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Abstract – Poor individual sensor performance as well 
as a large number of sensor scans per time interval are 
two challenges for multi-target tracking is large sensor 
networks.  We introduce a two-stage processing scheme 
(ML-MHT) to address the former issue, and another to 
address the latter issue (MHT2).  We consider as well the 
combination of these two techniques (ML-MHT2).  
Simulation results are encouraging.  Future work will 
include application of these techniques to more 
challenging multi-sensor datasets characterized by 
extremely poor detection and localization performance. 
 
Keywords: Maximum likelihood, multi-hypothesis 
tracking, multi-sensor multi-target tracking, data 
association. 

1 Introduction 
This paper addresses the multi-target tracking problem in 
large sensor networks.  We assume that the sensors are 
synchronized, in the sense that the scan times are common 
to all sensors.  Conventional multi-hypothesis tracking 
methods are problematic in this setting for two reasons.  
First, individual sensors in large networks generally have 
modest or poor detection and localization performance.  
Accordingly, we introduce a maximum likelihood (ML) 
approach to improve the statistical quality of contact data, 
prior to MHT processing: we call this the ML-MHT.   

Second, a very large hypothesis tree depth (in terms of 
number of sensor scans) is required to achieve a moderate 
time depth, as needed to disambiguate association 
hypotheses in multi-target settings.  Thus, we consider the 
concatenation of MHT modules whereby the first module 
provides zero-time-duration tracks that associate contacts 
across synchronous sensor scans, and the resulting short-
tracks are processed in the second MHT module: we call 
this the MHT2.   

We consider as well the combination of these two 
techniques: we call this the ML-MHT2.  We test these 
architectures with simulated multi-sensor data, and the 
results are encouraging.  Future work will include 
application of these techniques to benchmark datasets 
provided by METRON as part of collaborative 
international multi-laboratory research that is ongoing in 

the ISIF Multi-Static Tracking Working Group 
(MSTWG). 

A possible, alternative multi-stage MHT processing 
paradigm for dim targets would involve a first tracking 
stage with extremely small process noise and stringent 
track maintenance criteria, leading to highly fragmented, 
short-duration tracks.  In a second processing stage, with 
larger hypothesis tree depth, relaxed track maintenance 
criteria, and higher process noise, the short-duration tracks 
would purportedly be associated into longer-duration 
maneuvering tracks.   

This paper is organized as follows.  Section 2 describes 
our maximum-likelihood preprocessing stage followed by 
MHT processing (the ML-MHT), and section 3 describes 
the concatenation of MHT processes (the MHT2 and ML-
MHT2).  Simulation results are provided in section 4.  
Conclusions and plans for future work are in section 5. 

2 The ML-MHT 
In past work, we introduced a fuse-before-track paradigm 
that includes static fusion via a grid-based approach, 
followed by MHT processing [1].  The grid-based 
approach has many limitations, most notably an inability 
to handle closely-spaced targets and poor performance for 
targets that are near the edge of a grid cell.  Earlier 
investigations into more elegant approaches to static 
fusion included a scan-box approach, a probabilistic 
hypothesis density (PHD) approach, and a bootstrap 
maximum-likelihood approach [2-3].  Unfortunately, these 
methods provide inconclusive or poor performance, due to 
computational requirements, inherent sub-optimality, and, 
again, an inability to handle closely-spaced targets 
effectively. 
 Despite limited results to date, we believe the 
motivation for pursuing a fuse-before-track approach to 
multi-target tracking in large sensor networks with poor 
individual sensor performance is sound.  The two-stage 
approach seeks to collapse a large number poor sensor 
scans into a single, equivalent scan of higher quality.  
(Techniques to do so that are insensitive to scan ordering 
are particularly appealing.)  Following data reduction, a 
conventional scan-based tracker (MHT or otherwise) may 
be employed. 
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 In this paper, we develop an effective ML approach as a 
first stage in fuse-before-track processing.  There are two 
key aspects to the approach developed here.  First, we 
avoid computationally costly numerical optimization 
schemes by evaluating the likelihood function only at 
contact locations.  Having identified the top-scoring 
contact, one could imagine the following cumbersome 
methodology: (1) remove contact data due to a single 
target (roughly, remove a number of contacts equal to 
number of scans times the target detection probability); (2) 
collapse the extracted contacts into an equivalent fused 
contacts; (3) iterate the ML equations on remaining 
contacts.  The second key aspect of our approach is to 
replace steps (1-3) with a simpler scheme whereby the top 
M contacts from the first set of ML evaluations are 
extracted, and each contact is kept within its original data 
scan.  That is, we do not collapse the scans into a single, 
equivalent scan.  In addition to the simplicity of our 
approach, the procedure (1-3) is potentially problematic in 
the case of closely-spaced targets. 
 We now proceed with a description of our ML approach 
to contact-data reduction.  Future work will include an 
extension to non-linear measurement models and a 
comparison to the scan-collapse approach identified by 
steps (1-3) above. 

We consider the case of linear measurements of two-
dimensional target positional perturbed by additive 
Gaussian noise, as given by (2.1). 
 

wXZ  ,  ,0~ Nw .       (2.1) 

 
The measurement covariance matrix   is assumed to be 
constant over all target-induced contacts.  In each scan of 
data, all targets in the surveillance region are detected with 
probability p, and false contacts are uniformly distributed 
in this region (of area u [m2]), with the number of false 
contacts Poisson distributed with mean  . 

For a given sensing time epoch, assume that N is the 

number of synchronous sensors, and let Nini 1,  be 

the number of contacts from each sensor.  The contacts 
from the ith sensor are denoted by iij njZ 1, .  The 

likelihood function for target location is given by (2.2). 
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We evaluate    for  iij njNiZX  1,1, .  We 

identify the top M  likelihood function evaluations; the 
contacts corresponding to these contacts are kept, and all 
others are discarded, leading to a thinned version of the N 

sets of contacts.  In particular, we now have 
i

inM  

contacts for a given time epoch.  It is important that we 
select NpM T   , where T  is the expected number 

of targets. 
 The ML approach defined here is consistent with 
processing paradigms that invoke hard data association, 
since at no stage here is there is a weighted merging of 
contact data [4]. 
 The significantly smaller contact files that result from 
the ML processing scheme described here constitute the 
input to an MHT processing stage.  Our approach to track-
oriented MHT is based on [5-6]. 

3 The MHT2 and ML-MHT2 
It is important for MHT processing extend over a 
reasonable time extent.  This is quite problematic in large 
sensor fields, where there are many data scans in short-
duration time intervals.  This is true whether or not we 
proceed with the ML processing stage described in section 
2. 
 Accordingly, it is imperative to reduce significantly the 
number of track hypotheses prior to MHT process with 
large tree depth (i.e. large n-scan).  A straightforward 
methodology to enable this is described here.  As a 
reminder, we assume that the sensors are synchronized so 
as to have the same sequence of scan times.  (Our 
methodology could be extended to handle the more 
general case of non-synchronous sensors, though we do 
not consider this here.) 
 In a first MHT processing stage (with small or zero n-
scan), we associate contacts into tracks, though with track 
termination for non-zero time increments.  That is, we 
perform automatic tracking separately for each 
(synchronous) collection of sets of contacts, with no track 
continuity between these collections.  The resulting tracks 
exist over multiple sensor scans, but have zero time 
duration.  As a byproduct of this process, tentative tracks 
that fail to achieve the track confirmation threshold are 
discarded. 
 The second MHT processing stage contends with a 
vastly simpler data-association task that associates short-
duration tracks over time.  In particular, this second stage 
can easily handle large hypothesis tree depths (n-scan>>0) 
with modest computational expense.  The large n-scan 
allows for non-zero time-depth reasoning in large sensor 
networks.  This capability is particularly useful in dense 
target scenarios with non-trivial target disambiguation. 



4 Simulation Studies 
In this section, we provide illustrations and preliminary 
performance assessment of the multi-stage MHT 
architectures introduced in sections 2-3. 

4.1 ML-MHT vs. MHT 

We start with a scenario that includes a single 
maneuvering target.  Scenario and tracker parameters are 
in tables 1-2.  We have four variations on the MHT, and 
two on the ML-MHT.  In particular, we have two different 
MHT track-initiation settings, and two n-scan values for 
all cases. 
 
Table 1. Simulation settings in single-target performance 

study. 
Simulation parameter Setting 
Monte Carlo iterations 20 

Number of scans 30 
Scan interval 5sec 

Surveillance region xmin=-100, xmax=100,  
ymin=-20, ymax=20 

Target start location x=-75, y=-5 
Target velocity (1st half) vx=1, vy=0.1 
Target velocity (2nd half) vx =1, vy =-0.1 

Number of sensors  40 
FAR 10 
PD 0.5 

Contact localization error 5m (both x and y) 
Track localization threshold  10m 
 

Table 2. Key MHT and ML-MHT settings. 
Tracker M-of-N n-scan 
MHT-1 22-of-40 0 
MHT-2 22-of-40 2 
MHT-3 25-of-40 0 
MHT-4 25-of-40 2 

ML-MHT-1 10-of-40 0 
ML-MHT-2 10-of-40 2 

 
In all cases, we have a target process noise of 0.001m2s-3, 
termination after 40 missed detections, a target prior 
velocity standard deviation of 1ms-1 in both dimensions, 
and a 99% data association gate.  For ML processing, we 
have M=20 (see section 2). 
 
Performance results are given in table 3.  The results 
suggest comparable detection (PD, FAR) and localization 
performance (LE – localization error) for the two 
architectures, perhaps slightly better with the ML-MHT.  
Interestingly, the ML-MHT exhibits higher FR  
(fragmentation rate per hour), though absolute 
fragmentation is less than 3.  The ML-MHT is most 
interesting from a timing rate, or TR perspective (i.e. 
execution time divided by scenario time). 
 

Table 3. Monte Carlo performance results in single-target 
performance study. 

Architecture PD FAR FR LE TR 
MHT-1 0.71 120.0 1.0 5.84 0.67 
MHT-2 0.56 133.2 1.0 5.94 2.60 
MHT-3 0.72 13.20 1.0 3.55 0.65 
MHT-4 0.73 26.40 1.0 4.14 2.60 

ML-MHT-1 0.86 91.20 44.0 3.49 0.23 
ML-MHT-2 0.87 88.80 43.0 3.46 0.25 

 
As tracker performance depends on parameter tuning and 
the results do not favor either architecture convincingly, 
we move next to a setting where ML-MHT may be of 
greater interest.  

4.2 Very Large Networks: A Case for the 
ML-MHT 

Even for n-scan=0, scan-based processing is problematic 
in very large sensor networks, due to the need for TR<1 
for real-time processing.  We examine here the case of 100 
sensors; all other simulation parameters are as in table 1.  
Tracker parameters of note are in table 4.  In both 
architectures, we have termination after 100 missed 
detections.  For ML processing, we have M=50 (see 
section 2). 
 

Table 4. Key MHT and ML-MHT settings. 
Tracker M-of-N n-scan 

MHT (red) 50-of-100 0 
ML-MHT (cyan) 20-of-100 0 

 
We now have PD~0.95, FAR=0, and LE~1.83m for both 
architectures; also, we have FR=1 (MHT) and FR=25 
(ML-MHT), i.e. absolute fragmentation is 2 in the latter 
case.  Thus, we find that both architectures perform much 
better than previously, thanks to the much larger sensor 
network.  However, we now have TR=3.64 (MHT) and 
TR=0.84 (ML-MHT).  Thus, while the ML-MHT still 
satisfies the real-time processing requirement, the MHT 
fails to do so.  An illustration of one realization is given in 
figure 1. 
 
It is interesting to examine performance in multi-target 
settings, where the need for hypothesis tree depth with 
non-zero time depth is critical.  We do so next. 

4.3 Closely-Spaced Targets: The MHT2 and 
ML-MHT2 

The MHT and ML-MHT are severely challenged in multi-
target scenarios in large sensor networks, due to their 
inability to utilize a large n-scan.  We explore this setting 
with a modified scenario, with two non-maneuvering 
targets as indicated in table 5.  Tracker architectures and 
key parameters are specified in table 6, and simulation 
results are in table 7. 



 
Table 5. Multi-target modifications to settings in table 1. 

Simulation parameter Setting 
Monte Carlo iterations 50 

Number of targets 2 
Target one start location x=-75, y=-5 

Target one velocity vx=1, vy=0.1 
Target two start location x=-75, y=5 

Target two velocity vx =1, vy =-0.1 
Contact localization error 1m (both x and y) 

Track localization threshold  2m 
 

Table 6. Tracker settings. 
Tracker M-of-N n-scan 

MHT (red) 20-of-40 0 
ML-MHT (blue) 10-of-40 0 

ML-MHT2 (yellow) 10-of-40 0 (1st stage), 
200 (2nd stage) 

MHT2 (green) 20-of-40 0 (1st stage), 
200 (2nd stage) 

 
No track confirmation stage is applied to second-stage 
MHT processing in both the ML-MHT2 and MHT2, i.e. no 
first-stage tracks are discarded.  For all architectures, 
termination is after 40 missed detections (for ML-MHT2 
and MHT2 this applies to the second stage, while as noted 
previously first-stage termination is at non-zero time 
increments).  For ML processing, we have M=40 (see 
section 2).   
 

Table 7. Simulation results. 
Architecture PD FAR FR LE TR 

MHT (red) 0.24 154.08 1.00 0.57 0.68 
ML-MHT 

(blue) 
0.64 34.09 1.65 0.55 0.11 

ML-MHT2 
(yellow) 

0.58 24.00 8.02 0.62 0.18 

MHT2 (green) 0.29 62.40 14.44 0.58 0.43 
 
 All architectures perform similarly in terms of track 
localization.  Preliminary indications are that the MHT 
architecture is weakest in terms of track detection, while 
the ML-MHT2 is strongest.  Indeed, we find that the ML-
MHT suffers as a result of track swap (leading to false 
track classification), while the MHT2 suffers as a result of 
high input clutter that is not reduced through ML 
processing, leading to track loss and limited track hold.  
The ML-MHT2 ameliorates both effects. 

An illustration of the need for large downstream n-scan 
is exemplified in figure 2.  Here, we see that the ML-
MHT2 is able to track successfully, while the ML-MHT 
incurs a track swap.  A further illustration of the need for 
large downstream n-scan and of the effectiveness of 
upfront ML processing is in figures 3-4, where we see a 
scenario realization with results for all four architectures 
under study.  We see false track formation with the MHT, 

track swap with the ML-MHT, successful tracking with 
the MHT2 (though with limited track hold), and successful 
tracking with the ML-MHT2. 

4.4 Robustness of the ML-Enhanced 
Architectures 

The robustness of tracker performance with respect to 
parameter settings is important.  In particular, the ML-
MHT introduces a new parameter that reflects the 
expected number of targets in the surveillance region.  
Indeed, recall that we require NpM T   , where p is 

the detection probability, T  is the expected number of 

targets, and N is the number of scans to which ML 
processing is applied.  Thus, it is important that the choice 
of M be sufficiently large.  What is the impact of too large 
a choice?   

In figures 7-8, we illustrate results for a scenario 
realization that is identical to those in section 4.3, with the 
sole modification that we have set M=60, i.e. consistent 
with the presence of three targets rather than two.  There is 
no notable change in tracking results.  Figures 5-6 
illustrates one such realization, with MHT and ML-MHT 
tracks displayed with the usual color conventions (red, 
blue respectively). 

5 Conclusion and Further Extensions 
Poor individual sensor performance as well as a large 
number of sensor scans per time interval are two 
challenges for multi-target tracking is large sensor 
networks.  In this paper, we introduced a two-stage 
processing scheme (ML-MHT) to address the former 
issue, and another to address the latter issue (MHT2).  We 
considered as well the combination of these two 
techniques (ML-MHT2).  Simulation results are 
encouraging, and suggest that ML processing is useful to 
reduce false track formation, while repeated MHT 
processing (allowing for large downstream n-scan) allows 
for successful multi-target disambiguation.   

Future work will include application of these techniques 
to more challenging multi-sensor datasets characterized by 
extremely poor detection and localization performance.  In 
particular, we will examine multi-stage processing of 
simulated multistatic sonar data made available to the ISIF 
Multi-Static Tracking Working Group (MSTWG) by 
METRON [7].  This work will require nonlinear 
extensions to the ML processing stage, and relies on 
precise transformation of bistatic sonar measurement 
errors to Cartesian coordinates [8-9].  Illustrations of 
preliminary results on the METRON datasets (obtained 
with the MHT processing architecture) are in Annex A.  
These results give some appreciation for the challenge 
associated with effective track extraction in low-quality 
data. 

An additional area for future work includes a 
comparison of our ML processing with a modified 



approach that would involve greedy contact extraction and 
fused contact determination (steps 1-3 in section 2).  

Finally, it is of interest to extend the architectures 
introduced here to handle non-synchronous sensor 
networks, where there is no requirement that scan times be 
matched across sensors.  
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A  The MSTWG METRON Datasets 
The MSTWG METRON data includes five scenarios.  
The data release included target ground truth for the first 
scenario.  Thus, we limit our discussion to this scenario.  

In particular, the scenario includes four targets that 
execute repeated square-like motion patterns.   There are 
25 source-receiver combinations at each scan time, with 
active sonar scans of either FM or CW (bistatic Doppler-
enhanced measurements).  Details of the sensor 
configuration and data characteristics are in [7].  Here, we 
illustrate preliminary processing results for this scenario. 
 A fair amount of MHT parameter tuning was required in 
order to extract reasonable tracks when compared with the 
known ground truth target trajectories.  Table 8 
summarizes the key MHT parameter settings.  Figures 7-
11 illustrate our results.  (Note that numerous target 
square-like motion patterns are performed, so multiple 
tracks for each target are seen in a consolidated view.) 
 

Table 8. Optimized MHT settings for the MSTWG 
METRON datasets. 

Parameter Setting 
FM SNR threshold 9dB 
CW SNR threshold 5dB 

Range threshold 22km 
TDOA threshold 40sec 
Track initiation 3-of-175 

Track termination 15min 
Hypothesis tree depth 200 

Target velocity prior standard 
deviation (in both x and y) 

6ms-1 

Target process noise 0.0075m2s-3 
 
 It is worth noting that, given the extremely large cross-
range localization errors at significant ranges from the 
receivers, we have introduced additional tracker 
functionality that discards all contacts beyond a specified 
range to the receiver, or, alternatively, beyond a specified 
time difference of arrival (TDOA).  (Note that these 
thresholds are related, but do not have exactly the same 
effect in the bistatic case.) 
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Figure 3. One realization of contact data (magenta, black 
dots, where magenta is target-originated) based on 100 
sensors.  Black line is target trajectory. MHT (red) and 

ML-MHT (cyan) tracks are shown as well. 
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Figure 2.  ML-MHT (blue) and ML-MHT2 (yellow), 

illustrating the success of the latter to avoid track swap in 
dense target scenarios. 

 

-100 -80 -60 -40 -20 0 20 40 60 80 100

-30

-20

-10

0

10

20

30

40

1

2

 
Figure 3. A realization of MHT (red, ML-MHT (blue), 
ML-MHT2 (yellow), and MHT2 (green), illustrating the 

success of the latter two in handling track swap, and of the 
ML-based architectures to suppress the damaging effects 

of clutter. 
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Figure 4. Same realization as in figure 5, with ML-MHT2 

(yellow) more visible. 
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Figure 5. An MHT (red) and ML-MHT (blue) realization 
with poor settings in ML-MHT, illustrating its robustness. 
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Figure 6. Same realization as in figure 7, with the ML-

MHT (blue) more visible. 
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Figure 7. Optimized MHT output (red) for the first 

MSTWG METRON dataset, for which ground truth is 
known (blue). 
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Figure 8. Same result (close-up view of first target). 
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Figure 9. Same result (close-up view of second target). 
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Figure 10. Same result (close-up view of third target). 

 

3.8 4 4.2 4.4 4.6 4.8 5

x 10
4

2

2.5

3

3.5

x 10
4

4

11

48

54

70

90

107

135

METRON scenario 1. Dotted trajectories are clockwise.

 
Figure 11. Same result (close-up view of fourth target). 


