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Experimental Resource Allocation for Statistical Simulation 
of Fretting Fatigue Problem 

 
Carolina Dubinsky1, Gulshan Singh2, and Harry R. Millwater3 

University of Texas at San Antonio, TX 78249, USA 
 

Patrick Golden4 
Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA 

 
Abstract 

Estimation of statistical moments from simulation, i.e., mean and standard deviation of 
an output, may involve large uncertainty caused by the variability in the input random 
variables. The allocation of resources to obtain more experimental data can reduce the 
variance of the output moments (mean and standard deviation). The methodology proposed 
and executed used an optimization method to determine the optimal number of additional 
experiments required to minimize the variance of the output moments given a constraint. A 
method to generate the output moments based on the moments of the input variables was 
implemented. The method used the multivariate t-distribution and the Wishart distribution 
to generate realizations of the population mean and population covariance of the input 
variables, respectively. This method was sufficient to handled independent and correlated 
variables. A fretting fatigue problem was explored to minimize the variance of cycles-to-
failure mean and standard deviation. The optimal number of additional experiments 
required for each random variable depended on the number of initial data points, the 
influence of the variable in the output function, the cost of each additional experiment and 
the variance of the sample mean. 

 
Nomenclature 

Ai = Constants in the output function for variable Xi 

b = Funds available for additional experiments 
CGi

  = Cost of each additional experiment for group Gi 

CX i
  = Cost of each additional experiment for variable Xi 

DGi
  = Number of additional experiments for group Gi 

DX i
  = Number of additional experiments for variable Xi 

EGi
  =  Number of initial data points for group Gi 

EX i
  =  Number of initial data points for variable Xi 

Gi  = Group of random variables X  

GDi
  = Values of additional experiments for group Gi 

GEi
  = Values of initial data points for group Gi 

gbestx= Best position encountered by any particle in PSO (Global best) 

k  = Optimization iteration number 
MCS   = Monte Carlo sampling 
N f   = Cycles-to-failure 

nX i
  = Number of total data points for variable Xi 

                                                           
1 Graduate Research Assistant, Department of Mechanical Engineering and AIAA Member 
2 Post-Doctoral Researcher, Department of Mechanical Engineering and AIAA Member 
3 Professor, Department of Mechanical Engineering and AIAA Member 
4 Materials Research Engineer, Materials and Manufacturing Directorate and AIAA Member 
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N p  = Multivariate normal distribution 

p  = Number of variables in the output function 

pbestxi= Best position found by ith particle in all previous iterations in PSO (Personal best) 
PDF  = Probability density function 
PSO  = Particle swarm optimization 
q1  = Individual weight in PSO 

q2  = Social weight in PSO 

ri1, ri2  = Number from uniform distribution between 0 and 1 for the ith PSO particle 

SX i
  = Sample standard deviation for variable Xi 

SX i

2
  = Sample variance for variable Xi 

tnXi
1  = Univariate Student’s t-distribution with n-1 degrees of freedom  

tp ,nXi
1 = Multivariate t-distribution of p variables with n-1 degrees of freedom 

vi
k
  = Velocity of ith PSO particle at iteration k 

vi
k1

 = Velocity of ith PSO particle at iteration k 1 

w  = Inertia weight in PSO 
W p  = Wishart distribution 

XDi
  = Values of Xi for additional experiments DX i

 

XEi
  = Values of Xi for initial data points EX i

 

Xi  = Input variable ith in the output function 

Xi
( j )  = Observation jth of the Xi input variable 

X X i   = Sample mean of variable Xi 

xi
k
  = Position of ith PSO particle at iteration k 

Z  = Output function (or response function) 
Greek Letters 

2
  = Chi-square distribution 

X i
  = Input population mean of variable Xi 

Z   = Output mean 

ij  = Correlation coefficient between Xi and X j  

  = Covariance matrix 
X i

  = Input population standard deviation of variable Xi 

X i

2
  = Input population variance of variable Xi 

Z
  = Standard deviation of the output mean 

 Z
  = Standard deviation of the output standard deviation 

Z

orig
 = Standard deviation of the output mean based on the original data 

Z

opt
 = Standard deviation of the output mean based on the optimum solution 

 Z

orig
 = Standard deviation of the output std. dev. based on the original data 

 Z

opt
 = Standard deviation of the output std. dev. based on the optimum solution 

Z  = Output standard deviation 

Z
2
  = Output variance 
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  = Sample covariance matrix  
  = Data set 

 
I. Introduction 

HE presence of uncertainty in risk and reliability analysis is unavoidable; it is an important part of the planning, 
executing, and decision-making process. To develop estimates, researchers must rely on available data that is 

often limited and contains variability. Moreover, they have to rely on estimation or predictions based on idealized 
models that involve additional uncertainty compared to reality [1]. Statistical estimates from simulation, such as 
mean and standard deviation of the output or the probability-of-failure (probability of exceeding a limit), often 
involve significant uncertainty caused by the variability in the input random variables. The probability distribution 
of the input variables may be developed from the limited available data, thus the sample mean and standard 
deviation of the input are also random variables dependent upon the sample size. The resulting uncertainty in the 
estimated output moments can be significant and should be taken into account when making decisions [2] [3] [8] 
[10] [11] [13] [14]. 

Previous research has focused on the quantification of uncertainty caused by the variability of the input random 
variables using confidence intervals of the output model. Numerous authors have developed methods to calculate 
these confidence intervals. On the other hand, less work has been done to reduce the uncertainty of the output 
model, and a very limited number of authors have tried to increase the confidence of the output model by allocating 
resources to obtain more experimental data of the input random variables. 

Several methods have been proposed to accomplish the computation of the confidence intervals of the statistical 
estimates (the output moments or the probability-of-failure). Most authors have developed methods to estimate the 
probability-of-failure using a first-order reliability method (FORM) [10][11][8][14]. FORM estimates the shortest 
distance, known as reliability index, from the origin of a standard normal variable space to a design point (most 
probable point) on a limit state. The limit state is the boundary between the safe and unsafe region [11]. The 
uncertainty present in the distribution of the input parameters is quantified by obtaining the confidence intervals of 
the reliability index (or safety index). 

The methods to calculate the confidence intervals of the safety index in reliability analysis are accepted for many 
problems if the most probable point can be located, and the limit state function (boundary between the safe and 
unsafe regions) can be approximated with a surface of first- or second-order. A more general method to obtain the 
reliability or probability-of-failure is using Monte Carlo simulation (MCS), and some authors have done rigorous 
studies on this matter [4] [7]. 

The most recognized strategy to determine the influence of the input parameter variation on the output model is 
accomplished by nesting a loop of a single output calculation within a loop that accounts for the uncertainty of the 
input parameter. The loop where the output moments are computed is often referred to as the “inner-loop,” and the 
loop where the variation of the input parameter is taken into account is usually referred to as the “outer-loop.” The 
limitation of this method is the high computational cost occasioned by the nested loops. The accomplishment of the 
nested simulation can represent a non-trivial problem, and several authors have developed computational strategies 
to address this issue. The common strategy involves using a surrogate model, such as a response surface, to 
approximate the probability-of-failure as a function of the input moments [2][3]. However, the accuracy of the 
statistical estimates depends on the quality of the surrogate model. 

Several authors have studied the variation of statistical estimates from simulation, such as mean and standard 
deviation of the output or the probability-of-failure, in the presence of uncertainty in the input parameters. They 
have tried to quantify the variation and delimit the reliability with confidence intervals. Most of the authors have 
agreed and developed strategies to address the computational complexity by using surrogate models to replace the 
inner-loop in the nested reliability analysis; however, very limited research has been done to increase the confidence 
in the output model by taking any actions over the input parameters, such as allocating resources to obtain more 
experimental data of the input random variables. 

Urbina et al. [13] implemented a hierarchical approach to minimize the mean and the range of the probability-of-
failure by allocating resources to obtain additional experimental data of the input variables. The input parameters 
were obtained from an empirical cumulative distribution function developed from the observed data. These 
parameters were introduced into a Bayesian network to obtain the system response. The system response was 
compared to an expected performance measure to calculate the probability-of-failure. A multi-objective optimization 
problem was solved using a grid search approach and the constraint was a function of cost of the additional 
experimental data. 

T 
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The main purpose of this research was to develop a methodology to reduce the variation of an output moment 
using an optimization algorithm that varied the number of data points obtained for each input variable. Another 
purpose was to develop a method to generate realization of the population mean and population covariance of the 
input random variables. The method required to handle independent and correlated variables. The optimal allocation 
methodology aimed to find the optimal additional experimental data needed to better characterize the moments of 
the input probability density functions (PDFs) in order to minimize the variance of the output moments, such as 
mean and standard deviation, subject to a constraint. The methodology combined a single-objective optimization 
algorithm with a nested-loop arrangement. The output moments were calculated analytically for efficiency; however 
the methodology is not limited to such models. 

 
II. Simulation of Statistical Moments 

The sample mean, X X i
, and sample variance, SX i

2 , become random variables when sampled multiple times from 

the same population. A probabilistic distribution of the sample moments may be obtained from these multiple 
samples. These distributions are known as sampling distributions [15] and are used to simulate the input population 
mean and standard deviation. 

 
A. Population mean 

In general, the standard deviation of the population, X i
, is unknown and needs to be estimated with the sample 

standard deviation, SX i
. As a result, the random variable X Xi Xi  SXi

nXi   follows a t-distribution as 

 
X X i  X i

SX i
nX i

~ tnXi
1

 (1) 

 
where tnXi

1  is the Student’s t-distribution with nX i
1 degrees of freedom [1]. Consequently, realizations of the 

population mean, X i
, can be determined as 

 X i
 X X i  tnXi

1

SX i

nX i

 (2) 

 
In the case of correlated variables, the procedure is to generate realizations of the multivariate t-distribution and 

compute the population mean, X i
, as follows 

 X i
 X X i  tpi ,nXi

1

SX i

nX i

 (3) 

 
where X X i

 is the sample mean of variable Xi
, SX i

 is the sample standard deviation, nX i
 is the number of 

observations, and tpi ,nXi
1

 is the ith realization from the p-variate t-distribution with nX i
1 degrees of freedom, 

location vector zero and scale matrix . In this approach, it is assumed that the number of data points is the same for 
all random variables that are correlated. The sample covariance, , is a p x p matrix calculated as follows 
 

 





n

1j

)()( )')((
1n

1
XXXX jj

 
(4) 

 
where Xi

( j ) is the jth observation of the Xi input variable with i 1,..., p and j 1,...,n. The sample covariance, , 
is the unbiased estimator of the covariance, . 
 

B. Population Variance and Covariance Matrix 
Similarly, using the probability distribution of the sample variance, SX i

2 , the random variable (nX i
1)SX i

2 X i

2  

has the following distribution 
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(nX i

1)SX i

2

X i

2 ~ nXi
1

2  (5) 

 
where nXi

1
2  is the chi-square distribution with nX i

1 degrees of freedom [1]. As a consequence, realizations of the 

population variance, X i

2 , can be determined as follows 

 X i

2 
(nX i

1)SX i

2

nXi
1

2
 (6) 

 
In the case of correlated variables, the input population covariance matrix was obtained using a Bayesian approach5. 
A commonly used prior distribution is 

 
 

(7) 

 
where   is the determinant of the population covariance matrix . Considering  to be the 
observed data, then the likelihood , and prior distribution , determine the joint-distribution 

. From this, the posterior distribution of the unknown parameters  can be obtained. The Bayesian 
approach prescribes the use of the posterior distribution to make inference about unknown parameters, so in 
particular it can be used to simulate values for the unknown means, and covariance. From the above models the 
inverse of the population covariance matrix, 1, conditioned on the data  has the following distribution 
 

 
 

(8) 

 

where W p (nX i
1) 1

,nX i
1



 


 represents the Wishart distribution with nX i

1 degrees of freedom, and scale 

matrix (nX i
1) 1

. To obtain the population covariance matrix, , it is necessary to sample from the Wishart 

distribution given by Eq. (8) and invert the values, thus yielding 
 

 1 Wp (nX i
1) 1

,nX i
1



 


 (9) 

 
III. Optimal Allocation of Resources 

Different approaches have been studied for quantifying the uncertainty in the statistical estimates, such as mean 
and standard deviation of the output or the probability-of-failure, caused by the variation of the input random 
variables. To date, there has been little development on how to reduce the variation of the output moment 
distribution by taking action over the input variables. The action considered in this work was to add additional data 
or experiments to the input variables to better characterize the mean and standard deviation of the input probability 
density function (PDFs). The methodology aims to determine the optimal number of experiments required to 
minimize the variance of the output moments given a constraint. The methodology can also be defined, as what 
experiments should be conducted in order to improve the confidence in the output moments of a probabilistic 
problem. 

 
A. Methodology 

A schematic of the computational approach is shown in Figure 1. The methodology proposed is general and can 
be applied in any field where a reduction of the variance of a statistical estimate is required. 
 

                                                           
5 Personal communication with Dr. Victor De Oliveira, Associate Professor at the Department of Management Science and 
Statistics at the University of Texas at San Antonio, Texas 
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Figure 1. Schematic flow chart of optimal allocation methodology 

 
In practice, the determination of the distribution of the output moments are often computed using Monte Carlo 

sampling. The sampling requires an iterative repetition of actions called a “loop.” This loop is often within another 
cycle of actions, therefore, it is called the “inner-loop.” The inner loop generates realizations of the output moments, 
such as mean or standard deviation. The “outer-loop” determines the distribution and standard deviation of the 
output moments. The approach considered in this research was to use an optimization model combined with the 
nested-loop arrangement to minimize the standard deviation of the output moments. 

Every computation of the nested-loop is an iteration of the optimization process. In every iteration, random 
numbers of additional experimental data are tested; the outcome of each iteration is the lowest value of the standard 
deviation of the output moment. The optimization process is repeated until the number of iterations is reached. The 
final result of the optimization is the optimal additional experiments that returned the minimum value of the standard 
deviation of the output moment. This method is a single-objective optimization; only the standard deviation of one 
output moment, such as output mean or output standard deviation, can be optimized at a time. 

The constraint of the optimization model is CX i
DX ii1

p  b. Where CX i
 is the cost of each additional experiment, 

DX i
 is the number of additional experiments of variable Xi

, and b is the total funds available. The statistical process 

to minimize the standard deviation of the output moment subject to the constraint is explained as follows: 
 
1. Initial data of input variable XEi

 are provided 

2. Additional experimental data, XDi
, is generated 

3. The input sample mean, X X i
, and input sample covariance, , are calculated 

4. Realizations of the p-variate t-distribution, tp, and Wishart distribution, W p
, are used to simulate the 

population mean, X i
, and population covariance, , as shown in Eq. (3) and Eq. (9), respectively (“outer-

loop”) 
5. According to the objective, the output mean, Z , or output standard deviation, Z

, is calculated (“inner-
loop”) 
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6. Steps 3 and 4 are repeated to generate a distribution of the output moment  
7. The standard deviation of the output moment is calculated 
8. The optimization algorithm varies the number of additional experimental data (Step 2) and determines the 

optimal number of additional experiments, DX i
 

 
B. Optimization Method 

The optimization problem of determining the subsequent experiments needed to reduce the variance of the 
output moment subject to a cost constraint is formulated as follows: 

 
Objective : Minimize(Z

, Z
)

Constraint : CX i
DX ii1

p  b

Variable  Bounds : DX i

Lower  DX i
 DX i

Upper

 

 
where Z

 is the standard deviation of the output mean,  Z
 is the standard deviation of the output standard 

deviation, CX i
 is the cost of each additional experiment, DX i

 is the number of additional experiments, b are the 

funds available, and DX i

Lower,  DX i

Upper are the lower and upper bounds of the additional experiments DX i
, respectively. 

DX i

Upper is obtained by dividing the total funds available by the cost of each additional experiment, and DX i

Lower is zero. 

This optimization is single-objective; therefore, only the standard deviation of the output mean, Z
, or the standard 

deviation of the output standard deviation,  Z
, is minimized. 

The optimization of a non-linear function of integer variables and the high-computational cost associated with a 
function evaluation suggests that a population-based approach is suitable to solve the problem. A particle swarm 
optimization (PSO) was selected because of the ease of implementation and the lower user parameters.  

Particle swarm optimization (PSO) is a population-based method used in the optimization of non-linear 
functions; it was proposed in 1995 by Kennedy and Eberhart [6]. PSO is a swarm intelligence method that models 
social behavior of a population (swarm) of agents (particles) interacting to find a simulated target on a search space. 
In the particle swarm optimization process, the velocity and position of each particle is iteratively adjusted as shown 
in Eq. (10) and Eq. (11), respectively 

 
 vi

k1  wvi
k  q1ri1(pbestxi  xi

k ) q2ri2(gbestx  xi
k ) (10) 

 
 xi

k1  xi
k  vi

k1 (11) 
 

The velocity is defined as a change in magnitude of the design variable from one iteration to another, and the 
position is described as the design variable unit, in this research, as the number of additional experimental data DX i

. 

The particles move according to a communication structure thought of as a social network. At iteration k the 
velocity of the ith particle vi

k is updated according to its own current velocity value, the best position encountered by 
the ith particle in all previous iterations (particle best, pbestxi), the best position encountered by any particle so far 
(global best, gbestx), and the inertia weight, w, that controls the impact of the previous velocity. The particles are 
attracted toward the positions of pbestxi and gbestx; the strength of the attraction is controlled by q1 (individual 
weight) and q2 (social weight). Randomness is introduced for good space exploration via ri1

 and ri2
 which are 

random numbers from a uniform distribution on the interval between 0 and 1. The position of the particle is updated 

using its current position value xi
k and the newly computed velocity vi

k1 [12]. The constants w, q1, and q2, are 
empirical. Trelea et al. [12] have conducted several experiments with different combinations of these constants 
recommended by other authors and concluded that the best results published are 

 
Inertia weight (w) : 0.729

Cognitive constant (q1) :  1.494

Social constant (q2) :  1.494
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The number of particles and the number of iterations were selected according to the complexity of the problem. 
The constraint used in the method was controlled by using a penalty function, where a significant penalty was 
assigned to the objective function value if the constraint was exceeded. This strategy forced the particles to move 
towards the feasible design space where the target was located. 
 

IV. Fretting Fatigue 
The optimal allocation methodology was applied to a fretting fatigue problem. Fretting is the wear damage 

caused when a material is compressed against one another in the presence of oscillatory displacements. The wear 
and high local stresses cause nucleation of cracks that reduce the fatigue life. Fretting fatigue is a major problem in 
the aerospace industry. The damage that occurs from fretting fatigue causes structural failure that may be very 
costly. Previous research of fretting fatigue has been done by Golden et al. [5] who performed a probabilistic fretting 
fatigue life prediction analysis of Ti-6Al-4V dovetail specimens. 

The statistical data given in reference [5] was used in this case study. The fretting fatigue problem consisted of 
20 random variables with mean, standard deviation, and correlation values determined from experimental data. The 
statistics of the random variables are shown in Table 1. 

 
Table 1. Random Variables Statistics 

Random Variable 
Variable 

No. 
Mean, 
X i

 
St. dev., 
X i

 Distribution Type 

Initial Crack X1 15.1 8.48 Lognormal 

Friction Coeff. X2 0.302 0.021 Correlated Normal 
23  0.375 Partial Slip Slope X3 1.96 0.12 

Crack Growth X4  -14.6 0.486 Correlated Normal 
45  0.9973 Crack Growth X5 7.19 0.715 

Crack Growth X6 -11.8 0.157 Correlated Normal 
67  0.9751 Crack Growth X7 3.81 0.146 

Pad Profile X8 0.181 5.84E-03 

Correlated Normal 
(see Table 2) 

Pad Profile X9
 -2335 410 

Pad Profile X10
 2333 411 

Pad Profile X11
 -1612 37.7 

Pad Profile X12 2289 379 

Pad Profile X13 1620 35.4 

Pad Profile X14
 -0.183 4.96E-03 

Pad Profile X15
 -2.00E-04 6.20E-04 

Pad Profile X16 -1.21E-06 1.01E-06 

Pad Profile X17 1.53E-10 6.38E-10 

Pad Profile X18
 9.80E-13 6.16E-13 

Pad Profile X19
 -3.77E-17 1.87E-16 

Pad Profile X20
 -3.80E-19 1.59E-19 
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Table 2. Pad Profile Correlation Coefficients 

 X8
 X9

 X10
 X11

 X12 X13 X14
 X15

 X16 X17 X18
 X19

 X20
 

X8 1 -0.079 0.078 -0.119 -0.051 0.184 -0.364 0.153 0.175 -0.107 -0.130 0.073 0.112 

X9 -0.079 1 -1.000 -0.921 -0.404 0.321 -0.122 0.093 -0.205 -0.203 0.281 0.275 -0.246 

X10
 0.078 -1.000 1 0.921 0.404 -0.321 0.121 -0.092 0.207 0.203 -0.282 -0.275 0.247 

X11
 -0.119 -0.921 0.921 1 0.325 -0.372 0.270 -0.019 0.104 0.136 -0.201 -0.247 0.219 

X12 -0.051 -0.404 0.404 0.325 1 -0.899 -0.204 -0.102 0.079 0.065 -0.116 0.002 0.123 

X13 0.184 0.321 -0.321 -0.372 -0.899 1 -0.033 0.010 -0.004 0.062 0.021 -0.147 -0.061 

X14
 -0.364 -0.122 0.121 0.270 -0.204 -0.033 1 -0.095 -0.242 -0.017 0.142 0.078 -0.133 

X15
 0.153 0.093 -0.092 -0.019 -0.102 0.010 -0.095 1 0.140 -0.876 -0.027 0.627 0.059 

X16 0.175 -0.205 0.207 0.104 0.079 -0.004 -0.242 0.140 1 -0.099 -0.869 0.057 0.765 

X17 -0.107 -0.203 0.203 0.136 0.065 0.062 -0.017 -0.876 -0.099 1 0.011 -0.915 -0.027 

X18
 -0.130 0.281 -0.282 -0.201 -0.116 0.021 0.142 -0.027 -0.869 0.011 1 0.027 -0.944 

X19
 0.073 0.275 -0.275 -0.247 0.002 -0.147 0.078 0.627 0.057 -0.915 0.027 1 -0.031 

X20
 0.112 -0.246 0.247 0.219 0.123 -0.061 -0.133 0.059 0.765 -0.027 -0.944 -0.031 1 

 

Linear regression was used to fit a predictive model of the form log(N f )  Ao  AiXi  to a set of 10,000 data 

points6, where N f  is cycles-to-failure. The linear regression coefficients Ao and Ai are shown in Table 3. The 

coefficient of determination R2  0.87, thus about 87% of the variation of log(N f ) is explained by the predictor 

variables in the model 
 

Table 3. Linear Regression Coefficients 

Term Estimate, Ai 

Intercept, ( Ao) 4.93 

X1 
-4.10E+03 

X2 
-7.48 

X3 
2.52E-03 

X4  -0.18 

X5 
-0.14 

X6 
-0.48 

X7 
-0.44 

X8 
0.06 

X9
 1.08E-04 

X10
 1.05E-04 

X11
 -1.95E-04 

                                                           
6 Provided by Dr. Patrick J. Golden from the Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-
Patterson AFB, OH 
 

Approved for public release; distribution unlimited



 
American Institute of Aeronautics and Astronautics	

	

10

X12 -5.60E-05 

X13 -9.81E-04 

X14
 0.16 

X15
 8.47 

X16 1.51E+05 

X17 1.05E+08 

X18
 4.64E+11 

X19
 3.51E+14 

X20
 1.26E+18 

 
Once the predicted model, log(N f )  Ao  A1X1  A2X2  ... A20X20

, was validated, it was used to analytically 

obtain the moments of log(N f ). The mean and standard deviation of log(N f ) were calculated as shown in Eq. (12) 

and Eq. (13) respectively 
 

 log(N f )  Ao  A1X1
 A2X 2

 ... A20X 20 (12) 
and 

 log(N f )  AiA jijj1

20
i1

20  (13) 

 
where X i

 represents the mean of variable Xi
 and ij

 represents the ith, jth value of the population covariance matrix, 

. 
Finally, the objective was to determine how many additional experiments were needed to minimize the standard 

deviation of log(N f ) moments, ( log( Nf )
, log( Nf )

), given funds available. 

The random variables were partitioned into four groups according to the correlation of the random variables. The 
group’s distribution, cost, and initial data are shown in Table 4. The number of additional experiments required to 
minimize the standard deviation of log(N f ) were determined by group. 

 
Table 4. Grouping of Random Variables 

Group Random Variable No. Distribution Type Test Cost7 CGi
 Initial Data 

EGi
 

G1 Initial Crack X1 Lognormal $846 20 

G2 Friction Coeff/ Partial 
Slip Slope 

X2  X3 
Correlated Normal 
23  0.375 $4,810 17 

G3 Crack Growth X4  X7 
Correlated Normal 
45  0.9973 
67  0.9751 

$4,748 198 

G4 Pad Profile X8  X20 
Correlated Normal 
(see Table 2) $919 77 

 
Case C-1. Minimize log( Nf )

 

A preliminary study was performed before utilizing the optimization methodology, in which the total funds 
available, b  $20,000, were allocated only for one group at a time. The maximum number of additional 

experiments for each group was calculated as DGi
 b CGi
 . The mean of log(N f ) was given as 

                                                           
7 Provided by Dr. Patrick J. Golden from the Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-
Patterson AFB, OH 
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log(N f )  Ao  A1X1
 ... A20X 20

, where X i
 was calculated using Eq. (3). The results of the reduction of log( Nf )

 

are summarized in Table 5. 
 

Table 5. Reduction if total funds were spent on each group 

 Test 1 Test 2 Test 3 Test 4 

DG1
 23 0 0 0 

DG2
 0 4 0 0 

DG3
 0 0 4 0 

DG4
 0 0 0 21 

 log( Nf )

orig  0.0366 0.0366 0.0366 0.0366 

 log( Nf )

opt  0.0354 0.0311 0.0365 0.0362 

% Reduction 3% 15% 0.3% 1% 

CGi
DGi

 $19,458 $19,240 $18,992 $19,299 

Each experimental data of Gi 

reduced log( Nf )
 by 0.13% 3.75% 0.08% 0.05% 

 
Group G2 had the highest reduction in  log( Nf )

 followed by Groups G1, G4 and G3. If one additional experiment 

was added to Group G2, G1, G3, and G4, the reduction would be 3.75%, 0.13%, 0.08%, and 0.05%, respectively. 
Next, the optimal allocation methodology was applied with 40 particles, 40 iterations. Table 6 summarizes the 

results after running the analysis four separate times. 
 

Table 6. Results (Case C-1) 

Analysis 1 2 3 4 

DG1
 0 0 0 0 

DG2
 4 4 4 4 

DG3
 0 0 0 0 

DG4
 0 0 0 0 

 log( Nf )

orig  0.036 0.036 0.036 0.036 

log( Nf )

opt  0.031 0.031 0.031 0.031 

% Reduction 14% 14% 14% 14% 

CGi
DGi

 $19,240 $19,240 $19,240 $19,240 

 
In all cases, the standard deviation of log(N f )

 was reduced by approximately 14% by adding 4 experiments to Group 

G2. The PDF of log(N f )
 is shown in Figure 2. The red area with black dashed line represents log(N f )

 before adding 

any data and the blue area represents the PDF after adding the optimal experimental data. 
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Figure 2. PDF of log(N f )

 (Case C-1) 

 
Figure 3 and Table 7 shows the behavior of  log( Nf )

 as a function of funds available. The increase in funds 

available implied more possible additional experiments. With more additional experiments the reduction of  log( Nf )
 

was higher. The decrease of log( Nf )
 as the amount of funds become available is depicted with a black dotted line, 

and the pink solid line shows the percent reduction of log( Nf )
 after adding experimental data to the initial data 

points. 

 
Figure 3. Behavior with respect to funds available 
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Table 7. Results for different funds available 

Funds $20,000 $40,000 $80,000 $100,000 $200,000 

DG1
 0 1 2 7 8 

DG2
 4 8 16 18 34 

DG3
 0 0 0 0 4 

DG4
 0 0 0 8 11 

 log( Nf )

orig  0.036 0.036 0.036 0.036 0.036 

 log( Nf )

opt  0.031 0.029 0.027 0.026 0.023 

% Reduction 14% 19% 26% 28% 36% 

CGi
DGi

 $19,240 $39,326 $78,652 $99,854 $199,409 

 
Case C-2. Minimize  log( Nf )

 

In this case, the objective was to minimize the standard deviation of log(N f )  standard deviation,  log( Nf )
. The 

standard deviation  log(N f ) was calculated as  log(N f )  AiAjijj1

20
i1

20 . The analysis was conducted four 

separate times with 40 particles, 40 iterations. A summary of the results is shown in Table 8. 
 

Table 8. Results (Case C-2) 

Analysis 1 2 3 4 

DG1
 0 0 0 0 

DG2
 4 4 4 4 

DG3
 0 0 0 0 

DG4
 0 0 0 0 

 Nf

orig  0.023 0.023 0.023 0.023 

 Nf

opt  0.018 0.018 0.018 0.018 

% Reduction 22% 22% 22% 22% 

CGi
DGi

 $19,240 $19,240 $19,240 $19,240 

 
The reduction was approximately 22% in each of the analysis. The maximum additional experiments were 

allocated in Group G2
 to obtain this reduction. The PDF of  log(Nf )

 is shown in Figure 4. The red area with black 

dashed line represents the PDF of  log(N f )
 before adding any data and the blue area represents the PDF after adding 

the optimal experimental data. 
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Figure 4. PDF of  log(N f )

 (Case C-2) 

 
A study on the sensitivity of the fretting fatigue random variables was developed by Golden et al. [5]. They 

showed that friction coefficient and partial slip slope, group G2, was dominant, followed by the pad profile, group 

G4
. They concluded that the traditional variables in fatigue, the crack growth rate, G3

, and initial crack size, G1, 
were not significant in terms of the contribution to the output variance. Instead, the friction coefficient and partial 
slip slope were dominant as expected in a fretting fatigue analysis. This finding supports in part the results obtained 
with the optimal allocation methodology, in which every analysis returned the allocation of additional experimental 
data to group G2, friction coefficient and partial slip slope. 

 
V. Conclusions 

Statistical moments obtained from simulation, i.e., mean and standard deviation of the output, often involve 
significant uncertainty due to the random nature of the input variables. In reliability analysis, the quantification of 
uncertainty is of vital importance for decision-making, where the decisions may be affected by the lack of 
confidence in the input variables. The optimal allocation methodology proposed here reduced the variance of the 
output moments. The output moments were calculated using the input population moments, which were simulated 
using realizations of the multivariate t-distribution and Wishart distribution. 

In the optimal allocation method, the variance of the output moments may be reduced by allocating resources to 
obtain more experimental data of the input variables to better characterize the moments of the input probability 
density function. The objective of the optimization model was to minimize the standard deviation of the output 
moments, where the number of additional experiments was constrained to the funds available. The methodology 
combined a single-objective optimization algorithm with a nested-loop arrangement. The optimization algorithm 
used particle swarm optimization (PSO) modified to handle integer variables. 

A fretting fatigue problem was explored to assess additional experiments to reduce the variance in the mean and 
standard deviation of cycles to failure. The number of additional experiments to add for each random variable 
necessary to reduce the standard deviation of the output moments depended upon several factors: the number of 
initial data points, the influence of the input variables, the cost of each additional experiment, and the variance of the 
sample mean. 

In the fretting fatigue example the results found by Golden et. al [5] supported the results of the optimal 
allocation method. The optimal allocation methodology can be used as a tool to help improve the confidence of the 
output moments. 
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