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On the Renormalization of the Covariance Operators 

MAX YAREMCHUK AND MATTHEW CARRIER 

Naval Research Laboratory, Stennis Space Center, Mississippi 

(Manuscript received 17 June 2011, in final form 16 August 2011) 

ABSTRACT 

Many background error correlation (BEC) models in data assimilation are formulated in terms of a 
smoothing operator B, which simulates the action of the correlation matrix on a state vector normalized by 
respective BE variances. Under such formulation, B has to have a unit diagonal and requires appropriate 
renormalization by rescaling. The exact computation of the rescaling factors (diagonal elements of B) is 
a computationally expensive procedure, which needs an efficient numerical approximation. 

In this study approximate renormalization techniques based on the Monte Carlo (MC) and Hadamard 
matrix (HM) methods and on the analytic approximations derived under the assumption of the local ho- 
mogeneity (LHA) of B are compared using realistic BEC models designed for oceanographic applications. It 
is shown that although the accuracy of the MC and HM methods can be improved by additional smoothing, 
their computational cost remains significantly higher than the LHA method, which is shown to be effective 
even in the zeroth-order approximation. The next approximation improves the accuracy 1.5-2 times at 
a moderate increase of CPU time. A heuristic relationship for the smoothing scale in two and three di- 
mensions is proposed for the first-order LHA approximation. 

1. Introduction 

Modeling of the background error correlation (BEC) 
by smoothing operators in variational data assimilation 
has recently gained considerable attention, primarily due 
to computational efficiency of their implementation and 
versatility in approximating anisotropic and inhomoge- 
neous BECs (e.g., Xu 2005; Pannekoucke and Massart 
2008; Mirouze and Weaver 2010). In the framework of 
this approach, the correlation matrix C of the BE field 
is approximated by a positive function of the diffusion 
operator: 

D - Vi/V, (1) 

where v is the diffusion tensor, whose components may 
depend on the spatial coordinates x. Attractive features 
of such models are their low computational cost and 
direct control of inhomogeneity and anisotropy by v 
under the positive-definiteness constraint. Among the 
most popular functions of D used in practice, are the 
exponential (yielding the Gaussian-shaped correlations) 

Corresponding author address: Max Yaremchuk, Naval  Re- 
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and the inverse of a positive polynomial. Numerically, 
these functions are implemented by integrating the finite- 
difference diffusion equation on the model grid and have 
been used in many applications (e.g., Derber and Rosati 
1989; Weaver et al. 2003; Di.Lorenzo et al. 2007; Liu 
et al. 2009). 

An important numerical issue arising with this type of 
covariance modeling is the necessity to find a rescaling 
transformation R such that the diagonal elements of the 
covariance matrix are equal to the background error 
(BE) variances derived from the history of data assimi- 
lation into the numerical model. The direct way of finding 
R is to compute the inverse square root of the diagonal 
elements of C. The latter can be found by convolving C 
with S functions in every point x of the model grid and 
taking the results of these convolutions at the same points. 
This procedure, however, is practically unfeasible as the 
model grid size (the number of convolutions to be exe- 
cuted) may often exceed M ~ 106-107. 

In this study we compare the numerical efficiency of 
several methods of estimating the diagonal elements of a 
symmetric positive-definite matrix C defined by its ac- 
tion on an arbitrary vector and propose an algorithm for 
estimating R under the locally homogeneous approxi- 
mation (i.e., slowly varying smoothing scales of C). The 
manuscript is organized as follows. In section 2, we briefly 

DOI: 10.1175/MWR-D-l 1-00139.1 
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overview the diagonal estimation methods with an em- 
phasis on the possibility to exploit the analytic formulas, 
available for the considered functional forms under the 
assumption of spatial homogeneity. In particular, an 
extension of the method of Purser et al. (2003) for esti- 
mating the Gaussian kernel diagonal is proposed for 
higher dimensions. In section 3, we describe the setup of 
numerical experiments with anisotropic inhomogeneous 
correlation model and document the results. Summary 
and conclusions complete the paper. 

2. Renormalization methods 

a. Monte Carlo technique 

This method originates from a large family of stochastic 
algorithms used for estimating elements and traces of 
extra-large matrices (e.g., Girard 1989; Hutchison 1989; 
Dong and Liu 1994). Weaver and Courtier (2001) were 
among the first to use this approach in geophysical ap- 
plications for estimating the diagonal of the Gaussian- 
shaped BEC operators. 

The underlying idea is to define an ensemble of K ran- 
dom vectors Sjt on the model grid and perform compo- 
nentwise averaging of the products s — Cs according to 
the following formula: 

d(x) = sOs0sOs, (2) 

where the overbar denotes averaging over the ensemble, 
and O and 0 stand for the componentwise multiplication 
and division of the vectors, respectively. Simple consid- 
erations show that when all the components of s have 
identical 5-correlated distributions with zero mean, con- 
tributions to d from the off-diagonal elements tend to 
cancel out, and d converges to d = diag(C) as K -» «. 
More accurately, the squared relative approximation error: 

2, Al B\X) - (d - dy/d (3) 

is inversely proportional to the ensemble size K. In other 
words, one may expect to achieve 10% accuracy at the 
expense of approximately 100 multiplications by C if the 
first ensemble member gives a 100% error. This estimate 
may seem acceptable since in geophysical applications 
the BE variances are usually known with limited preci- 
sion and approximating the diagonal with 5%-10% er- 
ror seems satisfactory. 

b.  The Hadamard matrix method 

The Monte Carlo (MC) technique was developed fur- 
ther by Bekas et al. (2007), who noticed that the method 
may converge to d in the finite number of iterations M if 
the ensemble vectors are mutually orthogonal. An easy 

way to construct such an ensemble is to draw the vectors 
SA from the columns of the M X M Hadamard matrix 
(HM), which span the model's state space (see appendix 
A for more details on the HM theory). 

Although it is not proven yet that Hadamard matrices 
can be constructed for an arbitrary M, very efficient re- 
cursive algorithms for generating HM columns do exist 
for Ms, whose factorization involves only prime num- 
bers not exceeding 100. Since the exact convergence 
(which can be achieved at M iterations) is never needed 
in practice, it is not even necessary to draw s* from the 
Hadamard matrix, whose dimension exactly coincides 
with the state space dimension: if generation of s* is im- 
possible because of some odd value of M (e.g., 1004), it 
can always be replaced by a slightly larger number (e.g., 
1008), and sk can be defined as the first 1004 components 
of the 1008-dimensional Hadamard vectors. In the nu- 
merical experiments described in the next section it is 
shown that such modification does not affect the method's 
convergence during the first several hundred iterations. 

c. Locally homogeneous approximations 

An alternative approach to the diagonal estimation 
employs a priori information on the structure of C. Con- 
sider a homogeneous (v = const) case and assume that 
the coordinate axes are aligned along the eigenvectors 
of the diffusion tensor, whose (positive) eigenvalues are 
A?,/ = 1,... ,n and n is the number of dimensions of the 
physical space (1, 2, or 3). Then the matrix elements of 
the two types of BEC operators that are considered here 
can be written down explicitly (see appendix B) as 

C.(x,y) = exp(D/2) = dexp 
2 

- _ *r*M C2(x,y) = (l-D/2m)-m=^ r(Sy 

(4) 

(5) 

where 

p = y(x-y)Tv *(* - y) 

is the distance between the correlated points, measured 
in terms of the smoothing scales A,; d - (27r)~rt/2ft_1 are 
the (constant) diagonal elements of C,^; ft = ITA. = 
V'deti/ is the diffusion volume element; I is the identity 
operator; K and V denote the Bessel function of the sec- 
ond kind and the gamma function, respectively; m is 
a positive integer (an approximation order of Cj by C2); 
s = m — n!2\ and p = y/2mp. The parameter m can also be 
interpreted as the number of "time steps" used in discrete- 
time integration of the corresponding diffusion equation 
by the implicit scheme (see appendix B). 
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When v varies in space, (4)-(5) are no longer valid, 
and the diagonal elements d depend on x and on the type 
of the BEC operator. However, if we assume that v is 
locally homogeneous (LH) (i.e., varies in space on a typical 
scale L, which is much larger than A,) the diagonal ele- 
ments d(x) can be expanded in the powers of the small 
parameter e = X/L, where Ä is the mean eigenvalue of 
y/v. The zeroth-order LH approximation term (LHO) is 
apparently 

d°(x) = (27r)-"/2n(x) -1 (6) 

because for infinitely slow variations of v (L -» °°) the 
normalization factors must converge to the above ex- 
pression for the constant diagonal elements d. It is note- 
worthy that (6) was found to be useful even in the case of 
strong inhomogeneity e > 1. In particular, Mirouze and 
Weaver (2010) found that such an approximation pro- 
vided 10% errors in a simplified ID case. 

The accuracy of (6) can formally be increased by con- 
sidering the next term in the expansion of the diagonal 
elements of Cu> The technique of such asymptotics has 
been well developed for the diagonal of the Gaussian 
kernel (4) in Riemannian spaces (e.g., Gusynin and 
Kushnir 1991; Avramidi 1999). More recently, the ap- 
proach was considered by Purser (2008a,b) in the at- 
mospheric data assimilation context. Application of 
this technique to the diffusion operator (1) in flat space 
yields the following asymptotic expression for the diag- 
onal elements of C, in the local coordinate system, where 
v(x) is equal to the identity matrix and D takes the form of 
the Laplacian operator A: 

C^x) = 
1 
Nrt/2 

(2ir)' 

+ Ofc5). 

1 - itrh 
2 12\2 

trh + V • divh 

(7) 

Here h is a small (|h| ~ e) correction to v in the vicinity of 
x. Note that terms in the round brackets have the order 
0(e3) because each spatial differentiation adds an extra 
power of e. 

The asymptotic estimate (7) involves second derivatives 
that tend to amplify errors in practical applications when e 
may not be small. Therefore, using (7) in its original form 
could be inaccurate even at a moderately small value of e. 
To increase the computational efficiency, it is also desir- 
able to formulate the first-order approximation as a linear 
operator, acting on d°(x). Keeping in mind that |h| ~ e, we 
can utilize the following relationships: 

\-nfl -i d°(x) = (27^)"^n(x)", ~(2TT) 
v-zi/2 1 " 5trh (8) 

exp(A/2)~l + -A, (9) 

and represent the second term in the round brackets of 
(7) as follows: 

V • divh = -Utrh + V • divh', (10) 
n 

where h' is the traceless part of h. On the other hand, if 
we neglect the divergence of h', (7) can be rewritten in 
the following form: 

c,(*,x)~ö^(i+r'IXi-H'(n) 

where 

1       1 
(12) 

Taking (8)-(9) into account and replacing A by D, we 
finally get the desired ansatz for the first-order approx- 
imation (LH1) of the diagonal: 

<•' = <*p(y„!)<J°. (13) 

The relationship (13) was derived by Purser et al. (2003) 
for one-dimensional case (yi = 0.5) and tested by Mirouze 
and Weaver (2010), who reported a significant (2-4 times) 
improvement of the accuracy in ID simulations. 

It is likely that the estimate similar to (13) can also be 
obtained for C2, possibly with a different coefficient yn. 
We assume, however, that yn may not differ too much 
from yn given similarity in the shapes of the correlation 
functions (4)-(5) (Fig. 1). Furthermore, because of the 
approximate nature of (13), the best representation of 
d(x) in realistic applications may be achieved with a 
value of yn significantly different from the one given by 
(12). For that reason, in the numerical experiments we 
adopt a more general form of (13), assuming 

dj(x) ~ exp[yD/2]d?(x);   d\(x) ~ [I - yD/4]"2d^(x), 

(14) 

and investigate the dependence of the respective approx- 
imation errors (e^) on the free parameter y. 

3. Numerical results 

To assess the efficiency of the methods outlined in the 
previous section, two series of numerical experiments 
with realistically inhomogeneous BEC models are per- 
formed. In the first series we test the methods in the 2D 
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FlG. 1. Correlation functions corresponding to the homogeneous 
operators (4)-{5) with identical decorrelation scales. 

case with the state vector having the dimension of sev- 
eral thousand. In the second series, the LHO and LH1 
techniques are examined in a realistic 3D setting with a 
state space dimension of ~106. 

a. Experimental setting in 2D 

The state space is described by scalar functions denned 
on the orthogonal curvilinear grid of the Navy Coastal 
Ocean Model (NCOM; Martin et al. 2009) set up in the 
Monterey Bay (Fig. 2). The number M of grid points 
(dimension of the state space) was 3438. A vector field 
v(x) was used to generate the diffusion tensor as follows. 
The smaller principal axis A2 of y/v is set to be orthog- 
onal to v with the corresponding "background" length 
scale A2 = 36, where 6(x) is the spatially varying grid 
step. The length of the larger axis A) is set to be equal to 
max(l, y/\y\fv)\2, where v is a prescribed threshold value 
of |v|. If v is a velocity field, then a structure like this 
simulates enhanced diffusive transport of model errors in 
the regions of strong currents on the background of iso- 
tropic error diffusion with the decorrelation scale A2. 

In the 2D experiments, the vector field v is generated 
by treating bottom topography h(x) (Fig. 2) as a stream- 
function. The threshold value v was taken to be one-fifth 
of the rms variation of |V7t| over the domain. 

All the experiments described in sections 3b-3e, are 
performed using the BEC models (4)-(5) with the para- 
meters n = m = 2. Composite maps of five columns of the 
corresponding BEC operators are shown in Figs. 2a,b. 
The diffusion operator (1) is constrained to have a zero 
normal derivative at the open and rigid boundaries of 
the domain in both 2D and 3D experiments. 

Numerically, the action of the Gaussian-shaped BEC 
operator Ct on a state vector y0 was evaluated by ex- 
plicitly integrating the corresponding diffusion equation 
yr = D/2y for the virtual "time period" defined by v 

starting from the "initial condition" y0. The minimum 
number of "time steps" required for the scheme's stability 
in such setting was 5256. The action of C2 was computed 
by solving the system of equations (I - D/4)2y = y0 with 
a conjugate gradient method. The number of iterations, 
required for obtaining a solution, varied within 2000- 
2500. To make the shapes of the C, and C2 compatible 
(Fig. 1), the diffusion tensor in C2 was multiplied by 8/77 
(Yaremchuk and Smith 2011). 

The exact values d(x) of the diagonal elements are 
shown in Fig. 2 (right panel). Their magnitude appears 
to be lower in the regions of "strong currents" (large v), 
as the corresponding 5 functions are dispersed over larger 
areas by diffusion. The d(x) are higher near the bound- 
aries because part of the domain available for dispersion 
is screened by the condition prescribing zero flux across 
either the open or rigid boundary. 

b. Monte Carlo technique 

The MC method is implemented in two ways: in the 
first series of experiments, the components of s* are taken 
to be either 1 or -1 with equal probability; in the second 
series they are drawn from the white noise on the interval 
[—1, 1], The residual error e is computed using (3). In 
both series the rates of reduction of E with iteration k 
were similar and closely followed the \[k law (thin solid 
line in Fig. 3c). 

Figure 3a shows the distribution of e(x) after 60 iter- 
ations of the MC method with the C2 BEC model. The 
estimate is apparently affected by sampling noise, which 
can be identified by fine structures at scales close to the 
grid spacing. 

To improve the accuracy, the MC estimates are low- 
pass filtered with the corresponding BEC operators at 
every iteration. To optimize the filter, the diffusion oper- 
ator in C is multiplied by the tunable parameter y, which 
effectively reduced the mean decorrelation (smoothing) 
scale K = y~m times. Figure 3b demonstrates the result 
of such optimal smoothing («opt = 2.5), which enabled 
almost fourfold reduction of the domain-averaged error 
(e) to 0.15. The right panel in Fig. 3 shows the evolution 
of (e) with iterations for the C2 operator. The optimal 
smoothing scale reduction factor K~

X
 appears to follow 

the law K~l(k) ~ k~u3 (dashed line in Fig. 3c). It is re- 
markable that significant error reduction occurs even if 
the smoothing scale falls below the grid spacing K_1

 < V3. 

c. The Hadamard matrix method 

Experiments with the Hadamard scheme are also done 
in two series. Since the value of M = 3438 is not divisible 
by 4, it is hard to find the HM of that dimension. In- 
stead, in the first series of experiments, sk were speci- 
fied as the first 3438 numbers taken from the columns of 
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the 3456-<limensional HM, which can be easily constructed 
from the 12-dimensional HMs. 

To check the impact of "nonexact" dimension on the 
convergence, we artificially increased M to 3456 by re- 
moving 18 land points in the domain. Experiments with 
the HM of exact dimension show that differences in 
convergence between the nonexact and exact experiments 
start to be visible only after several hundred iterations. 
After M iterations the error of the exact-HM method is 
reduced to the machine precision, while the error of the 
first series of experiments stumbled at approximately 10~3 

after 1500 iterations. This is consistent with the 18/3438 ~ 
0.5% degree of nonorthogonality of sk drawn from the 
nonexact HM. 

Similar to the MC method, the accuracy of HM esti- 
mates are improved significantly after smoothing. In ad- 
dition it is found that the effect of smoothing can be 
enhanced if the computer mapping of the 2D model field 
on the ID vector is randomized: Fig. 4a bears an ap- 
parent trace of columnwise numbering of the model 
field, which remains visible even after applying the al- 
gorithm, generating the HM columns. As a consequence, 
error distribution in Fig. 4a contains large scales in cross- 
shore direction, which tend to make the smoothing 
algorithm less effective (Fig. 4c, dashed curves). This 
drawback can be easily corrected by randomization of 
the above-mentioned map (the randomized HM and the 
RHM method), which provides an error pattern similar 
to Fig. 3a, but with somewhat lower value of (e) clearly 
visible in Fig. 4c, where dashed lines show evolution of 
(e) for the straight HM method before (upper line) and 
after smoothing, while the solid black lines show similar 
quantities for the RHM method. 

Comparison with the MC method (gray curves in Fig. 
4c) demonstrate a noticeable advantage of the HM tech- 
nique (upper curves), which remains visible at higher it- 
erations n > 100 even after smoothing (lower curves). 
This advantage increases with iterations for two reasons: 
the HM method converges faster than kTm by its nature, 
whereas the efficiency of smoothing (targeted at removing 
the small-scale error constituents) degrades as the signal- 
to-noise ratio of the diagonal estimates increases with k. 

From the practical point of view, it is not reasonable to 
do more than several hundred iterations, as (e) drops to 

FIG. 2. Five columns of the BEC operators used in the study: (a) 
Gaussian-shaped correlations and (b) their approximation by the 
inverse of the second-order polynomial in D. White circles denote 
locations of the diagonal elements of the corresponding correlation 
matrices, (c) The map of nonnormalized diagonal elements of C,. 
Depth contours are in m. 



642 MONTHLY  WEATHER   REVIEW VOLUME 140 

37.2 

36.8 

36.4 

36.0 

35.6 
-123.2      -122.8      -122.4      -122.0      -121.6 

37.2 

36.8 

36.4- 

36.0 

35.6 
-123.2       -122.8 -122.4 -122.0 -121.6 

10° 

■sSv. :   :::>L 

 ( SS-INI 

•:•:::: ""!"!'!'l'!!!.'.AN1 '.'' vSJ 
;;;;;;;         TN^    '. 

■'■•;''.■•.■'.'::.'.'. .* • TtSr 

;;;;;  ^rs^i 
Nj !>.. 

Jr\ 

10-' 

■ '.•',',',, opt 
. i               ... 

the value of a few percent (Fig. 3c), which is much smaller 
than the accuracy in the determination of the background 
error variances. We may therefore conclude that it is 
advantageous to use the RHM technique when k ~ 100. 
In this case (assuming that k < A/), utilization of the HM 
with exact dimension is not necessary, as it does not af- 
fect the convergence. 

d. Asymptotic expansion method 

Since the principal axes of the diffusion tensor at ev- 
ery point are defined by construction, computation of 
the zeroth-order approximation (6) to the normalization 
factors is not expensive. Near the boundaries, however, 
the factors described by (6) have to be adjusted by taking 
into account the geometric constraints imposed on the 
diffusion. In this study, this adjustment was computed 
for points located closer than 3Aj from the boundary. It 
is assumed that the boundary had negligible impact on the 
shape of the diffused 8 function (Fig. 5), so the normali- 
zation factor near the boundary was computed by dividing 
the reference factor (obtained by convolving the BEC 
operator with the 5 function in the "open sea") by the 
respective integral over the land-free subdomain S' shown 
in Fig. 5: 

<°<*>=2^öö[L C(x,y)8(x-y)dy\    .   (15) r 

10v 10' 102 103 

Integrals in the rhs of (15) have to be taken numeri- 
cally for all the near-boundary points x. To speed up the 
computations, we adopted the LH assumption near 
the boundaries, and replaced the convolutions in (15) by 
the respective analytical functions (4)-(5) with the fixed 
value v(x). It is necessary to note that the assumption 
underlying (15) is not exact for the zero normal gradient 
condition in use (e.g., see Mirouze and Weaver 2010). 
However, the errors, caused by neglecting distortions 
introduced by the zero-flux conditions are significantly 
smaller (3%-7%, see Fig. 5) than the accuracy of the LH 
assumption itself. These errors could be removed, for ex- 
ample, by introducing "transparent" conditions (Mirouze 
and Weaver 2010). 

Figure 6 demonstrates horizontal distribution of the er- 
ror e(x) obtained by approximating the diagonal elements 
of Cj with (6) (i.e., the zeroth-order LH method, or LH0) 

FlG. 3. (a) Error distribution after 60 iterations of the MC method, 
(b) its optimally smoothed version, (c) the respective dependences 
of the domain-averaged error (e) and K^{ on the iteration number 
k. The dashed line is the approximation of K^

1
, by the k~m law. 
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and with (13) (i.e., the first-order LH method, or LH1). 
Despite an apparent violation of the LH assumption in 
many regions (e.g., Ai changes from 205 to the back- 
ground value of 35 at distances L ~ 5-65 < Ai across the 
shelf break), the mean approximation error of the di- 
agonal elements appears to be relatively small (19%) for 
the LH0 method, with most of the maxima confined to 
the regions of strong inhomogeneity (Fig. 6a). The next 
approximation (Fig. 6b) reduces (e) to 9%. Numerical 
experiments with the C2 model have shown similar re- 
sults (16% and 10% errors). 

Another series of experiments are performed with the 
varying scaling parameter y to find an optimal fit to d. 
Computations were made for 0 < y < 1. The best result 
for the Gaussian BEC was obtained for y2 = 0.30, which 
is fairly consistent with the value (y2 = 0.33) given by 
(12). In the case of C2 operator, the optimal value is y2 = 
0.24, still in a reasonable agreement with (12), given the 
strong inhomogeneity of p and deviation of the BEC 
operator from the Gaussian form. A somewhat smaller 
value of y2(C2) can be explained by the sharper shape of 
the respective correlation function at the origin (Fig. 1), 
which renders d° to be less dependent on the inhomo- 
geneities in the distribution of »>, and, therefore, requiring 
less smoothing in the next approximation. 

e. Numerical efficiency 

Table 1 provides an overview of the performance for 
the tested methods. For comparison purposes we show 
CPU requirements by the smoothed MC and RHM 
methods after they achieve the accuracies of the LH0 
and LH1 methods. It is seen that both MC and RHM 
methods are 300-1000 times more computationally ex- 
pensive than the LH technique. In fact, for the 2D case 
considered, the computational cost of the stochastic 
methods is similar to that of the three-dimensional 
variational data assimilation (3DVAR) analysis itself. 

Comparison of the spatial distributions of the ap- 
proximation error (e)(x) favor the LH methods as well: 
they do show significantly less small-scale variations and 
may have a potential for further improvement. 

Comparing Figs. 3b, 4b, and 6b shows that, in contrast 
to the MC and RHM methods, LH0 errors tend to increase 

10u 10' 102 10° 

FtG. 4. (a) Error distribution after 60 iterations of the HM method, 
(b) As in (a), but for the smoothed RHM method, (c) Reduction of 
the domain-averaged error (e) with iterations for the MC (gray), 
RHM (solid), and HM (dashed) methods. The bottom graphs are 
obtained after optimal smoothing of the diagonal estimates. Thin 
horizontal lines show error levels provided by the LHO ((e) =0.17) 
and LH1 methods (c) = 0.10. 
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in the regions of strong inhomogeneity, but they de- 
crease substantially after smoothing by the LH1 algo- 
rithm. At the same time, the LH1 errors tend to have 
relatively higher values near the boundaries; the effect is 
less visible in the MC and RHM patterns (Figs. 3b and 
4b). This feature can be partly attributed to certain in- 
accuracy in the algorithm for analytic estimation of the 
near-boundary elements (Fig. 5c). 

Table 1 also shows that LH methods outperform both 
MC and HM techniques. Although considerable resources 
are required to compute near-boundary integrals for the 
adjustment factors (15), the overall CPU savings are 
quite remarkable. 

/ LH experiments in the 3D setting 

To check the performance of the LHO and LH1 methods 
further, a larger 3D domain is taken from the NCOM 
setup in the Okinawa region south of Japan (Fig. 7), with 
horizontal resolution of 10 km and 45 vertical levels. 
The state vector dimension M (total number of the grid 
points) in this setting was 862 992. 

Because of the large M, it is computationally un- 
feasible to directly compute all the diagonal elements of 
the BEC matrix. Therefore, accuracy checks are per- 
formed on a subset of 10 000 points, randomly distrib- 
uted over the domain and the value of (e) is estimated by 
averaging over these points. 

The diffusion tensor is constructed in the way de- 
scribed in section 3a, but the generating field v(x) is 
taken to be the horizontal velocity field from an NCOM 
run. The value of A3 (in the vertical direction) is in- 
dependent of horizontal coordinates, but varied in the 
vertical as 35z, where Sz is the vertical grid step. Figure 7 
illustrates spatial variability of the Cx diagonal elements 
at z — 20 m. The smallest values are observed in the 
regions of Kuroshio and the North Equatorial Current, 
where the largest velocities are observed, and the 
Ü = x/detp reaches the largest values [(6)]. To better test 
the algorithm, a relatively small threshold value v = 
0.02 m s"1 is prescribed, so that diffusion is anisotropic 
in more than 90% of the grid points. 

Figure 8 demonstrates the accuracy of LHO and LH1 
methods in such setting: the LHO method provides an 

FIG. 5. Adjustment of the normalization factors near the 
boundary, (a) Map of the xth column of C, obtained numerically by 
integrating (15) over the real domain 5' (the normalization factor is 
the map value at point x). (b) Approximation to (a) obtained by 
integrating C, in the infinite domain and renormalizing the result to 
have the same integral over S' as in (a), (c) The difference between 
(a) and its approximation (b). 
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FIG. 6. Diagonal approximation errors under the (a) zeroth-order and (b) first-order LH methods for the Gaussian 
BEC model. 

accuracy of 9%, which is further improved to 6% by the 
LH1 scheme. The major improvement occurs in the re- 
gions where points with highly anisotropic v neighbor 
isotropic points and reduce the diagonal elements in 
the latter. The effect is reflected by the negative bias 
of the scatterplot at high values of d°, which reach 
their maximum of 0.0237 in the points with isotropic v 
(Fig. 8a). 

Figure 8c shows the dependence of approximation error 
e on the value of y3 for both correlation models. The best 
approximation is obtained at -y3 = 0.26, a value somewhat 
lower than suggested by the heuristic formula (y3 - 
5/18 = 0.28). Similarly to the 2D case, the optimal value 
of ?3(C2) - 0.21 is less than ^(Cj), in agreement with 
more rapid off-diagonal decay of the C2 matrix elements. 

In general, it appears that the relationship (12) pro- 
vides a reasonable guidance to the estimation of the 
smoothing parameter in the LH1 method. For the Zx 

model, the operator acting on d° can be implemented by 
either reducing y~l times the number of time steps in the 
integration of the diffusion equation, or by -y~1/2-fold 
reduction of the decorrelation radius. For the C2 model 
only the second option is applicable: it would also reduce 
the number of iterations required for computing the ac- 
tion of the BEC operator. 

TABLE 1. Relative CPU times required by the MC and RHM 
methods to achieve the accuracies (E) of the LH0 and LH1 methods 
(shown in parentheses). 

MC/LH0 MC/LH1 RHM/LH0 RHM/LH1 

755 (0.19) 
780 (0.17) 

1205(0.09) 
490(0.10) 

680 (0.19) 
850 (0.17) 

520 (0.09) 
330 (0.10) 

4. Summary and discussion 

In this study we examined the computational effi- 
ciency of several techniques used for estimating the di- 
agonal elements of the two types BEC operators: with 
the Gaussian-shaped kernel C( and with the kernel gen- 
erated by the second-order polynomial approximation to 
C,. The considered techniques include the "stochastic" 
MC and HM methods, which retrieve diag(C) only 
from its action on a vector, and the "deterministic" 
scheme based on the analytic diagonal expansion under 
the assumption of local homogeneity of the diffusion 
tensor. The deterministic scheme was tested in two 

118 E       120E       122 E       124 E       126 E       12B E       130 E       132 E 

FIG. 7. Diagonal elements of Cj in the Okinawa region at z = 20 m. 
The actual values are multiplied by 104. 
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regimes: the zeroth (LHO) and the first-order (LH1) 
approximations. 

Numerical experiments conducted with realistic dif- 
fusion tensor models have shown that (i) HM technique 
proves to be superior in efficiency compared to the MC 
technique when accuracies of less than 10% (k > 100) 
are required; (ii) both stochastic methods require 300- 
1000 times more CPU time to achieve the accuracy, com- 
patible with the most efficient LH1 method; (iii) with the 
Gaussian model, the LH1 method demonstrates the best 
performance with the value of the smoothing parameter 
y compatible with the one given by the relationship (12) 
derived from the asymptotic approximation of the 
Gaussian kernel diagonal. 

In deriving the ansatz (13) for the LH1 model we fol- 
lowed the approach of Purser et al. (2003), who pro- 
posed to smooth the zeroth-order diagonal by the square 
root of the BEC operator in a one-dimensional case. Using 
the asymptotic technique for the heat kernel expansion, we 
obtained a formula for higher dimensions, and tested its 
validity by numerical experimentation. 

It should be noted that the formal asymptotic expan- 
sion (7) is local by nature and tends to diverge in practical 
applications, where spatial variations of the diffusion 
tensor may occur at distances L comparable with the 
typical decorrelation scale A. To effectively immunize 
the expansion from the ill effects of the abrupt changes 
in e, we utilized a nonlocal empirical modification, still 
fully consistent with the original expansion in the limit 
\IL->0, but sufficiently robust with respect to the errors 
related to the high-order derivatives of v. A similar 
technique was developed by Purser (2008a,b), who used 
empirical saturation functions to stabilize the higher- 
order approximations of the heat kernel diagonal. 

In general, results of our experiments show high com- 
putational efficiency of the LH1 scheme, whose total CPU 
requirements is just a fraction of the CPU time required 
by the convolution with BEC operator—a negligible 
amount compared to the cost of 3DVAR analysis. 

A separate question, requiring further investigation, 
is the accurate treatment of the boundary conditions. In 
the present study we assumed that boundaries affect only 
the magnitude of the corresponding columns of C, but 
not their structure. This approximation is only partly 

FIG. 8. Scatterplots of the true diagonal elements of Cj (vertical 
axis) vs their approximations by (a) LHO and (b) LH1 algorithms. 
The actual values are multiplied by 103. Near-boundary points are 
excluded, (c) Diagonal approximation errors as a function of y for 
the C, (black) and C2 (gray) BEC models. The dashed line shows 
the value of y$ given by (12). 
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consistent with the zero normal flux conditions for D, but 
can be avoided if one uses "transparent" boundary con- 
ditions (e.g., Mirouze and Weaver 2010), which do not 
require computation of the adjustment factors (15). 

On the other hand, it might be beneficial to keep 
physical boundary conditions in the formulation of D, as 
they are likely to bring more realism to the dynamics of 
the BE field. In the considered diffusion tensor model, 
anisotropic BE propagation is superimposed on the 
small-scale isotropic BE diffusion, which takes place at 
scales that are not well resolved by the grid (less than 
35). This may give some grounds to employ isotropic 
homogeneous model at distances d < 35 from the bound- 
ary, because the deterministic part of the BE transport 
associated with the boundary effects is not well resolved 
at these scales anyway. Such simplification greatly re- 
duces the computational cost of the LH algorithm with 
zero-flux conditions because the region screened by the 
boundary is readily available from the land mask and 
needs no computation/rescaling at every point. In con- 
trast to the 2D problem considered, such computations 
may be more costly in the 3D problems, as the number 
of adjustment factors n ~ N2*2 may be quite large even 
with a moderate grid size N ~ 106-107. However, our 
preliminary experiments with inhomogeneous BEC 
models with larger N have shown that estimation of the 
diagonal with the LH1 scheme still remains two orders in 
magnitude less expensive than the 3DVAR analysis. 

Results of this study indicate that LH1 approximations 
to the BEC diagonal may serve as an efficient tool for 
renormalization of the correlation operators in variational 
data assimilation, as they are capable of providing 3%- 
10% accuracy in realistically inhomogeneous BEC models. 

Acknowledgments. This study was supported by the 
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APPENDIX A 

Hadamard Matrices 

By definition, a Hadamard matrix (HM) is a square 
matrix whose entries are either 1 or —1 and whose col- 
umns are mutually orthogonal. The simplest way to con- 
struct HMs is the recursive Sylvester algorithm, which 
is based on the obvious property: if HM is an M X M 
Hadamard matrix, then 

H2M ~ 
H W H M 
HM      ~HM 

is also HM. Starting from H2 = [1 1; 1 -1], the HMs with 
order M — 2", n = 1,2... can be easily constructed. The 

HMs with M = 12,20 were constructed "manually" more 
than a century ago. A more general HM construction 
algorithm, which employs the Galois fields theory was 
found in 1933. However, it is still unknown if HMs exist 
for all M = An where n is a positive integer. 

Hadamard matrices are widely used in many branches 
of applied mathematics and statistics (http://en.wikipedia. 
org/wiki/Hadamard_matrix,). In the present study we 
used the MatLab code that handles only the cases when 
Af/12 or M/20 is a power of 2. Despite this restriction, the 
available values of M were sufficient for our purposes. 

APPENDIX B 

Correlation Modeling with Diffusion Operator 

Consider a family of linear operators B in the space 7i 
of sufficiently smooth square-integrable functions /(x), 
xGR": 

(l-D/2m)mB(x,x') = 5(x,xr). (Bl) 

Assume that v ~ const in the definition of the diffusion 
operator (1) and perform the coordinate transformation 
x = v~mx. In the new coordinate system the diffusion 
tensor v is the unity matrix, D takes the form of the 
Laplacian operator A, whereas the 5 function in the rhs of 
(Bl) is rescaled as a result of the contraction O = \/deti> 
of the volume element: 5(x,x') -♦ n_1S(x,x'). Equation 
(Bl) takes the following form: 

(1 - M2m)mB(x,x') = ^5(x,x'). (B2) 

After changing the coordinates in H with the Fourier 
transform, both A and the operator B are diagonalized. 
The diagonal elements are given by 

B(k) = i(l + k2/2^)-n (B3) 

It is easy to note that by virtue of the textbook formula 
exp* = \\mm^J\ +xfm)m, the Fourier representation 
(B3) of B converges at large m to 

1 
B1(k)=sexp(-ki/2), (B4) 

the well-known expression for the Green function of the 
diffusion equation. Since the diagonals given by (B3)- 
(B4) are strictly positive, the respective operators in H 
are positive definite, and can be interpreted as correla- 
tion operators. This property has been widely used for 
the background error covariance modeling in practical 
data assimilation. 
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Matrix elements of the operators B{ = exp(D/2) and 
B2 - (I - D/2m)~m can be found via the inverse Fourier 
transformations of (B3)-(B4): 

B>(r) = cKF 
i 

B,(k)exp(ikr)<ft 

(2^HeXP^"2r 

B2(f) = ^[    B(k)exp(ikr)dk 

 1 \\/7^t\sKs{\y/2^t[ 

(27r)n/2n      2^-^(5) 

(B5) 

(B6) 

where s = m - nil and r2 = (xt - x^^Xj - x2) is the 
square of the distance between the correlated points Ij 
and x^ in the transformed coordinate system. Making a 
substitution r2 = (x^ — x2)

Tv~A(xl — x2) in the rhs of 
(B5)-(B6), we obtain the matrix elements (4)-(5) in the 
original coordinate system. 

From the viewpoint of numerical applications it is in- 
structive to connect the discretized operator equation (Bl) 
with various time integration techniques of the dis- 
cretized diffusion equation. The numerical approxima- 
tion of B in (Bl) is never calculated in practice because 
of the immense cost of such a computation. Instead, the 
result /™(x) of action by B on a (discrete) model state 
vector /°(x) is calculated by solving the system of 
equations 

(I - D/2m)mfm = /°, (B7) 

where Ö denotes the discretized diffusion operator. If 
we now assume that/°(jc) represents the "initial state" 
and prescribe the "time step" St such that the "virtual 
ntegration time" is mSt ~ 1, the action of the correlation 
operator (Bl) can be identified as a result of discrete-time 
integration of the diffusion equation BJ = 0/2/ with the 
implicit scheme: 

/'-/'"1 =25'^''   'sl.->« (B8) 

starting from the initial state/0. 
Similarly, the action of exp(D/2) is never computed by 

convolving a state vector f° with the discretized kernel 
(B5), but rather by the discrete-time integration of the 
diffusion equation with the explicit numerical scheme: 

1, fi-\ fl ~ f~l = ^rD/'-\   i m 1,... ,m.       (B9) 

In contrast to the implicit scheme (B8), St in this numerical 
method is limited from above by the stability condition 
requiring that eigenvalues of the operator I + StD/2 must 
be less than 1 in the absolute value. As a consequence, 
the minimum number of time steps m = 1/5/ may be quite 
large, making the numerical implementation of exp(D/2) 
computationally impractical. 

REFERENCES 

Avramidi, I. G., 1999: Covariant techniques for computation of the 
heat kerne!. Rev. Math. Phys., 11, 947-980. 

Bekas, C. F., E. Kokiopoulou, and Y. Saad, 2007: An estimator 
for the diagonal of a matrix. Appl. Numer. Math., 57, 1214— 
1229. 

Derber, J., and A. Rosati, 1989: A global ocean data assimilation 
system./ Phys. Oceanogr., 19,1333-1347. 

Di Lorenzo, E., A. M. Moore, H. G. Arango, B. D. Cornuelle, A. J. 
Miller, B. S. Powell, B. S. Chua, and A. F. Bennett, 2007: Weak 
and strong constraint data assimilation in the Inverse Ocean 
Modelling System (ROMS): Development and application 
for a baroclinic coastal upwelling system. Ocean Model!., 16, 
160-187. 

Dong, S.-J., and K.-F. Liu, 1994: Stochastic estimation with Z2 

noise. Phys. Lett., 328B, 130-136. 
Girard, D. F., 1989: A fast Monte-Carlo cross-validation procedure 

for large least squares problems with noisy data. Numer. 
Math,, 56,1-23. 

Gusynin, V. P., and V. A. Kushnir, 1991: On-diagonal heat kernel 
expansion in covariant derivatives in curved space. Class. 
Quantum Gravity, 8, 279-285. 

Hutchison, M. F., 1989: A stochastic estimator of the trace of the 
influence matrix for Laplacian smoothing splines. J. Commun, 
Stat. Simul, 18,1059-1076. 

Liu, Y., J. Zhu, J. She, S. Zhuang, W. Fu, and J. Gao, 2009: As- 
similating temperature and salinity profile observations using 
an anisotropic recursive filter in a coastal ocean model. Ocean 
Modell., 30,15-87. 

Martin, P. J., C. N. Barron, L. F. Smedstad, T. J. Campbell, A. J. 
Wallcraft, R. C. Rhodes, C. Rowley, and T. L. Townsend, 
2009: User's manual for the Navy Coastal Ocean Model 
Version 4.0. NRL/MR/7320-09-9151, Naval Research Labo- 
ratory, Stennis Space Center, MS, 75 pp. 

Mirouze, I., and A. T. Weaver, 2010: Representation of correlation 
functions in variational data assimilation using an implicit 
diffusion operator. Quart. J. Roy. Meteor. Soc, 136, 1421- 
1443. 

Pannekoucke, 0., and S. Massart, 2008: Estimation of the local 
diffusion tensor and normalization for heterogeneous corre- 
lation modelling using a diffusion equation. Quart. J. Roy. 
Meteor. Soc, 134, 1425-1438. 

Purser, R. J., 2008a: Normalization of the diffusive filters that 
represent the inhomogeneous covariance operators of varia- 
tional assimilation, using asymptotic expansions and the tech- 
niques of non-Euclidean geometry. Part I: Analytic solutions 
for symmetrical configurations and the validation of practical 
algorithms. NOAA/NCEP Office Note 456,48 pp. 
 , 2008b: Normalization of the diffusive filters that represent 

the inhomogeneous covariance operators of variational as- 
similation, using asymptotic expansions and the techniques of 
non-Euclidean geometry. Part II: Riemannian geometry and 



FEBRUARY 2012 YAREMCHUK  AND  CARRIER 649 

the generic parametrix expansion method. NOAA/NCEP 
Office Note 457, 55 pp. 

 , W. Wu, D. F. Parrish, and N. M. Roberts, 2003: Numerical 
aspects of the application of recursive filters to variational 
statistical analysis. Part II: Spatially inhomogeneous and an- 
isotropic general covariances. Moru Wea. Rev., 131, 1536- 
1548. 

Weaver, A., and P. Courtier, 2001: Correlation modeling on a 
sphere using a generalized diffusion equation. Quart. J. Roy. 
Meteor. Soc, 127,1815-1846. 

 , J. Vialard, and D. L. T. Anderson, 2003: Three and four- 
dimensional variational assimilation with a general circulation 
model of the Tropical Pacific Ocean. Part I: Formulation, in- 
ternal diagnostics, and consistency checks. Mon. Wea. Rev., 
131,1360-1378. 

Xu, Q., 2005: Representations of inverse covariances by differen- 
tial operators. Adv. Atmos. ScL, 22 (2), 181-198. . 

Yaremchuk, M., and S. Smith, 2011: On the correlation functions 
associated with polynomials of the diffusion operator. Quart. 
J. Roy. Meteor. Soc, 137,1927-1932. 


