
Multiple Detection Probabilistic Data Association
Filter for Multistatic Target Tracking

Biruk K. Habtemariam, R. Tharmarasa and T. Kirubarajan
ECE Dept., McMaster University, Hamilton, ON, Canada

habtembk@mcmaster.ca, tharman@grads.ece.mcmaster.ca, kiruba@mcmaster.ca

Douglas Grimmett and Cherry Wakayama
SPAWAR Systems Center Pacific, San Diego, CA, USA
grimmett@spawar.navy.mil, cherry.wakayama@navy.mil

Abstract—A standard assumption in most tracking algorithms,
like the Probabilistic Data Association (PDA) filter, Multiple Hy-
pothesis Tracker (MHT) or the Multiframe Assignment Tracker
(MFA), is that a target is detected at most once in a frame
of data used for association. This one-to-one assumption is
essential for correct measurement-to-track associations. When
this assumption is violated, the above algorithms treat the extra
detections as random clutter. When multiple detections from
the same target fall within the association gate, the PDA filter
tries to apportion the association probabilities, but with the
fundamental assumption only one of them is correct. The MFA
and the MHT algorithms try to spawn multiple tracks to handle
the additional measurements from the same target, assuming at
most one measurement came from each target. Both of these
approaches have undesirable side effects since they ignore the
possibility of multiple detections from the same target in a scan
of data. Such multiple detection situations occur in multistatic
tracking problems.

In this paper, we proposed a new Multiple Detection Proba-
bilistic Data Association (MD-PDA) filter for tracking a target
when more than one target originated measurement may exist
within the validation gate. In the proposed MD-PDA, combina-
torial association events are formed to handle the possibility of
multiple measurements from the same target. Modified associa-
tion probabilities are calculated with the explicit assumption of
multiple detections. Simulations are presented to demonstrate the
effectiveness of the algorithm on a single target tracking problem
in clutter. Extensions to handle multiple targets using the Joint
PDA, MHT and MFA approaches are under development.
Keywords: target tracking in clutter, multistatic tracking,
data association, probabilistic data association

I. INTRODUCTION

Tracking a target in clutter where it is unknown which of
the received set of measurements is originated from target
has been one of the most challenging issues. In the literature,
several techniques have been proposed for this data association
problem to identify target originated measurement from a
clutter [2], [4], [6], [12], [13]. Non-Bayesian, one-to-one
matching, hard decision oriented data association solutions are
the Nearest Neighbor Filter (NNF) and Strongest Neighbor Fil-
ter (SNF) [2]. As their names imply, the NNF updates a track
with the measurement closest to the predicted measurement
among the validated measurements while the SNF associates
the measurement with the strongest intensity.

The aforementioned data association techniques perform
well in terms of computation and estimation accuracy in a
scenario where the target return is very strong and the false
alarm rate is low. With degraded observability and dense
clutter such approaches begin to fall short. Under such con-
ditions, a more practical approach to deal with measurement
origin uncertainty is applying Bayesian association techniques.
One of Bayesian association approach is the sub-optimal
Probabilistic Data Association (PDA) filter [3], [4], [5]. The
PDA estimator avoids a hard association decision by updating
a track with a set of measurements and their corresponding
weights. In the PDA estimator the weight corresponding to
each validated measurement is calculated by assessing all
possible measurement-to-track combinations. As a result, the
weight assigned to a given measurement inside the validation
gate is the probability that it came from that track.

The PDA estimator is appropriate for single target tracking
problem. The Multiple Target Tracking (MTT) brings more
challenge to the data association as it has to be determined
which measurement belongs to which target besides iden-
tifying target originated measurement from a clutter. Thus,
the PDA has to be extended to handling multiple targets,
resulting in the joint PDA (JPDA) algorithm that can handle
tracking multiple targets by evaluating the joint probabilities
among the tracks and the measurements [13]. In addition,
the interacting multiple model is usually integrated to handle
target maneuvers in IMM-JPDA [7]. Furthermore, multiple
scan JPDA and multipattern algorithm have been developed
as an extension to the PDA [9], [15].

An alternative optimal Bayesian approach to MTT is the
multiple hypothesis tracker (MHT) [6]. MHT handles the
multitarget tracking problem by forming multiple hypotheses
and evaluating the likelihood that there is a target in a
given sequence of measurements. Although it is an optimal
approach, within few steps it will become computationally
infeasible. Hypothesis pruning techniques can be applied to
the MHT approach for practical problems at the expense of
optimality [10]. Another approach to the MTT problem is
Multiframe Assignment Tracker (MFA) [8] that models the
measurement-to-track association as a constrained optimiza-
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tion problem.
The assumption in most tracking algorithms, like the afore-

mentioned PDA, JIPDA, MHT or the Multiframe Assignment
Tracker (MFA), is that a target is detected at most once in
a frame of data used for association [6], [8], [12], [14]. This
one-to-one assumption is essential for correct measurement-
to-track associations. When this assumption is violated, for
example, when a target is detected more than once per scan,
the above algorithms treat the extra detections as random
clutter or tend to spawn multiple tracks for the same target.

Such multiple-detection situations occur in multistatic track-
ing problems. When multiple detections from the same target
fall within the association gate, the PDA estimator as well as
its multitarget version, JIPDA, try to apportion the association
probabilities, but with the fundamental assumption only one
of them is correct. The MFA and the MHT algorithms try to
spawn multiple tracks to handle the additional measurements
from the same target, due to the basic assumption at most one
measurement came from each target. Both of these approaches
have undesirable side effects since they ignore the possibility
of multiple detections from the same target in a scan of data.
A mechanism that accounts for the possibility of multiple
detections from the same target should be developed so that
all useful information from the received measurements about
the target state is extracted.

In order to rectify the above short coming, a new Multiple
Detection Probabilistic Data Association (MD-PDA) is pre-
sented in this paper. In the proposed MD-PDA, combinatorial
association events are formed to handle the possibility of mul-
tiple measurements from the same target. Multiple association
events are formed by creating 𝜑 out of 𝑚 combinations of
multiple measurements to track assignment, where 𝜑 is the
number of target originated measurements and 𝑚 is the total
number of measurements in the validation gate. The number of
target originated measurements can be used as a known prior
to determine the probability of detection condition on 𝜑, which
is 𝑃𝐷𝜑. For each association events, the probabilities will be
calculated and based on the probabilities a measurement or set
of measurements will be associated to a target.

The enhanced capability of the fusing all the information
from target originated measurements in the proposed MD-PDA
will manifest if the sensor data contains multiple detection
in a single frame. If the target is detected only once per
frame the MD-PDA filter cannot perform better than original
PDA. Simulation is done by generating multiple detection
measurements from a single target observed in a clutter.
MD-PDA performance is compared with the original PDA.
Performance evaluation results show the effectiveness, with
respect to estimation accuracy, of the proposed algorithm as
a result of taking the possibility of multiple detections into
account. However, the algorithm tends to take more time due
to increased number of association events. Similar extensions
to handle duplicate detections in the presence of multiple
targets using the JPDA, MHT and MFA approaches are under
development.

The remainder of the paper is organized as follows. Sec-

tion II discusses the multiple detection pattern. Models for
combinatorial events in the presence of multiple detection is
presented in this section. The new MD-PDA filter is presented
in Section III where theoretical developments of MD-PDA are
discussed. Simulation results is presented Section V, which is
based on a single target tracking in clutter. Finally, conclusion
is drawn in Section VI.

II. MULTIPLE DETECTION PATTERN

When multiple detections from the same target fall within
the association gate, a measurement or set of measurements
might be associated to a target. Data association uncertainty
with multiple detection can be resolved by generating a
multiple detection pattern. The multiple detection pattern will
consider all possible events for measurement-to-track associ-
ation.

Assume that the targets state evolves according to a dynamic
equation driven by process noise

𝑥(𝑘 + 1) = 𝐹 (𝑘)𝑥(𝑘) + 𝑤(𝑘) (1)

and the measurement equation by

𝑧(𝑘) = 𝐻(𝑘)𝑥(𝑘) + 𝑣(𝑘) (2)

where 𝑥(𝑘) represents target state, 𝐹 (𝑘) is the system transi-
tion matrix and 𝐻(𝑘) is the measurement matrix. 𝑤(𝑘) and
𝑣(𝑘) are white and independent system and measurement noise
respectively.

For 𝑚 number of measurement inside the validation gate
𝜑 out of 𝑚 association events are evaluated while 𝜑 runs
from one to the maximum number of target originated
measurements. This association event represent all possi-
ble events from single target originated measurement to
all of the measurements are target originated. For exam-
ple, as depicted in Figure 1, there are four measurements
(𝑧1(𝑘), 𝑧2(𝑘), 𝑧3(𝑘), 𝑧4(𝑘)) in the data frame. Out of four mea-
surements, three of them (𝑧1(𝑘), 𝑧2(𝑘), 𝑧3(𝑘)) are inside the
validation gate. Combinatorial association events are created
only for those measurements that fall inside the validation gate.
The maximum number of target originated measurement is
assumed to be 𝜑𝑚𝑎𝑥 = 3. Thus the possible events are:

∙ none of the measurements is target orignated

– 𝜑 = 0, 𝑛𝜑 = 1

∙ one of the measurements is target originated

– 𝜑 = 1, 𝑛𝜑 = comb(3, 1) = 1, 2, 3
– 3 measurement-to-track association events
– 𝑧1(𝑘) or 𝑧2(𝑘) or 𝑧3(𝑘) is originated from a target

𝑧1,1(𝑘) = 𝑧1(𝑘) (3)

𝑧1,2(𝑘) = 𝑧2(𝑘) (4)

𝑧1,3(𝑘) = 𝑧3(𝑘) (5)

∙ two of the measurements are target originated

– 𝜑 = 2, 𝑛𝜑 = comb(3, 2) = 1, 2, 3
– 3 measurements-to-track association events
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Figure 1. Validation Gate

– 𝑧1(𝑘), 𝑧2(𝑘) or 𝑧1(𝑘), 𝑧3(𝑘) or 𝑧2(𝑘), 𝑧3(𝑘) are orig-
inated form a target

𝑧2,1(𝑘) =

[
𝑧1(𝑘)
𝑧2(𝑘)

]
(6)

𝑧2,2(𝑘) =

[
𝑧1(𝑘)
𝑧3(𝑘)

]
(7)

𝑧2,3(𝑘) =

[
𝑧2(𝑘)
𝑧3(𝑘)

]
(8)

∙ all of the measurements are target originated

– 𝜑 = 3, 𝑛𝜑 = comb(3, 3) = 1
– 1 measurements-to-track association event
– 𝑧1(𝑘), 𝑧2(𝑘), 𝑧3(𝑘) are originated form a target

𝑧3,1(𝑘) =

⎡
⎣ 𝑧1(𝑘)
𝑧2(𝑘)
𝑧3(𝑘)

⎤
⎦ (9)

Accordingly the measurement equation (2) for the (𝜑, 𝑛𝜑)
event becomes

𝑧𝜑,𝑛𝜑
(𝑘) =

⎡
⎢⎣

𝐻1(𝑘)
...

𝐻𝜑(𝑘)

⎤
⎥⎦𝑥(𝑘) +

⎡
⎢⎣

𝑣1(𝑘)
...

𝑣𝜑(𝑘)

⎤
⎥⎦ (10)

III. MULTIPLE DETECTIONS PROBABILITY DATA

ASSOCIATION (MD-PDA)

The approach of the standard PDAF is to calculate the
association probabilities for each validated measurement that
falls in a gate around the predicted measurement at the
current time to the target of interest [2]. When two of the
measurements are target originated, the algorithm apportion
the total weight to both of them, with the assumption that only
one of them is target originated. This is not efficient approach
especially when there are false alarms in the validation gate.
The MD-PDA algorithm calculates the probability that each
set of measurements, rather than a single measurement, is

attributable to the target of interest. The set of measurements
candidate for evaluation are generated from multiple detection
pattern discussed above. This probabilistic (Bayesian) infor-
mation based on the candidate set of measurements is used in
a tracking filter, that updates the target states.

A. Assumptions

The following assumptions are made for the MD-PDA filter
∙ Among the validated measurements, a measurement or

set of measurements can originate from a target.
∙ The target detections occur independently over time with

known probabilities.
∙ Clutter is uniform/Possion distributed within the measure-

ment validation gate.
∙ There is only one target of interest whose state evolves

according to a dynamic equation driven by process noise
as stated in (1).

∙ Track has been initiated.

At each time 𝑘, the MD-PDA algorithm runs through the
following steps.

B. Gating

A validation gate is set up for each time step to determine
the candidate measurements for association. The validation
gate is an ellipse [2] given by

𝑉 (𝑘, 𝛾) = {𝑧 : [𝑧 − 𝑧(𝑘∣𝑘 − 1)]′𝑆(𝑘)−1

[𝑧 − 𝑧(𝑘∣𝑘 − 1)] ⩽ 𝛾} (11)

where 𝛾 is the gate threshold and 𝑆(𝑘) is the innovation
covariance corresponding to the measurement given by

𝑆(𝑘) = 𝐻(𝑘)𝑃 (𝑘∣𝑘 − 1)𝐻(𝑘)′ +𝑅(𝑘) (12)

The volume is thus given by

𝑉 (𝑘) = 𝑐𝑛𝑧
∣𝛾(𝑆(𝑘)∣1/2 (13)

= 𝑐𝑛𝑧
𝛾

𝑛𝑧
2 ∣(𝑆(𝑘)∣1/2 (14)

where 𝑛𝑧 is the dimension of the measurement and the coeffi-
cient 𝑐𝑛𝑧

is the volume of the 𝑛𝑧-dimensional unit hypersphere
(𝑐1 = 2, 𝑐2 = 𝜋, 𝑐3 = 4𝜋/3, etc.).

C. MD-PDA approach

The latest set of validated measurements is denoted as

𝑍(𝑘) = {𝑧𝑖(𝑘)}𝑚(𝑘)
𝑖=1 (15)

where 𝑧𝑖(𝑘) is the 𝑖𝑡ℎ validated measurement and 𝑚(𝑘) is the
number of measurements in the validation region at time 𝑘.
The cumulative set of measurements up to time step 𝑘 is

𝑍𝑘 = {𝑍(𝑗)}𝑘𝑗=1 (16)

For the association events

𝜃𝜑,𝑛𝜑
(𝑘) =

⎧⎨
⎩

(𝜑 out of 𝑚(𝑘) are target originated )
𝑛𝜑 = 1, ..., 𝑐𝜑𝑚(𝑘)

(none of the measurements is target originated)
𝑛𝜑 = 0

(17)
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where 𝑐𝜑𝑚(𝑘) is 𝜑 combinations out of 𝑚(𝑘) measurements
given by

𝑐𝜑𝑚(𝑘) =

(
𝑚(𝑘)
𝜑

)
(18)

The number of association events grow very fast for 𝜑 > 2.
The expected number of target originated measurement can be
used as a priori to reduce the number of events. Applying the
total probability theorem with respect to the above events, the
conditional mean of the state at time 𝑘 is given as

�̂�(𝑘∣𝑘) = 𝐸(𝑥(𝑘)∣𝑍𝑘)

=

𝑚(𝑘)∑
𝜑=0

𝑐𝜑𝑚(𝑘)∑
𝑛𝜑=1

𝐸(𝑥(𝑘)∣𝜃𝜑,𝑛𝜑
(𝑘), 𝑍𝑘)𝑝(𝜃𝜑,𝑛𝜑

(𝑘)∣𝑍𝑘)

=

𝑚(𝑘)∑
𝜑=0

𝑐𝜑𝑚(𝑘)∑
𝑛𝜑=1

�̂�𝜑,𝑛𝜑
(𝑘∣𝑘)𝛽𝜑,𝑛𝜑

(𝑘) (19)

where �̂�𝜑,𝑛𝜑
(𝑘∣𝑘) is the updated state which is conditioned

on the event that the (𝜑, 𝑛𝜑) set of measurements are correct.
Here the association probability, 𝛽𝜑,𝑛𝜑

(𝑘), is the conditional
provability of the event.

𝛽𝜑,𝑛𝜑
(𝑘) ∝ 𝑝(𝜃𝜑,𝑛𝜑

(𝑘)∣𝑍𝑘) (20)

The estimate conditioned on 𝑛𝑡ℎ
𝜑 combination of 𝜑 measure-

ments being correct is

�̂�𝜑,𝑛𝜑
(𝑘∣𝑘) = �̂�(𝑘∣𝑘 − 1) +𝑊𝜑,𝑛𝜑

(𝑘)𝜈𝜑,𝑛𝜑
(𝑘)

where the corresponding innovation is

𝜈𝜑,𝑛𝜑
(𝑘) =

⎡
⎢⎣

(𝑧(𝑘)− 𝑧(𝑘∣𝑘 − 1))′
...

(𝑧(𝑘)− 𝑧(𝑘∣𝑘 − 1))′

⎤
⎥⎦ (21)

and the Kalman gain 𝑊 (𝑘) is

𝑊𝜑,𝑛𝜑
(𝑘) = 𝑃 (𝑘∣𝑘 − 1)𝐻𝜑,𝑛𝜑

(𝑘)′𝑆𝜑,𝑛𝜑
(𝑘)−1 (22)

Here

𝑆𝜑,𝑛𝜑
(𝑘) = 𝐻𝜑,𝑛(𝑘)𝑃 (𝑘∣𝑘 − 1)𝐻𝜑,𝑛𝜑

(𝑘)′ +𝑅𝜑,𝑛𝜑
(𝑘) (23)

𝐻𝜑,𝑛𝜑
(𝑘) =

⎡
⎢⎣
𝐻(𝑘)

...
𝐻(𝑘)

⎤
⎥⎦ (24)

𝑅𝜑,𝑛𝜑
(𝑘) =

⎡
⎢⎢⎢⎣
𝑅(𝑘) 0 . . . 0
0 𝑅(𝑘) . . . 0
...

...
. . .

...
0 0 . . . 𝑅(𝑘)

⎤
⎥⎥⎥⎦ (25)

D. State and Covariance Update

The state update equation is given by

�̂�(𝑘∣𝑘) = �̂�(𝑘∣𝑘 − 1)

+𝑊𝜑,𝑛𝜑
(𝑘)

𝑚(𝑘)∑
𝜑=0

𝑐𝜑𝑚(𝑘)∑
𝑛𝜑=1

𝛽𝜑,𝑛𝜑
(𝑘)𝜈𝜑,𝑛𝜑

(𝑘) (26)

and the covariance associated with the updated state is

𝑃 (𝑘∣𝑘) = 𝛽0(𝑘)𝑃 (𝑘∣𝑘−1)+(1−𝛽0(𝑘))𝑃 𝑐(𝑘∣𝑘)+𝑃 (𝑘) (27)

where the covariance of the state updated with the correct
measurement is

𝑃 𝑐(𝑘∣𝑘) = 𝑃 (𝑘∣𝑘− 1)−𝑊𝜑,𝑛𝜑
(𝑘)𝑆𝜑,𝑛𝜑

(𝑘)𝑊𝜑,𝑛𝜑
(𝑘)′ (28)

and the spread of innovation term, 𝑃 (𝑘), is given in (29).

E. MD Association Probabilities

There will be 𝑚(𝑘) validated measurements at time 𝑘.
Among these validated measurements one, two or 𝜑 number of
measurements can be target originated. Multiple detection as-
sociation probabilities are evaluated by probabilistic inference
which is made on

∙ number of measurements in the validation region, 𝑚(𝑘)
∙ number of target originated measurements, 𝜑
∙ location of measurements

which is expressed as

𝛽𝜑,𝑛𝜑
(𝑘) = 𝑝(𝜃𝜑,𝑛𝜑

(𝑘)∣𝑍𝑘,𝑚(𝑘), 𝜑, 𝑍𝑘−1) (30)

Applying Bayes’ theorem

𝛽𝜑,𝑛𝜑
(𝑘) =

1

𝑐
𝑝(𝑍𝑘∣𝜃𝜑,𝑛𝜑

(𝑘),𝑚(𝑘), 𝜑, 𝑍𝑘−1)

×𝑝(𝜃𝜑,𝑛𝜑
(𝑘)∣𝑚(𝑘), 𝜑, 𝑍𝑘−1) (31)

The first term in (31) refers to the joint density of the pdf
of the correct measurement is given in (32) where 𝑃𝐺 is the
factor that accounts for restricting the normal density to the
validation gate. The second term in (31) is the probability of
the association events conditioned only on 𝑚(𝑘) and 𝜑.

𝛾𝜑,𝑛𝜑
(𝑘) = 𝑝(𝜃𝜑,𝑛𝜑

(𝑘)∣𝑚(𝑘), 𝜑, 𝑍𝑘−1)

= 𝑝(𝜃𝜑,𝑛𝜑
(𝑘)∣𝑚(𝑘), 𝜑) (33)

where the probability 𝛾𝜑,𝑛𝜑
evaluates the event 𝜃𝜑,𝑛𝜑

condi-
tioned on the total number of validated measurement ℳ = 𝑚.
Here ℳ denotes the random variable and 𝑚 its realization [2].

𝛾𝜑,𝑛𝜑
(𝑘) = 𝑝(𝜃𝜑,𝑛𝜑

∣ℳ = 𝑚(𝑘), 𝜑)

= 𝑝(𝜃𝜑,𝑛𝜑
∣Ψ = 𝑚(𝑘)− 𝜑,ℳ = 𝑚(𝑘))

×𝑝(Ψ = 𝑚(𝑘)− 𝜑∣ℳ = 𝑚(𝑘))

+𝑝(𝜃𝜑,𝑛𝜑
∣Ψ = 𝑚(𝑘),ℳ = 𝑚(𝑘))

×𝑝(Ψ = 𝑚(𝑘)∣ℳ = 𝑚(𝑘)) (34)

where Ψ is the number of false measurements. For 𝜑 target
originated measurements, Ψ must be either 𝑚(𝑘)−𝜑 or 𝑚(𝑘).
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𝑃 (𝑘) ≜ 𝑊𝜑,𝑛𝜑
(𝑘)

⎡
⎣𝑚(𝑘)∑

𝜑=0

𝑐𝜑𝑚(𝑘)∑
𝑛𝜑=1

𝛽𝜑,𝑛𝜑
(𝑘)𝜈𝜑,𝑛𝜑

(𝑘)𝜈𝜑,𝑛𝜑
(𝑘)′ − 𝜈(𝑘)𝜈(𝑘)′

⎤
⎦𝑊𝜑,𝑛𝜑

(𝑘)′ (29)

𝑝(𝑍𝑘∣𝜃𝜑,𝑛𝜑
(𝑘),𝑚(𝑘), 𝜑, 𝑍𝑘−1) =

⎧⎨
⎩

1
𝑃𝐺

× 𝑉 (𝑘)−𝑚(𝑘)+1𝒩 (𝜈𝜑,𝑛𝜑
(𝑘); 0, 𝑆(𝑘)) 𝑛𝜑 = 1, ..., 𝑐𝜑𝑚(𝑘)

𝑉 (𝑘)−𝑚(𝑘) 𝑛𝜑 = 0

(32)

𝛾𝜑,𝑛𝜑
(𝑘) =

⎧⎨
⎩

1
𝑚(𝑘) × 𝑝(Ψ = 𝑚(𝑘)− 𝜑∣ℳ = 𝑚(𝑘))

𝑛𝜑 = 1, ..., 𝑐𝜑𝑚(𝑘)
𝑝(Ψ = 𝑚(𝑘)∣ℳ = 𝑚(𝑘))

𝑛𝜑 = 0
(35)

where

𝑝(Ψ = 𝑚(𝑘)− 𝜑∣ℳ = 𝑚(𝑘))

=
𝑝(ℳ = 𝑚(𝑘)∣Ψ = 𝑚(𝑘)− 𝜑)𝑝(Ψ = 𝑚(𝑘)− 𝜑)

𝑝(ℳ = 𝑚(𝑘))

=
𝑃𝐷𝜑𝑃𝐺𝜇(𝑚(𝑘)− 𝜑)

𝑝(ℳ = 𝑚(𝑘))
(36)

and

𝑝(Ψ = 𝑚(𝑘)∣ℳ = 𝑚(𝑘))

=
𝑝(ℳ = 𝑚(𝑘)∣Ψ = 𝑚(𝑘))𝑝(Ψ = 𝑚(𝑘))

𝑝(ℳ = 𝑚(𝑘))

=
(1− 𝑃𝐷𝑃𝐺)𝜇(𝑚(𝑘))

𝑝(ℳ = 𝑚(𝑘))
(37)

𝑃𝐷𝜑 is the probability of detecting a target 𝜑 times per
scan. The total probability of detection 𝑃𝐷 will become
the superposition of detection probabilities of 𝑃𝐷𝜑. Also,
𝑃𝐷𝜑𝑃𝐺 is the probability that the target has been detected
and 𝜑 measurements originated from it are inside the gate
and (1 − 𝑃𝐷𝑃𝐺) is the probability that the measurements in
the gate are false alarms. Thus

𝑝(ℳ = 𝑚(𝑘)) =

𝑚(𝑘)∑
𝜑=1

𝑃𝐷𝜑𝑃𝐺𝜇(𝑚(𝑘)− 𝜑)

+(1− 𝑃𝐷𝑃𝐺)𝜇(𝑚(𝑘)) (38)

Substituting (38) in (36) and (37), the result in (35)

𝛾𝜑,𝑛𝜑
(𝑘) =

⎧⎨
⎩

1
𝑚(𝑘)

𝑃𝐷𝜑𝑃𝐺𝜇(𝑚(𝑘)−𝜑)
∑𝑚(𝑘)

𝜑=1 𝑃𝐷𝜑𝑃𝐺𝜇(𝑚(𝑘)−𝜑)+(1−𝑃𝐷𝑃𝐺)𝜇(𝑚(𝑘))

𝑛𝜑 = 1, ..., 𝑐𝜑𝑚(𝑘)

(1−𝑃𝐷𝑃𝐺)𝜇(𝑚(𝑘))
∑𝑚(𝑘)

𝜑=1 𝑃𝐷𝜑𝑃𝐺𝜇(𝑚(𝑘)−𝜑)+(1−𝑃𝐷𝑃𝐺)𝜇(𝑚(𝑘))

𝑛𝜑 = 0
(39)

For the probability mass function of the number of false
measurements, 𝜇(𝑚(𝑘)), a Poisson or diffused prior model
can be used in the volume 𝑉 (𝑘) (see section III-B).

∙ Poisson model (parametric MD-PDA):

𝜇(𝑚(𝑘)) = 𝑒−𝜆𝑉 (𝑘) (𝜆𝑉 (𝑘))𝑚(𝑘)

𝑚(𝑘)!
(40)

where 𝜆 is spacial density.
∙ Diffuse prior model (non-parametric MD-PDA):

𝜇(𝑚(𝑘)) = 𝜇(𝑚(𝑘)− 𝜑) = 𝐾 (41)

where 𝐾 is a constant.

Finally, by substituting (39) in (31), the association proba-
bilities for a measurement or 𝜑 measurements set can be
computed with parametric (40) or non-parametric (41) false
measurements model of MD-PDA.

IV. SIMULATIONS

A surveillance region covering an area of 1000 m long and
1500 m wide is used to test potential advantages of the multiple
target originated measurement approach. Measurements are
generated by a 2D radar with the following properties:

∙ 𝑃𝐷1 = 0.05 is probability of detecting a target once per
scan of the measurement data

∙ 𝑃𝐷2 = 0.9 is probability of detecting a target twice per
scan of the measurement data

∙ 𝑃𝐷 = 𝑃𝐷1 + 𝑃𝐷2 = 0.95 which is total probability of
detecting a target in a scan of the measurement data (i.e,
𝑃𝐷 used for PDA)

∙ 𝑃𝐹𝐴 = 10−5/𝑚2 with Poisson distribution

A single target starts from origin and moving with constant
speed of 15 m/s parallel to the x-axis is considered. Target ini-
tialization is done using two point target initialization method.
The scan interval (sampling period) is 1 s and it consists of 50
scans. For the MD-PDA the probabilities of detections used
are 𝑃𝐷1 and 𝑃𝐷2 while 𝑃𝐷 = 𝑃𝐷1 +𝑃𝐷2 is total probability
of detecting a target used in PDA.

Figure 2 shows the Root Mean Square Error (RMSE)
for position that demonstrates the improved performance of
multiple detection approach over the classic probability data
association. As PDA tends the apportion the weight among the
target originated measurements, MD-PDA assigns the weight
to measurement set, rather than a single measurement, that are
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Figure 2. Position RMSE evaluation for MD-PDA vs. PDA
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Figure 3. Velocity RMSE evaluation for MD-PDA vs. PDA

originated form a target. The velocity RMSE evaluation result
is shown in Figure 3.

The performance evaluation result which is based on 1000
MonteCarlo Runs is presented in Table I. With respect to
Position and Velocity RMSE the MD-PDA performs better
than PDA. This is because unlike PDA, the MD-PDA updates
the filter with the set of measurements that are originated form
a target. Due to more association events evaluation the MD-
PDA takes longer time than PDA.

Table I
PERFORMANCE EVALUATION (MD-PDA VS. PDA)

Performance Matrix MD-PDA PDA
Position RMSE 1.62 m 2.83 m
Velocity RMSE 0.35 m/s 0.74 m/s
Average Latency 0.11 s 0.08 s

V. CONCLUSIONS

In this paper a new Multiple Detection Probabilistic Data
Association (MD-PDA) filter was proposed. The algorithm
is designed for tracking a target while receiving multiple
detections form the same target within the same scan of

measurements. When multiple detections from the same tar-
get fall within the association gate, the standard PDA filter
returns degraded estimation results due to violation of one
measurement per scan assumption. In the proposed MD-PDA,
combinatorial association events are formed to handle the pos-
sibility of multiple measurements from the same target. Mod-
ified association probabilities are calculated with the explicit
assumption of multiple detections. Experimental results show
the effectiveness of the proposed algorithm. Similar extensions
to handle multiple targets using the JPDA filter, MHT and
MFA tracker are under development. Also further work has to
be done to initialize targets with multiple detections.
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