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Abstract – Ensemble methods provide a principled frame-
work for building high performance classifiers and repre-
senting many types of data. As a result, these methods can
be useful for making inferences in many domains such as
classification and multi-modal biometrics. We introduce a
novel ensemble method for combining multiple representa-
tions (or views). The method is a multiple view general-
ization of AdaBoost. Similar to AdaBoost, base classifiers
are independently built from each representation. Unlike
AdaBoost, however, all data types share the same sampling
distribution as the view whose weighted training error is the
smallest among all the views. As a result, the most con-
sistent data type dominates over time, thereby significantly
reducing sensitivity to noise. In addition, our proposal is
provably better than AdaBoost trained on any single type
of data. The proposed method is applied to the problems
of facial and gender prediction based on biometric traits as
well as of protein classification. Experimental results show
that our method outperforms several competing techniques
including kernel-based data fusion.

Keywords: AdaBoost, data fusion, stacking, semi-definite
programming.

1 Introduction
Classifiers employed in real world scenarios must deal

with various adversities such as noise in sensors, intra-class
variations, restricted degrees of freedom and in some cases
spoof attacks. It is often helpful to develop classifiers that
rely on data from various sources for classification. Such
algorithms, known in the literature as multimodal classifi-
cation algorithms require a clever way of fusing the various
sources of information. A robust data fusion strategy com-
pensates for any errors in the feature extraction process due
to the adversities faced by a classifier.

1The research described here and the conclusions are that of the au-
thors. The document does not in any way represent the policies of the MIT
Lincoln Laboratory or US Air Force Research Laboratory.

2This research paper has been reviewed and cleared for public release,
distribution A, 88ABW-2010-2807.

We are given a set of training examples: X =
{(x1, y1), (x2, y2), · · · , (xn, yn)}, and M disjoint features
for each example xi = {x1

i , x
2
i ......x

M
i }, where xj

i ∈ <qj ,
and yi ∈ Y = {−1, +1}. Each member xj

i in the set xi

is known as a view of example xi. In this case, it is the
jth view of example xi. For instance, when three sensors
such as radar (Radr), infrared (IR) and visible (Vis) are used
to capture an event, each example xi can be thought of as
a set of three views, each consisting of three features ob-
tained from the intensities of radar, infrared and visible com-
ponents. In this case, the number of views will be three
and we can represent the three views of the example xi as
{xRadr

i , xIR
i , xV is

i }. We assume that examples (xi, yi) are
drawn randomly and independently according to a fixed but
unknown probability distribution D over X × Y . Here the
input space X is <q , where q =

∑M
j=1 qj .

In this paper, we present a novel method for fusing mul-
tiple representations of data with boosting. Our method is
a multiple view generalization of AdaBoost [1]. Similar to
AdaBoost, base classifiers are independently built from each
view. Furthermore, all views share the same sampling dis-
tribution as the view whose weighted training error is mini-
mum among all the views. This allows the most consistent
data type (view) to dominate over time, thereby significantly
reducing sensitivity to noise. In addition, since the final en-
semble contains classifiers that are trained to focus on differ-
ent views of the data, better generalization performance can
be expected. We support this argument with empirical eval-
uation performed on FERET facial images [2] and CYGD
genomic data [3].

2 Related Work
Considerable research in the pattern recognition field is

focused on fusion rules that aggregate the outputs of the first
level experts and make a final decision. Various techniques
for fusion of expert observations such as linear weighted
voting, the Naive Bayes classifiers, the kernel function ap-
proach, potential functions, decision trees or multilayer per-
ceptrons have been proposed in recent years [4, 5]. Other ap-
proaches are based on bagging, boosting, and arching clas-
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sifiers [1, 6, 7]. Comprehensive surveys of various classifier
fusion studies and approaches can be found in [8, 9, 10].

In [11] Wolpert proposes stacked generalization that is
defined as any scheme that feeds data from one set of classi-
fiers to another before making a final decision. The data that
feeds up the net of the classifiers is provided by multiple par-
titionings into two subsets of the original learning set. These
pairs of subsets are further employed to gather information
about the bias of the original classifier(s) with respect to the
learning set. The bias of the constituent classifiers with re-
spect to the learning set is estimated and corrected by the
stacked generalization. In information fusion, it is equiv-
alent to forming a linear combination of the classification
results of the constituent classifiers.

Lanckriet et al. [12] introduce a kernel-based data fu-
sion approach to protein function prediction in yeast. The
method combines multiple kernel representations in an op-
timal fashion by formulating the problem as a convex op-
timization problem that can be solved using semidefinite
programming. That is, given a set of kernel matrices
K = {K1, K2, ..., Km}, the optimal combination K =∑m

i=1 µiKi can be obtained by optimizing coefficients µi

through semi-definite programming.
There is a close relationship between our technique and

that of Viola and Jones [13]. If we have a single view and
base classifiers are allowed to include features as well, then
both techniques reduce to standard AdaBoost. When noise
exists, however, the two techniques diverge. In the case of
Viola and Jones, it behaves exactly like AdaBoost. Noise
forces the boosting algorithm to focus on noisy examples,
thereby distorting the optimal decision boundary. On the
other hand, our approach restricts noise to individual views,
which has a similar effect to that of placing less mass of sam-
pling probability on these noisy examples. This is the key
difference between the two techniques. By restricting noisy,
thus “difficult,” examples to individual views, the mass of
sampling probability on these examples will be restricted in
our technique. This is possible because probability mass
will be determined by those views having less noise.

3 Boosting Using Shared Sampling
Distribution

AdaBoost has been shown to improve the prediction ac-
curacy of weak classifiers using an iterative weight up-
date process [1]. The technique combines weak classifiers
(classifiers having classification accuracy slightly better than
chance) in a weighted vote fashion giving an overall strong
classifier. Detailed explanation of the AdaBoost algorithm
is skipped here for brevity, interested readers may refer
to [14, 15, 16] for more on AdaBoost.

One of the ways boosting may be used for classifier fusion
would be to run boosting separately on each view, obtain
separate ensembles for each view, and then take a majority
vote among the ensembles when presented with a test exam-
ple. In this case, separate training of classifiers is needed for

each view and the sampling distributions of the data points
are also independent.

We propose a different yet simple approach. Our ap-
proach performs separate training for each view. However,
the weight distribution of training examples is shared among
all the views at each boosting round. The main steps of the
proposed algorithm are shown in Algorithm 1.

Algorithm 1: Boosting With Shared Sampling Distribu-
tion (BSSD)

1. Input: zj
0 = {xj

i , yi)}n
i=1, j = 1, · · · ,M .

2. Initialization: W1 = {w1(i) = 1
n}n

i=1.

3. For k = 1 to kmax

(a) Sample zj
k from zj

0 using the distribution Wk.

(b) Compute hypothesis hj
k from zj

k for each view j.

(c) Calculate error εj
k: εj

k = Pi∼Wk
[hj

k(xj
i ) 6= yi]

(d) If for each view: {εj
k}M

j=1 ≤ 0.5, select h∗k corre-
sponding to ε∗k = minj{εj

k}.

(e) Calculate α∗k = 1
2 ln( 1−ε∗k

ε∗k
).

(f) Update wk+1(i) = wk(i)
Z∗k

× e−h∗k(x∗i )yiα
∗
k , where

Z∗k is a normalizing factor.

4. Output: F (x) =
∑kmax

k=1 α∗kh∗k(x∗).

5. Final hypothesis: H(x) = sign(F (x)).

Input to the algorithm are the M views of n training ex-
amples. The algorithm produces as output a classifier that
fuses data from all the views. In the initialization step, all
the views for a given training example are initialized with
the same weight. Notice that our algorithm works in multi-
modal fusion where data types might not be compatible or
of fixed size vectors. We only require that the number of
training examples from each modality be the same.

3.1 Simple Illustration
We use a simple two class example in four dimensions to

help explain how BSSD works and highlight the difference
between AdaBoost and BSSD. This example is taken from
the Iris data [17] with two classes (Versicolour and Vir-
ginica). We randomly select 10 examples from each class.
Thus, there are total 20 examples, where examples from 1
to 10 are in class Versicolour and examples from 11 to 20
are in class Virginica. For BSSD, there are two views: sepal
and petal. Each view has two attributes. For the sepal view,
we have sepal length and sepal width, while for the petal
view, we have petal length and petal width. Figure 1 shows
the two views.

To make the problem more interesting, we randomly
added 30% noise to each view independently by “flipping”
the label from one class to another. For the first view, the
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Figure 1: Two views of the Iris data.

noisy examples are: 3, 4, 9, 12, 14 and 19. For the second
view, they are: 5, 8, 9, 12, 16 and 18. For the illustration
purpose, linear classifiers with weighted least squares fit are
used as base classifiers.
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2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Training Vectors

W
ei

g
h

ts
 V

al
u

e

Adaboost Sampling Weights of Training Vectors at Iteration 3
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Figure 2: Sampling weights. Left column: Winning views
along with decision boundaries. Middle column: Sam-
pling weights computed by BSSD. Right column: Sampling
weights computed by AdaBoost.

We performed 50 boosting rounds. The left column
in Figure 2 shows the winning views along with decision
boundaries computed by BSSD, while the middle column
shows the shared sampling weights for the first five itera-
tions. After the first boosting round, the first (sepal) view is
the winning view. The base classifier mislabels example 14.
Thus, its weight increases, while the weights of the rest de-
crease. At the next boosting round, the second (petal) view
is the winner whose base classifier mislabels examples 5, 8,
12, 16, and 18, but correctly labels example 14. As a re-
sult, the sampling weights for examples 5, 8, 12, 16 and 18
are increased, while the weight for example 14 is decreased.
Similar observations can be made for the remaining boost-
ing rounds.

What is more interesting to observe is that BSSD does
not overemphasize the noisy examples, as evidenced by the
shared sampling weights associated with these examples.
That is, BSSD places less mass of sampling probability on
these difficult examples, with the exception of example 14.
The reason is that when a view competes and wins, it con-
tributes its piece of information about an event to the boost-
ing process by forcing losing views to accept its interpreta-
tion of the event through shared sampling probability. And
as such, the winning view potentially makes “corrections”
to sampling probability resulting from overcommitment by
the losing views.

For example, when Petal (second) view misclassifies ex-
ample 5 (one of its noisy examples), it increases its weight.
However, when Sepal (first) view competes and wins, it re-
duces the sampling weight for example 5, because example
5 is not “difficult” as far as Sepal is concerned. This can
be seen from boosting round 3 to round 4. As long as the
views do not share the same noisy examples (this assump-
tion is reasonable in practice, because information for each
view is obtained from independent sources), this mechanism
of alternating winning views plays the role in “softening”
re-sampling weights for difficult or noisy examples, thereby
making BSSD more robust against noise.

We can state this formally in the following lemma.

Lemma 1 Let j represent the view among M views that has
the least amount of noise (e.g., it has the fewest noisy exam-
ples) or the best representation in terms of class separability.
When the view j wins in the learning process of BSSD, the
sampling weights for noisy examples other than those asso-
ciated with the jth view will be decreased.

Proof. Let the margin of the training example zi = (xi, yi)
be θi = yi

∑k
t=1 c∗t h

∗
t (x

∗
i ), where c∗t = α∗t∑k

l=1 α∗l
. wk+1(zi)

can be written as [18]

wk+1(zi) =
exp(−1

2θi)|α|∑n
i=1 exp(− 1

2θi)|α|
, (1)

where |α| =
∑k

t=1 |α∗t |. As α increases, examples with
smaller margin (e.g., difficult or noisy examples) will re-
ceive larger sampling weights. Since |α| increases at least
linearly with the number of boosting rounds [18], the noisy
examples will receive larger sampling weights. When the
jth view wins, it will increase the sampling weights for its
noisy or difficult examples, while decreasing the sampling
weights for the smaller margin examples that are not part
of the jth view. The jth view winning will happen dur-
ing the learning process because the jth view has the fewest
noisy examples, thus an overall large margin or smaller av-
erage error, where the rate of error for zi is given by [18],
err(zi) =

∑k
t=1 c∗t I(yi 6= h∗t (x∗i )) = 1

2 (1− θi). Here I(·)
denotes the indicator function.

While the lemma appears to set stronger conditions,
BSSD performs much better in practice than the conditions
required by the lemma. For example, the above Iris data



experiment shows that even when the views have the same
percentage of noise, BSSD will outperform AdaBoost, as
long as the views do not share the exact noisy examples.

When the resulting boosted classifier is applied to the
original data with noise removed, 80% accuracy is obtained.
For comparison, we ran AdaBoost for 50 iterations on the
same data, where the noisy examples are: 5, 8, 9, 12, 16 and
18 (e.g., they are identical to those in the second view for
BSSD). AdaBoost achieved an accuracy of 70%. The right
column in Figure 2 shows Adaboost re-sampling weights for
the first five iterations. As expected, AdaBoost consistently
placed more mass of sampling probability on the noisy ex-
amples, resulting in less accurate performance.

4 Error Bounds
4.1 Tighter Bound on Training Error

Freund and Schapire [14] define the margin of the train-
ing example (xi, yi) as

θi =
yiF (xi)∑kmax

k=1 αk

⇒ yiF (xi) = θi

kmax∑

k=1

αk.

Lemma 2 Given the weighted training errors at iteration k
for hypotheses hj

k corresponding to M views ε1k, · · · , εM
k ,

denoting ε∗k = minj{εj
k} and θi the margins of the training

examples (xi, yi). Then for an ensemble of classifiers that
fuses M distinct views, the bound on the training error is
given by

errtrain(H) ≤ Πkmax
k=1 [2

√
ε∗
k
(1 − ε∗

k
)] −

1

n

∑

i:H(xi)=yi

e
−θi

∑kmax
k=1 α∗k .

Notice that εk(1 − εk) decreases with εk for εk ∈ (0, 0.5].
Therefore, the lemma states that if we always choose the
base classifier at each boosting round having the smallest
error rate among all views in the final combined classifier,
we can reduce training error faster. This potentially pro-
duces a final combined classifier that is less complex due to
fewer base classifiers. This can lead to better generalization,
especially in noise free data.

4.2 Generalization Error Bound
The generalization error is defined as the probability of

misclassifying a new example [14]. Since the final classifier
computed by our algorithm is

H(x) = sign(F (x)) = sign(
kmax∑

k=1

α∗kh∗k(x∗)),

the final classifier’s output will not be affected by the divi-
sion of F(x) by a positive quantity, namely

∑kmax

k=1 α∗k. Let
us define f(x) = F (x)/

∑kmax

k=1 α∗k.
The generalization error bound for our algorithm is a gen-

eralization of the AdaBoost error bound for multiple views.
The proof of our bound follows the lines of that introduced
by Schapire et al [15]. Given H the space where the base

classifiers are chosen, the function f(x), as defined above,
clearly belongs to the convex hull C of H. C is the set of
mappings that can be generated by taking a weighted aver-
age of hypotheses from H: C= {f : x → ∑

h ahh(x)|ah ≥
0;

∑
h ah = 1}

Throughout the rest of the paper the notation P(x,y)∼W [A]
will mean the probability of the event A when the exam-
ple (x,y) is sampled according to W , and P(x,y)∼S [A] will
mean the probability with respect to sampling uniformly at
random an example from the training set. Their abreviation
will be PW [A] and PS [A]. The expected value will be de-
noted EW [A] and ES [A].

Theorem 3 ([15]) Let S be a sample of n examples chosen
independently at random according to W. Assume that the
base hypothesis space H has the VC-dimension d and let
δ > 0. Then with probability at least 1− δ over the random
choice of the training set S, every weighted average function
f ∈ C satisfies the following bound for all θ > 0

PW [yf(x) ≤ 0] ≤ PS [yf(x) ≤ θ] + O(
1
√

n

√√√√ dlog2( n
d

)

θ2
+ log(

1

δ
)).

The empirical error bound for the shared sampling distri-
bution based algorithm for fusion of base classifiers from M
views is provided by Theorem 4.

Theorem 4 Given the weighted training errors at iteration
k for hypotheses corresponding to the M views ε1k, · · · , εM

k

and denoting ε∗k = minj{εj
k}. Then for any θ, we have that

PS [yf(x) ≤ θ] ≤ Πkmax

k=1 [2
√

ε∗k
1−θ(1− ε∗k)1+θ].

More recent results [19] give the following error bound

PW [yf(x) ≤ 0] ≤ inf
θ∈(0,1]

{PS [yf(x) ≤ θ] +
C

θ

√
d

n

+

√√√√ log log2(2θ−1)

n
} +

√
1
2 log 2

δ
+ 2

√
n

where C is a constant. This bound slightly improves the
bound established in Theorem 3, and will be used later in our
convergence analysis. Notice that ε1−θ

k (1−εk)1+θ decreases
with decreasing εk, when εk ∈ (0, 0.5] for any given θ >
0. Thus for a fixed sample size n, BSSD achieves better
generalization performance.

5 Experimental Evaluation
We have carried out experimental studies evaluating the

performance of the proposed data fusion algorithm on a
number of data sets. The following competing methods are
compared.

• The BSSD algorithm with the Naive Bayes classifiers
[20] as base classifiers for boosting. The Gaussian
model is used for the marginal distributions in the
Naive Bayes classifier.

• The boosting with independent sampling distribution
(BISD) with Naive Bayes classifiers. This algorithm is
a variant of BSSD, where re-sampling weights of train-
ing examples are independent for each view.



• The stacking (Stacking) algorithm [11] with SVMs as
a back-end generalizer.

• The semidefinite programming (SDP) algorithm [12],
where kernel functions along each view can be Gaus-
sian: k(x, y) = exp(−‖x − y‖2/σ2), polynomial:
k(x, y) = (x · y + 1)2, or linear: k(x, y) = x · y. Here
· denotes dot product. We wish to thank Lanckriet for
providing us with Matlab code for SDP.

• The majority vote (MV) algorithm, where SVMs are
used as component classifier along each view.

Ten-fold cross-validation was used for model selection (or
choosing procedural parameters). For SVMs, two procedu-
ral parameters: σ and C , the soft margin parameter, take
values in [10−2, 102] and C in [10−2, 102], respectively. All
results reported here are averaged over 20 runs, where each
run splits data into 60% training and 40% testing.

Figure 3: Sample images from FERET facial images
database.

5.1 Experimental Data
Two real examples are used to evaluate the proposed tech-

nique and its competitors.

5.1.1 FERET Facial Image Data
Three binary class data sets have been generated from the

FERET database of facial images [2]. The three classifica-
tion problems are (1) Face classification, (2) Gender classi-
fication, and (3) detection of Glasses (spectacles) on faces.
Sample images from the FERET database are shown in Fig-
ure 3.

For the face and gender classification experiments, each
image is represented by three views in terms of eigenfaces
extracted from three head orientations (poses): (1) frontal,
(2) half left profile and (3) half right profile. The non-face
images in the face classification data set are blacked out
faces. In the glass detection experiment, each image is rep-
resented by three types of features extracted from only one
pose of an individual, namely (1) eigenfaces, (2) Canny filter
detected edges [21], and (3) wavelet coefficients [22]. Each
dataset has 101 pictures and the number of dimensions after
applying principal component analysis is 101 for each view.

5.1.2 CYGD Genomic Data

The third data set is the yeast genomic data that can
be obtained from the MIPS Comprehensive Yeast Genome
Database (CYGD) [3]. The task consists of combining dif-
ferent data sources for gene classification (membrane vs
non-membrane proteins). There are three sources of data–
considered “views” in our framework–that are derived from
BLAST and Smith-Waterman genomic methods, and from
gene expression measurements. The dataset has 100 exam-
ples and the number of dimensions after applying principal
component analysis to each of the three views is 76, 74 and
64, respectively. These dimensions explain 90% variance in
the data.

Table 1: Results for face classification
Method AV1 AV2 AV3 Afus Sig.

MV 0.709 0.709 0.700 0.700 yes
Stack 0.709 0.709 0.700 0.717 yes
SDP Gauss Gauss Gauss 0.698 yes
SDP Poly Gauss Gauss 0.698 yes
SDP Poly Linear Gauss 0.698 yes
BISD 0.62 0.60 0.58 0.750 no
BSSD 0.623 0.615 0.564 0.763

Results for gender classification
MV 0.555 0.490 0.549 0.539 yes

Stack 0.555 0.490 0.549 0.578 yes
SDP Gauss Gauss Gauss 0.444 yes
SDP Poly Gauss Gauss 0.450 yes
SDP Poly Linear Gauss 0.442 yes
BISD 0.64 0.53 0.56 0.859 no
BSSD 0.633 0.538 0.578 0.865

Results for glass detection
MV 0.560 0.613 0.528 0.576 yes

Stack 0.560 0.613 0.528 0.672 yes
SDP Gauss Gauss Gauss 0.457 yes
SDP Poly Gauss Gauss 0.439 yes
SDP Poly Linear Gauss 0.477 yes
BISD 0.57 0.56 0.56 0.720 no
BSSD 0.591 0.594 0.546 0.740

5.2 Experimental Results
Tables 1 and 2 show the average results registered by the

competing methods on the tasks. The average accuracy of
individual classifiers from each view before fusion is shown
in the columns AV1 , AV2 and AV3 for the facial data (Table
1) and in the columns AB , ASW and AG for the genomic
data (Table 2). Also, the paired t–test with a 95% confi-
dence level was performed to determine if the difference in
performance between BSSD and the competing techniques
(Stacking, MV, SDP and BISD) is statistically significant,
and is shown in the last column.



These results demonstrate that our proposed fusion al-
gorithm significantly outperforms the competing techniques
(except BISD, where no significant difference is observed)
on these noise free problems that we have experimented
with. We note however that BSSD does outperform BISD
on the Yeast genomic dataset. In particular, our simple tech-
nique registered superior performance over mathematically
sophisticated techniques such as SDP. We will explore later
mathematical arguments behind this.

Table 2: Results for Genomic Data
Methods AB ASW AG Afus Sig.

Stack 0.62 0.58 0.59 0.63 no
MV 0.62 0.58 0.59 0.638 no
SDP Gauss Gauss Gauss 0.60 yes
BISD 0.50 0.54 0.52 0.60 yes
BSSD 0.52 0.55 0.54 0.65

Notice that in some examples, the average combined ac-
curacy is worse than that obtained from a single view (i.e.,
majority vote and stacking). In the case of the majority vote,
if the majority makes a wrong decision, so does the com-
bined decision, resulting in a decrease in accuracy. Simi-
lar observations were made in [23, 15]. For stacking, the
average fusion accuracy is obtained by the (stacked) classi-
fier whose input is class labels generated by the component
classifiers along each view. If the component classifiers pro-
duce poor results, the input to the stacked classifier will be
noisy or poorly represented. This fact helps explain why the
stacked accuracy is worse than the classification accuracy of
some of the component classifiers.

5.3 Robustness against Noise
Robustness against noise is a key feature for any data fu-

sion algorithm that must operate across the full range of con-
ditions and scenarios the system is anticipated to encounter.
In Tables 3, 4 and 5 we compared the robustness of BSSD
and the competing techniques against noise (average fusion
accuracies over 20 runs). We randomly added noise to the
class label of the training data sets on two or all three views
at various levels: 10%, 20% and 30% by ”flipping” the label
from one class to another. Flipping labels to generate noise
produces similar effect to that produced by poor representa-
tions (features).

In the case of noisy views, noise is encoded in the base
kernel matrices in SDP, which in turn severely degrades its
performance. On the other hand, our approach simply relies
more on other available data sources if one of them is not
reliable. In fact, our technique prefers views that are better
represented in terms of class separability. Recall that at each
iteration, the resampling and weight update in BSSD are per-
formed using a shared distribution. That is, the weights for
all views of a given training example are updated according
to the opinion of the winning classifier (having the smallest
average training error). This winning classifier is unlikely to

Table 3: Robustness of BSSD vs MV

Data Noise MV BSSD Stat.
Set 2 Views Afus Afus Signif

10% 0.70 0.75 yes
Face 20% 0.71 0.75 yes

30% 0.70 0.74 yes
10% 0.57 0.75 yes

Gender 20% 0.58 0.69 yes
30% 0.58 0.66 yes
10% 0.59 0.73 yes

Glass 20% 0.58 0.70 yes
30% 0.58 0.67 yes

Data Noise MV BSSD Stat.
Set 3 Views Afus Afus Signif

10% 0.70 0.74 yes
Face 20% 0.72 0.73 no

30% 0.69 0.70 no
10% 0.55 0.71 yes

Gender 20% 0.57 0.61 yes
30% 0.57 0.54 no
10% 0.60 0.73 yes

Glass 20% 0.60 0.67 yes
30% 0.59 0.61 no

come from a view that either is poorly represented or pro-
vides little information about the two classes. As a result,
our algorithm relies heavily on data sources that best sep-
arate the two classes, which is important for building the
optimal linear combination of base classifiers.

We state that, similar to [12], cross-validation was not
used to choose kernel parameters for SDP in our experi-
ments. The idea is that SDP learns the optimal coefficients,
µ of kernel matrices that determine how much each view
contributes to the final decision and to encourage diversity.
It is highly likely that cross-validated kernel parameters will
help increase accuracy in classification. We suspect that this
may be one of the causes for the sub-optimal performance
of SDP on 2 out of 3 facial tasks. We will have more to say
later regarding SDP in the “Discussions” section.

5.4 Boosting Majority Vote and Feature Con-
catenation

Most of the experiments previously described are con-
cerned with the majority vote algorithm having SVMs along
each view as component classifier (expert). An alternative
is to have AdaBoost as expert along each representation. It
may well be the case where the ensemble mechanism can
boost the performance of majority vote. In this experiment,
we use the facial, texture and genomic data to examine ma-
jority vote with AdaBoost as expert (AdaBoost-MV). As a
reference, we also run AdaBoost in a concatenated feature
space, where the features from each view form a single,



Table 4: Robustness of BSSD vs Stacking

Data Noise Stacking BSSD Stat.
Set 2 Views Afus Afus Signif

10% 0.70 0.75 yes
Face 20% 0.70 0.75 yes

30% 0.68 0.74 yes
10% 0.52 0.75 yes

Gender 20% 0.53 0.69 yes
30% 0.53 0.66 yes
10% 0.60 0.73 yes

Glass 20% 0.60 0.70 yes
30% 0.57 0.67 yes

Data Noise Stacking BSSD Stat.
Set 3 Views Afus Afus Signif

10% 0.71 0.74 yes
Face 20% 0.70 0.73 no

30% 0.69 0.70 no
10% 0.51 0.71 yes

Gender 20% 0.53 0.61 yes
30% 0.52 0.54 no
10% 0.59 0.73 yes

Glass 20% 0.60 0.67 yes
30% 0.57 0.61 no

concatenated feature space (AdaBoost-Concatenated). All
the three methods, AdaBoost-MV, BSSD, and AdaBoost-
Concatenated, use Naive Bayes [20] as base classifiers for
boosting.

While AdaBoost-Concatenated performs the worst, due
mainly to the curse of dimensionality, BSSD stays on top,
especially in noisy environments. It is clear from the perfor-
mance of both BISD and AdaBoost-MV that the shared sam-
pling mechanism employed by BSSD once again demon-
strates distinct advantage in dealing with noisy data.

6 Discussions
Our experiments show that a simple method like BSSD

consistently outperforms mathematically sophisticated ones
such as SDP. In the case of noisy views, noise is encoded
in the base kernel matrices, which in turn severely degrades
its performance. Robustness against noise however is a fea-
ture that is essential for any data fusion system due to the
very nature of different scenarios where such systems are
employed. For instance, in a multimodal biometric system
it may not be always possible to get the perfect fingerprint
of an individual due to dust being accumulated on the sensor
or a scar on the finger.

In the noise free case, we try to explore the convergence
rate to explain the apparent performance difference. The
SDP generalization error bound is given by [12]

1

n

n∑

i=1
max{1 − yif(xi), 0} +

1
√

n
(4 +

√
2 log(

1

δ
) +

√√√√ C(K)

nγ2
), (2)

Table 5: Robustness of BSSD vs SDP.

Data Noise SDP BSSD Stat.
Set 2 Views Afus Afus Sig

10% 0.70 0.75 yes
Face 20% 0.70 0.75 yes

30% 0.70 0.74 yes
10% 0.46 0.75 yes

Gender 20% 0.49 0.69 yes
30% 0.46 0.66 yes
10% 0.56 0.73 yes

Glass 20% 0.52 0.70 yes
30% 0.52 0.67 yes

Data Noise SDP BSSD Stat.
Set 3 Views Afus Afus Sig

10% 0.70 0.74 yes
Face 20% 0.70 0.73 yes

30% 0.70 0.70 no
10% 0.46 0.71 yes

Gender 20% 0.49 0.61 yes
30% 0.46 0.54 yes
10% 0.56 0.73 yes

Glass 20% 0.52 0.67 yes
30% 0.52 0.61 yes

where C(K) = Eσ maxK∈K σT Kσ with σT ∈ {±1}2n

chosen uniformly randomly, and γ is the margin parameter.
Note that the first term is the empirical error, while the sec-
ond term represents the complexity. Asymptotically (i.e., as
n goes to infinity), we are interested in the complexity terms

in both (2) and (2). From (2), we have Õ(
√

d
nθ2 ). For SDP,

we have Õ(
√
C(K)

nγ ). Here Õ is used to hide all logorithmic
and constant factors. In [12], it is shown that C(K) ≤ 2n2.
The following lemma shows that it is exactly equal to 2n2.
Given a fixed set {K1, ..., Km} of kernel matrices, define
K̃ = {K =

∑m
j=1 µjKj |Kj ≥ 0, µj ∈ <}.

Lemma 5 Let K = K̃ ∪ {yyT |y ∈ {±1}2n. We have the
following Eσ maxK∈K σT Kσ = 2n2.

Proof. Let K = yyT and σ = y. The result follows
immediately.

Thus the complexity term for SDP becomes Õ( 1
γ ). That

is, it does not decrease with n. A similar conclusion is
also observed in [24]. On the other hand, Õ(

√
d

nθ2 ) ap-
proaches 0 when n goes to infinity, given everything else
being fixed. That is, BSSD has a faster convergence rate
than SDP, at least in the way in which the complexity of SDP
is measured. This may explain why BSSD has superior per-
formance over SDP on the data sets we have experimented
with.



7 Summary
We have presented a novel data fusion technique for mul-

timodal learning. We have provided theoretical analysis for
our proposal and shown empirically that our technique sig-
nificantly outperforms several competing techniques on a
number of classification problems and is very robust against
noise, which is essential for any data fusion system that must
operate across the full range of scenarios the system is ex-
pected to encounter. While we have shown experimentally
that shared sampling plays a key role in robustness against
noise, we have yet to provide a precise mathematical state-
ment. In our future research, we plan on applying advanced
concentration inequalities to provide performance bounds
for our shared sampling technique with high confidence.
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