections, and a new designer-friendly blade modeler which simultaneously takes into account aerodynamic, 
mechanical and manufacturing constraints. The development of this parameterized model is the first step for  the 
introduction of a new multi-disciplinary HPC blade design process.


The second project should help us to reach two ambitious goals : to provide fast and robust optimization 
algorithms using up-to-date mathematics, then to demonstrate design cycle time reduction and innovative concept 
development using these algorithms on industrial cases. Among the identified cases, the improvement of HPC blade 
design was one of the most challenging due to the antagonisms between aerodynamic and mechanical criteria.    


In this paper we will first describe the new blade modeling strategy and  its introduction in the newly adapted 
HPC blade design process, then we will focus on a particularly efficient optimization algorithm developed by the 
Mathematical Institute of Toulouse (IMT) based on an artificial neural network (ANN). In the third part we will 
show how these new tools can help designers improve directly aerodynamic and mechanical performances with the 
presentation of a HPC blade aerodynamic optimization under mechanical constraints. 


II. A new blade model


A. Introduction of a common blade definition
The previous standard blade geometry definition was “discrete”: the blade was described by several sections, 


either plane or linked to a flow path, in the form of lists of points. This definition comes from the first step of 
aerodynamic compressor blade design. Effectively to match pressure or Mach number distribution along streamlines 
imposed by the first 2D performance computation, we use a 2D inverse method which gives sections.


Although this description with points is simple to use, it has several disadvantages for the next step of the blade 
design. The main problem is its non-continuous definition : between sections, the blade geometry is dependent of the 
interpolation algorithm used in CAD-CAM tools. Another default is the lack of bijection between a blade defined by 
plane sections, used by mechanical designers, and a blade defined by aerodynamic sections, introducing 
discrepancies in the long iterative design process. 


Consequently, we decided to replace the section-based definition of the blade by a unique mathematically 
rigorous surface. The same object is handled via this new standard definition throughout the various phases of the 
process. The selected format, NURBS, allows to describe complex geometries and is implemented in most CAD 
tools and in particular CATIAV5, the CAD-CAM software selected by Snecma.


A Snecma in-house tool, TurboGeom, creates the NURBS surfaces from initial sections, using the global 
interpolation method described in Ref. 1 and, optionally, a smoothing algorithm to avoid potential oscillations. This 
results in a unique blade definition described by two high quality surfaces, the suction side and the pressure side,  
with tangential continuity along the LE and TE (cf. Fig 1).


Introduction of Multi-Disciplinary 
Optimization in Compressor Blade Design  


 


19 - 2 RTO-EN-AVT-167 


 







Figure 1. Blade NURBS Surface in TurboGeom


Now mechanical and aerodynamics designers use the same blade definition in their own design iteration.


B. SuMo : the Surfacic Modeler
As all designers will work on the same surfacic blade definition, we must give them possibility to modify it. 


Moreover, for the modeler to be used in optimization processes, it must integrate a clever parameterization that 
respects geometric constraints to obtain a continuous design domain and limits the number of variables to control the 
blade surfaces.


These are the two main ideas which drove the development of SuMo. Consequently, SuMo is a modeler based 
on well-known design parameters rather than a purely geometrical modeler. It allows to modify an initial blade 
surface created with TurboGeom through 2/3D delta laws defined by designer. Figure 2 explains how SuMo works 
with low compressor blade example.


 


Figure 2. SuMo description
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The available parameters include 2D parameters like the inlet and outlet solid angles, the stagger angle, the 
center of gravity, the chord, the maximum thickness and its position. 


C. Improvement of compressor blade design process
The design of a compressor blade is currently performed through so-called “aero-mechanical iterations”. In 


practice, the goals of mechanical design - low stresses to increase operating lifetime - and aerodynamic design -
pressure ratio and mass flow - often lead to opposite designs. For example aerodynamically, thickening the blade 
introduces flow losses while it improves mechanical behavior as long as mass does not increase too much.   


The old design process was iterative and manual (cf. Fig. 3a). It implied numerous iterations and at the end 
engineers had to reach a compromise between performances in the different disciplines. Furthermore, the lack of a 
single model hindered exchanges of blade geometries between engineers during the iterations. 


With the new tools described above we can propose a simplified parallel process which makes exchanges easier 
between the different design disciplines and introduces multi-disciplinary optimization (cf. Fig. 3b). The first step of 
this new process is performed with TurboGeom in order to create the initial  blade surface, then designers use SuMo 
to modify blade surfaces during the optimization loop.


Another improvement is to do with the treatment of blades geometry depending on the rotational speed of the 
module which they take part. A compressor blade with a thickness to chord ratio inferior to 15 % is subject to major 
deformations between its “cold” or manufacturing geometry and its “hot” or cruise geometry which corresponds to a 
high rotor speed . The link between “cold” and “hot” geometries is complex and was one of the causes of divergence 


Figure 3a. Description of the old iterative process


 
Figure 3b. Description of the new parallel process
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between mechanical and aerodynamic designs. Thanks to recent progress in the Samcef solver2, Snecma has succeed 
in computing the “cold” geometry from the initial “hot“ one in only one inverse non-linear computation.


The second advantage of this new process is due to the natural introduction of  a multi-disciplinary compromise 
during design which speeds up and improves the final result because iterations converge faster towards an 
equilibrium between opposite goals (cf. Fig. 4).      


III. Efficient optimization algorithm


A. Artificial Neural Network for optimization
Many optimization strategies proved their efficiency in aerodynamic or mechanical blade design3, 4. We can 


divide these strategies into two groups. The first strategy tries to optimize the problem directly by computing the 
cost functions on the whole numerical model for each iteration, whereas the second strategy uses a surrogate model.


In industrial multi-disciplinary blade design, a direct optimization using 3D detailed model would take too long 
in computing time and it could only be efficient using a linearized model provided by adjoint techniques. This 
method is not yet validated for low-Reynolds flows even if many studies underline interesting progress5.


Surrogate model approach has at least two major advantages. It allows the use of powerful optimization 
algorithms as computing time does not increase highly with the number of objectives evaluation because they are 
computed analytically using the surrogate model. What is more with this strategy, designers can still learn about 
correlations between parameters and objectives post-processing the surrogate model even if the final result of the 
optimization does not satisfy them.


Building a surrogate model is an open problem with many algorithms available: response surfaces, artificial 
neural networks (ANN), polynomial regression, kriging, multivariate adaptative regression splines, radial basis 
functions6. Interesting properties of these models should be their ability to efficiently detect sensitive parameters and 
to catch  global non-linear behavior starting from a linear number of initial sample points with regards to the number 
of parameters.


In the last decade, ANN have become one of the most popular solutions because of their properties regarding 
these two major characteristics.


B. GAP : Global Assimilation Process
The IMT laboratory has developed a three-layer ANN (cf. Fig. 5), chosen for its quality of universal 


approximator in the case of continuous functions. The GAP software was initially programed during previous 
thesis7. It is characterized by a supervised training of the ANN based on a low memory Levenberg-Marquardt 
algorithm using the forward and reverse modes of the algorithmic differentiation. It also combines several 
regularization techniques to assume generalization qualities. 


This last point is particulary important because it enables a better training of the ANN avoiding over-learning 
and  local minima attraction which are common problems with these kinds of algorithm.


Figure 4. Advantage of multidisciplinary
integrated process


Introduction of Multi-Disciplinary 
Optimization in Compressor Blade Design 


 


RTO-EN-AVT-167 19 - 5 


 







Using this metamodel, an iterative process with successive optimizations on an ever improved neural network is 
carried out. This idea has been validated as a pertinent way to optimize aerodynamically a blade design for the last 
five years8, 9. 


The  basic diagram of this process is shown on the following scheme :


We use GAP in a modular way to keep the possibility to modify how we will use the three phases of the process: 
learning, optimization and improvement. Effectively, we can change the algorithm of optimization phase or the 
strategy of ANN improvement.  


For example a first possibility adds regularization during the successive neural network training mixed with 
gradient-based algorithm for the optimization phase. In this manner we obtain finally an approximated model 
catching accurately the cost function close to the optimum and only the global tendencies of the function in the other 
parts of  the design domain. The idea behind this strategy is to learn only what interests us which minimizes the 
number of real function computation. The figure 6 shows the result of such an approach. We can remark that the 
final model fits the trend of the parabolic Rastrigin function without following the finest variations introduced by the 
cosinus which may simulate function local minima or even numerical noise due to remeshing. 


In a second way, we will try to learn as much as possible about the problem everywhere in the design domain 
then we optimize on this precise approximated model with a genetic algorithm to catch the global minima. This 
method generally needs more points than the previous approach, but we can monitor in real-time its generalization 
abilities with a measurement process such as cross-fold validation10 to verify that we have not overfit the data. This 
is the main risk with this approach whereas the previous strategy can sometimes miss interesting local behavior. 


Figure 5. Description of a three-layer neural networks
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The possibility to easily combine several validated elementary algorithms is a major gain for Snecma because we 
no longer need to store and support a large number of black-box algorithms each with their own specificities. On 
contrary we have built an efficient optimization toolbox usable for all optimization problems.  


C. Improvement of GAP for blade design
From the initial GAP software, recent work11 handles the improvement of the optimization step in GAP in the 


context of the first methodology described above, regularization and gradient optimization. 
This recent work adds three algorithms to speed up the convergence of the optimization: 
§ domain control adaptation,
§ point stacking escape,
§ introduction of a maximum of the cost function during optimization  


1. Domain control adaptation
The optimization method developed in GAP for the gradient optimization approach starts with a small DOE 


whose size is proportional to the number of parameters. Thus we limit the risk of being quickly caught in a local 
optimum, but unfortunately this slows down the second iterative phase of the optimization. 


To remedy this problem, we introduce an adaptive strategy to narrow the design space. If two successive optima 
do not vary with regards to a particular parameter, we will reduce the initial range of this parameter and similary an 
abrupt variation related to one parameter will increase the research domain size for this parameter, obviously 
without extending the initial domain limit. 


The idea, inspired by trust region methods12, is therefore to progressively reduce the range of those parameters 
that have no influence on the optimization process.


Figure 6. Example of optimization with GAP on Rastrigin function
using domain control adaptation
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2. Point stacking escape
As we near convergence during the gradient optimization phase, the last points accumulate and this limits 


precision of the ANN which loses its generalization abilities. Consequently a geometry-based method substitute a 
new point for the optimum result of the running iteration. This new point respects two constraints: to be in a sphere 
centered on the computed optimum with a radius which is a parameter of the algorithm and to be as much as 
possible at equal distance of the optimum of the previous iteration.


This method prevents the final loss of generalization when we are close to convergence and reduces significantly 
the distance between the optimum of the objectives and the final point given by the algorithm.


3. Introduction of maximum solution during optimisation
The Tabu search, introduced by F. Glover in the late 80’s, is an heuristic local search method used to solve 


complex problems. The aim of this method is to accept to sometimes follow an unexplored and unpromising 
direction to escape from local minima. 


In the Gap optimization phase, we translate this idea by adding a point with a high value on top of the optimum 
for the successive training of the neural network. This maximum is computed only in domains where the ANN has 
few information. 


Consequently, we improve the knowledge of the global tendencies of the problem which will speed up the 
convergence of the optimization process.


D. Results : Optimization improved with new algorithms
We have carried out many tests on analytical functions in order to validate the different methods presented in 


§3.2. Here we will detail our results. We compare the error on the exact optimum of the function for each algorithm 
for a fixed number of  function evaluation.


Test functions used are:
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In Table 1, M1, M2, M3 and M4 represent:
M1 is initial optimization method with regularization and gradient optimization,
M2 = M1 + improvement strategy: domain control adaptation,
M3 = M2 + improvement strategy: point stacking escape,
M4 = M3 + improvement strategy: introduction of maximum solution during optimization 


We observe in Table 1 that these strategies provide a significant improvement of the accuracy of the function’s 
optimum for a fixed number of evaluations. In the same way, if we reverse the problem and work with a 
convergence criterium, the method M4  will need fewer function evaluations than method M3 to reach the optimum.   


Table 1 : Analytical results for different strategies
(*) Gain (X %)  is calculated with formula: (M1 – M{2,3,4}) / M1
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4. HPC Blade Optimization 


A. Building optimization process
The strategy for parametric optimization at Snecma is generic. We divide it into four steps :
§ Identification of standard design process to automate
§ Creation of the identified workflow and dataflow in the Optimus platform
§ Choice of objectives, constraints and parameters
§ Selection of the best adapted optimization algorithm to explore the design space and carry out 


optimization and/or robust design.
Thus we do not attempt to develop specific numeric analysis tools which would not be used for the standard 


design.  However  this decision drives our development program roadmap because we require for every numerical 
tools taking part of an optimization process to ever ensure this specification. 


Most of our design and analysis tools are therefore plugged into the optimization platform selected by Snecma, 
Optimus. This software, developed by Noesis (cf. Fig. 7), already includes drivers to connect with commercial FEA 
solver like Samcef or Abaqus and CAD platform like CatiaV5. Then Optimus provides all state-of-the art local, 
global, robust and multi-objective algorithms13 as well as the possibility to easy integrate our own algorithms such 
as GAP.


B. Description of multi-disciplinary optimization 
1. Introduction to Snecma HPC  blade design


HPC design is a challenging issue because of  its role in operability and specific fuel consumption and 
consequently the difficulties to provide high performance and stability assessment with efficient matching of the 
whole compressor stage without decreasing vibration and stress margins on components with high speeds.  The 
documentation on this subject is very rich and we suggest that interested readers refer to Ref. 14 and 15.


As we translate the new parallel process discussed in §2.3 with tools adapted to Snecma HPC design (cf. Fig. 8), 
we introduce the following program in order of appearance in the process : SuMo for blade modeler, Patran and 
Autogrid for mechanical and respectively aerodynamic pre-processing (mesh, boundary conditions), Samcef for 
FEA and elsA for NS3D solver, then several minor Snecma tools for post-processing and process integration.


Figure 7. Example of template and post-processing generated with Optimus
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For aerodynamic computation we use a periodic mesh with the standard O-4H topology with two million cells 
for the stage composed of a rotor and a stator (cf. Fig. 9). Effectively we do not use coarse grid to avoid optimizing 
unvalidated configurations providing wrong improvements that we would notice too late during the last validation 
phase. We also initialise the computation with the pressure field of the initial blade in order to reduce the number of 
iterations required to converge the NS3D computation for each experiment. 


For the mechanical computation we have the possibility to use a reduced model by introducing a super-element  
for the disk part (cf. Fig. 10) which is divided into periodical sectors using cyclically symmetric approach. This 
allows to take into account advanced dynamical criteria such as crossings between blade eigenfrequencies  and rotor 
harmonics for a wide frequency range.


Figure 8. Tools and process for HPC blade optimization


Figure 9. View of aerodynamic mesh for a full compressor stage
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Using a supercomputer, a single experiment comprising two NS3D computations and six dynamic and static 
mechanical computations for 2 diameters takes three hours. We have possibility to transform our sequential 
optimization scheme into a parallel one especially during the initial DOE phase which reduces the final computation 
time.   


2. Definition of the MDO problem
We have carried out many optimization attempts in order to validate the selection of sensitive parameters and of 


the best cost function to improve HPC blade design. In the next paragraph we present the results of an aerodynamic 
optimization under mechanical constraints for an HPC stage. 


We start from a rotor blade with good efficiency and mass flow characteristics while respecting most of the static 
or dynamic margins. The aim of the described optimization is to improve efficiency at the design point, close to the 
operating line and for cruising speed, but in a multipoint  strategy. Effectively it is very important to be convinced 
that all the forget constraints would be taken by the optimizer like some degree of freedom for its research. 
Consequently we will face to unexpected changing at the end of  the optimization process for the function we would 
not have add to constraints.


Let’s precise the optimization problem :
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with  DS = Design Space, DP = Design Point, SM = Surge Margin and SDR = Snecma Design Requirement
 ∆ = blade displacement and ∆ i N_ freq j = margin between ith rotor harmonic and jth blade eigenfrequency


The constraints are drawn on the following characteristic graph of the stage (cf. Fig 11a) and rotor blade 
campbell diagram  (cf Fig 11b). 


Figure 10. Validation of disk SE (left) with example of high frequency stripe blade mode
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Aerodynamic constraints must force the initial characteristic to be at least preserved for all off-design point.   
Although it is mainly an aerodynamic gain we are seeking, we will not change specific aerodynamic parameters 


such as 1β , 2β for the two following reasons : initial blade was already optimized with regards to these parameters 
and they do not have any influence on mechanical criteria whereas we also have to improve dynamic margins.   


The optimization process will consequently modify four parameters on the rotor blade : position of sections’ 
center of gravity, also called blade sections’ stacking, to give lean and/or sweep effect on blade, then chord and 
thickness. The stator is not modified. Every parameter is controled with four variables along the height of the blade. 
At the end we move 16 parameters to optimize the rotor 3D geometry.


C. Results
We have summarized values of the criteria for the initial blade in table 2. Aerodynamic criteria are normalized 


value and mechanical are given with their distance in percent to the Snecma Design Requirement. If the value is 
negative, we do not respect the criterium. 


Table 2. Criteria value of initial blade
We test the two strategies described in §3.2 on this problem with parameters indicated in the table 3. 


Table 3. Gap parameters


1. Gradient on regularized ANN (GAP_1)
This approach gives good results for isolated mechanical problems like bend momentum balancing but in this 


case we do not succeed in improving efficiency respecting all the constraints whereas we obtain good quality of 
generalization for the objective as graph on optimum prediction error shows (cf Fig. 12). In fact the main difficulty 
for GAP with this problem has been to regularize mechanical constraints because these are the output with the 
maximal prediction error. Consequently the iterative gradient optimization phase on the ANN drives us in direction 
of unacceptable design area where frequencies and maximal static stress constraints became all violated. 


 
 Figure 11a. aerodynamic constraints b. dynamic constraints
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Figure 12.  Error of the ANN predicted optimum for efficiency at design point


2. Evolutionnary algorithm on ANN (GAP_2)
With the second strategy, the differential evolution algorithm (DEVO) available in Optimus is launched on the 


ANN with a population size of 160 and high crossover probability (0.85) because previous local and GAP 
optimization showed us the non-linearity of the problem. We fix the maximum number of population for the DEVO 
at 100.


Within this approach, ANN catches both the non-linearity behavior of the second bending and of the first torsion 
modes. We obtain at the 16th iteration a promising new geometry which respects all the mechanical criteria even the 
two which were KO for initial blade (cf. Table 4). 


Table 4. Results of optimum new blade
As often the objective is worse than the initial in the first iterations because ANN has not learned yet everywhere 


with precision whereas with global algorithm we explore all the design space. However, after ten iterations, it 
matches enough the design point efficiency to ever find an optimum with great improvement with regards to initial 
geometry (cf Fig. 13).  


We gain at the selected iteration more than 1% on design point efficiency which is a very interesting result close 
to the final result of a classical design cycle. Moreover we obtain it with only one optimization which takes 5 days 
and involved 140 full NS3D computations of two rows.     


The final geometry was slighty different from the initial one (cf. Fig. 14 a) and all the parameters have 
moved during the optimization process as we can see with the 4 chord laws drawing at different iterations (cf. Fig. 
14 b). 


Figure 13. Convergence graph
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Figure 14 a. Optimum law for parameter Epmax                       b. Chord law variation


Chord parameter influences all the criteria but especially frequencies margins and maximal static stress value. 
We can notice it was a very active constraint for this optimization to respect both the frequency margin between the 
6th rotor harmonic and the 2nd rotor blade eigenfrequency, •6N_F2, and the •6N_F3. Their antagonistic behavior is 
clearly shown on figure 15a where we can count only 8 experiments out of 25 which respect the two required 
margins. Effectively, it was difficult to get a more softness blade for the 2nd eigenfrequency blade, first torsion 
mode, while keeping the second bending mode stiff enough. However the optimum selected ensures the respect of 
the margin around the 6th harmonic for rotor speed superior to cruise speed. We still keep a 6N_F2 crossing for an 
idle speed which is not fully satisfying but anyway we have improved the initial status (cf. Fig. 15 b).


Another major difficulty deals with the value of maximal static stress on the blade. Effectively the new optimum 
rotor blade have pronounced forward sweep and local positive lean at casing which are well-known as acting 
positively on efficiency and surge margin. But at the contrary, it is also an origin of static overstress because it 
increases, under the effect of centifugal forces, the tensile stress of the suction side which is obviously very negative 
for the operating lifetime. The new chord and thickness laws provided by the optimization balance the effect of the 
new stacking laws enough to finally respect this static mechanical criterium (cf. Fig. 16). 


Now if we focus on the aerodynamic gain, we observe two major improvements on the performances of this 
stage.  


Firstly we have increased polytropic efficiency more than one percent at the design point very close to the 
maximal efficiency point (cf. Fig 17a). If we detail this gain, we notice on the radial efficiency distribution (cf. Fig. 
17b) that the improvements are located in the middle of the blade. 


Figure 15a.   6N_F2 & F3 margin during optimization b. Campbell diagram of optimum blade 
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Drawing the isentropic mach number along the chord for a section with a radius of 40% of the total blade span 
(cf. Fig. 17c), shows us a better smoothing of the Mach distribution as well as a reduction of the Mach number in 
front of the passage shock which explains why the losses have dropped.  


Secondly, the compressor stability seems to be better. Effectively, we have also increased the numerical stall 
margin (cf. Fig. 17a) which is a major point for compressor operability. Indeed the compressor have better abilities 
to accept low mass flow condition.


 
Figure 17a. Mass flow against b. Radial isentropic efficiency  c. Isentropic mach number – 40%


polytropic efficiency distribution


In the figure above, we also indicate the results of a direct gradient-based aerodynamic optimization, local 
optimization in the legend. With this optimization, we have achieved less than half of the efficiency gain of global 
optimization. No improvement was introduced close to surge point and moreover we had not taken in account the 
mechanical criteria in this optimization which were absolutely not respected as we finally verified. It emphasizes the 
great progress provided by the introduction of this multi-disciplinary optimization process associated to ANN.


5. Conclusions 
In this article we demonstrate how the improvements of the blade geometrical definition and of the process 


design are necessary in order to implement powerful multi-disciplinary optimization schemes. A highly efficient 
optimization algorithm developed in collaboration with the IMT Laboratory provides interesting results to reduce 
design cycle time and to obtain a better design respecting  all constraints. 


Figure 16.  Maximal blade stress during optimization
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Especially on the example selected, we notice how the optimization algorithm can greatly help engineers to find 
the optimal compromise between many objectives and constraints. Even if we already know the physical effect of 
the proposed optimum geometry in the separated disciplines, it is very difficult for engineers to qualify exactly the 
influence of each parameter in order to reach a geometry as interesting as the optimum found with the multi-
disciplinary scheme. It must also be underlined how important the physical review of the optimization results is, to 
discuss their validity and to allow experience feedback for design.  


Many complementary methods will be studied to continue this multi-disciplinary optimization project. 
Firstly, we must work on the algorithm. In particular, we will focus on the possibilities of making a better 


selection of the initial DOE data. The second aim of the thesis11 was to test the “sparse grid” numerical technique16


which leads to an adaptive selection of initial data points in order to improve the initial knowledge of the problem 
with a minimal number of expensive evaluations. This is promising work currently in progress. 


We will also naturally introduce in this multi-disciplinary problem a multi-objective approach such as well-
known Pareto front concept to estimate more accurately the trade-offs between several objectives. It would be 
especially dedicated to aeromechanical optimization of fan blades, which implies a multi-speed optimization to 
avoid flutter.


Another global direction of progress will be the reduction of computing time for each problem evaluation from a 
physical point of view, in addition to that provided by mathematical techniques such as metamodeling. This is called 
the multi-fidelity approach and consists in using lower-fidelity models. If they are well managed, they can perform 
the major part of the optimization with a lower computation cost. We also will test another way to reduce this 
computing time. Optimization for detailed level design needs ever more powerful and efficient computation means. 
Supercomputers will continue to increase their memory capacities and numerical tools will be more and more 
massively parallel but we can directly act on the optimization process to reduce computation time. For example an 
optimization management with a distributed asynchronous algorithm17 has recently shown its efficiency to speed up 
complex optimizations.


Further specific research studies are being currently carried out on the validation of an adjoint method linked to a 
gradient-based algorithm for low-Reynolds configurations which should be the next breakthrough for blade 
aerodynamic optimizations on turboengines. Effectively this would lead to major reduction of the blade shape 
optimization time as it has been demonstrated for airplane wings over the last decade.  


Finally, the introduction of robust design  is launched in parallel of this optimization project that will answer to 
the future norm which will oblige engineers to provide a secure margin assessment for each design validation. 


The future studies at Snecma detailed in the paragraph above are far from scanning all the work in progress in 
the field of multi-disciplinary design optimization. Others interesting ideas are described generally in Ref. 18 and in 
Ref. 19 which detail nearly all the promising new algorithms.
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