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Chapter 1

Executive Summary

The conjugate gradient (CG) algorithm is a popular method for solving a system of linear equa-
tions. It is computationally efficient and guaranteed to converge in a fixed number of iterations.
As an iterative method, CG provides a series of approximations to the solution in an expanding
Krylov subspace. In this project, the CG algorithm is explored for reduced-rank target detec-
tion in space-time adaptive processing (STAP). There are two specific goals. One is to develop
reduced-rank STAP detectors based on the CG algorithm and investigate their detection perfor-
mance. The other is to use to the CG algorithm to build a relation between the parametric adaptive
matched filter (PAMF) and reduced-rank detection and develop efficient implementations for the
PAMF detector.

Toward the development of CG-based reduced-rank detectors, the CG algorithm is used as an
efficient solver to compute the weight vector of the matched filter (MF). As an iterative algorithm,
it produces a series of approximations to the MF weight vector, each of which can be used to filter
the test signal and form a test statistic. This effectively leads to a family of detectors, referred
to as the CG-MF detectors, which are indexed by k the number of iterations incurred. We first
consider a general case involving an arbitrary covariance matrix of the disturbance (including
interference, noise, etc.) and show that all CG-MF detectors attain constant false alarm rate
(CFAR) and, furthermore, are optimum in the sense that the k-th CG-MF detector yields the
highest output signal-to-interference-and-noise ratio (SINR) among all linear detectors within
the k-th Krylov subspace. We then consider a structured case frequently encountered in practice,
where the covariance matrix of the disturbance contains a low-rank component (rank-r) due to
dominant interference sources, a scaled identity due to the presence of a white noise, and a
perturbation component containing the residual interference. We show that the (r+1)-st CG-MF
detector achieves CFAR and an output SINR nearly identical to that of the MF detector which
requires complete iterations of the CG algorithm till reaching convergence. Hence, the (r + 1)-st
CG-MF detector can be used in place of the MF detector for significant computational saving
when r is small. Numerical results are presented to verify the accuracy of our analysis for the
CG-MF detectors.

Originally, the PAMF detector was introduced by using a multichannel autoregressive (AR)
parametric model for the disturbance signal in STAP detection. While the parametric approach
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brings in benefits such as reduced training and computational requirements as compared with
fully adaptive STAP detectors, the PAMF detector as a reduced-rank solution remains unclear.
Toward the development of a reduced-rank detection framework for the PAMF detector, the CG
algorithm to solve the linear prediction problem arising in the PAMF detector. It is shown that
CG yields not only a new computationally efficient implementation of the PAMF detector, a
new and efficient AR model order selection method that can naturally be integrated with CG
iterations, but it also offers new perspectives of PAMF as a reduced-rank subspace detector. We
first consider the integration of the CG algorithm with the MF and parametric matched filter
(PMF) when the covariance matrix of the disturbance signal is known. It is then extended to the
adaptive case where the covariance matrix is estimated from training data. Important issues such
as computational complexity and convergence rate are discussed. Performance of the proposed
CG-PAMF detector is examined by using the KASSPER and other computer generated data.
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Chapter 2

Conjugate Gradient Matched Filter

2.1 Introduction

This project is concerned with the multichannel signal detection problem from temporally and
spatially correlated clutter and/or jammer background, which is found in phased-array radar,
sonar and many other applications. A widely explored technique for multichannel signal detec-
tion is space-time adaptive processing (STAP) [1], first proposed by Brennan, Reed and Mal-
lett [2]. Most STAP-based methods, such as the adaptive matched filter (AMF) [3] and Kelly’s
generalized likelihood ratio test (GLRT) [4], need to invert a large space-time covariance matrix,
thus requiring a substantial amount of secondary or training signals as well as a high compu-
tational cost. Aimed at mitigating the demanding training and computational requirements of
the full-dimensional STAP methods, reduced-rank STAP techniques, such as eigencanceler [5],
principal-component method [6], cross-spectral metric [7], multistage Wiener filter (MWF) [8],
etc., have been proposed to reduce the dimension of the data in advance of detection. Such re-
duced dimensional techniques have been extensively studied; see, e.g., [9] and references therein.

The conjugate gradient (CG) algorithm (e.g,. [10]) is a popular method for solving a system
of linear equations. It is computationally efficient and guaranteed to converge in a fixed number
of iterations. As an iterative method, CG provides a series of approximations to the solution in an
expanding Krylov subspace [10]. The CG algorithm has been explored for STAP detection and
beamforming in a multitude of recent studies. Connections between the CG algorithm and the
MWF for STAP detection are explored in [11, 12], and an equivalence is found between the CG
and the multistage Wiener filters. For beamforming, a Krylov subspace adaptive beamformer is
introduced to improve the robustness of model order determined in [13] and separate the desired
signal from interference in [14]. In [15], the CG algorithm is employed to solve a linear prediction
problem in the parametric adaptive matched filter (PAMF) [16, 17], which also shows that the
PAMF detector is a member of the reduced-dimensional STAP family.

In this chapter, we explore the CG algorithm in the matched filter (MF) for STAP detection.
The CG algorithm is employed to iteratively calculate the weight vector of the MF detector,
which produces a series of progressively improved approximations to the MF weight vector. As
we shall show, each of the intermediate weight vectors generated by CG iterations can be used to
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form a decision variable, which, collectively, forms a family of STAP detectors referred to herein
as the CG-MF detectors. Our goal is to examine the performance of these CG-MF detectors
relative to the benchmark MF detector. The motivation is that if any detector within the CG-MF
family offers a performance close to that of the MF detector, then the latter can be substituted
by the former, especially if the CG-MF detector is obtained using a few iterations and, as such,
is computational more efficient. We consider two cases, one involving a general covariance for
the disturbance (i.e., clutter, jamming, and noise) and the other involving a structured disturbance
covariance.

Specifically, for the first case, the space-time covariance matrix of the disturbance is assumed
positive definite but otherwise arbitrary. The probability of false alarm and probability of detec-
tion of the CG-MF detectors are derived in closed form. The analysis shows that the CG-MF
detectors achieve constant false alarm rate (CFAR), irrespective of the number of iterations. The
probability of detection, for a given false alarm probability, is dictated by the output signal-to-
interference-and-noise ratio (SINR) of the linear filter employed by the CG-MF detector, which
changes over the CG iterations. It is found that the CG-MF detector obtained at the k-th CG iter-
ation is optimum in the sense that it yields the largest output SINR over all linear detectors within
the k-dimensional Krylov subspace. As a result, the output SINR and detection probability of
the CG-MF detector improves with more CG iterations and converges to their counterparts of the
MF detector.

For the second case, the disturbance space-time covariance matrix is assumed to include a
low-rank component Ri, a scaled identity due to the presence of a white noise in the disturbance,
and a perturbation component ∆ composed of entries that are generally small compared with
those in Ri. The above structure is frequently encountered in many applications, whereby Ri

contains the dominant clutter scatterers or interference sources that need be effectively mitigated,
whereas ∆ may include insignificant, residual clutter/interference sources. In the absence of the
perturbation, it is well-known that the CG algorithm converges in r + 1 iterations, where r is the
rank of Ri [10], and if r is small, requires significant less computation than directly computing the
matrix inverse needed by the MF detector. However, with the presence of ∆, the CG algorithm
in general requires full iterations, i.e., JN iterations with J being the number of channels and
N the number of temporal samples, to reach convergence. Despite this, for the obvious reason
of complexity reduction, there is an interest to investigate if we can abort the CG algorithm after
r + 1 iterations, and use the (r + 1)-st CG-MF detector within the CG-MF family in place of
the MF detector, provided that the perturbation is small. To answer the question, an analysis is
provided which reveals a relation between the weight vectors of the (r + 1)-st CG-MF detector
and, respectively, the MF. The result is next used to compute and compare the output SINRs of
the two detectors. Interestingly, it is found that the output SINRs are identical within a first-order
approximation, that is, the output SINR loss experienced by the CG-MF detector relative to the
MF is a higher order term of the perturbation which can be neglected for small perturbation. As
such, the detection probabilities are also nearly identical, and be computed by using the results
obtained for the first (general covariance matrix) case.

The remainder of this chapter is organized as follows. The signal detection problem is intro-
duced in Section 2.2 and the CG-MF detector described in Section 2.3. The performance analysis
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of the CG-MF detectors is presented in Section 2.4, including the general case of disturbance co-
variance matrix in Section 2.4.1 and the structured case in Section 2.4.2. Our analytical results are
verified by computer simulations in Section 2.5. Finally, conclusions are summarized in Section
3.7.

Vectors and matrices are denoted by boldface lower-case and upper-case letters, respectively.
Transpose, complex conjugate and complex conjugate transpose are respectively represented by
(·)T , (·)∗ and (·)H . C and R denote the complex and real number fields. CN (µ,R) denotes a
multivariate Gaussian random variable with mean µ and covariance matrix R.

2.2 Data Model

Consider a J-channel sequence x(n) ∈ CJ×1, n = 1, 2, · · · , N , received using an array antenna
which is corrupted by a space-time correlated disturbance random process c(n). The detection
problem involves the following binary hypotheses:

H0 : x(n) = c(n)

H1 : x(n) = as(n) + c(n)
(2.1)

where s(n) is a known J-channel signal and a is its unknown complex amplitude. For the conve-
nience of later discussions, define the following JN×1 vectors: s = [sT (1), sT (2), · · · , sT (N)]T ,
c = [cT (1), cT (2), · · · , cT (N)]T , and x = [xT (1), xT (2), · · · ,xT (N)]T . In STAP, s is known
as the space-time steering vector. For a side-looking uniform linear array (ULA), s is given by

s = st ⊗ ss (2.2)

where st = (1/
√

N)
[
1, ei2πfd , , · · · , ei2π(N−1)fd

]T is the temporal steering vector with a normal-
ized Doppler frequency fd, ss = (1/

√
J)

[
1, ei2πfs , , · · · , ei2π(J−1)fs

]T is the spatial steering vector
with a normalized spatial frequency fs, and ⊗ denotes the Kronecker product. For STAP detec-
tion, a standard assumption is that the disturbance c is a Gaussian random vector with zero-mean
and space-time covariance matrix R ∈ CJN×JN [1]. It follows that x ∼ CN (as, R), where
a = 0 under H0 and a 6= 0 under H1.

2.3 Conjugate Gradient Matched Filter

The optimum detector for (2.1) is the matched filter (MF) (e.g., [3]):

tMF =
|sHR−1x|2
sHR−1s

H1
≷
H0

η (2.3)

where η is the threshold of MF. The performance of the MF is regarded as a benchmark for all
linear tests. For notational convenience, we will frequently denote a detector by a linear filter
weight vector. For the MF detector, the weight vector is

wMF = R−1s. (2.4)
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Then the MF test statistic can be alternatively expressed as:

tMF =
|wH

MFx|2
wH

MFRwMF

H1
≷
H0

η. (2.5)

For typical STAP applications, the covariance matrix R has a large dimension. As a result,
direct matrix inversion is usually not recommended to compute the weight vector (2.4) due to its
computational complexity. We consider herein an alternative way by employing the conjugate
(CG) algorithm [10], which iteratively finds a sequence of linear weight vectors wk, k = 0, 1, . . . ,
that are guaranteed to converge to the MF weight vector in no more than JN iterations. Each
of the weight vector wk can be used to form a detector as in (2.5). As such, the CG iterations
yield a family of detectors, referred to as the CG-MF detectors. The CG-MF detectors are closely
related to the so-called multistage Wiener filter [11]. We examine the performance of these CG-
MF detectors relative to the MF detector. To introduce necessary notation, The CG algorithm is
briefly summarized as follows.

Initialization. Initialize the conjugate direction vector d1, gradient vector γ1 and initial solu-
tion w0:

d1 = −γ1 = s (2.6)
w0 = 0. (2.7)

for k = 1, 2, · · · , till convergence (k ≤ JN ) do
Update the step size αk:

αk =
‖γk‖2

dH
k Rdk

. (2.8)

Update the solution wk:
wk = wk−1 + αkdk. (2.9)

Update the gradient vector γk+1:

γk+1 = γk + αkRdk. (2.10)

Update the conjugate direction vector dk+1:

dk+1 = dk

‖γk+1‖2

‖γk‖2
− γk+1. (2.11)

end for
A quick comment on the complexity is in order. Each iteration of the CG algorithm involves

one matrix-vector product, requiring about O((JN)2) flops. With full JN iterations, the CG
algorithm has a complexity of O((JN)3) flops, comparable with alternative linear solvers such
as the QR factorization [10]. In many practical cases, the CG algorithm may require far fewer
than full iterations (see Section 2.4.2 and also [10, Chap. 10] for discussions on the convergence
of the CG algorithm), leading to significant reduction in complexity.
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2.4 Analysis

In this section, we consider the performance of the CG-MF detectors under two cases. The first
involves a general covariance matrix R that is positive definite but otherwise arbitrary, whereas
the other deals with a structured covariance that is frequently encountered in practice.

2.4.1 General Covariance matrix

It would be useful to represent the CG-MF detector wk by using the conjugate direction vectors
{dk} in closed form. First, (2.9) implies that

wk = Dkαk (2.12)

where αk = [α1, α2, · · · , αk]
T contains the stepsizes and Dk = [d1,d2, · · · ,dk] consists of the

first k conjugate direction directors. One property of Dk is that it diagonalizes the covariance
matrix R [10, p. 523]:

DH
k RDk = Λk (2.13)

where Λk = diag(u2
1, u

2
2, · · · , u2

k) and uk = (dH
k Rdk)

1
2 . This allows αk to be compactly ex-

pressed as
αk = Λ−1

k DH
k s (2.14)

which gives the following close-form expression for wk:

wk = DkΛ
−1
k DH

k s. (2.15)

The k-th CG-MF detector using wk is given by

tk =
|wH

k x|2
wH

k Rwk

H1
≷
H0

ηk. (2.16)

Theorem 1 For the k-th CG-MF detector wk,

(a) It is a linear minimum mean square estimator that minimizes

wk = arg min
w∈K(R,s,k)

{
E‖a−wHx‖2

}
(2.17)

among all linear estimators within the k-dimensional Krylov subspace

K(R, s, k) , span{s, Rs, R2s, · · · , Rk−1s}.

(b) wk yields the largest output SINR

ρk = |a|2 |w
H
k s|2

wH
k Rwk

(2.18)

among all linear detectors within K(R, s, k).
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(c) Under the aforementioned Gaussian assumption, namely x ∼ CN (as,R) with a = 0
under H0 and a 6= 0 under H1, the probability of false alarm Pfa,k and the probability of
detection Pd,k of wk are

Pfa,k = exp (−ηk) (2.19)

Pd,k = Q(
√

2ρk,
√

2ηk) (2.20)

where Q(·) is the Marcum Q function.

Sketch of proof: As the above results are quick extensions from standard knowledge, we only
provide a sketch of proof. Result (a) is proved by observing that the Krylov subspace is also
spanned by the conjugate direction vectors [10]: K(R, s, k) = span{d1,d2, · · · , dk}. As such,

wk =arg min
w=Dkα

{
E‖a−wHx‖2

}

=Dk

(
DH

k RDk

)−1
DH

k s = DkΛ
−1
k DH

k s
(2.21)

which is identical to (2.15).
Result (b) follows immediately from (a), since minimizing the mean-square error (MSE) is

equivalent to maximizing the SINR [18].
To show (c), we use (2.13) and (2.12) to rewrite the test variable tk of (2.16) as

tk =
|αH

k DH
k x|2

αH
k Λkαk

αH
k Λkαk = |yk|2 (2.22)

where yk = (αH
k DH

k x)(αH
k Λkαk)

− 1
2 . It is clear that yk ∼ CN (0, 1) under H0 and, respectively,

yk ∼ CN
(
(aαH

k DH
k s)(αH

k Λkαk)
− 1

2 , 1
)

under H1. As such, tk is central and, respectively,
noncentral Chi-square distributed under H0 and H1, from which (2.19) and (2.20) follow imme-
diately. Q.E.D.

A number of remarks are in order. First, (2.19) implies that CG-MF detectors for all k are
CFAR detectors. Their test variables tk are all identically distributed to that of the MF test
variable tMF, irrespective of k the number of iterations. Second, (b) implies that ρk ≤ ρk+1, since
K(R, s, k) ⊆ K(R, s, k + 1). Hence, the CG-MF is a family of CFAR detectors wk composed
of both reduced-rank detectors (k < JN ) and the full-rank MF detector (k = JN ), which
offers a natural way to trade complexity for performance. Specifically, the detection probability
Pd,k of the CG-MF detector wk increases with more CG iterations (i.e., a larger k), at higher
computational complexity. The trade-off and the analytical expression (2.20) allow one to save
the computational cost by selecting an appropriate reduced-rank CG-MF detector that offers a
targeted Pd,k, without going through all CG iterations.

2.4.2 CG-MF: Structured Covariance Matrix

One desired property of the CG algorithm is its fast convergence. In general, it takes no more
than JN iterations to obtain the MF detector vector wMF (2.4) [10]. Even faster convergence
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is possible if the covariance matrix of the disturbance has some specific structure, which makes
the CG algorithm more attractive than many alternative approaches to computing (2.4). In this
section, we examine the performance of the CG-MF detectors in the case where the disturbance
covariance matrix has some low-rank structure. Specifically, suppose R consists of the following
two components:

Ri + σ2
nI (2.23)

where Ri is a rank-r positive semi-definite matrix (r < JN ) and I an identify matrix. For such a
structured matrix, it is known that the CG algorithm converges to the baseline MF solution using
at most r + 1 iterations [10], i.e., wr+1 = wMF, which is computationally very efficient.

Many practical applications involve a disturbance covariance matrix having a structure similar
to (2.23). For example, in airborne radar applications, the disturbance covariance matrix often
consists of two components, namely a low-rank Ri due to the clutter and jamming and a scaled
identity σ2

nI due to the thermal noise, where σ2
n denotes the noise variance. The rank r is typically

much smaller than the joint spatio-temporal dimension JN . Specifically, if the disturbance is
primarily due to ground clutter and thermal noise, then according to Brennan’s rule [2], the rank
of the clutter covariance matrix for the full-dimensional MF is approximately

r ≈ dJ + (N − 1)βe (2.24)

where β = 2vgTr/d, vg is the platform velocity, Tr is the pulse repetition period, d is the antenna
element spacing, and d·e rounds a real-valued number towards infinity.

Estimating the rank r can be a tricky issue since (2.24) may not hold for all clutter scenarios
encountered in practice. The CG algorithm has an advantage of not requiring to know r a priori,
since at the (r + 1)-st iteration, the residual s − Rwk, which is also the negative gradient γk,
vanishes. This is the stopping rule used by the CG algorithm to stop iterations [10]. Other STAP
detectors designed to take advantage of the structure (2.23), such as the low rank normalized
matched filter (LRNMF) [19] which employs the principal eigenvectors of the covariance matrix,
requires an estimate of r and its performance is quite sensitive to the accuracy of the estimate.

While the convergence of the CG for a structured covariance matrix exactly like (2.23) is
well known, in the following, we consider a different but related scenario that the disturbance
covariance matrix R is a perturbed version of (2.23):

R = Ri + σ2
nI + ∆ , R0 + ∆ (2.25)

where R0 = Ri + σ2
nI is structured as in (2.23) and ∆ is a Hermitian perturbation matrix that

is assumed to be small, i.e., ‖∆‖ ¿ ‖R0‖. Since the perturbation is small, it is of interest
to examine the following important questions: Can we benefit from the CG algorithm when the
disturbance covariance matrix is given as (2.25)? Can it reach convergence or almost convergence
in r + 1 iterations? How is the detection performance of the CG-MF detector wr+1 compared
to the MF detector? A second type of perturbation is stochastic perturbation arising from finite
training data effects in estimating the covariance matrix. The random perturbation issue is a
subject of ongoing research and will be reported in a future publication.

Before we address the above questions, some discussions on the model (2.25) are in order.
The perturbation model may exist in many scenarios. For example, in airborne radar applications,
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the covariance matrix R rarely has exactly r + 1 distinct eigenvalues as in (2.23). Typically, R
contains a few principal eigenvalues due to the dominant clutter scatterers, but the other eigenval-
ues are rarely identical and spread around the noise level [1]. By decomposing R as (2.25), Ri

contain only the dominant clutter scatterers, and the effect of the less significant clutter scatterers
can be included in ∆. The same can be extended to a general interference scenario, where Ri is
the covariance matrix of only a few major interference sources that have to be mitigated at the
receiver, whereas ∆ contains the residual interference.

Given a structured covariance matrix R with perturbation as in (2.25), the analytical results
of Section 2.4.1 of the family of CG-MF detectors are still applicable. To address the earlier
questions, we consider the CG-MF detector wr+1 obtained at the (r + 1)-st CG iteration, and
examine the performance of this CG-MF detector relative to the MF detector wMF. We first
present a result that relates the weight vectors for the two detectors.

Lemma 1 Consider the linear equation RwMF = s, where R = Ri + σ2
nI + ∆ = R0 + ∆

is a positive-definite Hermitian matrix, Ri is a rank-r positive semi-definite Hermitian matrix,
σ2

n > 0 is a constant, and ∆ is a Hermitian perturbation matrix. If the perturbation is small such
that ‖∆‖ ¿ ‖R0‖, the MF solution wMF can be approximated by the CG-MF solution wr+1,
with the approximation error given by

wMF −wr+1 = R
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 d + o(‖∆‖) (2.26)

where o(‖∆‖) contains the second- and higher-order perturbation terms that can be neglected
for small ‖∆‖,

T̃ r = R
1
2
0 T r (2.27)

T r = [s,R0s,R2
0s, · · · ,Rr

0s] (2.28)

P⊥
T̃ r

= I − T̃ r(T̃
H

r T̃ r)
−1T̃

H

r (2.29)

d =
(
∆R−1

0 + R0Φ∆(T H
r R0T r)

−1T H
r

)
s (2.30)

and

Φ∆ =

[
0,∆s,R0∆s + ∆R0s, · · · ,

r∑

k=1

Rr−k
0 ∆Rk−1

0 s

]
. (2.31)

Proof: See Appendix 2.7. Q.E.D.
When the perturbation vanishes, it is straightforward to show from (2.51) of Appendix 2.7

that
wMF −wr+1 = R0

− 1
2 P⊥

T̃ r
R
− 1

2
0 s = 0 (2.32)

which offers another proof that the CG-MF detector wr+1 converges to the MF detector wMF

when ∆ = 0, a result we already know for the CG algorithm [10]. Interestingly, the first equality

11



of the above equation resembles (2.26) except that d is replaced by s. It is also noted that the
matrix Φ∆ can be easily calculated by the following simple recursion:

φ1 =0
φk =∆Rk−2

0 s + R0φk−1, k = 2, 3, · · · , r + 1.
(2.33)

We now consider the output SINR of the CG-MF detector wr+1,

ρr+1 = |a|2 |wH
r+1s|2

wH
r+1Rwr+1

(2.34)

and its relation to the output SINR of the MF detector. The following result addresses their
relationship.

Theorem 2 Under the same conditions stated in Lemma 1, the output SINRs of the MF detector
wMF and the CG-MF detector wr+1 are identical within a first-order approximation. That is,

δρ = ρMF − ρr+1 = o(‖∆‖) (2.35)

where

ρr+1 = |a|2 |wH
r+1s|2

wH
r+1Rwr+1

. (2.36)

and ρMF is similarly defined by replacing wr+1 with wMF.

Proof: The proof goes by direct calculation and using Lemma 1. The loss of output SINR of
the CG-MF relative to the MF is given by

δρ = ρMF − ρr+1 = |a|2
( |wH

MFs|2
wH

MFRwMF
− |wH

r+1s|2
wH

r+1Rwr+1

)
. (2.37)

First we consider the difference between sHwMF and sHwr+1. Using Lemma 1, we have

sHwMF − sHwr+1 = sHR
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 d + o(‖∆‖). (2.38)

Since s is orthogonal to the column space of R
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 [also see (2.32)], we have

sHR
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 = 0 (2.39)

and (2.38) reduces to
sHwMF − sHwr+1 = o(‖∆‖). (2.40)

It follows that
|wH

MFs|2 − |wH
r+1s|2 = o(‖∆‖). (2.41)

12



Next, we consider the difference between the denominators wH
MFRwMF and wH

r+1Rwr+1:

wH
MFRwMF −wH

r+1Rwr+1

= 2Re{wH
MFR(wMF −wr+1)}

− (wMF −wr+1)
HR(wMF −wr+1)

= 2Re{sH(w −wr+1)}
− (wMF −wr+1)

HR(wMF −wr+1) (2.42)

where Re{·} denotes the real part. Again using Lemma 1, we have

(wMF −wr+1)
HR(wMF −wr+1) = o(‖∆‖). (2.43)

Substituting (2.40) and (2.43) into (2.42) yields

wH
MFRwMF −wH

r+1Rwr+1 = o(‖∆‖). (2.44)

Finally, from (2.37), the output SINR loss of the CG-MF detector is given by

δρ = |a|2 |w
H
MFs|2wH

r+1Rwr+1 − |wH
r+1s|2wH

MFRwMF

wH
MFRwMFwH

r+1Rwr+1

. (2.45)

Substituting (2.41) and (2.44) into the numerator of (2.45), we have

|wH
MFs|2wH

r+1Rwr+1 − |wH
r+1s|2wH

MFRwMF

= |wH
MFs|2

(
wH

MFRwMF − o(‖∆‖))

− (|wH
MFs|2 − o(‖∆‖)) wH

MFRwMF

= o(‖∆‖) (2.46)

from which (2.35) immediately follows. Q.E.D.
Remark: It is interesting to note that while Lemma 1 indicates that the difference between the

weight vectors, i.e., wMF −wr+1, contains first-order terms of the perturbation, such first-order
differences vanish in terms of the output SINR, as shown in the above proof. Theorem 2 implies
that that the probabilities of detection of the MF and CG-MF detectors are also identical within a
first-order approximation. This has important practical implication. In particular, even though the
CG algorithm using R generally requires full (i.e., JN ) iterations before it reaches convergence
(since R does not have the low-rank structure (2.23)), we can take the intermediate result wr+1

obtained at the (r + 1)-st iteration and obtain nearly the same detection performance as the MF
detector, provided that ∆ is sufficiently small. While the latter condition cannot be quantitatively
specified, numerical simulation can be used to examine the effect of the perturbation size and the
accuracy of the approximation.
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Figure 2.1: Normalized output SINR versus the number of iterations for the CG-MF detector
(J = 4; N = 32).

2.5 Numerical Results

2.5.1 General Covariance Matrix

Computer simulation is employed to verify the analytical results reported in the previous sections.
We first consider the general covariance matrix case studied in Section 2.4.1. Our numerical
results for this case use a disturbance covariance matrix R obtained from the KASSPER data
set [20], which is a simulated data set that includes practical airborne radar parameters and issues
found in a real-world clutter environment. The radar platform considered in this data set has 11
horizontal antenna elements. For simplicity, we use only the outputs of the first J = 4 channels
for processing. The number of pulses is N = 32, and the probability of false alarm is Pfa = 0.01.
We first examine the output SINR ρk, defined in (2.18), of the CG-MF detector wk. Fig. 2.1
shows the normalized output SINR ρk/ρMF, where the normalizing factor ρMF is the output SINR
of the MF detector, versus the number of iterations. It is observed that ρk converges rapidly to
ρMF as k increases.

The probability of detection for the MF detector and the CG-MF detector after k = 10, 20
and 40 iterations, respectively, is shown in Fig. 2.2 as a function of the MF output SINR, defined
as ρMF , |a|2sHR−1s. It is seen that that with k = 40 iterations, the CG-MF detector achieves
nearly identical detection performance as the MF detector, which requires JN = 128 CG iter-
ations. Finally, the detection probability of the CG-MF detector as a function of the number of
iterations k is shown in Fig. 2.3 for the MF output SINR = 5, 10, and 20 dB, respectively. It is
seen that the detection probability of the CG-MF detector is a non-decreasing function of k in all
cases, as predicted in Section 2.4.1.
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Figure 2.2: Probability of detection versus SINR for the MF and CG-MF detectors with several
different numbers of iterations (J = 4; N = 32; Pfa = 0.01).
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Figure 2.3: Probability of detection Pd,k versus number of iterations k (J = 4; N = 32; Pfa =
0.01).

2.5.2 Structured Covariance Matrix with Perturbation

We now consider the case examined in Section 2.4.2 where the covariance R is a perturbed
version of a structured R0. We demonstrate how the convergence of the CG-MF detector is
directly affected by the size of the perturbation. We employ a relative perturbation size, defined
as

ap =

√
tr(∆H∆)

tr(RH
0 R0)

(2.47)
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Figure 2.4: Output SINR of the MF detector and CG-MF detector after r+1 = 7 iterations versus
the relative perturbation size (r = 6, JN = 16).

where tr(·) is the trace of a matrix. We tried several ways of generating the perturbation matrix
∆ and obtained similar results. The ones presented here were based on the following approach.
For any structured covariance matrix R0 as described in (2.25) and a given perturbation size κ,
1) randomly generate R as a complex Wishhart matrix R′ with mean R0; and 2) form R as a
scaled version of R′ such that ∆ = R−R0 has a prescribed perturbation size κ. It is noted that
although R is generated as a random matrix whose mean is not R0 (which is the mean of R′),
in each trail R is treated as a deterministic/known matrix that is a perturbed version of R0 with
perturbation size κ.

Fig. 2.4 shows the output SINR of the CG-MF detector wr+1 (r = 6) normalized by that
of the MF detector, i.e., ρr+1/ρMF, as a function of ap. It is seen that the output SINRs of
the two detectors remain nearly identical (ρr+1/ρMF > 0.99) for a relative perturbation size as
large as ap = 30%, which indicates that our perturbation analysis in Theorem 2 for the CG-MF
detectors is quite accurate over a wide range of perturbation size. Fig. 2.5 depicts the probability
of detection for the MF and CG-MF detector as a function of the MF output SINR, where several
values of ap are considered. It is seen that with a relative perturbation size as large as ap =
30%, the detection probability of the two detectors are nearly identical. At ap = 45%, a small
difference is observed.

2.6 Concluding Remarks

The CG algorithm can be used to solve the Wiener-Hopf equation underlying the MF, which leads
to a family of linear CG-MF detectors that converge to the MF in a fixed number of iterations.
We have shown that the CG-MF detectors are all CFAR detectors, they can be recursively and
efficiently computed via CG iterations over an expanding Krylov subspace, and each of them is an
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Figure 2.5: Probability of detection of the MF detector and the CG-MF detector after r + 1 = 7
iterations (r = 6, JN = 16, Pfa = 0.01).

optimum reduced-dimensional detector in the sense that it yields the maximum output SINR over
all linear detectors residing the Krylov subspace. For disturbance covariances with a low-rank
structure (rank-r), we have shown that the presence of a perturbation component ∆ disrupting
the low-rank structure has minimum effect on the convergence of the CG algorithm, in that the
output SINR of the (r + 1)-st CG-MF detector is nearly identical to that of the MF detector.
This offers significant computational saving, in particular when r is small, by using the CG-MF
instead of the MF detector without incurring undue penalty in detection performance. A future
topic of interest is to analyze the CG algorithm for adaptive detection when the covariance matrix
R is unknown and estimated from training signals.

2.7 Appendix: Proof of Lemma 1

Proof: The CG-MF solution wr+1 obtained at the (r +1)-st iteration is the R-orthogonal projec-
tion of wMF onto the Krylov subspace K(R, s, r + 1) [10]. This means that the R-norm of the
approximation error is minimized over all vectors in K(R, s, r + 1), which is the column space
of Sr =

[
s, Rs, R2s, R3s, · · · , Rrs

]
[10]. That is,

‖wMF −wr+1‖R = min
ak

∥∥∥∥∥w −
r∑

k=0

akR
ks

∥∥∥∥∥
R

. (2.48)
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Substituting w = R−1s and ‖ · ‖R =
∥∥∥R

1
2 (·)

∥∥∥ into (2.48), we have

‖wMF −wr+1‖R = min
ak

∥∥∥∥∥R
1
2 (R−1s−

r∑

k=0

akR
ks)

∥∥∥∥∥

= min
ak

∥∥∥∥∥R− 1
2 s−

r∑

k=0

akR
1
2 Rks

∥∥∥∥∥ . (2.49)

The minimum approximation error is achieved if and only if the vector
∑r

k=0 akR
1
2 Rks is the

orthogonal projection of the vector R− 1
2 s onto the linearly transformed Krylov subspace

R
1
2K(R, s, r + 1) = span{R 1

2 s,R
1
2 Rs, · · · , R

1
2 Rrs} (2.50)

or the column space of S̃r = R
1
2 Sr. When the minimum of (2.49) is achieved, the approximation

error is given by
wMF −wr+1 = R− 1

2 P⊥
S̃r

R− 1
2 s (2.51)

where

P⊥
S̃r

= I − S̃r(S̃
H

r S̃r)
−1S̃

H

r

= I −R
1
2 Sr(S

H
r RSr)

−1SH
r R

1
2 (2.52)

which is the orthogonal complement projection matrix of the transformed Krylov subspace
R

1
2K(R, s, r + 1). Substituting (2.52) into (2.51), we have

wMF −wr+1 =
(
R−1 − Sr(S

H
r RSr)

−1SH
r

)
s. (2.53)

Since wMF = R−1s, and the vector Sr(S
H
r RSr)

−1SH
r s ∈ K(R, s, r + 1), so

wr = Sr(S
H
r RSr)

−1SH
r s, (2.54)

and

wMF −wr+1 =
(
R−1 − Sr(S

H
r RSr)

−1SH
r

)
s. (2.55)

Expanding Rm = (R0 + ∆)m, we have

Rm = Rm
0 +

m∑

k=1

Rm−k
0 ∆Rk−1

0 + o(‖∆‖)

≈ Rm
0 +

m∑

k=1

Rm−k
0 ∆Rk−1

0 . (2.56)

If the columns of T r span the Krylov subspace K(R0, s, r + 1), then Sr can be approximated by

Sr ≈ T r + Φ∆ (2.57)
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where Φ∆ is defined by (2.31). After substituting (2.57) into (2.55), while using a first-order
expansion on (SH

r RSr)
−1, (SH

r RSr)
−1 can be approximated as

(SH
r RSr)

−1 =
(
(T r + Φ∆)H(R0 + ∆)(T r + Φ∆)

)−1

≈ (T H
r R0T r)

−1 − (T H
r R0T r)

−1Ψ∆(T H
r R0T r)

−1 (2.58)

where Ψ∆ = T H
r R0Φ∆ + T H

r ∆T r + ΦH
∆R0T r. Similarly using expansion on R−1, we have

R−1 = (R0 + ∆)−1 ≈ R−1
0 −R−1

0 ∆R−1
0 . (2.59)

Substituting (2.58) and (2.59) into (2.55), and discarding the second and higher-order terms, we
have

wMF −wr+1 ≈
(
R−1

0 − T r(T
H
r R0T r)

−1T H
r

+ T r(T
H
r RT r)

−1Ψ∆(T H
r R0T r)

−1T H
r

−Φ∆(T H
r R0T r)

−1T H
r −R−1

0 ∆R−1
0

− T r(T
H
r R0T r)

−1ΦH
∆

)
s. (2.60)

Since R0 is a rank-r correction matrix to σ2
nI , the solution R−1

0 s lies in the Krylov subspace

K(R0, s, r + 1) [10]. Hence, R
− 1

2
0 s lies in the linearly transformed Krylov subspace

R
1
2
0K(R0, s, r + 1) or the column space of T̃ r = R

1
2
0 T r, and as such P⊥

T̃ r
R
− 1

2
0 s is equal to

zero vector, i.e.

P⊥
T̃ r

R
− 1

2
0 s

=
(
I −R

1
2
0 T r

(
(R

1
2
0 T r)

H(R
1
2
0 T r)

)−1
T H

r R
1
2
0

)
R
− 1

2
0 s

= (R
− 1

2
0 −R

1
2
0 T r(T

H
r R0T r)

−1T H
r )s = 0. (2.61)

Since R0 is a positive-definite Hermitian matrix, left multiplying both sides of (2.61) by R
− 1

2
0

yields (
R−1

0 − T r(T
H
r R0T r)

−1T H
r

)
s = 0. (2.62)

Substituting (2.62) into (2.60), we obtain the difference

wMF −wr+1 ≈(
T r(T

H
r R0T r)

−1
(
T H

r R0Φ∆ + T H
r ∆T r + ΦH

∆R0T r

)

× (T H
r R0T r)

−1T H
r −Φ∆(T H

r R0T r)
−1T H

r

−R−1
0 ∆R−1

0 − T r(T
H
r R0T r)

−1ΦH
∆

)
s. (2.63)
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Note that

T r(T
H
r R0T r)

−1T H
r ∆T r(T

H
r R0T r)

−1T H
r s

= R
− 1

2
0 P T̃ r

R
− 1

2
0 ∆R

− 1
2

0 P T̃ r
R
− 1

2
0 s (2.64)

where P T̃ r
= T̃ r(T̃

H

r T̃ r)
−1T̃

H

r is the orthogonal projection matrix onto the column space of

T̃ r. From the previous analysis, the vector R
− 1

2
0 s lies in the column space of T̃ r. Therefore,

P T̃ r
R
− 1

2
0 s = R

− 1
2

0 s. (2.65)

Substituting (2.65) into (2.64), we have

T r(T
H
r R0T r)

−1T H
r ∆T r(T

H
r R0T r)

−1T H
r s

= R
− 1

2
0 P T̃ r

R
− 1

2
0 ∆R−1

0 s (2.66)

and
(
R−1

0 ∆R−1
0 − T r(T

H
r R0T r)

−1T H
r ∆T r

× (T H
r R0T r)

−1T H
r

)
s

= R
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 ∆R−1

0 s. (2.67)

Similarly, it can be be proved that
(
Φ∆(T H

r R0T r)
−1T H

r

− T r(T
H
r R0T r)

−1T H
r R0Φ∆(T H

r R0T r)
−1T H

r

)
s

= R
− 1

2
0 P⊥

T̃ r
R

1
2
0 Φ∆(T H

r R0T r)
−1T H

r s (2.68)

and
(
T r(T

H
r R0T r)

−1ΦH
∆

− T r(T
H
r R0T r)

−1ΦH
∆R0T r(T

H
r R0T r)

−1T H
r

)
s

= T r(T
H
r R0T r)

−1ΦH
∆P⊥

T̃ r
R
− 1

2
0 s = 0. (2.69)

Substituting (2.67)-(2.69) into (2.63), we have

wMF −wr+1 ≈ R
− 1

2
0 P⊥

T̃ r
R
− 1

2
0(

∆R−1
0 + R0Φ∆(T H

r R0T r)
−1T H

r

)
s

= R
− 1

2
0 P⊥

T̃ r
R
− 1

2
0 d (2.70)

where d is defined by (2.30). Q.E.D.
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Chapter 3

Conjugate Gradient Parametric Matched
Filter

3.1 Introduction

With extra spatial information provided by multiple sensors, higher performance of signal de-
tection can be achieved (than a single-sensor system), especially in detection of signals buried
in a background of directional jammers and space-time correlated clutter. A widely explored
technology for multichannel signal detection is space-time adaptive processing (STAP) [1], first
proposed by Brennan, Reed and Mallett [2]. Most STAP-based methods, such as the adaptive
matched filter (AMF) [3] and Kelly’s generalized likelihood ratio test (GLRT) [4], need to invert
a large space-time covariance matrix. These methods require not only a large number of indepen-
dent, identically distributed, signal-free training data to estimate the matrix, but they also incur a
high computational cost for matrix estimation and inversion.

A parametric STAP detector based on a multichannel autoregressive (AR) disturbance model
has been proposed for airborne radar applications [16, 21] to reduce both the training data re-
quirement and computation load. This method is called the parametric adaptive matched fil-
ter (PAMF) [16]. While the PAMF detector has been found to yield exceptional performance
with significantly reduced training and computational requirements when compared with fully
adaptive STAP detectors, the connections between the PAMF and other reduced-dimensional or
partially adaptive STAP detectors [1], which have similar benefits in training and complexity,
remains unclear.

This chapter aims to provide some insights into this problem by employing the conjugate-
gradient (CG) method to solve the linear prediction problem underlying the temporal whitening
phase of the PAMF detector. Our choice of the CG method is motivated by several factors. First,
as will be shown, the CG algorithm naturally leads to a subspace interpretation of the PAMF
detector, and offers a connection to the other reduced-rank STAP detectors. Second, the CG
method is a computational efficient algorithm to solve the linear prediction problem underlying
the PAMF detector. In particular, for airborne radar applications, due to an inherent structure of
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the disturbance covariance matrix, the CG algorithm can usually achieve convergence using only
a few iterations, thus providing significant computational saving. Third, since the disturbance
covariance matrix has a block-Toeplitz matrix structure, preconditioning methods(e.g., [10, 22,
23]) can be employed, which are very effective in further speeding up the convergence rate in
CG iterations, while adding up only a modest computational overhead per iteration (due to the
block-Toeplitz structure). Finally, as a by-product, we show that the CG algorithm also yields a
new and computationally efficient AR model order selection method that can be integrated with
the CG iterations.

The remainder of this chapter is organized as follows. The signal detection problem is intro-
duced in Section 3.2. A brief review of the matched filter (MF) and parametric matched filter
(PMF) detectors is provided in Section 3.3. In Section 3.4, the CG versions of MF (CG-MF) and
PMF (CG-PMF) and a CG-based model order selection method are proposed. The convergence
rate of CG in airborne radar applications, along with a preconditioned CG-PMF (PCG-PMF) de-
tector, are also discussed there. In Section 3.5, we consider the adaptive case and present a new
model order-selection CG-PAMF (OSCG-PAMF) detector, when both the AR model order and
coefficients are unknown. The performance of the proposed class of CG-PMF and CG-PAMF
detectors is illustrated by numerical results in Section 3.6. Finally conclusions are summarized
in Section 3.7.

Vectors and matrices are denoted by boldface lower-case and upper-case letters, respectively.
Transpose, complex conjugate and complex conjugate transpose are respectively represented by
(·)T , (·)∗ and (·)H . C and R denote the complex and real number fields. CN (µ,R) denotes an
additive multivariate Gaussian random variable with mean vector µ and covariance matrix R.

3.2 Data Model

Consider a received J-channel sequence {x(n)|n = 1, 2, · · · , N} corrupted by a space-time
correlated disturbance random process c(n). The detection problem involves the following binary
hypotheses:

H0 : x(n) = c(n)

H1 : x(n) = as(n) + c(n) (3.1)

where s(n) is a known J-channel signal and a is its deterministic but unknown complex ampli-
tude. All vectors in (3.1) are J × 1 vectors. For convenience of later discussions, define the fol-
lowing vectors in descending order: s = [sT (N), sT (N − 1), · · · , sT (1)]T , c = [cT (N), cT (N −
1), · · · , cT (1)]T , x = [xT (N),xT (N − 1), · · · ,xT (1)]T . It is standard to assume that the dis-
turbance c is a Gaussian random vector with zero-mean and space-time covariance matrix Rc ∈
CJN×JN , while the signal vector s(n) is deterministic (Swerling 0 target). Based on these as-
sumptions, x ∼ CN (as,Rc), where a = 0 under H0 and a 6= 0 under H1.

In STAP, the signal s is known as the space-time steering vector:

s = st ⊗ ss (3.2)
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where st and ss denote the temporal steering vector and spatial steering vector, respectively,
and ⊗ denotes the Kronecker product. For a side-looking uniform linear array (ULA), we have
st = (1/

√
N)[ei2π(N−1)fd , · · · , ei2πfd , 1]T with a normalized Doppler frequency fd and ss =

(1/
√

J)[ei2π(J−1)fs , · · · , ei2πfs , 1]T with a normalized spatial frequency fs. Practically, the true
disturbance covariance matrix Rc is unknown, and often an estimate can be obtained from the
secondary data:

R̂c =
1

K

K∑

k=1

ckc
H
k (3.3)

where ck, k = 1, 2 · · · , K, denote the secondary data vectors assumed to be signal-free. Ac-
cording to the well-known “RMB” rule [24], we need K ≥ 2JN − 3 so that the average output
signal-to-interference-plus-noise ratio (SINR) loss caused by covariance estimation error is less
than 3 dB. Detectors with an estimated covariance matrix are often called adaptive methods.

3.3 MF and PMF

Assuming a known Rc, the matched filter (MF) is obtained by maximizing the output SINR of a
linear receiver or the generalized likelihood ratio (GLR). The test is given by (e.g., [3]):

|sHR−1
c x|2

sHR−1
c s

H1
≷
H0

ηMF (3.4)

where ηMF is the threshold of the MF. Equation (3.4) is the well known matched subspace detector
for a rank-1 signal in colored noise. Consequently, it offers unbeatable performance for the
detection problem considered in equation (3.1).

For ease of exposition, the MF can also be represented by using a structure of temporal
whitening cascaded with spatial whitening arising from a block LDU decomposition of the dis-
turbance covariance matrix [16]. This form of MF is given by

|(Q−1/2L−1s)H(Q−1/2ε)|2
(Q−1/2L−1s)H(Q−1/2L−1s)

=
|s̃Hν|2
s̃H s̃

H1
≷
H0

ηMF (3.5)

where Q ∈ CJN×JN is a block-diagonal matrix with Hermitian matrices Q(n), n = 1, 2, · · · , N ,
along the main block diagonal, and L ∈ CJN×JN is a lower block-triangular matrix with J ×
J identity matrices along the main block diagonal. Both L and Q come from a block LDU
decomposition of the disturbance covariance matrix Rc = LQLH . Finally,

ε(n) = x(n)−
(n−1)∑
p=1

AH
n (p)x(n− p) (3.6)

ν(n) = Q−1/2(n)ε(n) (3.7)

s̃(n) = Q−1/2(n)


s(n)−

(n−1)∑
p=1

AH
n (p)s(n− p)


 (3.8)
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where AH
n (p) ∈ CJ×J is a block element of L−1 located at the (n − p)-th block column and the

n-th block row. Due to the fact that there is no performance penalty for the prewhitening of the
interference [25, Ch.6], (3.5) is equivalent to (3.4).

If the disturbance c(n) is stationary in time, the MF can be simplified. A parametric matched
filter (PMF) was introduced in [16] by modeling the disturbance as a stationary P -th-order mul-
tichannel autoregressive (AR) process. Specifically,

c(n) =
P∑

p=1

AH(p)c(n− p) + εP (n) (3.9)

where AH(p), p = 1, 2, · · · , P , is the p-th AR matrix coefficient of linear prediction, and εP (n)
is the temporally white noise with a spatial covariance matrix QP . The PMF test is given by [16]

|∑N
n=P+1 s̃H

P (n)νP (n)|2∑N
n=P+1 s̃H

P (n)s̃P (n)

H1
≷
H0

ηPMF (3.10)

where νP (n) = Q
−1/2
P εP (n) and

s̃P (n) = Q
−1/2
P

[
s(n)−

P∑
p=1

AH(p)s(n− p)

]
(3.11)

for n = P + 1, · · · , N . In practice, the model order P and the AR coefficients {A(p)} are
unknown and hence estimated from the secondary data and/or primary data. Different estimators
lead to different versions and implementations of the PAMF detector [16, 17].

3.4 CG-MF and CG-PMF

In this section, we discuss alternative implementations of the MF and PMF via the CG algorithm.
The resulting detectors are referred to as the CG-MF and CG-PMF detectors, respectively, for
brevity. We start from the CG-MF, which also sets the basis for the CG-PMF. The latter, by as-
suming that the disturbance c(n) is temporally stationary, is a computationally simplified version
of the CG-MF. The link between the PMF and CG as developed in the sequel reveals the PMF
as a reduced-dimensional subspace detector. In this section, we assume knowledge of the covari-
ance matrix of the disturbance signal. An adaptive versions of the CG-PMF (i.e., CG-PAMF) is
discussed in Section 3.5.

3.4.1 Conjugate-Gradient MF

The MF detector, as shown in Section 3.3, can be derived from a time-varying linear prediction
process. Specifically, consider the problem of linearly predicting the n-th sample x(n) under H0

from all prior received samples x(n− 1),x(n− 2), . . . ,x(1) (cf. (3.9))

x(n) = BH(n)y(n) + ε(n) (3.12)
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where B(n) = [AH
n (1),AH

n (2), · · · ,AH
n (n− 1)]H = [B1(n),B2(n), · · · ,BJ(n)] ∈ CJ(n−1)×J

denotes the (n − 1)-st order time-varying multichannel linear prediction filter, and y(n) =
[yn(1), yn(2), · · · , yn(J(n− 1)]T = [xT (n− 1),xT (n− 2), · · · ,xT (1)]T contains all n− 1 pre-
viously received data vectors. It is noted that the above time-varying linear predictor grows in its
filter order or size with n. The multichannel linear predictor is equivalent to J linear predictors:

xj(n) = BH
j (n)y(n) + εj(n), j = 1, 2, · · · , J (3.13)

where Bj(n) is a J(n − 1)-dimensional vector which contains the cross-channel correlation in-
formation associated with the j-th channel. The optimum linear predictor can be obtained by
solving the Wiener-Hopf equations:

Ry(n)Bj(n) = Rj(n), j = 1, 2, · · · , J (3.14)

where Ry(n) = E[y(n)yH(n)] ∈ CJ(n−1)×J(n−1) and Rj(n) = E[y(n)x∗j(n)] ∈ CJ(n−1)×1.
Again, note that the size of the Wiener-Hopf equation grows with n.

To obtain a temporally whitened sequence ε(n) for MF detection (cf. (3.6)), the above linear
prediction process has to be performed multiple times, starting from n = 2 to n = N . For each
n, we need to solve a Wiener-Hopf equation of the form (3.14). While there are various solvers to
the linear Wiener-Hopf equation, we consider using the conjugate gradient (CG) method, which
has several properties such as fast convergence, a direct link to the Krylov subspace [10], and a
built in model order selection capability. Additional remarks on such aspects are provided shortly.

The recursive procedure involved for the determination of the linear predictors is described
as follows (also see (3.9)).

for n = 2 to N do
for j = 1 to J do

Initialization. Initialize the conjugate-direction vector D0,j(n), gradient vector γ1,j(n)
and initial solution B0,j(n):

D1,j(n) = −γ1,j(n) = Rj(n) (3.15)
B0,j(n) = 0. (3.16)

for k = 1, 2, · · · , till convergence (k ≤ J(n− 1)) do
Update the step size αk,j:

αk,j(n) =
‖γk,j(n)‖2

DH
k,j(n)Ry(n)Dk,j(n)

. (3.17)

Update the solution Bk,j:

Bk,j(n) = Bk−1,j(n) + αk,j(n)Dk,j(n). (3.18)

Update the gradient vector γk+1,j:

γk+1,j(n) = γk,j(n) + αk,j(n)Ry(n)Dk,j(n). (3.19)
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Figure 3.1: Time-varying linear prediction in the conjugate-gradient MF detector.

Update the conjugate-direction vector Dk+1,j:

Dk+1,j(n) = Dk,j(n)
‖γk+1,j(n)‖2

‖γk,j(n)‖2
− γk+1,j(n). (3.20)

end for
end for

end for
Let B(n) be the multichannel linear predictor formed from Bk,j after convergence. Then,

B(n) can be used to whiten x(n) to produce a temporally whitened sequence ε(n). The spatial
covariance matrix Q(n) of ε(n) is given by (cf. (3.15))

Q(n) = E[ε(n)εH(n)]

= Rx(n)−BH(n)Ryx(n) (3.21)

where Rx(n) = E[x(n)xH(n)] ∈ CJ×J , and Ryx(n) = E[y(n)xH(n)] ∈ CJ(n−1)×J , which is
used for further spatial whitening [16].

Fig. 3.1 depicts the CG-MF detector that produces the n-th sample of the temporally whitened
sequence εj(n) for the j-th channel, where Dk,j(n) = [D1,j(n),D2,j(n), · · · ,Dk,j(n)] is the
conjugate-direction matrix. CG iterations lead to a set of linearly independent vectors
D1,j(n), . . . ,Dk,j(n) that are conjugate orthogonal, i.e.

DH
k,j(n)Ry(n)Dl,j(n) = 0, k 6= l. (3.22)

The output of the k-th iteration is given by

Bk,j(n) =
k∑

m=1

αm,j(n)Dm,j(n) (3.23)

which is a vector in the k-dimensional vector space spanned by the conjugate-direction vectors
{Dm,j(n), m = 1, 2, · · · , k}. The iterative procedure for the prediction of the n-th sample xj(n),
which involves a J(n − 1)-st order linear predictor, converges after at most J(n − 1) iterations.
The final solution Bj(n) lies in a J(n− 1)-dimensional vector space.

26



Figure 3.2: Time-invariant linear prediction in the conjugate-gradient PMF detector.

3.4.2 Conjugate-Gradient PMF with Known AR Model Order

If the disturbance signal can be approximated as a temporally wide-sense stationary (WSS) multi-
channel AR process, the linear prediction problem of the previous subsection can be significantly
simplified. Specifically, suppose the disturbance is an AR(P ) process with model order P . In
this case, the optimum linear predictor for the n-th sample x(n) requires only P most recently
received samples (as opposed to all past samples) and the prediction filter is time-invariant with
a fixed size (as opposed to time-varying with a growing size) [26]:

x(n) = BHyP (n) + εP (n) (3.24)

where the fixed P -th order linear predictor

B = [AH(1),AH(2), · · · ,AH(P )]H = [B1,B2, · · · ,BJ ] ∈ CJP×J (3.25)

is composed of the AR coefficient matrices {AH(p)} (cf. (3.9)),

yP (n) = [yn(1), yn(2), · · · , yn(JP )]T = [xT (n− 1),xT (n− 2), · · · ,xT (n− P )]T (3.26)

denotes the regression data vector, and n > P . Again, it is convenient to express the above
multichannel linear predictor as J scalar linear predictors:

xj(n) = BH
j yP (n) + εP,j(n), j = 1, 2, · · · , J. (3.27)

The structure of temporal whitening via linear prediction for the PMF detector is shown in
Fig. 3.2.

The solution to the scalar linear prediction problem can be obtained by solving the following
Wiener-Hopf equation

RyBj = Rj, j = 1, 2, · · · , J (3.28)

where Ry = E[yP (n)yH
P (n)] ∈ CJP×JP and Rj = E[yP (n)x∗j(n)] ∈ CJP×1. It should be noted

that unlike the MF detector, the above Wiener-Hopf is time-invariant, has a fixed size, and needs
to be solved only once. The resulting solution Bj can be used to whiten the entire received signal
x(n) for n > P . The CG algorithm can also be applied to solve (3.28), and the resulting detector
is referred to as the CG-PMF detector. Since only one fixed-sized Wiener-Hopf equation needs
to be solved, the CG-PMF detector is computationally much simpler. Specifically, the outer loop
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for varying n as discussed in Section 3.4.1 vanishes, and only the conjugate-gradient processing
with n = P + 1 is needed.

Remark: The iterative procedure of CG converges after at most JP iterations for the CG-
PMF. As a result, the final solution Bj lies in a JP -dimensional vector space spanned by the
conjugate direction vectors Dk,j, k = 1, 2, . . . , JP , or equivalently, the JP -dimensional Krylov
subspace [10]:

K(Rj,Ry, JP ) = span
{
Rj,RyRj, · · · ,RJP−1

y Rj

}
. (3.29)

This shows that the PMF is a reduced JP -dimensional solution, as opposed to the full JN -
dimensional MF detector. The same conclusion applies to the adaptive version CG-PAMF detec-
tor discussed in Section 3.5.

3.4.3 Model Order Selection by CG

In practice, the AR model order P of the disturbance is often unknown and has to be estimated.
A practical approach is to choose an upper bound P̄ for P , and use the CG algorithm to solve the
following Wiener-Hopf equation

R(P̄ )
y B

(P̄ )
j = R

(P̄ )
j , j = 1, 2, · · · , J (3.30)

where R
(P̄ )
y = E[yP̄ (n)yH

P̄
(n)] ∈ CJP̄×JP̄ and R

(P̄ )
j = E[yP̄ (n)x∗j(n)] ∈ CJP̄×1. The CG

iterative procedure will converge after at most JP̄ iterations with B
(P̄ )
j = [BT

j , 0T
J(P̄−P )×1]

T .
However, with a loosely determined upper bound P̄ , it is often necessary for the sake of reducing
computational complexity to stop the CG iterations before it reaches the maximum number of
iterations. In this section, we propose a model order selection method for use with the CG
algorithm, which is based on the following result.

Lemma 2 Suppose the disturbance in (3.1) is a J-channel AR(P ) process. Let B
(P̄ )
k,j ∈ CJP̄×1

be the solution to (3.30) obtained by CG at the k-th iteration, where k = Jp and p ≤ P̄ . Let
B

(p)
j ∈ CJp×1 be the solution to R

(p)
y B

(p)
j = R

(p)
j . Then we have

B
(P̄ )
k,j = Wk,jB

(p)
j , when p = P (3.31)

where Wk,j = D
(P̄ )
k,j D̄H

k,j , D
(P̄ )
k,j = [D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j ] is the conjugate-direction matrix, and

D̄k,j is a k × k matrix composed of the first k rows of D̃k,j = [D̃1,j, D̃2,j, · · · , D̃k,j] with

D̃k,j =
R

(P̄ )
y D

(P̄ )
k,j

D
(P̄ ) H
k,j R

(P̄ )
y D

(P̄ )
k,j

(3.32)

proof See Appendix 3.8. Q.E.D.
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From (3.31), when p = P , the JP̄ × JP matrix WJP,j transforms Bj in K(Rj,Ry, JP ),
which is generated by CG-PMF with a known P , to B

(P̄ )
JP,j in K(Rj,R

(P̄ )
y , JP ), which is gen-

erated by CG-PMF with an unknown P . So the PMF AR coefficient vector Bj is completely
determined by the truncated solution B

(P̄ )
JP,j of CG with an unknown P after JP iterations.

We now explain how to use Lemma 2 for AR model order selection in CG-PMF. Define the
residue vector

εk,j = B
(P̄ )
k,j −D

(P̄ )
k,j D̄H

k,jB
(p)
j , for k = Jp. (3.33)

According to (3.31), εk,j = 0 when k = JP , so the norm of εk,j can be used for model order
selection. However, since the Wiener solution B

(p)
j is practically unknown, εk,j cannot be di-

rectly computed from (3.33). We propose an approach to replace B
(p)
j in (3.33) by the truncated

solution composed of the first k elements of B
(P̄ )
k,j , which can be considered as an approximation

of [BT
j , 0T

J(P̄−P )×1]
T

ε̂k,j = B
(P̄ )
k,j −D

(P̄ )
k,j D̄H

k,jB̄
(P̄ )
k,j (3.34)

where B̄
(P̄ )
k,j contains the first k = Jp elements of B

(P̄ )
k,j . Our CG-based model order selection

procedure is summarized as follows.

• Step 1: Select an upper bound P̄ for the model order. One such an upper bound suggested
in [16] for STAP detection is

P̄ = max

{⌊
3
√

N

J

⌋}
(3.35)

where b·c rounds a real-valued number towards zero.

• Step 2: Use the CG algorithm to solve the Wiener-Hopf equation (3.30).

– Step 2.1: Following every J iterations of the CG algorithm, compute the average
residue over J channels:

¯̂ε2
k =

1

J

J∑
j=1

‖ε̂k,j‖2 , k = J, 2J, . . . (3.36)

– Step 2.2: If ¯̂ε2
Jp is smaller than a specified tolerance level, then stop the CG iteration,

and the estimated AR model order is P̂ = p.

The advantage of the above CG-based model order selection method is that it does not require
full iterations of the CG algorithm and is efficient. The complexity of the CG algorithm with full
iterations is in the same order as that of computing the inverse of R

(P̄ )
y , which is O(J3P̄ 3), while

the complexity of using the CG-based order selection method, is O(J3PP̄ 2). This is because the
latter only requires JP iterations to determine the model order, and the additional complexity
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in each J iterations for (3.34) is the complexity of two matrix-vector multiplications, which is
2(JP̄ )2. So the total complexity is O(JP (JP̄ )2 + 2P (JP̄ )2) ≈ O(J3PP̄ 2). Next, we compare
the computational complexity of the CG-PMF with an unknown P with the complexity of the
eigencanceler [5], which is a standard eigen-subspace detector. The eigencanceler method, has
a complexity of 9J3N3 by using the symmetric QR algorithm to obtain the eigen-subspace and
its corresponding eigen-values [10]. Since P̄ ≤ N , and generally P ¿ N , the complexity of
CG-PMF is much lower than eigencanceler.

3.4.4 Convergence in Airborne Radar Applications

One important property of the CG algorithm is its fast convergence. In general, it takes no
more than JP iterations to solve the linear equation (3.28) [10]. Even faster convergence is
possible if the covariance matrix of the disturbance has some specific structure. In particular, if
the covariance matrix is a rank-rc correction of an identity matrix:

Ry = Ri + σ2
nI (3.37)

where Ri is a rank-rc positive semi-definite matrix, then the CG algorithm converges in at most
rc + 1 iterations [10].

In airborne radar applications, the disturbance covariance matrix often consists of two com-
ponents, namely a low-rank Ri due to the clutter and jamming and a scaled identity σ2

nI due to the
white noise, where σ2

n denotes the noise variance. The rank rc is typically much smaller than the
joint spatio-temporal dimension JN . Specifically, if the disturbance is primarily due to ground
clutter and thermal noise, then according to Brennan’s rule [2], the rank of the clutter covariance
matrix for the full-dimensional MF is approximately

rc,full ≈ dJ + (N − 1)βe (3.38)

where β = 2vgTr/d, vg is the platform velocity, Tr is the pulse repetition period, d is the antenna
element spacing, and d·e rounds a real-valued number towards infinity.

Likewise, we can approximate the rank of the disturbance covariance matrix for the PMF
detector as

rc ≈ dJ + (P − 1)βe. (3.39)

The smaller rank rc over (3.38) is due to the fact that the disturbance covariance matrix is formed
over P pulses, which is sufficient for the reduced-dimensional PMF detector due to the underlying
AR(P ) model. Meanwhile, the space-time disturbance covariance matrix for the full-dimensional
MF detector is formed over N (the entire number of) pulses. As such, the PMF can benefit more
from the fast convergence property of the CG algorithm.

3.4.5 Preconditioned Conjugate-Gradient PMF

In cases where the disturbance covariance does not have a low-rank structure as in (3.37), precon-
ditioning is usually helpful in improving the convergence rate. The idea is based on the fact that
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the convergence rate of CG is determined mainly by the eigenvalue structure of Ry. In particular,
the residue between the Wiener solution and kth-step conjugate gradient result is bounded by [10]

‖Bk,j −Bj‖Ry ≤ 2‖B0,j −Bj‖Ry

(√
κ− 1√
κ + 1

)k

(3.40)

where ‖ω‖Ry =
√

ωHRyω denotes the Ry norm and κ is the condition number of Ry. It is
clear that rapid convergence can be achieved if κ is near 1. In the following, we discuss the use
of preconditioning with the CG-PMF. For simplicity, the resulting detector is referred to as the
PCG-PMF detector.

Specifically, consider the modified Wiener-Hopf equation (cf. (3.28))

R̃yB̃j = R̃j (3.41)

where R̃y = M− 1
2RyM

− 1
2 , B̃j = M

1
2Bj , R̃j = M− 1

2Bj , and M is a Hermitian positive-definite
matrix that is called preconditioner [10]. The preconditioner is used to yield a better conditioned
R̃y, which has a smaller condition number than Ry, and thus a faster convergence rate. For PMF,
the disturbance covariance matrix is a block-Toeplitz (BT) matrix. For such matrices, block-
circulant (BC) preconditioners are often recommended [22, 23]. Our BC preconditioner can be
directly computed from the disturbance covariance matrix Ry which has the following block
Toeplitz matrix structure:

Ry =




Rx(0) · · · Rx(P − 1)
... . . . ...

Rx(1− P ) · · · Rx(0)


 (3.42)

where Rx(m) = E[x(n)xH(n − m)] ∈ CJ×J . In particular, the BC preconditioner is given
by [27]

M =




M0 MP−1 · · · M1

M1 M0 · · · M2
...

... . . . ...
MP−1 MP−2 · · · M0




where

Mk =
(P − k)Rx(k) + kRx(k − P )

P
,

0 ≤ k < P. (3.43)

It is noted that, as shown in [10], practically M− 1
2 does not need to be explicitly calculated in the

PCG algorithm. The PCG algorithm is summarized as follows.
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Initialization. Initialize the conjugate-direction vector D1,j , gradient vector γ1,j , precondi-
tioned vector z1,j and initial solution B0,j:

γ1,j = −Rj (3.44)

D1,j = z1,j = M−1γ1,j (3.45)

B0,j = 0. (3.46)

for k = 1, 2, · · · , till convergence (k ≤ J(P − 1)) do
Update the step size αk,j:

αk,j =
γH

k,jzk,j

DH
k,jRyDk,j

. (3.47)

Update the solution Bk,j:
Bk,j = Bk−1,j + αk,jDk,j. (3.48)

Update the gradient vector γk+1,j:

γk+1,j = γk,j + αk,jRyDk,j. (3.49)

Update the preconditioned vector zk+1,j:

zk+1,j = M−1γk+1,j. (3.50)

Update the conjugate-direction vector Dk+1,j

Dk+1,j = zk,j +
γH

k+1,jzk+1,j

γH
k,jzk,j

Dk,j. (3.51)

end for
The complexity associated with the AR parameter estimation in PCG-PMF is summarized

in TABLE I, where r is the number of iterations needed by the PCG algorithm to reach con-
vergence, and the flop counts are for all J channels. It is interesting to note that the PCG-PMF
is computationally very efficient, involving approximately O(rJ3P log2 P ). The computational
efficiency is primarily due to the fast convergence rate offered by preconditioning and the use
of a BC preconditioner, as explained next. In the following, we discuss the complexity of only
M−1, (3.47) and (3.50), since the other calculations are obvious.

First, we consider M−1. Since M is a block-circulant (BC) matrix, the inverse of M can be
computed by using the Fast Fourier transform (FFT) [28]

M−1 =




C0 CP−1 · · · C1

C1 C0 · · · C2
...

... · · · ...
CP−1 CP−2 · · · C0


 (3.52)
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Table 3.1: Complexity of PCG-PMF
Equation Flops Remark
(3.43) O(J2P ) calculated once
M−1 O(J2P log2 P + J3P ) calculated once
(3.47) O(J3P log2 P ) at k-th iteration
(3.48) O(J2P ) at k-th iteration
(3.49) O(J2P ) at k-th iteration
(3.50) O(J3P log2 P ) at k-th iteration
(3.51) O(J2P ) at k-th iteration
Total ≈ O(rJ3P log2 P ) for r iterations

where

Cm =
1

P 2

P−1∑

k=0

W−km
P M−1

k ,m = 0, 1, · · · , P − 1 (3.53)

and W−km
P = exp(j2kmπ/P ). It follows that the computation of M−1 is composed of P ma-

trix inversions of J × J matrices and J2 FFTs of length P . Therefore, the total complexity is
O(J2P log2 P + J3P ).

Second, we consider (3.47). The main complexity of (3.47) is matrix-vector multiplication
RyDk,j . Since Ry is a JP -dimensional BT matrix, the above matrix-vector multiplication con-
sists of J2 Toeplitz matrix-vector multiplications, where each Toeplitz matrix is a P × P matrix.
Each Toeplitz matrix-vector multiplication can be implemented by the FFT using O(P log2 P )
flops [29]. Hence, the complexity of (3.47) for each channel per iteration isO(J2P log2 P ). With
J channels and r iterations, the total complexity of (3.47) is O(rJ3P log2 P ).

Finally, we consider (3.50). Since the preconditioner M is a BC matrix, (3.50) can again be
computed by J2 FFTs of length P . The complexity for each channel per iteration isO(J2P log2 P ),
so the total complexity of (3.50) for J channels is O(rJ3P log2 P ).

Here, we make a comparison between the PCG-PMF and CG-PMF. Since the condition num-
ber of the preconditioned disturbance covariance matrix R̃y is generally smaller than that of Ry,
PCG-PMF provides a faster convergence than CG-PMF. The latter has a complexity ofO(J3P 3).

3.5 Conjugate-Gradient PAMF

The CG-PMF algorithm is now extended to the adaptive case when both the covariance matrix
and the AR model order P are unknown. The resulting detector is referred to as the CG-PAMF
detector. The extension of CG-PMF involves i) replacing the true covariance matrices with esti-
mates obtained from the target-free training data; and ii) integrating the CG-based model order
selection proposed in Section 3.4.3 with conjugate-gradient iterations. The CG-PAMF detector
with order selection (OSCG-PAMF) is summarized next.

• Step 1: Estimate the disturbance covariance matrices from the training data via temporal
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and range averaging:

R̂(P̄ )
y =




R̂x(0) · · · R̂x(P̄ − 1)
... . . . ...

R̂x(1− P̄ ) · · · R̂x(0)


 (3.54)

R̂(P̄ )
yx =




R̂x(−1)
...

R̂x(−P̄ )


 (3.55)

where the sub-matrices are given by

R̂H
xx(m) =

1

NK

K∑

k=1

N−m∑

l=1

xk(l + m)xH
k (l) (3.56)

with K denoting the number of training data vectors and P̄ determined by (3.35).

• Step 2: Use the CG algorithm to solve

R̂(P̄ )
y B̂(P̄ ) = R̂(P̄ )

yx . (3.57)

– Step 2.1: Examine the residual ¯̂εJp (3.36) at each Jp-th (p = 1, 2, · · · , P̄ ) iteration of
CG. If ¯̂εJp < α0

¯̂εJ(p−1), where 0 < α0 < 1 is a stopping threshold, then exit the CG
iteration, and set the AR model order as P̂ = p.

Unlike the original PAMF with an unknown AR model order [16], which has to run recur-
sively from p = 1 to a P̂ (P̂ ≤ P̄ ) to jointly estimate the AR coefficients and model order,
OSCG-PAMF does not contain any recursion. It only has to perform CG with the disturbance
covariance matrix R

(P̄ )
y for JP̂ iterations to obtain a model order estimate.

Remark: Several estimators can be employed to find the linear prediction filters for the PAMF.
The estimator as represented by (3.57) along with the covariance matrix estimates (3.54)-(3.56)
is often called the multichannel Yule-Walker method. Other estimators, such as the least-squares
estimators [16], solve slightly modified versions of the linear equation (3.57). It is noted that in
most cases, the CG algorithm can be used to efficiently solve such a modified linear equation.
Due to space limit, we will not explore these alternative CG-PAMF detectors.

A similar comparison can be made between the complexity of the OSCG-PAMF detector and
that of the eigencanceler when the covariance matrix is unknown. In addition to the numbers
of flops as summarized in Section 3.4.3, both have to pay the extra complexity needed to esti-
mate the covariance matrix. In this case, the OSCG-PAMF requires an additional complexity
of O(J2P̄NK) as incurred in (3.54)–(3.56), whereas the extra complexity for the eigencanceler
is O(J2N2K) that is used to estimate a full (JN × JN ) space-time covariance matrix from K
training signals.
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3.6 Numerical Results

In this section, simulation results are provided to illustrate the performance of the proposed tech-
niques. We consider simulated data generated using AR models and the KASSPER data [20],
which were obtained from more realistic clutter models. The simulation results presented be-
low use 20000 independent Monte Carlo data realizations and a probability of false alarm of
Pfa = 10−2. The chosen Pfa may be considered too high for many practical detection applica-
tions. It is noted that the choice is only to facilitate computer simulation and reduce simulation
time. The main observations from the simulation, including the convergence of the CG algorithm
in PAMF detection and the accuracy of the estimated P provided by the proposed model order
selection method, are independent of the choice of Pfa.

A major issue that we like to illustrate in the following numerical examples is the convergence
of the CG algorithm, with partial or full iterations, when the data covariance matrix is known or
estimated, and/or when the AR model order is known or estimated. To this end, we compare
the various detectors used with the CG algorithm, including the CG-PMF (Section 3.4.2), CG-
PAMF with a known AR model order (Section 3.5) and OSCG-PAMF with an estimated model
order (Section 3.5), with the same detectors used with direct matrix inverse (DMI). For example,
the DMI-PAMF detector involves a direct inverse of the estimated covariance matrix in (3.54)
and uses it compute the linear prediction filter (3.28). This DMI approach turns out to coincide
with the Yule-Walker method [26] for AR spectral estimation. It is noted in [16] that there are
alternative spectral estimation methods which may yield better detection performance in some
scenarios. These alternatives are not considered here since the focus is the convergence of the
CG algorithm in PAMF. In the following, we will primarily use, as a comparison metric, the
probability of detection versus the SINR for a given probability of false alarm. The output SINR
of the PAMF detector was derived and extensively studied in [30].

First, we examine the performance of the two implementations of the PMF detector by using
simulated data with AR disturbances. The disturbance is an AR(2) process with J = 4 elements
and N = 64 pulses. Both PMF detectors have knowledge of the exact disturbance covariance
matrix; however, they use different approaches to compute the linear predictor. Specifically, we
consider the DMI-PMF, which uses direct matrix inverse to solve the Wiener-Hopf equation,
and the CG-PMF as discussed in Section 3.4.2 with knowledge of the AR model order P . The
numerical results are shown in Fig. 3.3. It is seen that both implementations yield an identical
detection performance.

We next examine the performance of the CG-based AR model order selection method used
in the CG-PMF and CG-PAMF detectors with an unknown AR model order. Two AR distur-
bance signals with J = 4 and N = 64 are considered, and their model orders are P = 1 and
3, respectively. We choose the same upper bound P̄ = 6 for both cases. The residual ¯̂εk (3.36)
is computed and used for model order selection; as a benchmark, we also include ε̄k, which is
similarly computed as in (3.36) but with ε̂k,j replaced by εk,j . Recall that ¯̂εk is an approximation
of ε̄k, which cannot be computed in practice due to the fact that the true Wiener-Hopf solution
is unknown. The numerical results for CG-PMF are shown in Fig. 3.4 and Fig. 3.5, which cor-
respond to P = 1 and P = 3, respectively. It is seen that, ¯̂εk has a sharp decrease at the JP -th
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Figure 3.3: Probability of detection versus SINR of PMF for simulated data(J = 4; N = 64;
P = 2)

(JP = 4 for P = 1 and JP = 12 for P = 3) iteration of CG, which confirms the effectiveness
of the CG-based model order selection method. The counterpart model order selection results
for CG-PAMF are shown in Fig. 3.6 and Fig. 3.7, for P = 1 and P = 3, respectively. Unlike
the CG-PMF which uses the real disturbance covariance matrix, the sample covariance matrix
estimated from the training data (cf. (3.42)) is employed for model order selection in CG-PAMF.
Here the training data size is set to K = 32. It is also shown that ¯̂εk has a sharp decrease at the
JP -th (JP = 4 for P = 1 and JP = 12 for P = 3) iteration of CG, although the decrease in
residue is smaller than that of CG-PMF due to estimation error of the sample covariance matrix.

We now consider the convergence of PCG-PMF. The simulated disturbance is an AR(8) mul-
tichannel process with J = 4. The convergence of CG-PMF and PCG-PMF is shown in Fig. 3.8.
The condition number of the preconditioned covariance matrix is 4.2, which is much less than
the condition number of the original covariance matrix 77.1. It is seen from Fig. 3.8 that only
5 iterations are needed in PCG-PMF to reach a relative approximation error under 1%, while 20
iterations are needed for CG-PMF.

Our next example considers the adaptive PAMF detector, for which the disturbance covari-
ance matrix is unknown and the sample covariance matrix is estimated by (3.54). Similar to
the PMF detector, we compare two implementations of the PAMF detector, including the DMI-
PAMF and CG-PAMF, Here the DMI-PAMF directly inverses the sample covariance matrix to
get the maximum-likelihood estimation of AR coefficients [26]. The disturbance is an AR(2)
signal, whose disturbance covariance matrix is estimated from K = 16 target-free training data
vectors, and the AR coefficients are estimated based on the estimated disturbance covariance ma-
trix. The numerical results are shown in Fig. 3.9. It is observed that both implementations yield
an identical detection performance.

The performance of the CG-PAMF with an unknown disturbance AR model order and dis-
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Figure 3.4: Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PMF (J = 4; N = 64; P = 1;
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Figure 3.5: Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PMF (J = 4; N = 64; P = 3;
P̄ = 6)

turbance covariance matrix is considered next. Both AR model based data and KASSPER 2002
data set are employed in this example. The KASSPER data set was generated by considering
practical airborne radar parameters and issues found in a real-world clutter environment [20].
Specifically, the simulated airborne radar platform travels at a speed of 100 m/s with a 3◦ crab
angle. The radar carrier frequency is 1240 MHz. The horizontal 11 antenna elements form a
ULA with a spacing of 0.1092m between adjacent elements, and the transmit array is uniformly
weighted and phased to steer the main beam to 195◦. The pulse repetition frequency is 1984 Hz
and a coherent processing interval contains 32 pulses. Only the first 8 elements are used in our
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Figure 3.6: Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PAMF (K = 32; J = 4;
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Figure 3.7: Residuals ε̄Jp and ¯̂εJp for model order selection in CG-PAMF (K = 32; J = 4;
N = 64; P = 3; P̄ = 6)

simulation. We use the covariance matrix associated with range bin 200 in the KASSPER data set
to generate the test data and the covariance matrices from the neighboring ranges bins to generate
the training signals. A target is injected into the test cell with a normalized spatial frequency 0.1
and a normalized Doppler frequency 0.35.

The numerical results are shown in Fig. 3.10 for the AR model based data and, respectively,
Fig. 3.11 for the KASSPER 2000 data, where OSCG-PAMF (unknown P ) represents the CG-
PAMF detector with the CG-based model order selection method which employs a model order
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Figure 3.8: Convergence of CG-PMF and PCG-PMF (J = 4; P = 8)
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Figure 3.9: Probability of detection versus SINR of PAMF for AR data (K = 16; J = 4; N = 64;
P = 2)

upper bound P̄ calculated by (3.35). In Fig. 3.11, we also include for comparison the joint
domain localized (JDL) detector [31], a popular reduced-dimensional STAP solution in scenarios
of limited training. The JDL is implemented by using 3 beams and 3 Doppler bins for adaptivity.
It is seen that the performance of the OSCG-PAMF is nearly identical to that of CG-PAMF with
known P (AR data) or a pre-selected P = 2 (KASSPER data). For the case of AR data, we
noticed that only one model order selection error (P̂ 6= P ) occurred out of 20000 simulations.
Moreover, using the relevant parameters of the KASSPER data, we have β = 2vgTr/d = 0.923.
It follows that for J = 8 elements, the maximum number of conjugate-gradient iterations needed
by the CG-PAMF for a given model order p is estimated to be rcp + 1 = d8.077 + 0.923pe. For
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Figure 3.10: Probability of detection versus SINR for AR data (K = 32; J = 4; N = 64; P = 2;
P̄ = 6)

example, the maximum numbers of CG iterations for p = 2 is about 10 due to the low-rank
structure of the clutter, whereas without such a structure, it would require pJ = 16 iterations for
the CG to converge. It is also seen in Fig. 3.11 that the PAMF detectors outperform the JDL-AMF
detector. The JDL-AML experiences a loss of about 4 dB compared with the MF.

Finally, we compare the complexity in terms of the number of flops required by the CG and
DMI implementations. The flops required by the CG-PAMF and DMI-PAMF versus the AR
model order p are shown in Fig. 3.12. For the DMI-PAMF, the QR decomposition is adopted to
get the J-channel AR coefficients. It is seen that the complexity of the CG-PAMF is lower than
that of the DMI-PAMF.

3.7 Concluding Remarks

The conjugate-gradient (CG) algorithm was employed to solve the linear prediction problem un-
derlying the parametric matched filter (PMF) and parametric adaptive matched filter (PAMF)
detectors. It is shown that the CG algorithm leads to not only new efficient implementations, but
also new insights of these parametric detectors as reduced-dimensional subspace detectors. In
particular, the linear prediction filter and whitening filter of the PMF and PAMF detectors are
within the Krylov subspace of dimension JP , and these detectors are reduced JP -dimensional
subspace detectors, where J and P are the number of channels and AR model order, respec-
tively. We examined the convergence rate of the CG parametric detectors. In airborne radar
applications, the special low-rank structure of the disturbance covariance matrix implies that a
rapid convergence is possible, whereby convergence can be achieved without completing a full
round of CG iterations. Even for disturbance covariance matrices that do not have the low-rank
structure, preconditioning methods can be used to speed up the convergence rate. In general, the
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Figure 3.11: Probability of detection versus SINR for KASSPER 2002 data (K = 32; J = 8;
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Figure 3.12: Computational complexity of CG-PAMF and DMI-PAMF versus AR model order p
(K = 32; J = 8; N = 32).

CG parametric detectors are more efficient than their counterparts implemented in conventional
approaches. We also presented a new CG-based AR model order selection method, which is nat-
urally integrated with the CG iterations. The proposed techniques are illustrated by using both
KASSPER and other simulated data.

Finally, we note that the CG algorithm bears some similarity to a vector space approach [32]
to solving the multi-dimensional Yule-Walker equation for an arbitrary region of support. Both
involve the use of conjugate orthogonal basis vectors. A future subject would be to investigate
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the relation of the two approaches and explore the application of the CG algorithm for multi-
dimensional and multichannel applications.

3.8 Appendix: Proof of Lemma 1

It is well known that the conjugate direction vectors obtained by the CG algorithm solving the
Wiener-Hopf equation (3.30) span the Krylov subspace [10]:

K(R
(P̄ )
j ,R(P̄ )

y , k) = span
{
D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j

}
(3.58)

Furthermore, the truncated solution obtained at the k-th iteration B
(P̄ )
k,j minimizes the R

(P̄ )
y -norm

of the approximation error over all vectors on K(Rj,R
(P̄ )
y , k) [33], i.e.

∥∥∥B
(P̄ )
j −B

(P̄ )
k,j

∥∥∥
R

(P̄ )
y

= min
ak

∥∥∥∥∥x−
r∑

k=0

akR
(P̄ ) k
y B

(P̄ )
j

∥∥∥∥∥
R

(P̄ )
y

. (3.59)

Therefore, the truncated solution obtained at the k-th iteration B
(P̄ )
k,j is the R

(P̄ )
y -orthogonal pro-

jection of the Wiener solution B
(P̄ )
j to the subspace K(Rj,R

(P̄ )
y , k), and

αk,j =
[
α

(P̄ )
1,j , α

(P̄ )
2,j , · · · , α

(P̄ )
k,j

]T

(3.60)

contains the coordinate values of conjugate-direction vectors
{
D

(P̄ )
1,j ,D

(P̄ )
2,j , · · · ,D

(P̄ )
k,j

}
, which

are given by

α
(P̄ )
k,j =

D
(P̄ ) H
k,j R

(P̄ )
y B

(P̄ )
j

D
(P̄ ) H
k,j R

(P̄ )
y D

(P̄ )
k,j

. (3.61)

With the definition of D̃k,j by (3.32), we can write after JP iterations

αJP,j = D̃H
JP,jB

(P̄ )
j (3.62)

where D̃JP,j = [D̃1,j, D̃2,j, · · · , D̃JP,j]. Recalling B
(P̄ )
j = [BT

j , 0T
J(P̄−P )×1]

T , we have

αJP,j =
[
D̄H

JP,j D̃H
JP,d

] [
Bj

0

]
(3.63)

where D̄JP,j ∈ CJP×JP is the upper JP × JP block matrix of D̃JP,j , and D̃JP,d contains the
lower block of D̃JP,j . Then Bj is given by

Bj = D̄−H
JP,jαJP,j. (3.64)
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The intermediate solution obtained at the JP -th CG iteration is

B
(P̄ )
JP,j =

JP∑
m=1

αm,jD
(P̄ )
m,j = D

(P̄ )
JP,jαJP,j. (3.65)

It follows from (3.64) and (3.65) that B(P̄ )
JP,j and Bj are related by

B
(P̄ )
JP,j = D

(P̄ )
JP,jD̄

H
JP,jBj = WJP,jBj (3.66)

where WJP,j = D
(P̄ )
JP,jD̄

H
JP,j ∈ CJP̄×JP , which completes the proof.
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