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Executive Summary    

Cooperative Agreement Article 

    W911-09-2-0036 

A Dynamic Neural Network Approach to CBM 

 

The concepts of Virtual Sensing, Condition Based Maintenance (CBM) and Prognostics 

have received significant attention for various applications due to potential benefits that 

include reduced cost by substituting expensive sensors with estimations, significantly 

reduced development time, greater time in service, and improved diagnostic and control 

properties.  However, one problem with developing such technologies across this 

breadth of applications has been the need to develop special techniques for each 

problem domain, and perhaps for each individual problem. 

 

This project was the continuation of an initial project that was done by MIS 2000 

regarding the use of Neural Networks as they related to Condition Based Maintenance 

of military vehicles. In phase 1 of the project information was analyzed from two 

sources. The first source was Army Materiel Systems Analysis Activity (AMSAA) Data, 

this data was acquired from vehicles in routine operation in the field. The AMSAA Data 

was acquired by external data acquisition systems installed in vehicles used around a 

military base. The other information was obtained from an engine operated in a 

dynamometer cell being used for NATO durability test. 

Phase 1 allowed for basically the training of the Neural Networks to see if they could 

accurately predict basic engine operation. Phase 2 of this project allowed for a 

dedicated dynamometer and engine that would allow for the induction of faults and 

structured testing. 

The goal of this phase was to create relevant faults in the engine operating conditions 
related to fluid temperature, pressure, and flow, which produce performance loss and 
impact the vehicle health. 

As mentioned earlier virtual sensors are also a part of CBM. The engine was also fitted 
with an encoder and a sensor on the flywheel housing so that the concept of virtual 
torque sensing could also be investigated during this phase of the project. 

Faults were introduced (one at a time) by altering the normal response of some 
electromechanical components of the engine control system.  Known malfunctions were 
generated in such a way that the faulty condition could be turned on and off without 
actually exchanging malfunctioning components. Only one component at the time was 
altered. 

The sensor faults were accomplished by skewing the calibration of the temperature and 
pressure sensors.  
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Electrical connections between the Engine Control Unit (ECU) and the sensors were 
broken with a Break-out Box so that the sensor output could either be fed directly to the 
ECU with no changes or be altered before being returned to the ECU.  

The engine was run at steady-states and selected speed/torque points (“Mini Maps”) for 
periods of 1 to 3 minutes, as was also done in Phase 1.  The perturbations were 
introduced continuously.  

The main focus of this project was around the perturbations related to the fuel injection 

control pressure and turbo boost pressure. They were selected as likely candidates to 

affect the engine torque output by affecting either the fuel delivery system or the air 

charge with a potential effect in the engine torque output. Certain faults were seeded 

electronically by custom built circuits. 

 

Data collection was coordinated between two systems. The first was the dyno cell data 

acquisition system which recorded at low rate but with a large number of signals from 

the temperature and pressure sensors with which the engine was instrumented and 

from the other instruments and controllers. The second system is a custom made 

system which acquired engine data broadcast on the communication bus (CAN bus) 

continuously so that the operating conditions perceived by the ECU could be compared 

to the actual engine behavior measured by laboratory instrumentation.  

The set-up of the dynamometer is outlined in the final report in Section 2.  

The data derived from the seeded faults experiments in this comprehensive testing 

facility constitute a rich set of engine conditions, under both normal and abnormal 

conditions, which can be used, after appropriate handling and reformatting, to develop 

and test Neural Networks models describing engine performance. 

To simplify the networks development, the input data needs to be preprocessed as a 

time-aligned time series.  Matlab was used as the program for processing the files. The 

processed Matlab files are designated with the “_genmod” suffix. These files were the 

sources for the training and testing sets and made the extraction process easy because 

the 2D data array, containing both CAN and Cell data and could be readily sliced using 

sorting and indexing criteria to combine test sections according to perturbation levels 

and reject data contaminated by unwanted experimental conditions. 

Theoretically, if the training set is an overall faithful representation of all conditions met 

by the engine, any other set of data presented to the network as input would produce an 

output with equivalent fidelity.   

The final report contains a greater explanation of the development and training of the 

Neural Networks.  Below is an overview of the data used in NN development and 

testing. 
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Based on previous experience and the knowledge of the engine operating parameters, 

result in the selection of the parameters that were used to train the NN. The following 

data points were used for the Fuel Flow prediction:  

 Engine Speed 

 Load % 

 Engine Oil Pressure 

 Boost 

 Injector Control Pressure 

 Engine Coolant Temperature 

 Intake Manifold Air Temperature 

 Pedal % 

 Desired Engine Speed 

 Nominal Friction 

 Load @ Speed 
 

Virtual Torque Sensing (VTS) is a software alternative to detecting actual brake torque  

with a minimum investment in additional hardware (that is, not relying on new sensing 

technologies) at the expense of adding computational burden which can be either 

managed within the ECU or by another module interfacing with the ECU.  The most 

promising VTS implementation is based on accurate engine speed measurements 

which are the input to a Neural Network model that calculates actual torque.  

 
Section 6 contains additional details regarding virtual torque sensing. 

This project was successful in showing that the Neural Networks are capable of 

predicting the operating characteristics of the engine.  

A key element relates to the method of training dynamic neural networks so that they 

can attain their full theoretical capability and produce highly accurate models of complex 

dynamic systems.  This approach is derived from combining a series of innovations 

developed by several groups over the past ten years and on improvements devised 

from the experience garnered in the application of these methods across a wide range 

of estimation, classification, virtual sensing and control applications.  

MIS2000 believes that a model based reasoning approach, using dynamic neural 

networks to detect anomalies in system performance, will provide the Army with a 

sound solution for implementing CBM for military vehicles.  A major benefit is the fast 

and efficient way of utilizing real time vehicle data to assess vehicle health.  Since these 

algorithms are efficient, they do not necessitate extensive computing power and require 

a minimum hardware footprint to run.  

The constraints of this approach are related to the data being fed into the model.  The 

fact remains that good decisions cannot be made using bad or incomplete information.  

Therefore, an open systems approach will be used to allow for maximum integration of 
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additional sensor data as new technology becomes available.  This information may be 

generated from virtual information i.e. Virtual Torque Sensors, or from additional 

external devices to augment real-time information acquired from the system via J-1939, 

Controller Area Network (CAN) bus or wireless interfaces. 
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Outline 

 

1. Introduction 

2. Description of the Experimental Set-up 

3. Description of the Experiments 

4. Data Collection and Reduction 

5. NN Analysis of Dynamometer Data (Models to Detect Faults) 

6. NN Model to Estimate Torque (Virtual Torque Sensing)  

7. Conclusions 

 

Appendices (Appendix.doc) 

A. Engine Specifications 

B. Analog Signal Modifier Device 
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Section 1 

  Introduction 
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Introduction: 

 

This project was the continuation of an initial project that was done by MIS 2000 

regarding the use of Neural Networks as they related to Condition Based Maintenance 

of military vehicles. In phase 1 of the project information was analyzed from two 

sources. The first source was Army Material Systems Analysis Activity (AMSAA) Data, 

this data was acquired from vehicles in routine operation in the field. The AMSAA Data 

was acquired by external data acquisition systems installed in vehicles used around a 

military base. The other information was obtained from an engine operated in a 

dynamometer cell.  One issue was that the data sources were not entirely under our 

control, due to the fact that: 

1. AMSAA Data was acquired by others prior to the initiation of this project. 

 

2. For the dynamometer portion of the testing for Phase 1 we were required to use 

an engine that was being run through a NATO Test to establish its durability. 

Therefore, perturbations to the engine could not be introduced because of the 

possibility of irreversibly affecting the engine. Access to the engine was limited to 

collecting baseline engine data during the scheduled maximum engine torque 

output evaluation at every 100 hrs and at five mid-range Speed/Torque points 

(“MiniMap”) 

 

Phase 1 allowed for evaluating how to construct and train Neural Networks to predict 

basic engine operation.  Phase 2 of this project allowed for a dedicated dynamometer 

and engine that would allow for the induction of faults and structured testing. 

 

Phase II Objective 

 

Create relevant faults in the engine operating conditions related to fluid temperature, 

pressure, and flow, which produce performance loss and impact the vehicle health. 

Faults were introduced by altering the normal response of some electromechanical 

components of the engine control system.  Known malfunctions were generated in such 

a way that the faulty condition could be turned on and off without actually exchanging 

malfunctioning components. Only one component at the time was altered. 

The sensor faults were accomplished by skewing the calibration of the temperature and 

pressure sensors.  

Electrical connections between the Engine Control Unit (ECU) and the sensors were 

broken with a Break-out Box so that the sensor output could either be fed directly to the 

ECU with no changes or be altered before being returned to the ECU.  
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The engine was operated at steady-states and selected speed/torque points (“Mini 

Maps”) for periods of 1 to 2 minutes, as done in Phase 1.  The perturbations were 

introduced continuously.  

 

Requirements for the induced sensor calibration changes 

 

Different levels of perturbations were needed for each sensor. Initial estimates of 

perturbations were used that would not harm the engine while still creating detectable 

engine performance shifts.    

 

 

The sensors that were perturbed for this experiment 

 

 Pressure Sensors  

 Engine Coolant Temperature Sensor 

 Inlet Manifold Air Temperature Sensor  

The overall objective of the project is to develop prognostic algorithms and neural 

networks as they pertain to powertrain systems.  The need for vehicle condition data 

requires the ability to implement prognostic algorithms that can be deployed on the 

vehicle.  This requires a software approach that is both efficient and deployable within a 

real-time vehicle environment.  

 

This effort was accomplished with two parallel tasks, one focused on engine 

dynamometer work, the other on analyzing seeded fault data with prognostic/diagnostic 

algorithms.   

 

Technology Introduction 

 

The concepts of Virtual Sensing, Condition Based Maintenance (CBM) and Prognostics 

have received significant attention for various applications due to potential benefits that 

include reduced cost by substituting expensive sensors with estimations, significantly 

reduced development time, greater time in service, and improved diagnostic and control 

properties.  However, one problem with developing such technologies across this 

breadth of applications has been the need to develop special techniques for each 

problem domain, and perhaps for each individual problem.  Our strategy to deal with all 

of these problems involves the application of a single comprehensive approach 

involving machine learning using the most powerful representations for complex 

systems, combined with statistical analysis to produce the most accurate estimations 

and projections of system performance possible from the system models we create.  
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This approach provides a straightforward mean to accomplish these difficult tasks, but 

relies on proprietary technology to produce the machine learning algorithms which are 

keys to success.  

 

A key element relates to the method of training dynamic neural networks so that they 

can attain their full theoretical capability and produce highly accurate models of complex 

dynamic systems.  This approach is derived from combining a series of innovations 

developed by several groups over the past ten years and on improvements devised 

from the experience garnered in the application of these methods across a wide range 

of estimation, classification, virtual sensing and control applications. No other group in 

operation in the U.S. today has this combined experience in developing and deploying 

these applications in serious, difficult, and real-world problems. MIS2000 believes that a 

model based reasoning approach, using dynamic neural networks to detect anomalies 

in system performance, will provide the Army with the best solution for implementing 

CBM for military vehicles.  A major benefit is the fast and efficient way of utilizing real 

time vehicle data to assess vehicle health.  Since these algorithms are extremely 

efficient, they do not necessitate extensive computing power and require a minimum 

hardware footprint to run.  

The constraints of this approach are related to the data being fed into the model.  The 

fact remains that good decisions cannot be made using bad or incomplete information.  

Therefore, an open systems approach will be used to allow for maximum integration of 

additional sensor data as new technology becomes available.  This information may be 

generated from virtual information i.e. Virtual Torque Sensors, or from additional 

external devices to augment real-time information acquired from the system via J-1939, 

Controller Area Network (CAN) bus or wireless interfaces 
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Section 2 

Description of the Experimental Set-up 
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Fig. 2.1. Schematic diagram of the subsystems, grouped for functionality, in the experimental 

set-up. The arrows indicate how the systems are linked together.  

Description of the Experimental Set-Up         

Background 

This section describes the experimental set-up with which the Seeded Faults 

Experiments were carried out. Figure 2.1 shows schematically how several subsystems 

were combined together to build a comprehensive set-up for running an engine under 

well controlled conditions and for collecting highly granular and  multifaceted data of the 

engine response. The way the engine was instrumented and the layout of the 

dynamometer cell was dictated by the need of maintaining commonality with testing 

conditions commonly used in other military projects for evaluating engines. However, 

several novel features were added to the standard equipment used in durability testing, 

such as the custom instrumentation to seed engine faults, a multi-functionality data 

acquisition system to record data broadcast from the engine ECU, and additional 

sensing devices, both high grade instruments and prototype sensors, to monitor the 

engine operating conditions.  For overview of dyno set-up see (Attachment A). 

Customized hardware was used so that specific malfunctions could be turned on and off 

in the engine operating conditions in a controlled fashion. For most cases, these faults 

were introduced by electronic means in order to avoid having to swap good parts with 

bad ones. This was achieved by perturbing the response of specific engine sensors, 

thus, tricking the ECU to compensate for perceived shifts in operating conditions.  In the 

case of the Boost and the Fuel Pressure sensors, the changes induced by the control 

systems produced measureable changes in engine output. It was, therefore, possible to 
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alter engine performance in progressively larger steps, including decreasing and 

increasing engine torque output, to simulate engine deterioration. Restriction valves (not 

shown in Fig. 2.1) were also added in the intake and exhaust system as a way of 

externally perturb engine performance. 

Data collection was coordinated between two systems. While the dyno cell data 

acquisition system (Cell DAQ in Fig. 2.1) recorded at low rate a large number of signals 

from the temperature and pressure sensors with which the engine was instrumented 

and from the other instruments and controllers, a custom made system (Modular High 

Freq DAQ in Fig. 2.1) acquired engine data broadcast on the communication bus (CAN 

bus) continuously so that the operating conditions perceived by the ECU could be 

compared to the actual engine behavior measured by laboratory instrumentation. Other 

types of data could also be recorded with this custom daq, for instance, TTL signals 

from timing sensors and analog signals from prototype sensors for monitoring 

combustion fluctuations. This system was capable of collecting data at much higher rate 

than possible with the dyno cell daq but high speed recording was practical only in burst 

mode (“snapshots”). Snapshots of about 20 seconds were sufficiently long to monitor 

the engine behavior during transitions between operating points, although the 

experiments in the dyno were designed for evaluating the engine mainly under steady 

state conditions. 

The data derived from the seeded faults experiments in this comprehensive testing 

facility constitute a rich set of engine conditions, under both normal and abnormal 

conditions, which can be used, after appropriate handling and reformatting, to develop 

and test Neural Networks models describing engine performance. 

Engine 

Our investigation was carried out on the military version of the Caterpillar C7 (for engine 

specifications see Appendix A) engine mounted on an Eddy current dynamometer at the 

dynamometer facility of the Mobility Group at the Detroit Arsenal. The engine is a diesel 

in-line 7.2L 6 cylinder engine with a waste-gated turbocharger, positioned at the mid-

point of the exhaust manifold, and Hydraulic activated /Electronically controlled Unit 

Injectors (HEUI) with no EGR (Exhaust Gas Recirculation) and no exhaust after-

treatment. The air pump driven by the engine is vented to air. The alternator is 

disconnected and power is supplied by a 24 V battery pack that is continuously trickled-

charged while the engine is running.  

The air charge was cooled with a high efficiency water cooled heat exchanger 

positioned on the side of the engine. The air temperature was controlled at the desired 

set-point by regulating the inlet water flow in the heat exchanger. The temperature of 

the cooling water was not regulated. The typical set-point for the air charge temperature 

was 127 degF, as used in other durability tests carried out in these facilities. Because 

the heat exchanger controller was optimized for mid to high flow conditions, during idle 
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Param Units Param units

Speed RPM Intake Air Vortex CFM

Torque LB-FT Fuel Flow PPH

Throttle Position % Lambda units

BMEP psi Smoke Meter FSN

BHP hp LFE Dellta P H2O

Air After Filter Deg F Torque Sensor Ft/lb

Air After Compressor Deg F Air After Turbo psig

Air Intake Manifold Deg F Air B4 Manifold psig

Fuel Supply Deg F Air Inlet RSTR H2O

Fuel Return Deg F Crankcase H2O

Coolant B4 Engine Deg F Oil Gallery psig

Coolant After Engine Deg F Exhaust B4 Turbo 1 Psig

Oil Sump Deg F Exhaust B4 Turbo 2 Psig

Oil Galley Deg F Exhaust Stack H2O

Exh Port 1 Deg F Compressor Inlet H2O

Exh Port 2 Deg F Coolant B4 Engine Psig

Exh Port 3 Deg F Coolant after engine psig

Exh Port 4 Deg F Coolant Cap Psig

Exh Port 5 Deg F ECM 1--Boost Volts

Exh Port 6 Deg F Sensor 1--Boost Volts

Exh B4 Turbo 1 Deg F ECM 2-InjCtrlPres Volts

Exh B4 Turbo 2 Deg F Sensor 2-InjCtrlPres Volts

Exhaust Stack Deg F ECM 3-Eng Oil Pres Volts

Coolant B4 CAC Deg F Sensor 3-Eng Oil Pres Volts

Coolant After CAC Deg F ECM 4-EngCoolTemp Volts

H20 Tower In Deg F Sensor 4-EngCoolTemp Volts

H2O Tower Out Deg F ECM 5-IntManiAirTemp Volts

CAC Flow GPM Sensor 5-IntManiAirTempVolts

Air B4 Filter Deg F Water Tower Flow GPM

Air Cell Ambient Deg F Air Cleaner Out H2O

Relative Humidity % Barometric Press. In Hg

Relat. Hum. Temp Deg F Transducer Rack Deg F

Dyno H2O In Deg F H2O Tower In Psig

Dyno H2O Out Deg F Dyno H2O in Psig

Air Test Cell Depression P0H20 Fuel after filter Psig

Fuel Regulator Supply PSIG Fuel supply psig

Fuel Cart Return Psig Fuel return H2O  

Dyno LabInstr Eng BoB CellSyst  

Table 2.1. Example list of analog signals 
recorded by the Dyno Cell daq. As indicated in 
the legend, the color shading is meant to 
highlight signals deriving from different 
functional blocks as illustrated in Fig. 2.1. Dyno 
indicates values derived from the dynamometer 
controller; LabInstr refers to laboratory 
instruments added to measure engine inputs 
and outputs; Eng refers to T/Cs and Press 
Sensors with which the engine was 
instrumented; BoB refers to engine production 
sensors tapped at the Break-out Box; CellSyst 
indicates signals related to Cell environmental 
conditions and systems controlling fluids 
temperature. 

and low torque operations, the air charge temperature dropped and slowly recovered 

during mid torque operations. The engine coolant was also cooled externally with a 

similar set-up and the typical temperature set-point was 205 degF. Different set-point 

values could also be selected for both systems but the controllers response was 

optimized for these temperatures. 

Instrumentation 

Table 2.1 illustrates the variety of 

monitored signals (analog) derived from 

sensors, control systems and laboratory 

equipment. The list shows parameters of 

interest for our studies, grouped according 

to functionality as schematically shown in 

Fig. 2.1. It highlights whether the data 

derive from the dyno controller (Dyno), 

laboratory instruments (LabInstr) for 

measuring air and fuel inputs to the 

engine and exhaust, auxiliary engine 

sensors (Eng), voltage outputs of some 

engine sensors (BoB) tapped at the 

Break-out Box and the corresponding 

signal inputs to the ECU to track when 

sensor perturbations are introduced, and a 

number of environmental cell data and 

parameters associated to the systems that 

control the temperature of different fluids. 

A total of 138 parameters were recorded 

by the Dyno Cell daq (the full list is given 

in Appendix C), 5 associated with time 

information and dyno programming steps, 

79 analog signals, and 54 status flags. 

With the exception of the BoB signals (10 

in total) and the broad band Torque 

Sensor, this is the standard equipment 

configuration used for engine performance 

and durability studies. Details of the 

instrumentations are given below. 

 The engine was instrumented with a 

series of thermocouples and laboratory 

grade pressure sensors that monitor fluids temperature and pressure (Engine Coolant, 

Air Charge, Exhaust, Engine Oil, Fuel) at several locations in the engine and in the 
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external cooling systems.  The exhaust gas temperature was measured at each exhaust 

port as an indication of mean combustion differences between cylinders. Pressure and 

temperature were also measured at the two inlet ports of the turbocharger, 

corresponding to the left half and right haft of the exhaust manifold, and downstream of 

the turbo in the exhaust duct. Additionally, the temperature and pressure of the air 

intake, before and after the air charge cooling system and before and after the turbo, 

were measured so that air handling system could be closely monitored.  Pressure 

sensors were also inserted in the engine cooling system.  In addition to this large 

number of monitoring devices related to the engine, other temperature and pressure 

sensors were used to monitor that the dynamometer, cell  environmental conditions and 

the fluid-temperature control devices were operating within the desired range.  

The engine speed and torque measurements were derived from the dynamometer 

controller instrumentation. The engine output was regulated by the dyno controller by 

means of an electromechanical device that actuates the engine pedal. Since Pedal 

Position corresponds to engine speed (Governor) rather than torque demand in the 

control strategy of the military version of the C7, the dynamometer could only be stably 

operated in two modes: in one case the Pedal Position was set while the engine speed 

was kept at a desired set-point by means of the dyno brake (“open loop case”, used to 

measure the engine output for a given driver demand, for instance, 100% pedal); in the 

other case (“closed loop”) engine speed and torque were maintained at the requested 

set-point by means of the dyno brake and by changing the pedal position with the 

servomechanism.  

While engine performance and durability evaluation is commonly carried out with an 

Eddy current dyno with which the mean torque output is measured at steady state, this 

dynamometer cell was purposely equipped with a number of other high precision 

instruments to measure the inputs to the engine (air and fuel) and its output (torque, 

heat and crankshaft dynamics) especially suitable for studying engine performance 

changes due to subsystems perturbations. The intake air flow was measured by both a 

Laminar Flow device and a Vortex meter. The fuel consumption was measured by a 

differential Coriolis system with a response time of the order of 1s.  The exhaust air-to-

fuel ratio was detected with an ETAS Lambda Meter (made by ETAS). Soot production 

could also be monitored at steady state by an AVL Smoke Meter (made by AVL), but 

was not routinely used in our tests for practical reasons. Since these instruments, 

except the smoke meter, have relative fast response time (1s or better), measurements 

could be carried out during transition between two operating points to assess how 

quickly the engine output stabilized after the transient. Since the fault seeding 

experiments requires repeating a given test sequence several times, it is important to 

understand how quickly the engine output stabilizes after a transient and/or perturbation 

for expediting the experiments.  
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Table 2.2. List of Seeded Faults attempted in the 

project. 

Engine speed and torque measurements obtained through the dynamometer 

instrumentation are usually filtered. Consequently, other instruments with higher 

frequency response were added to measure engine speed and torque fluctuations and 

evaluate combustion maldistribution between cylinders. An broad band torque sensor 

(strain-gage type, made by IRT) was mounted in-line between the engine and the dyno 

coupler to measure torque fluctuations due to combustion events and torque changes 

during transitions. Moreover, a high resolution laboratory encoder was mounted in front 

of the engine dampener for measuring crankshaft rotational speed accurately since 

speed fluctuations can be correlated to torque fluctuations. Additionally, a Hall-type 

sensor was mounted on the flywheel housing facing the ring-gear as another encoder at 

the back of the engine for investigating the effects of crankshaft torsional oscillations. 

The pressure sensors with which the engine was instrumented were meant for mean 

value measurements. Thus, we have relied on a new type of low-cost piezoelectric 

device, potentially suitable for on-board application, to investigate the benefit of 

information derived from detecting pulsation variability in the intake and exhaust system 

related to uneven combustion events which should parallel fluctuations observed in 

torque and crankshaft acceleration. The device is commercially available and detects 

pressure fluctuations (ac component of pressure) in either the exhaust flow or a low 

pressure fuel line by contacting the fluid through a small orifice. It is typically used as a 

low-cost, easy to install diagnostic tool for identifying ignition and fuel system problems 

in a vehicle during repair in the shop.  Three such sensors were employed for this 

project, one mounted in the intake system (after the Charge Air Cooler, CAC), one in 

the exhaust (post-turbo), and one attached to the oil dip-stick tube to detect blow-by. 

Fault seeding 

Table 2.2 shows the Seeded Faults 

pertaining to this project. They were 

selected as likely candidates to affect the 

engine torque output by affecting either 

the fuel delivery system or the air charge 

with a potential effect in the engine torque 

output. Since the selection of faults had to 

be done before starting the experiments 

without much prior knowledge of the 

engine control strategy, calibration and 

level of implemented diagnostic, 

evaluation of several cases were built in 

the plan knowing that the some of the 

resulting perturbation would turn out to be either insignificant in terms of engine output 

or could trigger engine operating modes outside the scope of the project (for engine 

protection derating). Certain faults were seeded electronically by custom built circuits 
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which modify the transfer function of certain engine sensors. A Break-out Box (BoB) 

was used to tap into the engine harness that connects the ECU to the engine sensors 

(such as timing, temperature and pressure) and actuators (injector solenoids and PWM 

(Pulse-Width Modulation) valves for controlling Boost and Injection Control pressure). 

The signal output and common lines of the sensors measuring Fuel Injection, Oil and 

Boost pressures were broken here and redirected to a custom designed analog device 

that modifies (“skews”) the voltage signal output to simulate a change in the device gain 

(the gain multiplier ranges from 0.5 to 1.5) and/or bias (range from -1V to 1 V). The 

skewed output was then connected to the PCM harness at the BoB. Although the 

“Skewing” device is capable of changing the output of three sensors at the same time, 

we have only perturbed one sensor at the time in the experiments described in this 

paper. Information on the Analog Signal Modification Device (ASMD) used to modify the 

output of the pressure sensor is given in Appendix B. Similarly, the resistance of the 

thermistors for measuring the Engine Coolant and the Intake Air Charge temperatures 

was increased/decreased by a variable resistor network (Temperature Signal 

Modification Device or TSMD), inserted in the high signal line either in series or in 

parallel through the BoB, so that the PCM would detect a temperature lower or higher, 

respectively, than the true value by a selectable amount. The perturbation to either the 

pressure or temperature sensor could be remotely turned on and off from the dyno 

control room by means of relays embedded in the circuitry for ease of monitoring the 

effect of a perturbation.  

Combustion instability was induced by interrupting fuel injection to one of the six 

cylinders at the time. This was achieved by either opening the line carrying the solenoid 

actuation current at the BoB or by means of the programmed functionality available in 

the Caterpillar Scan Tool used for assisting the technician to perform repairs. To avoid 

prolonged stress on the dyno joint, the second method was preferred since the 

perturbation could be introduced for short periods of time.  Faults involving modifications 

of the response of other actuators (such as the Fuel High Pressure Regulator or the 

Waste-gate) were not included in the scope of this project because the respective 

valves are controlled by means of PWM signals. 

To study potential engine output loss caused by added impedance in the intake air flow 

(that is, simulating a plugged air filter), a butterfly valve was placed downstream of the 

two air flow measuring instruments, approximately six feet upstream of the air inlet to 

the turbocharger. The valve closure could be changed in nine steps ranging from 

completely open to fully closed. Another butterfly valve was placed at the end of the 

exhaust pipe before the vent, roughly 20 feet from the turbo outlet. This valve was 

actuated by a stepping motor so that fine rotational settings of the valve (about 2 

degrees) could be repeat ably selected.  

Some of the experiments were carried out with DF2 fuel, then, repeated with JP8 that 

has lower energy content.  
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CAN 

Param 

Units Rate 

(ms) 

Res. Cell 

Param

Units

EngSpd RPM 15 0.125 EngSpd RPM

Load % 1 Load Lb*Ft

BoostPres KPa 500 2 AirB4Mani psi

InjCtrlPres MPa 500 0.004 n.a.

ManiIntAitT degC 500 1 AirIntMani degF

EngCoolT degC 1000 1 CoolAftEng degF

OilPres KPa 500 4 OilGallery psa

ElPot 

(Battery)

V 1000 0.125 n.a.

Fuel Rate 

(ECU 

Commanded 

Fuel)

L/hr 100 FuelFlow PPH

Pedal % 50 0.25 Throttle %

LoadAtSpd % 50 0.125 n.a.

NomFric % 250 100% n.a.

DesEngSpd RPM 250 0.125 n.a.  

Table 2.3. Engine operating parameters available 
on the communication bus are listed with 
corresponding measurements derived by external 
instruments which were recorded by the cell data 
acquisition. 

 
Data acquisition 

Two data acquisition systems were used to acquire data during the experiments. One 

was the Cell DAQ which is traditionally used for engine studies (performance/durability) 

by the dyno team. It could be programmed to record either continuously or during 

selected intervals all of the signals from the laboratory instruments, from the 

thermocouples and pressure sensors with which the engine was instrumented, from the 

five production engine sensors tapped at the BoB, from the dynamometer controller and 

from the other devices monitoring the cell operating conditions as listed in Appendix C. 

Because of the large number of channels, the maximum achieavable rate was about 

0.7Hz. This data constitutes the Cell data set.   

The other system was the Modular High Frequency DAQ used for acquiring analog 

signals with higher frequency content deriving from prototype sensors and event driven-

signals (CAN  and timing data). It was based on a National Instruments cRIO FPGA-

based system that included a CAN board, a 16 bit analog board operated in differential 

mode, and a timing board with 100 ns resolution. The cRIO was operated through a 

Real-Time LabVIEW interface, custom developed to meet the requirements of this 

project, running on a host computer to which the data to be recorded was continuously 

streamed by Ethernet connection.  

Messages broadcast on the engine 

communication bus (J1939 protocol at 

250 KBauds) were continuously recorded 

so that engine data derived from the ECU 

could be compared to measurements 

done by the laboratory instruments. The 

engine operating parameters (CAN data) 

available on the bus for this engine 

configuration are listed in Table 2.3 with 

their rate and resolution. The table also 

shows whether the same parameter was 

measured independently with another 

device and recorded by the Cell DAQ.  

Notice that there was no independent 

measurement of the oil high pressure line 

which pressurizes the fuel in each 

injector.   

Signals from analog sensors, containing 

high frequency information related to combustion events, were recorded at 10Khz by 

means of the cRIO analog board. They included:  the IRT torque sensor, the three SenX 
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sensors, the primary (CAM1) and secondary (CAM2) variable reluctance sensors used 

by the ECU to adjust injection timing (there is no crankshaft sensor in this engine), an 

inductive current meter inserted in the Cylinder 1 actuation line at the BoB to monitor 

injection timing, and in some other instances, the injector driver signal for another 

cylinder. High frequency recording was enabled for short windows of time (snapshots) 

ranging from 1 to 30 s, user selectable according to what needed to be captured at 

different operating conditions. Each snapshot was triggered manually by the operator 

from the main panel of the LabVIEW application and the data were displayed at the end 

of the capture. 

The cRIO timing board was used to record with 100 ns resolution the timestamps of 

pulse edges derived from 5 devices monitoring the crankshaft rotation, specifically, the 

laboratory-grade encoder, whose output was set at 36 pulses per revolution, the 

encoder index marking each revolution, the TTL signal from the Hall-type sensor 

mounted facing the ring gear, and the primary and secondary CAM sensors (resolution 

of “48 minus 1 teeth”, the missing tooth used for deriving TDC, Top Dead Center) after 

their voltage output was transformed into TTL signals by a custom-built Trigger Schmitt-

type circuitry. This type of recording was started by the same manual trigger used for 

the analog recording and lasted the same length of time.   

Since the analog signals are recorded an constant rate while the CAN messages and 

the timing data are event-based signals that are asynchronous, the data were saved in 

three different files that are precisely time aligned by the cRIO internal clock.  Time 

alignment with the low-rate data recorded by the dyno cell data acquisition is done on 

post-processing on the basis of engine speed signatures.  

Pictures showing the location of the cell layout, auxiliary sensors and of other 

instrumentation used in the project were taken by the dyno team  (contractors need 

special permission for taking photos within the TARDEC facilities), organized and 

annotated in the file “Cell #2 Layout_distD.pptx” which contains a detailed description of 

the cell layout. This file is provided separately. 
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Description of the experiments          

Background 

This section describes the protocol developed for running the Seeded Faults 

experiments. A set of procedures were established in concert with the test cell team to 

maintain consistency between testing sessions and run experiments within constrains 

imposed by the dyno cell operations. The protocol includes procedures for warming the 

engine, both from room temperature and on warm restart, for tracking the stability of the 

max engine output over different testing days, and for studying the engine behavior 

with/without faults at selected speed/torque points with the engine coolant and air 

charge temperature maintained within repeatable limits. Test replicas with faults seeded 

at different levels had to be performed for generating a rich data set of data for training 

and testing the neural network models and for demonstrating that the induced engine 

performance shifts were statistically detectable. To fit the sizeable number of 

experiments within the project timelines and resources, tests were developed aiming at 

striking a balance between acquiring engine data at relatively stable air charge and 

exhaust temperature and keeping the length of any given experiment relatively short.   

The majority of the experiments consisted in monitoring the engine behavior at a limited 

number of speed/torque operating points (MiniMap in Table 3.1) distributed over the 

engine operating range. The dyno, under computer control, stepped the engine through 

the selected points always in the same order at constant intervals, with either no fault or 

one fault seeded at the time at a constant level throughout the sequence. The same test 

sequence would then be repeated at several perturbation levels. Experiments were 

repeated on different testing sessions taking care to change the perturbation level order. 

Under speed/torque control conditions, the effects related to some seeding faults could 

be perceived as changes in engine fueling, exhaust temperature and pedal position. 

Conversely, other experiments were carried out with the dyno controlling only the 

engine speed and measuring the torque output. In this case the engine pedal position 

was set at 100% for the Performance test, which is the traditional way to evaluate the 

engine stability, while for the Pedal test the pedal position was stepped through the 

same settings observed in the MiniMap test with no faults. Thus, MiniMap and Pedal 

tests generate complementary information on engine behavior, the first being similar to 

studies of engine efficiency such as Brake Specific Fuel consumption, BSFC, the latter 

more representative of engine operations in a vehicle. Comparison of results obtained in 

the two modes may also provide insight on whether some torque fluctuations might be 

induced by the dyno/pedal control system. 
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Fig. 3.1. Timeseries of the CAN parameters during 

the Warmup/Performance test.  

Testing protocol 

Each testing session started with the engine at room temperature. It was agreed that 

engine warm-up would be done at 1500 RPM and 35% pedal position, consistent with 

the way that the C7 engine was operated in conjunction with other studies carried out by 

the dyno team, followed by a Performance test with no seeded faults, at the end of 

which the engine would be shut down following a short engine cool down.  

Figure 3.1 shows CAN parameters 

plotted as a function of time to illustrate 

this type of run.  The EngSpd trace 

shows the engine start (accomplished 

by means of the engine starter), 

followed by a short idle to ensure that 

the cRIO daq system and other 

equipment were operational, then a 15 

mins warm-up time so that the engine 

coolant temperature stabilizes at 205 

degF. After that, the computer stepped 

the engine through six engine speeds 

(1450, 1600, 1800, 2000, 2200, 2400 

RPM) with the pedal position fixed at 

100%, holding for 170 s at each step to 

collect the data for the engine stability 

analysis described later. The engine 

was then returned to idle conditions for 

the cool-down before shut-off.  Notice 

the very large oscillations during warm-

up of the air charge temperature since 

the CAC controller response was not 

optimized for these operating 

conditions. Thus, the first step in the 

sequence was extended from 170 to 

260 s.  Notice that the dyno system controlling the sequence of steps was tied to the 

dyno Cell daq, which was not able to complete a full acquisition cycle of the more than 

130 parameters in less than 1s. As a consequence, the time at each step was 

determined by the daq cycle, thus, the actual holding time had a small variability (+/-1s).  

 

The combined Warm-up/ Performance test was followed by experiments with/without 

the seeded faults.  Since each engine restart required to reset the dyno computer and 

data acquisition in addition to stabilizing the engine coolant and air charge 

temperatures, for efficiency the dyno operations were programmed to repeat the same 

sequence of engine operating points several times, typically five. Thus, an experiment is 
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ID EngSpd Torque

(#) (RPM) (Lb*Ft)

Stab 1450 700

P11 1450 400

P12 1450 550

P13 1450 700

P21 1800 400

P22 1800 550

P23 1800 700

P31 2200 400

P32 2200 550

P33 2200 700

P41 1450 300

P42 1800 300

P43 2200 300

Idle 700 35

ID EngSpd Torque

(#) (RPM) (Lb*Ft)

Idle 700 35

Stab 1450 700

P11 1450 400

P12 1450 550

P13 1450 700

P21 1800 400

P22 1800 550

P23 1800 700

P31 2200 400

P32 2200 550

P33 2200 700

P41 1450 300

P42 1800 300

P43 2200 300

 

Table 3.1. Operating points for the 
MiniMap test sequence with the 
dyno  controlling the engine in 
speed/torque control mode 

defined as the engine operations between each engine start and corresponding shut 

down, consisting of a short step to make sure the engine coolant is within the desired 

temperature limit, and repeating the same sequence of programmed operating points 

each at a different perturbation level of the same seeded fault, including no perturbation. 

It was not practical to change type of fault during a given experiment because it required 

opening two switches in the BoB for the high and common lines of the sensor 

associated with producing that perturbation and reconnecting the lines either to the 

ASMD (for pressure changes) or the TSMD (for temperature perturbations) input, output 

and common.  On the other hand changing perturbation level was done by simply 

turning a rotary switch in either device. This change could only occur at idle because 

both devices were located in proximity of the Break-out-Box to limit the wiring length, 

and for safety, access inside the cell was only allowed when the engine was either off or 

at idle. However, relays had been incorporated in both devices to bypass their circuitry 

so that the perturbation could be turned on/off from the cell control room.   

To optimize the data collection while working around the allowable engine running hours 

for a test day, the series of experiments carried out for each testing session was 

different. A typical experiment would take between 40 to 60 minutes, depending on test 

conditions. At times, experiments had to be cut short because of available test time or if 

unpredicted malfunction with the equipment or the engine occurred. Regardless, the 

data for each experiment were contained in a separate set of files identified by the date 

and test type which will be discussed in detail in the data structure section. The list of 

experiments is provided separately as an Excel file. For each testing session the log 

gives information on the test conditions of each experiment (fault type and perturbation 

levels) with the name of the files for the CAN, Cell, Analog and Digital data, the number 

of snapshots generated for each run and the containing the data reduced for analysis. 

 

Engine Operating Points  

Most of the experiments have been conducted 

stepping the engine through twelve selected 

operating points plus idle, representative of field 

conditions, and holding the engine at each step for a 

short period of time (typically 40 s). Table 3.1 lists in 

order the operating points of the MiniMap test 

sequence for which the dynamometer controls the 

engine speed and torque. Notice that the first point 

labeled Stab is used for engine stabilization and was 

approximately 140 s long. The three engine speed 

values were selected within the range recommended 

by the manufacturer for this engine (1440 to 2400 

RPM) as representative of low, medium and high 
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Figure 3.2. Engine operating parameter 
timeseries acquired from the CAN 
communication bus. 

 

Figure 3.3. Timeseries of engine operating 
parameter from laboratory instrumentation and 
recorded with the Cell daq. 

speed operations. At each engine speed the torque is stepped through 3 values 

representing the mid/high torque range (this engine has a max output rating of 800 

Lb*Ft at 1450 with JP8 fuel and a recommended top engine speed of 2400). Three low 

torque points complete the sequence. Considerations regarding the repeatability of the 

air charge temperature suggested grouping the low torque points all at the end of the 

sequence instead of interleaving them according to engine speed.  

 
Figure 3.2 shows plots of engine parameters 

acquired from the CAN communication bus 

as a function of time during such a MiniMap 

test sequence with no seeded faults. Notice 

the stepped behavior of the traces except for 

the case of the air charge temperature which 

increases/decreases very slowly, lagging the 

torque changes. The stabilization point was 

important to limit the first oscillation and 

reduce temperature variability. During the 

twelve step sequence,, the engine coolant 

remained within +/- 3 deg F of the set-point 

(205 degF), while the air charge 

temperature was slow to stabilize around 

127 degF and was seen to drift within a 

30 degF band because the CAC control 

parameters are optimized for the high 

torque range. Since in these tests the 

torque changes from 300 to 700 Lb*Ft, 

we have not attempted to achieve tight 

temperature stabilization, as done when 

measuring rated engine output or BSFC, 

because the test would become too long. 

Care was taken to prevent the air charge 

temperature from rising above 160 degF 
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Figure 3.4. Traces of the exhaust temperature at 
different locations. 

0

5

10

15

20

25

30

35

700 900 1100 1300 1500

P
re

ss
u

re
 (

p
si

) 
 &

 S
ta

ck
 P

re
s 

(i
n

H
2

0
)

Time (s)

Test Sequence - Speed/Torque Control

Air B4 Manifold Exhaust B4 Turbo 1

Exhaust B4 Turbo 2 Exhaust Stack
 

Figure 3.5. Traces of pressure signals in the intake 
and exhaust system. 

since the PCM progressively reduces fuel to protect the turbocharger against elevated 

exhaust temperature.  

The CAN data timeseries show the engine operating conditions perceived by the PCM 

through the engine sensors and internal calculation. Such “internal” picture of the 

engine needs to be compared with that obtained from equivalent data acquired through 

the cell instrumentation. Fig. 3.3 shows timeseries of the Intake Air Flow, Fuel Flow, Air-

to-Fuel ratio, Torque and Pedal Position (Throttle%) recorded by the cell daq at low 

rate. This is the “external” picture of the engine which depicts its true behavior.  

A more detailed picture of the engine 

operating condition is gained from 

analyzing additional parameters 

recorded through the the cell daq. For 

instance, the plots in Fig. 3.4 illustrate 

differences in temperature between 

the exhaust ports and downstream the 

turbocharger (Stack) while Fig. 3.5 

shows the exhaust pressure upstream 

and downstream the turbocharger 

together with the intake pressure. 

 

These plots are useful to assess 

engine stabilization although slow 

drifts in temperature are due to the 

exhaust system walls equilibrating in 

temperature. The exhaust temperature 

is an important parameter since it 

affects the pressure on the 

turbocharger, thus, the induction 

process.  Also, the turbocharger needs 

to be protected from over temperature. 

Notice that the temperature traces 

show a faint drift after the first rapid 

change due to the torque transition 

between steps. Notice, however, in the 

plots of Fig. 3.5 that pressure appears 

to stabilize more quickly than with 

temperature.   

Notice also from Figs. 3.4 that exhaust temperature in the port increases as a function 

of torque (more heat is generated because more fuel is burnt) but decreases as a 
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function of engine speed (more flow). When either the fuel system or the induction 

system malfunctions, the temperature signature could be used as another diagnostic. 

Unfortunately, there is no exhaust temperature sensor in this application as it would be 

found in a platform with after-treatment. The data set collected in this project may be 

useful to evaluate other sensing methods for engine performance abnormalities.  

Temperature differences between exhaust ports may be partly due to geometric effect 

but they may also reflect combustion differences between cylinders. A small pressure 

difference (less than 0.5 psi) is observed between the two inlet ports to the turbo under 

some operating conditions consistent with the observed difference in temperature.   

Results  
 

Fig. 3.6 gives an example of time series derived during an experiment in which the 

injection pressure sensor gain was changed. The dyno was in speed/torque mode. 

Each subplot in Fig 3.6a show the time series of a CAN parameter together with the 

corresponding one measured with an external device. Temperatures and Boost 

pressure are in very good agreement, while Pedal%, Commanded Fuel and Load% 

(CAN data) deviates from actual measurements of %Throttle, Fuel Flow and Torque 

(Dyno data) even in the 4 repeats with no perturbation applied. The deviations change 

depending on the perturbation level. Ratios of these time series are helpful to highlight 

differences induced by the seeded fault as shown in Fig. 3.6b. The fuel ratio is similar to 

the sensor ratio, although noisier because of the combined variability from the two 

measurements, especially during step transitions when time delay between the two 

types of measurements play is an important factor.  
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          (a)                                                                                                             (b) 

Fig 3.6. (a) Composite plots of CAN and Dyno data for an experiment in which the 12 point sequence of Table 3.1 
was repeated 5 times at gain perturbations level of x0.9, x0.8, x1.15, x1, and bias offset of+0.4V. (b) Ratios plots 
of the CAN/Dyno timeseries. Changes in the ratios from sequence to sequence highlights the effect of the 
injection pressure perturbation. 
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Fig. 3.7. Mean values of engine operating parameters 

at different speed/torque points are plotted in the order 

with which the data was acquired during a test 

sequence similar to that of Table 3.1 (the low torque 

points have been omitted). Each plot corresponds to a 

test during which gain of the Injection Control Pressure 

sensor was altered by a factor indicated in the legend.  

For these tests the dyno was operated in “open loop”; 

torque is only measured but not held constant, while 

the Pedal was fixed.  

 
A quantitative analysis of the effects 

induced by a Seeded Fault can be 

better carried out in terms of mean 

values averaged over equal time 

windows to reduce noise.  In this way 

the sensitivity of a parameter to the 

perturbation level can be established.  

Fig. 3.7 shows composite plots of 

mean values of selected CAN and 

Dyno measurements plotted 

according to the order with which the 

points in the test sequence were 

stepped through as indicated in Table 

3.1.  The points at low torque have 

been omitted in these tests. The data 

refer to four replicas of the test 

sequence, one without the fault 

(Gain=1) and three with gain changes 

of x0.94, x1.04, x1.15, respectively, 

as indicated in the legend. Notice that 

in this experiment, torque is not 

controlled and the pedal position is 

set to the mean value found in 

previous tests under speed/control 

mode.  However, the same torque 

value is not always reached after engine restart likely because of instability in the 

servomechanism that actuates the engine pedal. 

The CAN data in Fig. 3.7 show that there is no apparent change in Injection Control 

Pressure since the PCM is able to compensate for the different sensor reading by 

means of the pressure control valve. No changes are seen in the commanded fuel, 

thus, Load% does not change since it is calculated from speed and fuel. On the other 

hand, a change in fuel delivered to the combustion chamber has occurred since a 

higher/lower control pressure translates into a higher/lower quantity of fuel injected in 

the cylinder. Notice that if the sensor is skewed high (gain x1.15, for instance) the PCM 

decreases the injection pressure, thus, the quantity of injected fuel decreases.  Indeed, 

as shown by the Dyno data, the engine torque output measured by the dyno changes 

proportionally with fuel since the dyno is not trying to control torque. The fuel flow 

measured by the external instrument (the Coriolis fuel meter) also confirms that fueling 

has changed.      
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Fig. 3.8. Mean values of engine operating parameters 

at different speed/torque points as given in Table 3.1. 

The gain change applied to the Injection Control 

Pressure Sensor is indicated in the legend.  These 

tests were carried out with the dyno operating in 

speed/torque control mode.   

 

Fig. 3.9.  Plots of the CAN Pedal% for the same tests 

illustrated in Fig. 3.8. 

 

 

The plots in Fig. 3.8 show the 

opposite effect.  In this case Torque 

is kept constant by the dyno. When 

the PCM adjusts the injection 

pressure by means of the bleed valve 

to correct for the pressure shift 

indicated by the skewed sensor, the 

engine output changes but the dyno 

corrects for the torque change by 

means of the throttle. Thus, the dyno 

cell instruments do not detect any 

change in either torque or fuel, but a 

small shift in Pedal can be observed 

(Fig.3.9). The PCM data, however, 

show changes both in Fuel and 

Load% due to the Pedal correction 

caused by the dyno controller. The 

plots in Fig. 3.9 show that the Pedal 

change is very small (of the order of 1 

to 2%) because Pedal is insensitive 

to Torque within a certain range as 

indicated in Fig 8. If at that speed the 

engine is not able to produce enough 

torque, the pedal value climbs up 

toward 100%. For instance, this is 

seen happening at the third torque 

step at 2400 RPM. 
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EngSpd Torque Fuel Flow AirFlow A/F Tturb1 Tturb2 Pturb1 Pturb2 AirB4M CoolT AirIntT

1450 0.8% 0.6% 1.2% 1.6% 0.9% 1.0% 1.0% 1.2% 0.6% 0.1% 2.2%

1600 0.6% 0.5% 0.8% 1.0% 0.3% 0.3% 0.6% 0.6% 0.2% 0.0% 1.3%

1800 0.4% 0.4% 0.8% 1.1% 0.4% 0.3% 0.9% 0.5% 0.2% 0.1% 1.3%

2000 0.3% 0.9% 0.7% 1.0% 0.4% 0.2% 1.0% 0.7% 0.3% 0.1% 0.7%

2200 0.4% 0.7% 0.7% 1.0% 0.4% 0.2% 0.9% 0.5% 0.1% 0.1% 0.6%

2400 0.7% 1.1% 0.7% 1.1% 0.7% 0.6% 0.9% 0.5% 0.1% 0.0% 0.5%  

Table 3.2. The table reports the variability of engine parameters recorded by the Cell daq at 
different engine speed during 8 Performance tests (100% throttle) carried out on different days. 
The variability is given as the ratio of the mean standard deviation over the mean value of the 
measurements over 20 s. 

EngSpd Load% CmdFuel Boost InjCtlP EngCoolT ManAirT

1450 0.6% 0.2% 0.8% 1.0% 0.3% 0.3%

1600 0.4% 0.2% 0.8% 1.1% 0.4% 0.3%

1800 0.3% 0.3% 0.7% 1.0% 0.4% 0.2%

2000 0.4% 0.1% 0.7% 1.0% 0.4% 0.2%

2200 0.7% 0.1% 0.7% 1.1% 0.7% 0.6%

2400 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%  

Table 3.3.  Variability of CAN parameters calculated for the 
same Performance tests used in the data of Table 3.2. 

 

We stress that, for the experiments with seeded faults, test-to-test variations of these 

features may provide supporting evidence that a malfunction has been induced. 

However, we need to establish first the detection limit for these measurements since the 

observed feature may be due to noise. Specifically, we need to establish the 

repeatability of these parameters and the stability of the engine over the time during 

which the experiments were conducted to prove that there may be a correlation 

between some features in the data and the seeded faults. 

 
Table 3.2 gives the variability observed over 8 Performance tests carried out on 8 

separate days for 11 engine parameters related to engine output. The measurements 

were done with the external sensors and instruments and recorded by the Cell daq.  

The variability, given in percentage, is calculated as the ratio of the standard deviation 

over the mean of measurements done over the last 20 s of each steady state step in the 

Performance Test (test carried out at 100% pedal).  

Similarly, Table 3.3 shows the 

variability for some of the CAN 

data calculated for the same 

tests. The data shows that the 

variability of most parameters is 

better than 1 percent. Similar 

variability values are obtained for 

other types of tests such as the 

one at mid/high torque described 

in Table 3.1. 
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Effects of Seeded Faults 

 

We have described earlier how changes in Fuel Flow (i.e., fuel commanded by the ECU 

to be injected in the cylinders) were detected when the Injection Control Pressure 

sensor was modified.  This perturbation is useful to produce a set of data in which the 

actual Fuel Flow is different from what the ECU estimates.  It also mimic the case in 

which the engine performance has changed without the ECU perceiving it. Similarly, a 

loss of engine output was produced by altering the calibration of the Boost Pressure 

sensor but in this case an appreciable torque loss was caused by the ECU derating the 

engine (i.e., decreased fuel) for protection of the turbocharger since the low pressure 

was misunderstood as a decrease in air flow which would have increased the exhaust 

temperature above the safe operating level. Thus, this seeded fault did not produce an 

engine torque change in progressively larger steps, rather it occurred when the Boost 

Pressure perturbation became sufficiently high that the ECU could no longer 

compensate the perceived low pressure condition by means of the Waste-gate. 

Therefore, Fuel Flow changed only when the ECU enable derating. The details of the 

affects of the Injection Fuel Pressure sensor and of the Boost Pressure sensor were 

reported in the paper presented at the 2010 GVSETS meeting.   

 

Similarly, restricting the intake air flow or the exhaust flow caused the intake air flow to 

decrease without an appreciable loss in torque. Moreover, the ECU did not take any 

action in either case to change fuel since air flow is not measured directly.  Torque loss 

was not easily detectable until the exhaust temperature increased over the safe limit for 

the turbocharger and these experiments had to be halted. The resulting data were not 

sufficient to develop an exhaust temperature model that could be used as a diagnostic 

tool. 

 

Calibration changes for Manifold Intake Air temperature to read high triggered the ECU 

to derate fuel for safety because of the potential unsafe increase in exhaust temperature 

triggered by the elevated air charge temperature. Only selected experiments were 

carried out with this type of fault, mainly to record the effect but not to develop a 

diagnostic model. 

 

The oil pressure sensor was first thought to affect operation of the high pressure pump 

that controls injection pressure.  However, large perturbation in its calibration did not 

produce any effect in the measured fuel pressure. It was later determined that this 

sensor is used only to warn the driver of a low oil condition, thus, it was not a useful 

fault to study engine output changes. 
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Fig.3.10. Example of Analog Signals recorded 
with the cRIO. Fluctuations in the SenX sensors 
in the Exhaust and in the Intake (S-Exh & S-Int) 
are correlated with those observed in the broad 
band Torque sensor. The signal of the sensor in 
the oil pan (S-Oil) is masked by noise. The 
primary CAM signal and the Inj  #1 driver signal 
are shown to highlight the engine cycle.  

 
Information from Additional Sensors 

 

We have discussed so far the information contained in the CAN and the Cell data 

showing that the effects of Seeded Faults are evaluated by looking for shifts in engine 

parameters measured by external devices and by comparing these measurements with 

those available to the ECU from production sensors or from other ECU. All these data 

reflect the cycle-averaged engine behavior and do not contain information related to 

distinct combustion events. To collect information on combustion stability and/or 

differences between cylinders in-cylinder pressure sensors have been traditionally used.  

These are expensive and mainly suitable for laboratory studies. Thus, during the 

experiments with seeded faults, we have incorporated low cost prototype devices (SenX 

sensors), potentially suitable for in vehicle use, that measure fluctuation of pressure in a 

gas flow. Since both intake and exhaust flows pulsate due to charge induction and 

combustion events, respectively, the SenX sensors could provide diagnostic information 

with affordable hardware relying on complex pattern recognition techniques.  

 

Our interest in collecting data from these 

sensors during the Seeded Faults 

experiments was stimulated by the 

availability of the broad band Torque 

sensor capable of detecting torque 

fluctuations induced by combustion 

events and by the laboratory encoder to 

derive accurate engine speed 

measurements, thus, also angular 

acceleration to which Torque is related.  

As shown in Figure 3.10, the analog 

signals from three SenX sensors (one in 

the exhaust, one in the intake, and one in 

the oil pan) were recorded with the analog 

board in the cRIO at 10 KHz to provide 

sufficient bandwidth to analyze signatures 

associated with combustion events even 

at 2400 RPM. For practical reasons, the 

high frequency recording was limited to a 

short time window, typically 20 s. The 

time axis of the plots is referenced to the 

CAN timing. As shown in the figure, in 

addition to the broad band sensor, the 

primary CAM signal (variable reluctance 

sensor) was also recorded to provide a 
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Fig. 3.11. Fourier analysis of the signals plotted in Fig. 3.10. 
The FFT was done over a 1s window. 

timing reference and cylinder identification capabilities. In some experiments, the signal 

driver for Injector #1 was also recorded.  

 

Figure 3.11 shows Fourier 

analysis of the SenX sensor 

traces reported in Figure 3.10 

over 1 s window. This analysis 

was attempted to evaluate 

whether the frequency spectrum 

would change when either the 

Injection Pressure or the Boost 

Pressure sensor were perturbed, 

indicating that the seeded fault 

was inducing some level of 

cylinder maldistribution, but no 

detectable effect  could be 

reliably observed.  Therefore, the 

only analog data that were used 

for model development were 

those from the broad band 

Torque sensor used to train the 

Virtual Torque Sensor model as 

described in detail in Section 6. 
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Section 4 
Data Collection and Reduction 
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Fig 4.1. Schematic description of the file structure deriving from the two data acquisition 

system. 

Data Collection and Reduction                                                                         

This section describes the structure of the data acquired during the experiments and the 

post-processing that was required to generate input data in a form suitable for inputs to 

different Neural Network models.  The challenge with the data collection for this project 

was to balance the need for acquiring a relatively small number of asynchronous data 

from three different sources (CAN messages, high frequency analog sensors and timing 

signals for monitoring the crankshaft speed) while still collecting a very large number of 

analog signals (Cell data, consisting of mostly slow varying signals related to engine 

and fluid temperature control systems) to maintain consistency with the procedures 

used by the dyno team in their studies (see Section 2). Only a few of these analog 

signals are actually used during development of the NN models, some others are only 

used to verify the effect of the perturbations, and most are checked to make sure all of 

the systems were working properly.   

The substantial differences in data sources and information content and legacy 

considerations dictated that two data acquisition systems (Dyno Cell DAQ and cRIO 

based DAQ) be employed and the data for each experiment be recorded in four types of 

data files reflecting the different characteristics of the data, as schematically illustrated 

in Figure  4.1.  While the Cell data were recorded in engineering unit as time-series in 

an ASCII file (text file with .DAT extension), the cRIO saved the data in LabVIEW binary 

format which needed to be converted into ASCII. As described in detail later in this 

section, further post-processing was required to reduce the CAN and the timing data 

into time-series in engineering units (that is, two column arrays each containing 

timestamps and the  physical values of the parameters) and perform the time alignment 

with the Cell data. Since CAN data were broadcast at different rate, the last step was to 
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reduce CAN and Cell data time-series into a generalized matrix format (a single 

multicolumn 2D array) with the same time base so that the information could be 

efficiently used as inputs for both the NN models development and the analysis of the 

effect of the perturbations.   

In our implementation the existent Cell daq was recording continuously, at 

approximately 0.7 Hz and with some filtering, all of the data derived from the laboratory 

instrumentation and the sensors with which the engine was instrumented (see list of 

signals in Appendix C). The cRIO based daq, custom tailored to this project, handled 

the other acquisition modes which necessitated substantially higher data rates but were 

limited to few signals, specifically, CAN, timing, and high frequency analog signals 

which included the broad band Torque sensor, prototype SenX sensors, the engine 

timing sensors (variable reluctance type), and the driver signal for Injector #1.  

In practice, the Cell data provide an overall comprehensive picture of the “mean” engine 

behavior, specifically of the “true” engine operating conditions since they are measured 

externally, while the CAN data represent a somewhat limited “internal” picture of the 

engine behavior as detected by the ECU but with increased granularity respect to time 

(higher rate). Since CAN and Cell data streams are continuously recorded, it is possible 

to time align them on the basis of the well-defined engine speed steps produced by the 

way the experiments were performed.  Some of the signals recorded with the analog 

and digital boards in the cRIO also refer to measurements of “true instantaneous” 

engine behavior because they derive from external sensors that detect signatures 

associated with each combustion event (i.e., broad band Torque sensor and prototype 

SenX sensors).  

Continuous recording of the CAN data was very important for comparison with the 

external data and could be easily managed within the cRIO FPGA resources. On the 

other hand storing continuously either the timing or the high frequency data was not 

only unfeasible but the incremental gain in information over what could be gathered in 

burst mode recording (“snapshots”) appeared minimal since our  experiments were not 

focused on detecting random spikes but rather repeatable features in the signals. Thus, 

a LabVIEW custom application was developed to control the cRIO so that only 

“snapshots” of timing and analog signals would be acquired simultaneously for short 

windows of time of selectable length and triggered manually by the operator.  Each 

snapshot generated two files, one for the synchronous data (analog, 10 KHz recording) 

and one for asynchronous data (timing or “digital”). Both acquisition modes relied on the 

same common clock used by the CAN board so that the snapshots and the continuous 

data are intrinsically time aligned.  



Mar15 Corrected Final Report Page| 38 

msgID Rate (ms) param Conversion Units

2CF00400 15 engsp (B5*256+B4)/8 RPM

15 %load B3-125 %

38FEEF00 500 EngOilPres B4*4 KPa

38FEEE00 1000 EngCool B1-40 degC

38FEF700 1000 ElecPot (B6*256+B5)*0.05 V

38FEF600 500 Boost Pres B2*2 KPa

500 Intake AIr Temp B3-40 degC

38FEF200 100 Fuel Rate (B2*256+B1)*0.05 L/hr

38FEDB00 500 InjControlPres (B2*256+B1)/256 MPa

2CF00300 50 Load at speed B3 %

50 Pedal B2*0.4 %

38FEDF00 250 NominalFriction B1-125 %

DesEngineSpeed (B3*256+B2)/8 RPM  

Table 4.1 CAN data format in the text files and conversion 

rules. 

 
CAN and Dyno data reduction 

For practicality, a binary CAN 

file would be closed during 

acquisition at 400,000 frames 

and a new one immediately 

created. While the converted 

text files were also kept as 

separate files, the data were 

merged during post-

processing done in Matlab 

when conversion into 

engineering units was also 

carried out. Table 4.1 shows 

how to combine the 8 byte 

contained in the CAN frame to 

derive each parameter in 

engineering units.  

Matlab files with the suffix “_ext” contains these 13 CAN parameters as 2D arrays, the 

first column being the timestamp, the second the engineering value. Parameter headers 

and units are also included in the file as string arrays.  

Dyno Cell data were also imported in Matlab, not directly from the raw .DAT files, but 

from the Excel template used to summarize the results of every experiment. Import from 

the template offered a substantial speed advantage since it contained only the analog 

parameters of interest and the timestamps had already been converted to a numerical 

time series instead of being read character by character. Additionally, the parameter 

ordering was kept constant while over time the .DAT file structure had undergone 

changes. CAN and a subset of the imported Dyno data were time aligned using a 

graphical Matlab procedure consisting of progressive time shift to overlay the steps in 

engine speed.  Although the final alignment determination required user judgment, the 

method was simple and the achieved alignment accuracy was of the order of 1s 

comparable with the time resolution of the Dyno Cell data.  Afterwards CAN and Dyno 

Cell data were interpolated onto a 1Hz time-base. Dyno Cell data, as imported and and 

after interpolation, were also saved in the Matlab “_ext” files. 

A subset of 30 Dyno Cell parameters was merged at the end with the CAN data to give 

a single 2D array which was saved with header information and other metadata into a 

Matlab file with the “_genmod” suffix.  The parameter list in the 2D array is given in 

Table 4.2. The array could be easily exported as a text file. This generalized format 

contains more parameters than actually needed for the NN model development but is 
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CAN data Instr. & Dyno Aux. Sensors BoB

    Time     Fuel Flow     T-IntAirMani     ECM1-Boost

    EngSp     AirFlow     T-aftCompr     Sensor-Boost

    Load%     A/F     CoolAftEngine     ECM1-InjPres

    EngOilP     BB-Torque-Sen     T-ExhB4Turbo1     Sensor-InjPres

    Boost     Speed     T-ExhB4Turbo2     ECM1-OilPres

    InjCtrlP     Torque     T-ExhStack     Sensor-OilPres

    EngCoolT     Throttle Pos     P-AirB4Mani     ECM1-EngCoolT

    IntManiAirT     P-aftTurbo     Sensor-EngCoolT

    Pedal%     P-ExhB4Turbo1     ECM1-AirIntMani

    ElPot     P-ExhB4Turbo2     Sensor-AirIntMani

    FuelRate     P-ExhStack

    DesEngSp     T-OilGalley

    NomFric%      P-OilGalley

    Load@Sp

CAN Cell  

Table 4.2. Parameters interpolated on a 1Hz time base saved in the 
Matlab file with the suffix “_genmod”.  The params highlighted in purple 
are the CAN data while the ones in blue are Cell data. The latter are 
listed in three subsets corresponding to Laboratory Instruments and 
Dyno Controller derived measurements, signals from thermocouples 
and pressuse sensors on the engine, and signals tapped at the Break-
out Box to track the level of perturbation applied to the engine sensors 
for seeding faults. 

useful because it makes it easy to extract subset of data for different purposes including 

rationality checks between different experiments.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Input data reduction for the NN Models based on the CAN data 

This section discusses how data sets for the NN model development were generated. 

Two examples are shown below, one pertaining to the information needed to generate 

estimates of actual Boost Pressure, the other for actual Fuel Flow delivered to the 

cylinders. These models were designed to estimate the mean value of an engine 

parameter as a function of time based on time dependent inputs as monitored during 

the MiniMap experiments. Data interpolated at 1Hz were, thus, suitable to develop 

these models since they were not expected to estimate the cycle-by-cycle engine 

response. While these models can follow the transition from one MiniMap step to the 

next, they are not meant to closely reproduce transients since the bulk of the data was 

acquired during quasi steady-state conditions for the purpose of detecting engine 

response shift caused by the seeded faults. More transient data would be needed to 

construct and train models well describing transients. Section 5 explains the 

methodology for constructing Neural Networks models based on CAN data and deals 
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Fuel Flow Model Boost Pres Model

EngSp EngSp

Load% Load%

EngOilP EngOilP

Boost Cmd Fuel

InjCtrlP InjCtrlP

EngCoolT EngCoolT

IntManiAirT IntManiAirT

Pedal% Pedal%

DesEngSp DesEngSp

NomFric% NomFric%

Load@Sp Load@Sp

FuelFlow Pres B4 Int Mani

Input Parameters

 

Table 4.3.  List of CAN parameters for 
input to the network are listed in the 
blue cells. The parmeters shown in 
red are the laboratory measurements 
needed as input during training.  

with the overall considerations that need to be taken into account to design the Network 

architecture. However, we have taken the liberty of adding the results of the estimates 

of these NN models in this section concurrently with describing the input data since in 

crude terms these models can be thought of as deriving coefficients (“weights”) for a 

best fit of known data (that is, when both the input parameters and the actual estimated 

parameters are “measured”). Once these “weights” are derived during training, the 

model is checked for consistency on a new set of the data (“blind test”), in which case 

only the inputs data are provided to the network.  

In each case the data were derived from 

experiments during which the voltage output of a 

sensor out was “skewed” so that the ECU 

compensates for the perceived shift. Specifically, 

for the Boost case, the Boost pressure sensor 

was altered causing the Waste-gate to adjust, 

within the controller allowed limits, in order to 

maintain the desired boosting action, therefore 

causing a change in the expected air charge 

delivered to the cylinders, while for the Fuel Flow 

case the Injection Pressure sensor was altered 

causing the Pressure Control Valve to adjust to 

maintain the desired pressure, thus causing 

more/less fuel to be injected. 

Data from several experiments containing both 

normal and abnormal testing conditions (Seeded 

Fault) were combined to construct input data in 

the form of one training set and one testing set 

(“blind”). Both data set contain the values of 

those engine operating parameters that are always known when the model is deployed 

(that is, the inputs are “internal” engine data as perceived by the ECU). As shown in 

Table 4.3, for the present project, it was assumed to rely only on the CAN data as 

known inputs, although the information on the communication bus is somewhat limited 

compared to what would be available with direct access to the ECU. The training set 

needs to include the values measured by an external instrument (“true values”) of the 

parameter that is estimated by the model. The “true” values derive from the Cell data.   
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Fig. 4.6. Example of sequences used as training set illustrated by 

means of the Boost timeseries. Blue indicates the measured 

input data (Dyno param AirPresB4Mani), red the model output 

generated during training. 

 

Fig. 4.7. Scatter plots of the NN estimate of Boost pressure vs 

measured value. 

 
 To simplify the networks 

development, the input 

data needed to be 

preprocessed in the form 

of time-aligned time 

series. The Matlab file 

designated with the 

“_genmod” suffix were the 

sources for the training 

and testing sets. The data 

extraction process was 

simplified because the 2D 

data array in that file 

could be readily sliced 

horizontally (i.e., 

referenced to time) using 

an index (not shown in 

Table 4.2) used to link every data to a specific operating point in the experiment 

sequence (MiniMap). The array was sliced to combine test sections according to 

perturbation levels identified by the BoB related params and to reject data contaminated 

by unwanted experimental conditions. Given the standard ordering of the parameters in 

the 2D array, selecting the different parameters for each model was also straightforward 

(vertical slicing).  In practice, data slices representing a MiniMap sequence at a given 

perturbation level were chained together. Slices were taken purposely selected from 

different experiments, with at least 2 slices per perturbation level, including no 

perturbations, and they were ordered in a way to mix perturbation levels. As a result, the 

input data set is in the 

form of N x L matrix, N 

being the number of 

independent 

measurements and L 

the number of 

parameters utilized by 

the model as given in 

Table 4.3, L being a 

subset of CAN 

parameters. Figure 4.6 

illustrates the 

combination of 

sequences as input 

data for a Boost 
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Fig. 4.8. The plots show the correlation between NN model 
estimates and the Actual Fuel consumed at the 12 
engspd/load testing points used in the Injection Pressure 
Seeded Fault (blue dots for Training run, red dots for Testing 
run). The data clusters represent the different Torque values 

at which the experiment was run.  

Pressure model (only the Boost time series is shown in the plot).  The Model estimate 

during the training is generated in the form of a similar time series of equal length which 

is also shown in Figure 4.6. 

Theoretically, if the training set is an overall faithful representation of all conditions met 

by the engine, any other set of data presented to the network as input would produce an 

output with equivalent fidelity.  In practice, this is tested independently using another 

data set obtained in similar conditions but not used during the training. The testing set 

includes similar slices taken from different experiments at similar perturbation levels and 

two slices from the training set for consistency checks. The input testing matrix, 

however, does not contain the information on the true measurements (“blind set”).  

The agreement between estimated and actual Boost Pressure for both the training and 

the blind set can be evaluated by means of correlation plots as shown in Fig. 4.7.  Since 

the data derive from experiments run under speed/torque control mode, some degree of 

clustering is observed, but the response of Boost action to the seeded fault as 

measured by the external sensor, builds in more gradually than observed in the fuel 

system perturbation case. The vertical spread in the scatter plots reflects a combination 

of variability in the data input and model quality. Notice that the variability between 

Training and Test data is very similar confirming the fidelity of the model. The standard 

deviation of the differences between estimated and measured values could also be 

used as a comparison criteria.  

 

Input data sets for the Fuel 

Flow model were similarly 

created. Figure 4.8 shows 

equivalent correlation plots 

obtained for the Fuel Flow 

model both for the training 

and testing set.   
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Fig 4.2. Voltage output for the CAM1 VRS sensor plotted as a 

function of time. The mean engine speed is 700 RPM.  

 
Timing data for the Torque Model  

This section describes how we have monitored the crankshaft acceleration/deceleration 

behavior (dynamics) observed during an engine cycle which can provide an indirect 

measure of engine torque. The magnitude of the peak-to-peak oscillations in engine 

speed during an engine cycle (that is, two crankshaft rotations) are caused by the 

periodically positive torque generated during each combustion event, but the 

relationship between torque and crankshaft acceleration is complicated by system 

inertia, dampening, higher harmonics generation and torsional oscillations. Since the 

speed changes in a cycle are typically of the order of a few percents of the cycled-

averaged engine speed, speed measurements need to be accurate.  In out tests, four 

independent measurements were made relying on devices mounted at different 

locations and with different characteristics for assessing potential improvements in the 

quality of the data: two relied on existing engine sensors, one on a laboratory device 

(AVL encoder), and one on an auxiliary production type sensor (Hall-type).   

The crankshaft rotational speed is measured by detecting the time for the crankshaft to 

turn by a constant number of degrees (angular step). This type of measurement 

requires a mechanical element, connected with the crankshaft with minimum backlash, 

with markings (encoding) identifying such steps, and a sensor, mounted rigidly with the 

engine, that produces a signal with a unique signature corresponding to the markings.  

Every modern engine requires at least one such device to control injection timing. Since 

an engine would not be able to run without timing information, the C7 engine relies on 

two Variable Reluctance Sensors (VRS) for robustness, a Primary and a Secondary 

CAM sensor, both mounted in such a way to detect equally spaced protuberances 

(“teeth”) on the face of the gear which is connected to the crankshaft gear train to 

actuate the camshaft. To generate a reference position, one of the 24 protuberances is 

omitted.  The VRS generates a modulated voltage output derived by the perturbation of 

the magnetic field perturbation induced by each protuberance sweeping the face of the 

sensor, as illustrated in the plot of Fig 4.2. Since the CAM gear makes one revolution 

every two crankshaft 

turns, the voltage 

signal plotted as a 

function of time shows 

only 47 peaks and one 

“break” (“missing 

tooth”). Thus one 

crankshaft revolution 

takes 24* Δt, where Δt 

can be measured as 

the time difference 

between two adjacent 
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zero-crossings of either the rising or the falling signal wave  

The trace in Fig. 4.2 is the analog recording of the Primary CAM sensor (CAM1) tapped 

through the Break-out-Box carried out at 10 KHz with the analog board included in the 

cRIO. The board had to be operated in differential mode not to perturb the signals to the 

PCM. Accurate measurements of these time segments rely on accurate detection of the 

zero-crossing which cannot be done relying on these analog signals (each 

measurements occurs every 100 microsec), even relying on interpolation approaches.  

The slow varying VRS voltage output were thus transformed into TTL signals which can 

be acquired by means of a timing board (the analog-to TTL transformation was done by 

means of a Schmitt-Trigger-based device built for another similar application). Thus, 

each low-to high transition of the TTL signal (or high-to-low) points to the time when the 

shaft has rotated by the coded number of degrees.  Both the Hall-type device and the 

encoder provided TTL compatible outputs.  

The encoder was mounted on the front of the engine before the dampener. Thus, the 

speed measurements derived from the encoder and CAM sensors could be affected by 

torsional oscillations induced in the crankshaft. For evaluating this potential problem, the 

Hall-type sensor was mounted at the front of the engine relying on the ring-gear as the 

encoding wheel since it was not possible to add another suitable element. The ring-gear 

signal had the drawback of providing 134 purses/rev, which is non modular with 6, 

substantially complicating the analysis as discussed later. An additional output from the 

encoder (1 pulse/rev) was fed into the timing board to provide a reference position in 

addition to that deriving from the CAM sensors. As a result 5 signals had to be 

monitored with the timing board. The encoder output was chosen to generate 36 

pulse/rev, which was a trade-off between resolution and the need for not over tasking 

the cRIO acquisition system.  

The timing board recorded its clock time and the logical state of the input signals (high 

or low) every time that one of the five TTL signals switched.  Because of considerations 

of speed and memory space allocations in the cRIO FPGA (the core of the data 

acquisition system), the time was recorded in clock ticks and each transition was 

recorded as a logic state in bit form. As an example, 01010 would mean that at the 

moment of the transition the TTL signals in Channels 0, 2 and 4 were low, while those in 

Channels 1 and 3 were low. Contrasting the method of recording analog data at 

constant rate, the data recording with the timing board is event-driven (asynchronous) 

and the resolution with which each event is time-stamped can be very high without the 

burden of storing a very large number of readings. The time accuracy, however, 

depends on the “jitter” of the generated TTL signal and the board speed.  

The timing data were recorded as snapshots during the same time intervals of time the 

analog recording was activated. A file with the DI extension (called “digital” files 

because of the nature of the data) was generated for each snapshot. The text version of 
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Fig 4.3. The structure of the digital files in text format is shown. The stacked plots show the five 

TTL signals monitored by the timing board as reconstructed with the Matlab decoding program.  

 

the file (converted from the native LabVIEW binary format) is formatted as a two-column 

file, the first being the timestamp of the event in clock ticks (2^32), the second the 

decimal representation of the logical state. Therefore post-processing is needed to 

extract the time difference between corresponding events from which to calculate the 

crankshaft rotational speed (that is, the length of time taken by the shaft to rotate by the 

amount specified by the specific encoder). was written to extract such time differences. 

The algorithm converts the clock ticks to a continuous time base expressed in ms from 

the beginning of the recording by detecting clock rollovers (every 107 sec 

approximately).  

The time difference calculation is based on extracting the logical bit pattern from the 

decimal representation, keeping track of the timestamp when the bit corresponding to a 

given channel switches low for the case of measurements done by means of the signal 

falling edge, and subtracting timestamps for adjacent events. Fig. 4.3 illustrates the 

format of the digital files and shows stacked plots of the high/low state for each channel 

as a function of time for one engine revolution.  Fig 4.4 illustrates the calculated time 

differences which are tabulated as an array. The traces show the same data plotted as 

a function of the time corresponding to the next edge transition (falling edges in this 

case).The data give the inverse of the crankshaft speed measured over a rotation 

defined by the encoder resolution. Notice the oscillations observable in each signal, 

three for each shaft rotation identified by the black markers. Notice that the waveform  
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Fig. 4.4. The traces illustrate the time differences derived for the CAM2, Encoder and Hall-type 
sensor. The vertical axis is in ms and applies to the CAM data (1450 RPM).   The traces for the 
encoder and Hall sensor have been shifted. Their corresponding mean value is 2/3 and 24/134, 

respectively, of that of the CAM trace.  

Fig. 4.5. The plot shows the torque sensor signal recorded with the broad band 

torque sensor mounted at the rear of the engine. The signal is recorded with the 

analog board.  The scaling is 264 Lb*Ft/V. 

for the Hall sensor is smoother than that of the encoder while the one for the Cam signal 

is less repeatable. The spike in the Cam-related signal every 2 rotations is an artifact of 

the “missing tooth”.  Notice that traces are not expected to be sinusoidal and line shape 

feature. 

The data corresponding to the time differences are given as inputs to the Neural 

Network model that infers Torque.  This model also requires the corresponding Torque 

data for training.  Once the model has been developed and trained, only the timing data 

are needed as input.  
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The Torque data are found in the analog file with the corresponding filename. Time 

alignment of the two recordings derives from the fact that they are triggered at the same 

time by the cRIO with an uncertainty estimated to be of the order of a few microseconds 

related to the clock ticks required for the data acquisition loop to initiate both recordings. 

Since the torque values are averaged over a cycle in the model, the alignment error is 

negligible and does not impact the model.  

Snapshots were mainly acquired during transition from one operating point to the other. 
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         Section 5 

          NN Analysis of Dynamometer Data 
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Introduction: 

 To accurately conduct an experiment it is important  that there be control over the 

type and quantity of the data that is collected. 

The reason for the direction of the second phase was because in phase I of the 

project, data was acquired from various vehicles in routine operation in the field. 

Typically, the data sources were not entirely under our control, due to the fact that  

1. Data was acquired by others prior to the initiation of this project and we could 
not influence its composition, frequency of collection or volume. 

2. Data was collected by sensors which supplemented the sensor suite usually 
installed to operate and monitor the engines, and as such, the data was 
connected asynchronously with the engine control computer. 

3. Data was collected from the engine control computer, but since the operation 
of such computers involves material proprietary to the manufacturers, we 
were not able to completely specify independent requirements for data 
acquisition and composition. 

 

Methodology: 

      It was our goal to develop methods which were universal and broadly applicable to 

the task of data analysis, so that our procedures and processes would form a coherent, 

singular approach to the assigned tasks (performance  analysis, diagnostics and 

prognostics) which could be deployed in any of the following ways: 

1. On-going analysis of pre-established data bases using historical data 
2. Modeling of systems based upon historical data. 
3. Analysis of real-time data acquired from vehicles 
4. Analysis of real-time data on-board the vehicles 
5. Projections of future behavior based upon one or all of 1-4. 
6. Capability assessments of vehicles with respect to each other or a pre-defined 

standard. 
A key element of our strategy was the use of machine learning methods to build 

high-fidelity data models which provided important capabilities: 

1. The models enabled us to review historical and real-time data to discern 
deviations from nominal performance or behavior. Applied with appropriate 
caution to the data under analysis, it permitted us to detect errors and 
inconsistencies in the data and to remove the data from the modeling effort in 
order to establish high-quality information databases to construct even more 
accurate models.  This process, often is described as bootstrapping, has resulted 
in the extraction of high-quality data from data known or suspected to be 
contaminated by errors. 

2. The models are compact representations of the data, and permit the analysis of 
systems to be carried out efficiently using the empirical models rather than the 
large, but frequently incomplete databases that they represent. 
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3. Models of many dynamic systems permit both interpolation and extrapolation of 
data in regions from which data has not been acquired. 

4. Fixed parameter models of multiple dynamic systems can be captured in a single 
dynamic network and used to analyze (and control) systems whose dynamics are 
not stationary. 

5. High-fidelity models overall operating conditions allow the introduction of model-
based reasoning which compares system performance to nominal or expected 
performance and can optimally detect deviations. 

 

We have developed  powerful training algorithms for dynamic neural networks based 

upon the Kalman filtering methods applied to simultaneous weight updates in recurrent 

networks.  This method, along with the series of innovative procedures applied during 

the training process produces neural networks which are capable  of learning the 

behavior of complex non-linear systems, or even systems of such systems. Once a 

network has been trained to emulate the behavior of such systems, a very compact 

computational model of these systems can be used in lieu of the real systems. These 

schemes are easier to use  and more efficient in many cases than efforts to create first 

principle models of such systems, or less accurate and efficient models by other 

approximation methods, for the purpose of diagnosing, controlling or estimating the 

state of such systems.  

Neural network models were our primary recourse in developing the system models 

because our experience with many problems related to diagnostics and control in 

vehicle systems resulted in successful model development for every problem with which 

we were confronted.  Clearly, other modeling schemes can, and have been,  used 

successfully on some similar problems, but generally rely on expertise with the specific 

techniques.   Our software is unique, but other schemes to train dynamic neural 

networks are widely available and have been used with some success on these 

problems.  For the complexity of models needed for analysis of this data, MATLAB NN 

Toolbox, with Elman networks is a popular, widely available, well documented means of 

attacking similar problems and is packaged in a framework which provides the means to 

do the data cleansing and validation necessary for success. 

Data Selection 

Experience with many problems similar to the ones addressed here  provided insight 

into the selection of the parameters necessary to construct appropriate models.  

However, the choice of the parameters to measure and record for any vehicle system is 

largely determined by the architecture of the control system. In order to provide stable 

control of a complex system, control theory provides guidelines for achieving 

controllability and robustness, meaning that the input-output variables of the controller 

can be expected to provide a “spanning set” of the information necessary for effective 

diagnostics.  In some cases, information is redundant, and some reduction of 
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complexity for diagnostics can be achieved through more frugal monitoring strategies. 

However, it is our view that if all the I/O information from a controller is recorded, 

successful diagnostic strategies can be developed.  Many problems can be solved with 

much less information, if the expertise is available to either decide a priori what should 

be monitored, or deduce from a posteriori analysis of all the recorded data, the 

minimum set required for specific tasks.  

 In general, since we must prepare for ANY problem that might arise, we have 

chosen to capture all the data available, to handle any contingency. 

 Data Cleansing and Validation 

       Data is often contaminated with errors introduced from many different sources, and 

the data with errors are captured in the time series information we encounter from real 

physical systems. Since our goal is to model as accurately as possible the behavior of 

these systems, we do not wish to include the anomalous information in building the 

model.   

      We can provide several examples to exhibit measurement data which has been 

contaminated by calibration adjustments inadvertently included in the data samples.  

When the original data is plotted and visually examined  the outlier data distorts the 

scaling  and obscures the relevant dynamics of the system. In these cases, the auto 

scaling features of the learning system can obscure information required for the  proper 

“learning” of the dynamics since  the data is scaled for analysis and the real dynamic 

range of the information is contained within 0-100 units rather than in  -100,000 to 

600,000 units range covered by the erroneous data. Since machine learning methods 

rely on error feedback, reducing the dynamic range of the observed signal to its actual 

range rather than the pathological factor of more than 10exp6  can dramatically improve 

the learning process. 

     After the flagrant outliers are removed, the data is used to produce a system model 

which is then retested on the same data.  Since the NN schemes we rely on are 

parsimonious in the use of computational resources (number of internals nodes and 

layers), the networks do not make adjustments for small anomalies in the data. 

Consequently, data segments which do not fit the overall dynamics of the system do not 

match the models.  A reexamination of the data to resolve these discrepancies is 

undertaken to determine if the anomalous data should be removed from the training or 

retained. Unless a good cause for removal is found, the data will be retained. This 

strategy can be used because the networks, even in the presence of low incidences of 

anomalous data still learn the overall true dynamics.  This observation has been tested 

with analytic simulations of complex dynamics which are purposely contaminated with 

anomalies.  The networks were observed to learn the true dynamics and the 

comparison of the model behavior and the generated data showed the areas where the 

contamination was introduced. 
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      Typically, with our data in this project and across many other investigations, we 

have found that the error rates in the data bases to be generally small, with rates on the 

order of 1% or so, after the major outliers are removed.  We have general chosen to 

remove the erroneous data for cause in order to improve the models, and to more easily 

separate true anomalies due to system failures from spurious anomalies due to 

measurement errors.  We note however, that quite effective models and performance in 

model based reasoning  can still be obtained even if the small anomalies are not 

excluded.  We therefore recommend a very judicious use of data removal during the 

modeling-training phase of the process. 

Neural Network Synopsis 

The Time Lagged Recurrent Neural Networks (TLRNN’s), which form the basis of 

our modeling efforts,  are an extension of conventional static networks. The TLRNN’s 

include time-lagged internal nodes connecting the neurons in the hidden layers to 

themselves and other nodes in the same layer. With this structure, the network 

develops a “memory” in that prior information circulates in these time-lagged loops until 

the information is no longer needed.  In fact, during the training process, the networks 

learn how long to keep information in storage by themselves, without requiring that 

information to be provided by the user. Thus, they are able to account for past inputs 

and outputs so that they can properly deal with dynamic systems. The figure below 

describes a Multiple-Input  Single-Output (MISO) form of these dynamic networks, with 

variable numbers of hidden layers and variable numbers of nodes in the hidden layers, 

so one may understand  the difference between traditional static networks and the 

dynamic networks used here. 
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Figure. 5.1 In this network, the nodes in the hidden layers are not only connected to the nodes in the 

following layer, but also to themselves through a one-step time delay. That time delay feeds back the 

prior value of the node(s) output(s) to the same hidden layer. This feature gives this form of network a 

“memory” of the past.  Thus, the neural network output is a function of both the current inputs at time t, 

and past inputs at times t-1, t-2, t-3,… 

The trainable weights in the network therefore are both the feedforward (instantaneous) weights and 

the recurrent weights (memory).  Although the network structure provides a very powerful means of 

representing complex systems, its utility for modeling complex systems was limited due to the difficulty 

on training such a device by strategies that worked with static networks.  The Kalman procedures have 

overcome that obstacle. 

Neural Network Training Strategy 

 Kalman Learning Algorithm adapted to train neural networks 

o Most powerful training algorithm currently known 

 Multi-stream learning – trains on many operating conditions at the same time 

 Data randomization – want networks to provide correct responses no matter how 

the system is operated. 

 Comprehensive data set – provide examples of most operating conditions 



Mar15 Corrected Final Report Page| 54 

 Automatic configuration of learning rates and neural network architecture for 

each problem. – Neural network solves the problem, not the user. 

The prime ingredient in the success of our approach was the introduction of the 

Generalized Extended Kalman Filter (GEKF) in 1994, which removed unnecessary 

approximations from the computation. This improvement of course was not 

computationally practical until computer memory and speed had increased to be able to 

handle the complexity of the GEKF computation.   That step, followed by several other 

important developments including specialized code for matrix operations, optimization of 

learning rates, and concurrent presentation of multiple dynamics for complex problems 

has produced the learning strategy used in our work. 

It is important to note that the learning algorithm and the off-line training contain 

basically all the complexity of this entire process.  However, these elements of the 

procedure are packaged in a software kit that handles virtually all the network set-up, 

preparation, training and testing without heavy reliance on end-user expertise for those 

purposes.  This approach is far different from the standard AI machine learning 

packages which offer many types of networks and algorithms to end-user and rely 

heavily on user gained expertise for each problem to produce an optimal solution by 

properly choosing 10-20 parameters to obtain viable solutions. 

When properly and completely trained, a dynamic neural network is a compact 

model of the complex system it was trained to emulate. As such, it can be operated in 

real-time, to produce to reproduce, almost exactly, the behavior of the real system.  This 

behavior can then be utilized to construct model-based diagnostics as described below.  

Neural Network Training Tactics 

     Once the overall strategy for training TLRNN’s is understood, we must develop a 

practical means of implementing the training.  The process is actually quite simple, and 

has several variations depending upon the outcomes desired. 

    We generally rely on “engineering judgment” of individuals working on specified 

systems to determine how much data should be acquired to provide a good 

representation of system behavior.  The question of how much data is sufficient cannot 

usually be answered properly until we complete some initial studies with model building 

to determine how the model performance and the system data compare.  

      The training consists of taking a database, usually ranging in size from several 

thousands of data points to perhaps several million, cleansing the information as 

discussed above, and then compiling a scaled, normalized set of parameters for the 

inputs and outputs into a large data file. For our purposes, the data file consists of a 

large matrix whose rows contain all the inputs in the left-most columns, and the outputs 

in the right most columns. In general, any “clock” or indexing parameter which might 
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indicate the time or general order of the data is removed from the inputs, since we do 

not wish to have any spurious correlations of time and behavior which can be 

recognized and utilized. 

       The training consists of specifying the number of iterations of learning which will 

take place, the nature of the learning problem (classification or approximation), the 

number of independent streams to be used in each iteration and their length.  The 

nature of the problem is the easiest to determine, since the choices are classification 

(for which we want the output to be one of two states, say 0 or 1 depending on the state 

of the inputs) or estimation (we want an analog value between 0 and 1 which represents 

the value of the output of the system).  We have chosen to fix the number of data 

streams at 10, and leave the specification of the stream length to the operator. In 

general, it is necessary to have the stream length be long enough so that the dynamics 

of the system is represented within the chosen string length.   For example, in a 4th 

order system, inputs from 4 time intervals in the past can influence the current value, so 

the stream length should be at least 4.   When the order of the system is unknown, an 

estimate must be made.  In general, we operate with stream lengths between 10 and 

20, which has proven sufficient for all the problems we have examined recently while 

still providing reasonable computational speed for the learning process. 

 Once the number of streams and stream lengths per iteration has been 

determined, the training software will extract from the database the following: 

1. A number of start points equal to the number of strings selected. 
2. A set of sequences beginning at each start point and continuing on for 1 string 

length. 
 

Thus, for a string number of 10 and a string length of 20, the program chooses 

10 strings at 10 random start points in the data file, each of length 20.  From the 

data matrix this means 10 groups of 20 rows of data.  Consequently, one 

iteration of learning will provide 200 data points from the file for training. 

             In general, the number of training cycles should be large enough to allow the 

training to present all the data to the NN several times.  So if we have N data points, 

and each iteration provides Y (200 in this case) data points, we would process N data 

points in Z iterations where Z is simply N/Y.   Since the data selection is random, with 

the possibility of re-sampling a previously sampled data point, using precisely N/Y will 

not guarantee that all the data points are used.  Consequently, the number of iterations 

is chosen to be about 3 to 5 times N/Y. 

            Training continues until the chosen number of iterations has been reached.  For 

the real problems we have encountered, if the above guidelines are followed, the 

accuracy is at or near its asymptotic limit.   We have constructed pathological cases of 

greater complexity for which further training is required, but that need has not been 
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manifest in our recent experimental data. If that situation should occur, the error 

measure of the fit, as evidenced by the RMSE of the residuals between the NN outputs 

and the Target Outputs can be monitored to be certain that the training is complete or 

nearly complete.  For practical purposes, the accuracy of the models sought is an 

attainment of a model estimate which is differs from the true value by about 1%. 

  We can offer a great deal more insight into training methods and procedures for 

problems with widely different complexity, but that discussion is outside the scope of 

this report.  When noise free simulations of complex systems are provided, model 

accuracies better than 1% are achievable, when proper attention is paid to the degree 

of training required, but since our data comes from production sensors with non-zero 

noise levels, that accuracy appears un-realizable with real data, and performance levels 

of about 1% have been obtained with cleansed, high-quality data for a variety of 

problems. 

Model Validation and Performance Analysis 

 With extensive data sets, a traditional approach to model evaluation is to train to 

completion on a portion of a data set and test on an unseen “blind” set. In general, if the 

training is complete, and model generalization has been obtained, the model 

performance on the blind test is statistically equivalent to the training data.  We have 

carried out blind testing to verify the performance of our trained models, and expanded 

the tests to include data which requires some degree of both interpolation and 

extrapolation by including analysis of data not represented in the training set. 

 In the process of model validation, it must be recognized that the techniques 

employed serve not only to validate the model, but also to determine the quality and 

sufficiency of the data.   Exploratory analysis before data collection was complete was 

possible, and helped assure that the data was sufficient for our purposes and, indeed, 

of very high quality. This observation is not meant to imply that NN had a significant role 

in producing high quality data, but the NN analysis merely confirmed that the quality of 

the data was such that the NN estimate closely correlated the true value of the 

parameter to be estimated.  

 Prior to final blind testing, exploratory analysis and preliminary evaluations made 

with model building training were pursued.  In these evaluations, the NN’s were 

observed throughout the training process and it was noted that the behavior observed 

was consistent with performance expectations when training on “ideal” data sets.  By 

“ideal” data sets we mean artificially constructed data sets which are accurate 

representation of complex simulation codes and which can be constructed, at will, to 

provide copious amounts of precise information, which can then be degraded with 

controllable Gaussian white noise.  We assert, without detailed proof, except for 

reasonable expectation, that if the model evolution during training on real data mimics 

excellent performance on “ideal” data, then we can be confident that accurate models 
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are, in fact, being produced during training on real data.   Consequently, during the 

acquisition and concurrent analysis of data, we may surmise that model development is 

proceeding as required, and that, in fact, before final tests (with blind data) 

unambiguously establish the final performance, that high performance with the data in 

hand  will be obtained.    The benefit of this tactic is that these methods frequently 

establish that planned data acquisition efforts often exceed the actual need for 

adequate information, and that some economies in testing costs can be achieved.  We 

recognize that this observation may run counter to prior opinion about the need for 

voluminous data for neural network training, but recent work and development of novel 

training schemes suggests that these empirical model building efforts can be successful 

with far less data than earlier methods had required. 

     The validation process can be carried out in stages, since all the data necessary for 

final validation may not be available at the outset, and it is prudent to determine whether 

model building may indeed have a good chance of success as early in the process is 

possible.  Thus we can break the evaluation and validation down into 6 steps, most of 

which can be completed with data readily available at some time in the development 

process. 

1. Evaluation on the training set. 
a. During Training 
 
b. After Training 

 

c. This process is completed first in the development.  During training the 

error reporting can be monitored, but only partially, since constant 

evaluation of performance on the entire dataset could dramatically slow 

down the training.  However, the error measures on the data used for 

each iteration provide some insight into the training performance.  If the 

error levels asymptotically reach acceptably (typically a few percent) low 

levels and do not exhibit large fluctuations, the training process is 

proceeding smoothly, and satisfactory results should invariably be 

obtained. 

 

d. After training, the error level on the entire dataset can be evaluated. If an 

accurate model for all the data has been obtained, the overall error level 

should be about the asymptote observed during training. 
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2. Evaluation on a Similar Sample of “Unseen” Data 

 

If additional data is available, or if portions of the original data can be spared 

from the training process, the second stage of evaluation can use data which is 

similar to but not identical to the data used for training.  The goal is to establish 

that data from the same statistical distribution can be used to generate results 

which are similar to the results obtained on the training set.  This step indicates 

that the data used for training is a satisfactory representation of a larger data set 

that can be drawn from the system under evaluation. 

3. Evaluation on “Unseen” Data from a Different Period 
 

A further check is possible using data drawn from the system under investigation, 

but collected at a different time.  Evaluation of performance on this data suggests 

that the data is valid for the system despite any changes that may have taken 

place in the time period between the original data extraction and the subsequent 

data collection. Similar performance indicates that aging is not a significant 

factor.  Dissimilar performance may indicate that aging effects need to be 

considered, and that some incorporation of data from different epochs should be 

used in order to train a system to recognize the different performance levels of 

aging systems. 

 

4. Evaluation of “Unseen” Data not contained in the Training Samples _ 
Interpolation 
 

This test is a much more severe test than any of the above.  In this case, the 

performance is evaluated on operational data that is different than any used in 

training, requiring that the network learn to generalize or interpolate in order to 

handle circumstances which may not be covered in training.  In general, passing 

this validation test should be a requirement in order to establish that the training 

data has been comprehensive enough to cover all expected operational modes.  

When performance on this validation exercise matches the levels seen in Steps 2 

and 3, one may expect that the data acquired is an adequate representation of 

the dynamic performance of the system. 

 

5. Evaluation of “Unseen” Data not contained in the Training Samples _ 
Extrapolation 

 

This evaluation utilizes data which is taken at operating conditions which are 

exterior to observed operating conditions and represent an extrapolation estimate 

from the empirical model.  Again, this test is quite severe and often quite time-
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consuming to perform.  In general, for production systems, good design practice 

usually requires that models perform WITHIN observed parameter limits.  For 

some of the models we have constructed, extrapolative analysis has shown that 

model accuracies are very good.  However, it has been our strategy to avoid 

using this capability of the models by simply incorporating extrapolation data into 

an augmented training set. 

 

6. General Testing on Very Large Samples of Novel Data 
 

This final stage of evaluation is undertaken when the trained systems are actually 

deployed on production vehicles.  Evaluation on these systems is impossible 

during development, since the production variability is usually unknown.  Some 

evidence of likely performance can be obtained from simulation studies with 

developmental data to which artificial noise is added. Noise models may be 

available from prior experience with similar production systems in the past, but 

usually Gaussian white noise is used. 

These evaluations can actually become the largest effort in the process when 

carried to completion, but they can be automated and distributed among many 

processors, unlike the scheme used during our development (two processors, 

non-automated, exploratory software).  As noted previously, the model 

construction is usually straightforward and some simple DOE strategies can be 

used to optimize model performance for efficiency and accuracy.  These 

evaluations are straightforward extensions of methods which are routinely 

incorporated in rigorous Design and Validation processes in the automotive 

industry. 

     SUMMARY OF TRAINING AND TESTING 

These processes are straightforward and can be adjusted to meet the needs 

established by requirements for individual problems.  Residual noise in the 

estimations appears to be governed by the intrinsic noise from the production 

sensors and not by the model accuracy.  This observation is based on 

experience with virtual sensors, which are produced by training the models to 

reproduce the signals of real sensors based upon redundant information from 

other sensors in the system.  Such investigations revealed that the RMS noise 

from the virtual sensor and the real sensor were nearly identical, suggesting that 

the estimation performance was close to optimal.  In the studies for this work, we 

attempted to provide performance levels capable of meeting both the needs for 

on-board diagnostics (real-time monitoring) and off-board analysis.  The outline 

presented above pertains to the general procedures used throughout our work 

with both in-use field data and detailed laboratory measurements in 
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dynamometer cells.  For specific performance details on the individual tasks 

undertaken, the results are detailed in other areas of this report.  The ultimate 

performance levels attainable can be determined by a more exhaustive analysis 

of the data, supplemented by additional data from other production systems.  

Such an analysis is possible, but not warranted until performance standards and 

application scenarios are determined and accepted. 

       

Supplement 

Model-Based Diagnostics 

 

Model Based Diagnostics 

Compare Observed Actual Behavior to Expected Behavior 

 

 

 

 

 

 

 

 

 

 

Figure 5.2   A simple and reliable way to develop a diagnostic algorithm is to continuously compare the 

behavior of a real system to an accurate model of that system to see if the behavior of the system matches 

expectations.  The expected system response is calculated concurrently on the basis of the trained neural 

network model.  Diagnosis of anomalous behavior is based on devising some simple, or ultimately, optimal, 

strategies to compare the two data streams in order to reliably, regularly and efficiently provide 

recommendations (decisions) concerning system state-of health.  

Typically, models are developed as functional descriptor of the system based on a set 

of differential equations which calculates the system output from a set of measured 

inputs. These models are developed for specific systems and they need to be 

calibrated. 
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Another more powerful method is to build models by machine learning since this 

process does not require deep domain knowledge of the system response but only prior 

measurements of the system output for a broad range of inputs.  

Neural networks are estimators of the system response but they are constructed using 

generalized procedures applicable to any type of system complexity.  Since they are 

trained on a wide set of system operating conditions, these types of models are typically 

capable of describing the system independently of operator behavior and operating 

conditions.  Additionally, they offer the opportunity to update the system knowledge with 

time, as more experience with real systems is gained. 

 

Example: Fuel Flow Model 

This model was constructed to estimate the actual Fuel Flow consumed regardless 

whether the engine operations were normal or abnormal (that is w/wo having perturbed 

the output of the Injection Fuel Pressure sensor. 

Data inputs used for Fuel Flow prediction were:  

 Engine Speed 

 Load % 

 Engine Oil Pressure 

 Boost 

 Injector Control Pressure 

 Engine Coolant Temperature 

 Intake Manifold Air Temperature 

 Pedal % 

 Desired Engine Speed 

 Nominal Friction 

 Load @ Speed 
 

Eleven variables were used to predict the FUEL FLOW.   None of the input variables 

had a simple correlation with the output target. 

The neural network used was a TLRNN with two hidden layers between the 11 input 

nodes, and the single output node (Fuel Flow). The network was kept small to be 

certain that an efficient model was constructed, so that there were 23 nodes in the first 

layer and 11 nodes in the second layer. 

The training was on a portion of the data with about half the information reserved for 

blind testing. The results are shown in Figure 5.3 in which the timeseries of the actual 

Fuel Flow and of the NN estimated fuel flow are overlaid  
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While many statistical tests are possible on the data to characterize performance, a 

simple statement of performance levels can be made in the context of the possible 

means such a model might be employed for diagnostics and prognostics.  In an on-

board application, a user might be interested in determining whether the power plant’s 

fuel efficiency, at any operating condition, is within acceptable limits. Detailed 

examination of the data indicates that for observation periods of about 10-20 seconds, 

the measured fuel rate, and the estimated fuel rate on the blind test data agree to better 

than 1%.  

 

Fuel Flow Model 

 

Fig.  5.3. Output of the Fuel Flow NN model (normalized  in the 
0-1 range). The measured data (blue dots) and the NN 
estimates (red dots) are overlaid. The red crosses indicate the 
subset of data used for training.  The remaining data were 
used for model validation (blind set).  
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                Virtual Torque Sensing 
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Virtual Torque Sensing 
 
Introduction 
 
Current electronically controlled diesel engines do not use an engine mounted sensor 

for determining the actual torque that an engine is producing. Physical torque sensors 

are expensive and not yet reliable for production applications and today’s technology is 

mainly applicable for testing purposes rather than field use. The generation of 

appropriate torque output consistent with the driver demand, perceived as a pedal input, 

is the basis of the architecture of newer control strategies. The ECU performs complex 

calculations to command the amount of fuel to be delivered to the cylinders, adjust the 

injection timing and the boosting action so that engine torque output responds 

accordingly to the driver command, especially smoothing out torque transients. 

However, the torque output calculation carried out by the ECU does not necessarily 

provide an accurate estimate of the actual torque the engine produces, especially under 

transient conditions during which torque control can be very complex because of the 

dynamics of the systems involved in adjusting fueling and air induction. Furthermore, if 

any device in the control system deteriorates with time and shifts its operating behavior 

more than what is expected as normal aging, the torque output may deteriorate without 

being diagnosed. 

 

Virtual Torque Sensing (VTS) is a software alternative to detecting actual brake torque  

with a minimum investment in additional hardware (that is, not relying on new sensing 

technologies) at the expense of adding computational burden which can be either 

managed within the ECU or by another module interfacing with the ECU.  The most 

promising VTS implementation is based on accurate engine speed measurements 

which are the input to a Neural Network model that calculates actual torque. Figure 6.1 

schematically illustrates this concept.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6.1. Schematic description of the components in the proposed Virtual 

Torque Sensing method 
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VTS is, thus, an empirical method based on inferring engine torque relying on other type 

of measurements potentially already available from existing sensors (such as a 

crankshaft timing device) and a Neural Network processor to carry out the calculation. 

As schematically shown in Figure 6.1, it combines a Position Sensor and a wheel with 

constant angle marks (Encoder) for generating a periodic signal. The time elapsed 

between adjacent marks is extracted by a Signal Conditioning module which provides 

the input to the NN processor.  The timing device could be either the same 

sensor/signal extraction electronics already existing in the production injection time 

control system, or an improved device/signal conditioning mounted in a location 

optimized for accurate speed measurements. Timing sensors are much more robust 

and cost effective than Torque sensors and have been used in productions for decades. 

If the production timing sensors can be used, VTS would only require software 

development to embed the NN model in the ECU.   

 

The benefits of this technique would include: 

 

 Minimum hardware and wiring modifications 

 Improved engine response 

 Increased fuel efficiency 

 Increased transmission shifting efficiency 

 Ability to determine powertrain health/reliability 

 

The derivation of Torque output from Engine Speed measurements is based on the fact 

that the crankshaft does not rotate at constant velocity, but it accelerates during each 

combustion event and decelerates in between because of engine friction and the 

external resistance. As an example, in a six cylinder engine three combustion events 

occur per crankshaft rotation, thus the crankshaft oscillates at a main frequency 

corresponding to three times the engine speed as seen in plots in Section 4. The 

Torque output measured with a frequency torque sensor is also seen to oscillate in a 

corresponding fashion. However, developing a mechanical model that captures 

accurately the functional dependence of the speed variations as a function of torque is 

very complex because of the inertial characteristics of the engine. On the other hand, a 

pattern recognition approach based on machine learning can be used to link speed 

fluctuation features to torque. The section below explains the Neural Network model 

developed to infer mean brake torque from timing data and torque information. The data 

used to develop and test the Neural Network model were collected during the 

experiments described in earlier Sections. Time differences were then calculated from 

the raw timing data according to the procedures described in Section 5 and constitute a 

generalized input for developing different Neural Networks models.  
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Model Inputs. 

The input measurements, in the form of time differences corresponding to the time 

taken by the crankshaft to rotate by a constant angle, are first converted into a network 

input vector which is constructed from a sequence of four phased summations, as 

detailed below, plus a rolling average. The network thus has five inputs. For camshaft 

data, time intervals are combined in pairs, while for encoder data three consecutive 

intervals are combined. This difference reflects the respective number of teeth encoded 

per revolution. In this set-up 24 pulses were encoded for cam data and 36 pulses from 

the encoder data. Each pulse or PIP interval contributes to every input vector. 

Consecutive input vectors correspond to the times that are 8 (cam) or 12 (encoder) 

teeth apart, so that in each case the network is three times per revolution.  

 

For initial explorations, each phased summation included contributions from three 

consecutive PIP intervals. This was later revised for cam data to include contributions 

from only the current PIP and the next previous PIP. This avoids mixing in the same 

summation time interval values from combustion events associated with cylinders 1-2-3 

and 4-5-6 which feed separately into the turbo (combustion order is 1-4-3-6-2-5 in this 

engine) with slightly different pressure values. Without attempting to justify the choice 

statistically, we merely note that the performance with the revised form appears to be at 

least as good as that of the original form.  

 

The network input vectors are constructed as follow. As noted above, the basic clock 

unit is the timestamp interval, which we take to be the time between falling edges of the 

encoding device. In a six-cylinder engine, one PIP interval then consists of eight tooth 

intervals for cam data and 12 intervals for encoder data. Let us define t(0) to be the time 

stamp interval at a specified moment, and t(m) to be the time interval m intervals in the 

past. For cam data, the first four network inputs are constructed as follows:  

 

 in(0) = (t(0)+t(1)+ t(16)+t(17))/4 - tbar (6.1) 

 in(1) = (t(2)+t(3)+ t(18)+t(19))/4 - tbar  (6.2) 

 in(2) = (t(4)+t(5)+ t(20)+t(21))/4 - tbar  (6.3)   

 in(3) = (t(6)+t(7)+ t(22)+t(23))/4 - tbar  (6.4) 

 in(4) = tbar  (6.5) 

 

where tbar is an average over a suitably long interval 

 

 tbar = [t(0)+t(1)+…+t(14)+t(15)]/16  (6.6) 

 

It should be noted that all input vectors have the same phase with respect to a fixed 

position in the cam rotation. In practice, this means that all teeth that represent time 

interval t(0) have the same angular distance, modulo 8 teeth, from a chosen fixed 
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reference position. It is quite likely that this condition is crucial.  

 

For encoder data, the first four network inputs are  

 

 in(0) = (t(0)+t(1)+t(2)+ t(12)+t(13)+t(14)+t(24)+t(25)+t(26))/9 - tbar  (6.7) 

 in(1) = (t(3)+t(4)+t(5)+ t(13)+t(14)+t(15)+t(27)+t(28)+t(29))/9 - tbar  (6.8) 

 in(2) = (t(6)+t(7)+t(8)+ t(16)+t(17)+t(18)+t(30)+t(31)+t(32))/9 - tbar  (6.9) 

 in(3) = (t(9)+t(10)+t(11)+t(19)+t(20)+t(21)+t(33)+t(34)+t(35))/9 – tbar (6.10)  

 in(4) = tbar (6.11) 

 

where     tbar = [t(0)+t(1)+…+t(14)+t(15)]/16  (6.12) 

 

We investigated a small variation of the base inputs set, in which the average time 

interval was replaced by a scaled reciprocal of the interval. This replacement for input 

in(4) is equivalent to a speed rather than to a time interval. This change does not 

appear to have a significant effect.  

 

The torque measurement contains a large amount of high frequency fluctuation, some 

of which is true noise but which contains real variation of torque related to the physical 

process of torque production.  In the present case, we are not concerned with 

estimating torque at this time scale.  Consequently, the measured torque values are 

smoothed somewhat prior to being used as targets for the network output. 

 

 

Neural Network Architecture and Training: 

 

The goal is to select a neural network architecture that can transform the stream of 

inputs derived from time intervals, such as those presented above, into a stream of 

torque values that approximate as closely as possible the stream of measured values. 

On the basis of previous work, the input set we have chosen together with the network 

architecture about to be described were expected to be capable of performing this task 

with reasonable accuracy.  

 

We use the class of neural networks called time-lagged layered recurrent networks 

(also called dynamic networks, dynamic recurrent networks, and recurrent multilayer 

perceptrons). Networks of this class are capable of being trained to represent a wide 

range of dynamical systems, which then can be used as models, controllers, estimators, 

predictors, etc. The key to practical use of such networks is an effective training 

procedure. The procedure used here is described in considerable detail in IEEE 

publications coauthors by Feldkamp and Puskorius. That paper contains the 

recommendation that such networks be described for computational purposes as an 

ordered sequence of simple mathematical operations. This description, which does not 
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seem to be widely appreciated, gives rise to a rather simple way of executing a network 

of arbitrary complexity in a computer program and has served as the basis for 

embedding recurrent networks in high volume consumer products. The ordered network 

description is also advantageous when programming a training procedure.  

 

For this application, the detailed network architecture does not seem to be crucial, as 

long as the number of parameters does not encourage the training process to over fit 

the training data. For practical reasons, the amount of variation present in the data 

collected for this application was not as large as desired (though it seldom is!) and over 

fitting must not be disregarded. A fair amount of experimentation was performed to 

guide the choice of a specific architecture that would be capable of the estimation task 

while not being so flexible that fitting noise present in the data is easily done. If network 

resources are wasted on noise generated artifacts present in the data, generalization 

(roughly speaking, the ability of a parameterized model to perform well on data to which 

it was not exposed during training) will be compromised. In practice, this means that a 

more flexible network may well exhibit poorer generalization than a simpler network, 

even though its performance on the training data is noticeably superior.  

 

A representative network for this application may be described with the notation 5-5r-3r-

1L, i.e., 5 inputs, a recurrent layer of 5 fully interconnected nodes, a recurrent layer of 3 

fully interconnected nodes, and a single linear output node. There are 86 weights. In 

this architecture, connections within a given layer have a one-time step delay, while 

connections from a layer to the next contain no delay. A plausible argument for the 

efficacy of recurrent networks is that the presence of computational layers of nonlinear 

nodes supplies the ability to fit a wide range of nonlinear functions, while the presence 

of distributed time delays supplies the ability to model dynamical functions. (It should be 

noted that the network description mentioned above is far more general than is required 

for such layered networks but exacts a very small computational premium.)  
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Model based on the Encoder Data 

a

b

c

d

e
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ig. 6.2. Measured and NN estimated Torque traces for nine different types of Torque transition during a 

MiniMap with no Seeded Fault. 

 
Virtual Torque Model Quality 
 
Figure 6.2 illustrates how closely the NN model based on the Encoder data estimates 

the actual torque output when the engine is stepped from one operating point in the 

MiniMap to the next one. The figure is a composite of nine graphs, each showing the 

NN estimated torque as a function of time and the corresponding measured torque 

trace. Each graph covers a 20 s window roughly centered on a torque transition since 

the input data to the model were derived from the Snapshot Timing data which last 20 s. 

These nine Torque changes illustrate different types of transitions between speed/load 

operating points in the MiniMap sequence (i.e., speed/torque control) according to 

which the experiments were carried out. Some of the plots refer to torque changes 

occurring at constant engine speed, others occurring with a concurrent speed change. 

For clarity, the engine speed traces are also shown in the graphs. 

The Torque data (both measured and estimated) in the plots have averages over 12 

engine cycles to filter fluctuations associated with combustion and noise. Ten training 
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Model based on the CAM2 Data 

a b c

 

Fig. 6.3. Measured and NN estimated Torque traces for three of the same Torque transition illustrated in the 
plots of Fig. 6.2.  

 

sessions were carried out to calculate the Network weigthts using 3 sets of snapshots 

acquired on different days in tests with no Seeded Fault. The estimated values shown in 

Figure 6.2 derive from the training session that produced the median result (or 5th best 

fit) in terms of RMS deviation between estimated and measured value. Notice that the 

results in Fig. 6.2 (a), (b), (d) and (e) show that the NN model reproduces closely the 

behavior of positive torque changes at constant speed of 1450, 1800 and 2200 RPM, 

and gives a good estimate of the torque equilibration value. However, the model seems 

to underestimate torque at the highest value at 2200 RPM. The model is not 

reproducing features occurring during negative torque changes possibly because the 

dyno controller dynamics are complicated by the concurrent engine speed change (the 

measured Torque trace shows a double transition). It is possible that training relying on 

additional data sets may improve the model and the observed large oscillations, not 

seen in the measured data, may be filtered out.  The behavior of the Torque transition 

from Idle to 700 Ft*Lb/1450 RPM appears to be reproduced more closely than the   

downward transition.   

Figure 6.3 shows similar results for the Model derived for the CAM2 data. The 

agreement between estimated and measured Torque is affected by unfiltered 

oscillations in the model output not observed in the Encoder-based model. Notice, 

however, that the Torque mean value is still qualitatively good. The oscillatory behavior 

in this model may be related to the higher noise observed in the time differences 

derived from the CAM2 sensors.  The input data may be noisier because of the extra 

signal conditioning required in transforming the analog VRS signal into TTL, potentially 

introducing more “jitter” in the signal falling edges that are monitored. It is also possible 

that the noise is related to the gear-train that links the crankshaft to the camshaft.     
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From To ENC CAM2

(RPM/Lb*Ft) (RPM/Lb*Ft) (Lb*Ft) (Lb*Ft)

Idle 1450/700 36.8 34.4

1450/400 1450/550 17.9 28.4

1450/550 1450/700 31.8 37.8

1450/700 1800/400 37.5 47.9

1800/400 1800/550 18.3 27.9

1800/550 1800/700 28.9 34.3

1800/700 2200/400 40.5 42.8

2200/400 2200/550 20.3 26.3

2200/550 2200/700 26.7 30.4

2200/700 1450/300 47.0 46.8

1450/300 1800/300 17.1 37.9

1800/300 2200/300 33.1 35.2

2200/300 Idle 95.3 44.2

ErrorTransition

 

Table  6.1. The standard deviation of the difference 
between measured and estimated torque for each 
snapshot is shown as a way of quantifying the model 
accuracy.  

 
A measure of the quality of the NN 

Torque estimate can be obtained by 

calculating the standard deviation 

between measured and estimated 

values for each snapshot (Error). 

Table 6.1 shows these values for 

thirteen transitions in the MiniMap.  

The Error is roughly x1.5 larger for 

the CAM2 derived model, most likely 

due to the unfiltered oscillations. 

Since this is a cumulative measure of 

error over the snapshot, it is not 

expected to scale with the average 

Torque value because it could be 

biased by the largest deviations 

observed during the transition. 

Nevertheless, even considering that 

this may represent a worst case 

Error, the % error of Encoder-based 

NN model defined as the ratio of the 

Error over the Mean Torque ranges roughly between 5% and 10%, indicating that this 

method of Virtual Torque Sensing could be applicable to diagnosing engine 

performance changes at relatively steady-state of more than 10%, especially if 

averaging over different conditions can be done. The model does not identify the root 

cause for the performance change would but can issue a warning that the engine needs 

to be checked in the shop.  
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Section 7 

  Conclusions 
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Conclusions: 

 

MIS2000 believes that a model based reasoning approach, using dynamic neural 

networks to detect anomalies in system performance, will provide the Army with a 

sound solution for implementing CBM for military vehicles.  A major benefit is the fast 

and efficient way of utilizing real time vehicle data to assess vehicle health.  Since these 

algorithms are efficient, they do not necessitate extensive computing power and require 

a minimum hardware footprint to run.  

The constraints of this approach are related to the data being fed into the model.  The 

fact remains that good decisions cannot be made using bad or incomplete information.  

Therefore, an open systems approach will be used to allow for maximum integration of 

additional sensor data as new technology becomes available.  This information may be 

generated from virtual information i.e. Virtual Torque Sensors, or from additional 

external devices to augment real-time information acquired from the system via J-1939, 

Controller Area Network (CAN) bus or wireless interfaces. 

 

The results from the testing related to the virtual torque sensor shows potential.  As was 
discussed earlier, current electronically controlled diesel engines do not use an engine 
mounted sensor for determining the actual torque that an engine is producing. Physical 
torque sensors are expensive addition to an engine and why they are usually only used 
for testing purposes. Instead torque is calculated by throttle position and certain engine 
operating parameters. The calculation method does not necessarily provide an accurate 
measure of the torque that the engine is producing. This method of torque calculation 
does not take into account if there is a problem developing in the engine. Current 
diagnostics on diesel engines do not flag issues until there are operational problems 
with the engine or major component faults. 
 
The next step would be to experiment with the virtual torque sensing  on an actual 
vehicle. Virtual torque sensing could be an extremely important piece in the CBM 
puzzle. With the ever increasing cost of fuel virtual torque sensing could offer a low cost 
solution to provide for a more efficient operation of military vehicles. Ultimately leading 
to a savings in fuel consumption and vehicle maintenance costs.  
 
In conjunction with the testing of the virtual torque sensing on a vehicle platform the 
other neural networks developed for this project could also be implemented on a vehicle 
platform. 


