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Porosity Evolution in a Creeping Single Crystal

A. Srivastava, A. Needleman

Department of Materials Science and Engineering, College of Engineering, University of North Texas,
Denton, TX

Abstract. Experimental observations on tensile specimens in [1] indicated that the growth of initially
present processing induced voids in a nickel based single crystal superalloy played a significant role
in limiting creep life. Also, creep tests on single crystal superalloy specimens typically show greater
creep strain rates and/or reduced creep life for thinner specimens than predicted by current theories.
In order to quantify the role of void growth in single crystals in creep loading, we have carried out
three dimensional finite deformation finite element analyses of unit cells containing a single initially
spherical void. The materials are characterized by a rate dependent crystal plasticity constitutive
relation accounting for primary and secondary creep. Two types of imposed loading are considered:
an applied true stress (force/unit current area) that is time independent; and an applied nominal stress
(force/unit initial area) that is time independent. Isothermal conditions are assumed. The evolution of
porosity is calculated for various values of stress triaxiality and of the Lode parameter. The evolution
of porosity with time is sensitive to whether constant true stress or constant nominal stress loading is
applied. However, the evolution of porosity with the overall unit cell strain is insensitive to the mode of
loading. At high values of stress triaxiality, the response is essentially independent of the value of the
Lode parameter. At sufficiently low values of the stress triaxiality, the porosity evolution depends on
the value of the Lode parameter and void collapse can occur. Also, rather large stress concentrations
can develop which could play a role in the observed thickness dependence.

Keywords: creep, superalloy, crystal plasticity, void growth, void collapse, Lode parameter, finite
elements.

1. Introduction

The motivation for this study stems from experimental observations of creep deformation and failure
of a nickel based single crystal superalloy, [1, 2]. Metallographic observations have shown that Ni-
based single crystal superalloys contain micro voids formed during the solidification and homogenization
processes [1,3,4]. A variety of experimental results, e.g. [2,5,6], have shown greater creep strain rates and
reduced creep life for thinner specimens (but still larger than the micron scale at which size dependent
plasticity effects come into play) than is predicted by current theories. This is termed the thickness
debit effect and is typically attributed to some sort of surface damage as in [7–9]. Isothermal creep tests
carried out on plate-like specimens of a PWA1484 nickel-based single crystal superalloy having various
thicknesses and deformed at several stress levels and temperatures in [1,2] showed a thickness debit effect
even at temperatures too low for there to be any significant effect of diffusion or environmental damage.
Void growth was observed in [1] and played a role in the creep failure process.

Here, we analyze void growth in a single crystal matrix using a unit cell model. Each unit cell
contains a single initially spherical void. Isothermal conditions are assumed and we confine attention to
circumstances where diffusion effects have a negligible influence on void growth. Finite deformation finite
element analyses are carried out using a rate dependent crystal plasticity constitutive relation accounting
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for both primary and secondary creep. We consider one initial crystallographic orientation, that in the
experiments in [1, 2], and one initial void volume fraction.

There is a large literature on cell models of porosity evolution aimed at understanding the
micromechanics of ductile fracture and developing damage-type constitutive relations, e.g. [10–21]. The
initial focus was on relatively high values of stress triaxiality where the effect of the stress triaxiality (the
ratio of the first and second stress invariants) is dominant, for example [10–17]. More recently, largely
motivated by experiments of Bao and Wierzbicki [22], modeling the behavior at moderate and low values
of stress triaxiality where the influence of the third stress invariant becomes more prominent has been
receiving much attention, e.g. [18–21]. These studies have been carried out for isotropic solids and for
imposed loadings where the applied stress increases with time.

Hori and Nemat-Nasser [23] analyzed void growth and void collapse in a three dimensional single
crystal matrix with an isolated ellipsoidal void under far field tensile and compressive loading. Void growth
in two dimensional single crystals have been analyzed in [24–27]. Kysar et al. [27] used anisotropic slip
line theory to obtain stress and deformation state around a cylindrical void in a single crystal oriented
such that plane strain conditions are admitted from three effective in-plane slip systems. Void growth
in a single crystal was analyzed in [28–35] using a three dimensional cell model based crystal plasticity
calculation that accounts for void-void interaction effects. Wan et al. [29] and Yu et al. [35] analyzed the
effect of the Lode parameter (a parameter that characterizes the third invariant of stress) on void growth.
It has been shown that the effect of the Lode parameter can depend on crystallographic orientation [35]
and void shape (crack-like or pore-like) [30]. All these results were obtained for monotonically increasing
loading conditions.

For creep loading, Budiansky et al. [36] analyzed deformation of an isolated void in an isotropic
viscous material under a wide range of remote axisymmetric stress states. Based on the void growth
model in [36], Dennis [37] (also see [38]) carried out an analysis of an isolated void in a single crystal and
proposed a failure criterion for the initiation of a microcrack from a void surface in terms of a critical
inelastic strain in the vicinity of the void which in turn was linked to a stress triaxiality dependent critical
relative void volume fraction. Finite deformation analyses of the effect of void interaction and void shape
change on the void growth rate in an isotropic power law creeping matrix were carried out in [39]. For
polycrystalline metals, grain boundary diffusion often plays a significant role, see for example [40, 41].
However, for single crystals this mechanism is ruled out and, at least for one of the temperatures tested
in [1,2], 760◦C, bulk diffusion also was not significant so that dislocation creep was the main deformation
mechanism.

Our analyses focus on the role of stress state on deformation and void growth in ductile single
crystals in the dislocation creep regime. We also explore the possible role of porosity evolution in the
thickness debit effect. We consider two types of imposed loading: in one case the applied true stress
(force/current area) is fixed in time while in the other case the applied nominal stress (force/initial area)
is time independent. For both type of loading we analyze stress states corresponding to various values of
triaxiality (the ratio of hydrostatic to Mises effective stress) and various values of the Lode parameter.
The true stress conditions are of interest for constitutive modeling while the experiments in [1, 2] were
carried out under fixed nominal stress loading conditions. Results are presented for the effects of stress
triaxiality and Lode parameter on the evolution of the void volume fraction and the void shape as well
as for the effect of void shape changes on the stress state that develops in the crystal matrix.

2. Problem Formulation

2.1. Unit cell

We carry out three dimensional cell model analyses of a single initially spherical void in a face centered
cubic (fcc) crystal under tensile creep loading conditions. Cartesian tensor notation is used. The unit cell
is initially cubic with side lengths 2a0 (−a0 ≤ xi ≤ a0) and the initial void radius is r0. The main loading

2
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direction is parallel to the x1 axis and the edges initially parallel to the x2 and x3 axes are required to
remain parallel to their respective axes during deformation which is consistent with, but stronger than,
symmetry about these axes. The fcc crystal is taken to be in a < 001 > (cube) orientation. Symmetry
about each axis is assumed so that only 1/8 of the unit cell needs to be analyzed numerically. The
configuration analyzed is shown in Fig. 1.

Figure 1. A finite element mesh of 1/8 of the unit cell with a spherical void in the center.

Overall tractions are imposed on the faces of the unit cell with the requirement that the cell
boundaries remain planes aligned with the coordinate axes and shear free so that

u1(a0, x2, x3) = U1(t) , T2(a0, x2, x3) = 0 , T3(a0, x2, x3) = 0

u2(x1, a0, x3) = U2(t) , T1(x1, a0 x3) = 0 , T3(x1, a0, x3) = 0

u3(x1, x2, a0) = U3(t) , T1(x1, x2, a0) = 0 , T2(x1, x2, a0) = 0 (1)

The symmetry conditions on the remaining surfaces are

u1(0, x2, x3) = 0 , T2(0, x2, x3) = 0 , T3(0, x2, x3) = 0

u2(x1, 0, x3) = 0 , T1(x1, 0, x3) = 0 , T3(x1, 0, x3) = 0

u3(x1, x2, 0) = 0 , T1(x1, x2, 0) = 0 , T2(x1, x2, 0) = 0 (2)

The macroscopic true (or Cauchy) stresses, Σi, are defined as

Σ1 =
1

a2a3

∫ a2

0

∫ a3

0

σ11(a1, x2, x3)dx2dx3

Σ2 =
1

a1a3

∫ a1

0

∫ a3

0

σ22(x1, a2, x3)dx1dx3

Σ3 =
1

a1a2

∫ a1

0

∫ a2

0

σ33(x1, x2, a3)dx1dx2 (3)

where a1 = a0 + U1, a2 = a0 + U2 and a3 = a0 + U3.
The time histories of the displacements U1(t), U2(t) and U3(t) in Eq. (1) are determined by the

analysis. In one set of calculations, true stresses Σ1, Σ2 and Σ3 are applied and remain constant
throughout the deformation history. In the other set of calculations, the value of the nominal (or
engineering) stress, N1 is required to remain fixed throughout the deformation history. The macroscopic
nominal stress Ni are related to the values of Σi in Eq. (3) by

N1 =
a2a3
a20

Σ1 , N2 =
a1a3
a20

Σ2 , N3 =
a1a2
a20

Σ3 (4)

3
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For both types of imposed loading, the macroscopic true stresses follow a proportional stress history
that is given by

Σ2 = ρ2Σ1 Σ3 = ρ3Σ1 (5)

where ρ2 and ρ3 are constants. Hence, with N1 fixed and proportional true stress values imposed N2

and N3 generally vary during the loading history. However, for uniaxial tensile loading Σ2 = Σ3 = 0,
the values of N2 and N3 also remain zero. Here, calculations with Σ1 fixed (and by Eq. (5) Σ2 and Σ3

fixed) are termed constant true stress calculations while calculations with N1 fixed are termed constant
nominal stress calculations even though N2 and N3 typically vary during the deformation history.

The macroscopic effective stress, Σe, and the macroscopic hydrostatic stress (positive in tension),
Σh, are given by

Σe =
1√
2

√

(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2 Σh =
1

3
(Σ1 +Σ2 +Σ3) (6)

The stress triaxiality χ, is then defined as

χ =
Σh

Σe

=

√
2

3

1 + ρ2 + ρ3
√

(1− ρ2)2 + (ρ2 − ρ3)2 + (ρ3 − 1)2
(7)

The stress triaxiality involves the first and second stress invariants, the influence of the third invariant
is assessed via the Lode parameter, L, which is

L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3
=

2ρ2 − 1− ρ3
1− ρ3

(8)

2.2. Constitutive relation

The crystal plasticity constitutive implementation is based on the UMAT due to Huang [42] as modified
by Kysar [43]. This crystal constitutive formulation follows that in Asaro and Needleman [44] (see also
Asaro [45]). The deformation gradient, F, is written as

F = F∗ · FP (9)

where F∗ is due to stretching and rotation of the crystal lattice and FP is due to crystallographic slip. In
the reference, undeformed lattice, the slip direction and the slip plane normals of the crystal are denoted
by s(α) and m(α), respectively. In the current configuration these are given by

s(α)∗ = F∗ · s(α) m(α)∗ = m(α) ·F∗−1 (10)

Differentiating Eq. (9) with respect to time and combining terms gives

Ḟ ·F−1 = D+Ω = (D∗ +Ω∗) + (Dp +Ωp) (11)

Here, (D∗ +Ω∗) are, respectively, the elastic rate of stretching and spin tensors, and the plastic rate of
stretching, Dp, and spin tensors, Ωp, are given by

Dp =
∑

α

γ̇(α)P(α) Ωp =
∑

α

γ̇(α)W(α) (12)

where γ̇(α) is the rate of shearing on slip system α, and

P(α) =
1

2
(s(α)∗m(α)∗ +m(α)∗s(α)∗) W(α) =

1

2
(s(α)∗m(α)∗ −m(α)∗s(α)∗) (13)

Elastic strains are presumed small so that the lattice Jaumann rate of Cauchy stress, σ̂∗, is given by

σ̂
∗ = σ̇ + σ ·Ω∗ −Ω∗ · σ = L : D∗ − σ(I : D∗) (14)

with L being the tensor of elastic moduli. The corotational stress rate on axes rotating with the material,
σ̂, is given by

σ̂ = σ̇ −Ω · σ + σ ·Ω (15)

4
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The difference between σ̂∗ and σ̂ is

σ̂
∗ − σ̂ =

∑

α

γ̇(α)W(α) · σ −
∑

α

γ̇(α)σ ·W(α) (16)

Defining

ψ(α) = W(α) · σ − σ ·W(α) (17)

and using Eqs. (11) and (12) with Eqs. (14) and (16) gives

σ̂ = (L− σI) : D−
∑

α

γ̇(α)R(α) (18)

since I : D∗ = I : D and with

R(α) = L : P(α) +ψ(α) (19)

The Schmid resolved shear stress is given by

τ (α) = m(α)∗ · σ · s(α)∗ = σ : P(α) (20)

The material modeled is a PWA1484 Ni based single crystal superalloy [2]. The elastic constants
have cubic symmetry and are specified by C11 = 283.3GPa, C12 = 197.5GPa and C44 = 112GPa. The
active slip systems for this material at the temperature of interest are not known. Given the fcc-based
crystal structure, we take the potentially active slip system to be the twelve primary octahedral slip
systems {111} < 110 >.

Slip is assumed to obey Schmid’s law so that the slip rate γ̇(α) only depends on the current stress
state through the slip-system resolved shear stress τ (α). The crystals exhibit both primary and secondary
creep, both of which are represented in terms of power law relations. The initial value of slip on each slip
system is taken to be zero and the evolution of slip on slip system α is given by

γ̇(α) =

{

(1 − β)γ̇M

∣

∣

∣

∣

τ (α)

τ0

∣

∣

∣

∣

M

+ βγ̇N

∣

∣

∣

∣

τ (α)

τ0

∣

∣

∣

∣

N
}

sgn(τ) (21)

where τ0, γ̇M , γ̇N , M and N are material constants and β evolves as

β̇ =
1

t0
(βss − β) (22)

with the initial condition that β = 0 at t = 0 and with βss the steady state value of β and t0 a time
constant that governs the transition from primary to secondary creep. This particular form was fit
to the experimental constant applied nominal stress creep data of Seetharaman and Cetel [2] for the
sheet specimen of thickness 3.18mm at a test temperature of 760◦C and an applied nominal stress of
N1 = 758MPa. The material parameters used in Eq. (21) are τ0 = 245MPa, γ̇M = 1.04 × 10−6s−1,
γ̇N = 1.53 × 10−9s−1, M = 1 and N = 5 and the parameters used in Eq. (22) are βss = 0.998 and
t0 = 1.35×104s. Figure 2 shows the experimental tensile creep curve of ∆l/l0 versus time, where l0 is the
initial length of the specimen gauge section and ∆l is the change in length of the gauge section with the
loading applied in the < 001 > direction. For comparison purposes two computed curves for a fully dense
material using the parameter values given above are also plotted: one with constant nominal stress and
one with constant true stress. The computed and experimental curves with a constant nominal stress are
in good agreement until the time at which the onset of tertiary creep occurs in the experiment.

5
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t (107 s)

∆l
/l 0

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

Experimental (CNS)
Computed (CNS)
Computed (CTS)

Figure 2. Comparison of experimental and computed tensile creep curves for a single crystal of
orientation < 001 >. The experimental creep curve is obtained for constant nominal stress creep loading
and the computed creep curves are shown for both constant nominal stress (CNS) and constant true
stress (CTS) creep loading. The computed curves are for a fully dense material.

2.3. Numerical method

The calculations are carried out using the commercial finite element code ABAQUS standard, version
6.x [46], and using a UMAT based on that developed by Huang [42] and Kysar [43] modified for the creep
relation in Section 2.2. In all calculations the initial values of Σi are prescribed so that Σ1 ≥ Σ2 ≥ Σ3.
In the calculations with fixed values of the true stresses Σi the values of the stress triaxiality χ and the
Lode parameter L directly remain fixed. In the calculations with the nominal stress N1 kept fixed the
values of Σi vary with time so that the fixed stress ratio in Eq. (5) needs to be maintained by controlling
the tractions acting on the surfaces of the unit cell. At each time step the values of Σi are calculated
from Eq. (3). The proportional history of stress state is monitored using the URDFIL user subroutine
in ABAQUS standard 6.x [46] and any deviation in the proportionality constants ρ2 and ρ3 given in
Eq. (5) is counteracted by applying an additional uniform traction on the corresponding surfaces using
the DLOAD user subroutine. The variations in ρ2 and ρ3 were kept within 0.1% over the course of the
loading history. This procedure enables the responses under prescribed true stress conditions and under
prescribed nominal stress N1 to be compared for fixed χ and L values. Prescribed proportional true
stressing is of interest for formulating a phenomenological damage-type constitutive relation while the
interest in prescribed nominal stressing is because that is the condition in the creep experiments in [1,2].

A finite element mesh with C3D20H (20-node hybrid solid elements with quadratic displacement
interpolation and linear pressure interpolation) elements is shown in Fig. 1. Most calculations are carried
out using 916 elements. Convergence was assessed by carrying out calculations with 1250 and 1786
elements for a representative case with χ = 2, L = −1 and fixed Σi. The time to reach an effective creep
strain of Ee = 0.3 was used to assess convergence. For meshes with 916, 1250 and 1786 elements the time
to Ee = 0.3 was 7.2889× 106s, 7.2887× 106s and 7.2885× 106s respectively. The time steps were varied
during the course of the deformation history so that ∆γ(α) on any slip system never exceeded 0.001.

6
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3. Numerical Results

The unit cell analyzed, see Fig. 1, has r0/a0 = 0.267 which gives a void volume fraction of
(4πr30/3)/(2a0)

3 = 0.01. This is selected based on the distribution of porosity in the material in [1].
The average void volume fraction in a Ni-based single crystal material is generally low but these pores
are confined in interdendritic areas [3,4], hence leading to a higher local void volume fraction. This initial
void volume fraction and the crystal properties are the same in all calculations. The loading axis in the
creep tests of [2] is within 10◦ of < 001 > and < 001 > tensile loading is prescribed in the calculations
here.

In the first time step values of Σi are specified that give a value of Σe in Eq. (6) of 750MPa and the
crystal response is taken to be elastic. Calculations are carried out for six values of the stress triaxiality
χ, Eq. (7), and, for each value of χ, for five values of the Lode parameter L, Eq. (8). The stress state is
taken to be such that Σ1 ≥ Σ2 ≥ Σ3. The expressions Eq. (7) and Eq. (8) together with Σe = 750MPa
in Eq. (6) constitute a set of quadratic equations for the stress components. For a given value of χ and L
two sets of values of the stress components are obtained only one of which satisfies the specified inequality
constraint. For example, with χ = 3 and L = −1 the two solutions are: Σ1 = 2750MPa, Σ2 = 2000MPa,
Σ3 = 2000MPa; and Σ1 = 1750MPa, Σ2 = 2500MPa, Σ3 = 2500MPa. A reordering of the second of these
solutions to Σ1 = 2500MPa, Σ2 = 2500MPa, Σ3 = 1750MPa corresponds to χ = 3, L = 1. Similarly for
other combinations of χ and L, the solution that does not satisfy the inequality constraint gives stress
components with the same value of χ and a sign change in L when the stresses are reordered.

The initial stress states together with the values of stress triaxiality χ, the Lode parameter L and
the parameter ω introduced by Nahshon and Hutchinson [20] are shown in Table. 1. The value of ω is
given by

ω = 1−
(

27J3
2Σ3

e

)2

(23)

where, J3 = (Σ1 − Σh)(Σ2 − Σh)(Σ3 − Σh) with Σe and Σh defined in Eq. (6).
For each initial stress state, the creep response under both constant true stress and constant nominal

stress loading is analyzed. For constant true stress creep Σi remains constant through out loading history
whereas for constant nominal stress creep Σi varies during the deformation history.

The parameter ω defined in [20], lies in the range 0 ≤ ω ≤ 1, with ω = 0 for all axisymmetric stress
states and ω = 1 for all stress comprised of a pure shear stress plus a hydrostatic contribution. Thus,
ω does not distinguish between the imposed stress states corresponding to L = −1 and L = 1. In the
following we use the Lode parameter L to characterize the imposed stress state.

The macroscopic effective creep strain is defined as

Ee =

√
2

3

√

(Ec
1 − Ec

2)
2 + (Ec

2 − Ec
3)

2 + (Ec
3 − Ec

1)
2 (24)

where

Ec
1 = ln

(

a1
ã1

)

Ec
2 = ln

(

a2
ã2

)

Ec
3 = ln

(

ac3
ã3

)

(25)

where ãi is the value of ai after the first elastic step.
The calculations proceed with fixed true or nominal stresses until one of the following conditions is

met: (i) 90% loss of ligament in either the x2 or the x3 direction; (ii) void collapse, f/f0 ≈ 0; or (iii)
achieving an effective macroscopic creep strain Ee = 1.5.

3.1. Evolution of the macroscopic creep strain

The time history ofEe for stress triaxiality values χ = 3 and 0.33 and values of the Lode parameter ranging
from −1 to 1 is shown in Fig. 3 under constant true stress creep loading conditions. The transition from

7
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Table 1. Initial values of the stress triaxiality χ, the Lode parameter L, the parameter ω and the initial
macroscopic stresses Σi.

χ L ω Σ1 (MPa) Σ2 (MPa) Σ3 (MPa)

3.00 -1.00 0.00 2750.00 2000.00 2000.00
3.00 -0.50 0.44 2735.36 2111.33 1903.31
3.00 0.00 1.00 2683.01 2250.00 1816.99
3.00 0.50 0.44 2596.69 2388.68 1764.64
3.00 1.00 0.00 2500.00 2500.00 1750.00

2.00 -1.00 0.00 2000.00 1250.00 1250.00
2.00 -0.50 0.44 1985.36 1361.33 1153.31
2.00 0.00 1.00 1933.01 1500.00 1066.99
2.00 0.50 0.44 1846.69 1638.68 1014.64
2.00 1.00 0.00 1750.00 1750.00 1000.00

1.00 -1.00 0.00 1250.00 500.00 500.00
1.00 -0.50 0.44 1235.36 611.32 403.31
1.00 0.00 1.00 1183.01 750.00 316.99
1.00 0.50 0.44 1096.69 888.68 264.64
1.00 1.00 0.00 1000.00 1000.00 250.00

0.75 -1.00 0.00 1062.50 312.50 312.50
0.75 -0.50 0.44 1047.86 423.82 215.81
0.75 0.00 1.00 995.51 562.50 129.49
0.75 0.50 0.44 909.19 701.18 77.14
0.75 1.00 0.00 812.50 812.50 62.50

0.50 -1.00 0.00 875.00 125.00 125.00
0.50 -0.50 0.44 860.36 236.32 28.31
0.50 0.00 1.00 808.01 375.00 -58.01
0.50 0.50 0.44 721.69 513.68 -110.36
0.50 1.00 0.00 625.00 625.00 -125.00

0.33 -1.00 0.00 750.00 0.00 0.00
0.33 -0.50 0.44 735.36 111.32 -96.69
0.33 0.00 1.00 683.01 250.00 -183.01
0.33 0.50 0.44 596.69 388.68 -235.36
0.33 1.00 0.00 500.00 500.00 -250.00

primary to secondary (steady state) creep, governed by the evolution of β in Eq. (22), is essentially
independent of the stress triaxiality and occurs at t ≈ 1.0 × 105s. This corresponds to Ee = 0.061 for
χ = 3 and L = −1 and to Ee = 0.058 for χ = 0.33 and L = −1. The steady state effective creep strain
rate, Ėss, is essentially independent of the value of the Lode parameter and is almost same for χ ≤ 0.75
as for the fully dense material in Fig. 2 which is Ėss = 0.235× 10−7s−1. For greater values of the stress
triaxiality χ there is an effect of χ on Ėss with Ėss increasing to Ėss = 0.438× 10−7s−1 for χ = 3.

For χ = 3, Fig. 3(a), there is a transition to tertiary creep which, as will be shown subsequently, is
associated with necking of the ligament between adjacent voids. Under the creep loading conditions here
the increase in strain rate accompanying necking occurs less abruptly than for the nearly rate independent
materials in [13]. Here, and subsequently, we will identify the time at which tertiary creep begins as the
earliest time at which Ėe/Ėss ≥ 5. With this definition, in Fig. 3(a) where χ = 3 the onset of tertiary
creep occurs at t ≈ 0.32 × 107s. For χ = 0.33, Fig. 3(b), tertiary creep does not occur over the range
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computed and the calculations are terminated either when void collapse occurs or when Ee = 1.5. The
maximum quantitative difference in Fig. 3(b) is between the curves for L = ±1 and L = 0.

The values L = −1 and L = 1 both correspond to axisymmetric stress states. For a fully dense
single crystal, the number of slip systems with the same magnitude of resolved shear stress is the same
and the number of systems with positive and negative values of resolved shear stress are also the same
although the particular slip systems differ. For example, with χ = 0.33, there are four slip systems with
τ = 306.3MPa and four with τ = −306.3MPa for both L = 1 and L = −1. Nevertheless, the responses
with a void differ with different values of Lode parameter in particular at low values of stress triaxiality.
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(a) Stress triaxiality χ = 3
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(b) Stress triaxiality χ = 0.33

Figure 3. Time histories of macroscopic effective creep strain Ee under constant true stress creep
loading for stress triaxiality (a) χ = 3 and (b) χ = 0.33.

The variation of macroscopic effective strain, Ee, with time for all six values of stress triaxiality, χ,
is shown in Fig. 4 for L = −1 and L = 1. Whether or not tertiary creep occurs depends on the value of
the stress triaxiality, χ, and, if it does occur, the value of time at which it occurs also depends on the
value of χ. For L = −1 to L = 1 tertiary creep (as defined here) occurs for χ ≥ 2 and does not occur
for χ ≤ 0.75. The value of χ at which the transition from tertiary creep occurring to no tertiary creep
(over the time computed) does depend on the value of the Lode parameter L. For example, tertiary creep
occurs for χ = 1 and L = −1 at t = 3.5× 107s but for χ = 1 and L = 1, Ėe/Ėss remains less than 5 till
90% loss of ligament. The curves for χ = 0.5 and χ = 0.33 with L = 1 in Fig. 4(b) are terminated before
Ee = 1.5 because void collapse occurred as will be shown in Section 3.2.

The results for constant nominal stress creep loading are shown in Figs. 5 and 6. Under constant
nominal stress creep loading, Σ1 increases with the deformation induced reduction in cross sectional area
perpendicular to the x1 direction, see Eq. (4). In contrast to the results for constant true stress creep
loading, there is a significant dependence on the value of the Lode parameter L for all values of χ in
Fig. 5. In particular, the responses for L = −1 and L = 1 differ significantly. The steady state effective
strain rate for a fully dense material with constant N1 in Fig. 2 is Ėss = 0.355×10−7s−1. There is a small
effect of porosity (with f0 = 0.01) on the steady state creep rate for χ = 0.33; Ėss = 0.395 × 10−7s−1

for χ = 0.33 and L = −1. As for constant Σi loading, the effect of porosity on the secondary creep rate
increases with increasing stress triaxiality being 0.61 × 10−7s−1 for χ = 3 and L = −1. At all values of
χ, the effect of porosity is greater under constant N1 (nominal stress) loading than it is under constant
Σi (true stress) loading.
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(a) Lode parameter L = −1
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(b) Lode parameter L = 1

Figure 4. Time histories of macroscopic effective creep strain Ee under constant true stress creep
loading for Lode parameter (a) L = −1 and (b) L = 1.
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(a) Stress triaxiality χ = 3
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(b) Stress triaxiality χ = 0.33

Figure 5. Time histories of macroscopic effective creep strain Ee for constant nominal stress creep
loading for stress triaxiality (a) χ = 3 and (b) χ = 0.33.

Under constant nominal stress loading, tertiary creep occurs for χ = 0.33. and there is a significant
dependence on the values of Lode parameter L for all values of χ. For example, in Fig. 5(b) where
χ = 0.33 the onset of tertiary creep, i.e. Ėe/Ėss > 5, takes place at t = 0.642× 107s for L = −1 while
it occurs at t = 1.482 × 107s for L = 1. This sensitivity to the value of the Lode parameter decreases
with increasing values of χ. For example, in Fig. 5(a) where χ = 3, the onset of tertiary creep occurs at
t = 0.178× 107s for L = −1 and at t = 0.243× 107s for L = 1. The analyses for L = 0.5 and L = 1 with
χ = 0.33 are terminated after void collapse.
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(b) Lode parameter L = 1

Figure 6. Time histories of macroscopic effective creep strain (Ee) under constant nominal stress creep
loading for Lode parameter (a) L = −1 and (b) L = 1.

The time histories of the effective creep strain Ee for six values of χ and for Lode parameter values
of L = −1 and L = 1 are shown in Fig. 6. For all values of the Lode parameter, a decreasing value of
stress triaxiality decreases the creep rate and delays the onset of tertiary creep for χ ≥ 1. For χ ≤ 1 with
L = −1, Fig. 6(a), the secondary creep rate, Ėss ≈ 0.4 × 10−7s−1, and the onset of tertiary creep are
nearly independent of χ. With L = −1 and χ ≤ 1 the onset of tertiary creep occurs at t ≈ 0.6 × 107s.
For L = −1 the calculations for χ = 0.5 and 0.33 were terminated at Ee = 1.5.

In Fig. 6(b) where L = 1 Ėss ≈ 0.35 × 10−7s−1 for χ ≤ 1. The onset of tertiary creep takes place
at t = 1.34 × 107s for χ = 1 and at t = 1.48 × 107s for χ = 0.33. With L = 1 void collapse occurs for
χ = 0.5 and 0.33.

One feature common to all cases analyzed, both constant true stress loading and constant nominal
stress loading, and for values of the Lode parameter, is that for values of the stress triaxiality χ ≥ 0.75
the analyses were terminated due to necking down of the ligament between adjacent voids giving a 90%
loss of ligament.

3.2. Evolution of the porosity

The void volume fraction is defined as f = (Vcell − VM )/Vcell where Vcell is the current cell volume and
VM is the current material volume (the small elastic volume change is neglected) and f/f0 is the relative
void volume fraction.

Plots of relative void volume fraction f/f0 versus time are shown in Fig. 7 for χ = 3. The evolution
of porosity is essentially independent of the value of the Lode parameter L for constant true stress creep
loading, Fig. 7(a), whereas there is a significant dependence on L for constant nominal stress creep
loading, Fig. 7(b). The void growth rate initially decreases as creep deformation shifts from primary to
secondary creep, reaches a minimum value and then increases. The onset of tertiary creep (as defined
here) is marked by the circles in Fig. 7. The earliest onset of tertiary creep in Fig. 7(b) occurs for L = −1
and the latest for L = 1. Due to the increase in imposed true stress under constant nominal stress loading
the void growth rate is greater at any given time than that under constant true stress loading.

With χ = 0.33 in Fig. 8 the relative void volume fraction decreases after an initial increase. In Fig. 8
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(a) Constant true stress creep loading for χ = 3
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(b) Constant nominal stress creep loading for χ = 3

Figure 7. Plots of relative void volume fraction f/f0 versus time t for stress triaxiality χ = 3. (a)
Constant true stress creep loading. (b) Constant nominal stress creep loading. The onset of tertiary
creep for the Lode parameter values L = −1 and L = 1 is marked by a circle.
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(a) Constant true stress creep loading for χ = 0.33
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(b) Constant nominal stress creep loading for χ = 0.33

Figure 8. Plots of relative void volume fraction f/f0 versus time t for stress triaxiality χ = 0.33. (a)
Constant true stress creep loading. (b) Constant nominal stress creep loading.

f/f0 is independent of the value of the Lode parameter in the early stages of deformation. For χ = 0.33
and L = −1 in Fig. 8(a), the relative void volume fraction increases to a maximum with f/f0 > 1 and
saturates to f/f0 ≈ 1. For χ = 0.33 and L ≥ −0.5, after an initial increase f/f0 decreases. As seen
in Fig. 8 f/f0 decreases more rapidly under constant nominal stress loading than under constant true
stress loading. This because under constant nominal stress loading the increasing value of Σ1 leads to an
increasing strain rate. The rate of decrease of porosity increases with increasing Lode parameter value
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(c) Stress triaxiality χ = 0.5
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(d) Stress triaxiality χ = 0.33

Figure 9. Evolution of the relative void volume fraction f/f0 as a function of the macroscopic effective
creep strain Ee for various values of the stress triaxiality. (a) χ = 3. (b) χ = 1. (c) χ = 0.5. (d)
χ = 0.33. The data is for constant true stress creep loading. However, the calculations for constant
nominal stress loading give nearly the same results.

under constant true stress loading whereas the rate decreases with increasing value of Lode parameter
under constant nominal stress loading. For instance the time to void collapse, f/f0 ≈ 0, under constant
true stress loading for L = −0.5 is t ≈ 4.5×107s and for L = 1 it is t ≈ 4.2×107s. Under constant nominal
stress loading the time to void collapse for L = −0.5 is t ≈ 1× 107s and for L = 1 it is t ≈ 1.5× 107s.

Figure 9 shows plots of relative void volume fraction f/f0 versus macroscopic effective creep strain
Ee under constant true stress loading. The corresponding results for constant nominal stress loading are
nearly the same. For a given stress triaxiality the evolution of relative void volume fraction with respect
to macroscopic creep deformation is not strongly dependent on the type of creep loading. Hence, the
main difference between these two types of imposed loading is the different strain histories that occur.
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(a) Lode parameter L = −1

Ee

l r

0 0.3 0.6 0.9 1.2 1.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 χ = 3
χ = 2
χ = 1
χ = 0.75
χ = 0.5
χ = 0.33

(b) Lode parameter L = 0
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(c) Lode parameter L = 1

Figure 10. Progressive loss of relative ligament (lr = (a3 − r3)/(ã3 − r̃3)) in the x3 direction under
constant true stress creep loading for various values of the stress triaxiality χ and the Lode parameter
L. (a) L = −1. (b) L = 0. (c) L = 1.

The evolution of the void volume fraction, at least with the constitutive description used in our analyses,
mainly depends on the creep strain.

The evolution of porosity with Ee shows no dependence on the values of the Lode parameter until a
stress triaxiality dependent value of Ee is reached. The value of Ee at which f/f0 depends on the value
of the Lode parameter increases with decreasing stress triaxiality until χ = 0.75. For example, for χ = 3
the effect of Lode parameter value is seen for Ee > 0.25 and for χ = 1 the effect of Lode parameter value
is seen for Ee > 0.6. On the other hand, the dependence of f/f0 on the Lode parameter value for χ = 0.5
occurs for Ee > 0.3 and for χ = 0.33 this dependence can be seen for Ee > 0.2.

In Fig. 9(a) for χ = 3, f/f0 is maximum for L = −1 and minimum for L = 1 at any given Ee > 0.25.
Whereas for χ = 1 in Fig. 9(b) the value of f/f0 is smaller for L = 0 than that for L = ±1 at any given
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Ee > 0.6. For void growth in an fcc single crystal unit cell analyses under monotonically increasing load
for χ ≥ 1 Wan et al. [29] and Yu et al. [35] observed a smaller void volume fraction at a given strain
for L = 0 than for L = ±1. The analyses here for χ ≥ 0.75 were terminated after 90% loss of ligament
and f/f0 at the end of these analyses was found to decrease with increasing Lode parameter value. For
example, for χ = 1 and L = −1, 0 and 1, f/f0 = 12.3, 7.6 and 5.71 at the end of the analysis, respectively.

In Fig. 9(c) where χ = 0.5 void collapse occurs for L = 1 while in Fig. 9(d) where χ = 0.33 void
collapse occurs for both L = 1 and L = 0.5. In other cases in Figs. 9(c) and 9(d) the calculations were
terminated on reaching Ee = 1.5. These results indicate that void collapse for χ = 0.5 and 0.33, or
an evolution toward void collapse can occur, for some values of Lode parameter at low values of stress
triaxiality even when χ is positive. Budiansky et al. [36] found void collapse in an axisymmetric analysis
of an isolated void in a power law creeping solid with Σ1 = Σ2 and Σ3/Σ1 = −0.5 which corresponds to
χ = 0.33 and L = 1.

The necking down between voids is quantified in terms of the evolution of the smallest ligament
length between voids. For values of stress triaxiality and Lode parameter analyzed here the x3 direction
is the direction with the minimum value of Σi, Table. 1, and necking down between voids generally takes
place in the x3 direction. With L = −1 Σ2 = Σ3 and there is simultaneous necking down in the x2 and
x3 directions. However, the ligament length in the x3 direction can still be used to characterize necking.

The relative ligament length in this direction is lr = (a3 − r3)/(ã3 − r̃3), where a3 and r3 are,
respectively, the current cell length and void size along the x3−axis, and ã3 and r̃3 are, respectively, the
cell length and void size along the x3−axis after the first elastic step. Plots of lr versus Ee are shown in
Fig. 10 for L = −1, 0 and 1. The results in Fig. 10 are shown for constant true stress creep loading. The
results for constant nominal stress creep loading are nearly the same.

There is a significant difference between the responses with L = −1 and L = 1 in Fig. 10. With
L = −1, Σ2 = Σ3 there is simultaneous necking in the ligament between adjacent voids in the x2 and x3

directions, whereas for L = 1, Σ1 = Σ2 necking between adjacent voids only occurs in the x3 direction.
The necking down of the ligament is mainly responsible for the rapid increase in void growth rate during
tertiary creep regime for χ = 3 and 2 and, as discussed, void growth occurs more slowly with strain with
increasing Lode parameter value.

Figure 10 shows the variation of the ligament length lr for L = −1, 0 and 1. For χ ≥ 0.75 lr decreases
to ≈ 0.1 for Ee ≤ 1.5. There is, as expected, a strong dependence on the strain to reach lr = 0.01 on the
value of χ. For L = −1 a strain is reached at which lr decreases rapidly for χ ≥ 0.75. For L = 1 this
rapid decrease only occurs for χ = 3 and 2 although there is an increases in the magnitude of the slope
for χ = 1 and (slightly) for χ = 0.75. For L = 0, there is only a rapid increase in slope magnitude for
χ = 3 and 2; for χ = 1 and 0.75 there is a very gradual decrease in ligament which is associated with
the Poisson area reduction with increasing strain rather than a more or less abrupt necking down. The
results show that under creep loading there is a gradual transition depending on stress triaxiality and
Lode parameter between necking down between voids that can occur at relatively small strains and a
gradual decrease in distance between voids that requires much larger strains.

3.3. Evolution of the void shape

We characterize the void shape by two ratios: (i) r3/r1 where r1 is the void size along the x1−axis and
r3 is the void size along the x3−axis; and (ii) r3/r2 where r2 is the void size along the x2−axis. The ratio
r3/r1 gives the gives the ratio of the minimum cross sectional radius to that in the loading direction while
r3/r2 is the ratio of the void sizes along the coordinate axes in the plane perpendicular to the loading
direction.

Figure 11 shows the evolution of the radius ratios with effective creep strain Ee for L = −1 and for
constant true stress loading (the curves for both constant true stress and constant nominal stress loading
are essentially identical). In Fig. 11(a) for χ ≥ 2 the ratio r3/r1 initially decreases and then increases
indicating the necking down of the ligament between adjacent voids. For χ = 1 there is an increase in

15

15 
Approved for public release; distribution unlimited.



Ee

r 3/r
1

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2 χ = 3
χ = 2
χ = 1
χ = 0.75
χ = 0.5
χ = 0.33

(a) r3/r1

Ee

r 3/r
2

0 0.3 0.6 0.9 1.2 1.5
0

0.2

0.4

0.6

0.8

1

1.2

χ = 3
χ = 2
χ = 1
χ = 0.75
χ = 0.5
χ = 0.33

(b) r3/r2

Figure 11. Evolution of void radius ratios for various values of the stress triaxiality χ with the Lode
parameter L = −1. (a) r3/r1. (b) r3/r2.
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Figure 12. Evolution of void radius ratios for various values of the stress triaxiality χ with the Lode
parameter L = 0. (a) r3/r1. (b) r3/r2.

r3/r1 just before the calculation is terminated at Ee ≈ 1. For smaller values of χ the value of r3/r1
monotonically decreases during the deformation history so that the void becomes prolate.

The value of the Lode parameter L = −1 corresponds to an axisymmetric state of stress,
Σ1 > Σ2 = Σ3, with the x1−axis being the symmetry axis. The radius ratio r3/r2 remains close to
unity, Fig. 11(b), for the range of stress triaxiality values analyzed in the current work. However the void
cross sectional shape depends on the stress triaxiality value. For χ = 0.33, where void interaction effects
are not significant and no necking down of the ligament between voids occurs, the cross sectional shape
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Figure 13. Evolution of void radius ratios for various values of the stress triaxiality χ with the Lode
parameter L = 1. (a) r3/r1. (b) r3/r2.

remains essentially circular. For χ = 3 necking down of the ligament in the x2 and x3 directions leads to
a rapid increase in the void radii in these directions whereas void growth in off-axis directions is less so
that the void cross section is not circular. The largest deviation from a circle occurs at 45◦. For example,
the radius ratio r45◦/r3 = 0.91 for χ = 3 and L = −1 at an effective creep strain Ee = 0.322 which is
when there is 90% loss of ligament.

For L = 0, Fig. 12, r3/r1 and r3/r2 decrease initially for χ ≥ 2 but then increase for L = −1. For
χ = 1 both radius ratios eventually level off while for χ = 0.5 and 0.33 the void predominantly elongates
in the x1 direction which is the major stress axis. Both r3/r1 and r3/r2 approach zero with χ = 0.33
indicating void collapse.

The trends for the variation of r3/r1 and r3/r2 for L = 1 in Fig. 13 are qualitatively similar to those
for L = 0 in Fig. 12 but with void collapse occurring for χ = 0.5 as well as for χ = 0.33. For χ = 1 and
0.75, the radius ratio r3/r1 increases due to void interaction effects in the x3 direction, but the values
remain well below unity over the entire deformation history leading to the formation of an oblate shape
(largest cross section perpendicular to the direction of loading). Although not shown here r2/r1 ≈ 1
throughout the deformation history for all values of stress triaxiality χ for L = 1 since the x3−axis is the
axis of symmetry, with Σ1 = Σ2. It is worth noting that for high stress triaxiality, χ ≥ 2, the void radii
along all three axes increase for all Lode parameter values. For smaller values of χ, r3 decreases during
the deformation history so that the void becomes oblate.

Figure 14 shows the void shapes obtained for L = −1, 0 and 1 and for three values of stress triaxiality
χ = 3, 1 and 0.33. For all values of L, the void is essentially spherical for χ = 3. For L = −1 and χ = 1 the
void is a prolate spheroid (largest cross section along the loading direction) and needle-like for χ = 0.33.
For L = 0 the void has a three dimensional shape for χ = 1 and is like an elliptical crack for χ = 0.33.
For L = 1 the void evolves into a shape like that of an oblate spheroid for χ = 1 and like that of a penny
shaped crack for χ = 0.33 (and also for χ = 0.5 not shown here).
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(a) Lode parameter, L = −1 (b) Lode parameter, L = 0

(c) Lode parameter, L = 1

Figure 14. The void shape for various values of the Lode parameter for χ = 0.33 at Ee = 0.8, χ = 1
at Ee = 0.8 and χ = 3 at Ee = 0.3. (a) L = −1. (b)L = 0. (c)L = 1.

3.4. Stress distributions

Distributions of σ11 normalized by the current value of the applied stress Σ1 for χ = 0.33 are shown
in Fig. 15. Figure 15(a) shows distributions for L = −1 and Fig. 15(b) for L = 1. The value of Σ1

is constant throughout the deformation history under constant true stress loading but the value of Σ1

changes with the change in cross sectional area under constant nominal stress loading. For both types of
imposed loading the distributions of σ11/Σ1 at a given value of Ee are nearly same and the distributions
in Fig. 15 (and in Fig. 16) are for constant Σ1 loading. The three values of strain shown in Fig. 15 are:
(i) after the first elastic step, denoted as Ee = 0; (ii) at Ee = 0.2; and (iii) at Ee = 0.8.

After the first elastic step, Σ1 = 750MPa and the maximum value of the stress ratio, σ11/Σ1 is 1.77.
This maximum occurs at the circumference of the void on the x2 − x3 plane. For L = −1 at Ee = 0.2
in Fig. 15(a) the maximum value of σ11/Σ1 has decreased to 1.29. This corresponds to maximum
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(a) Lode parameter, L = −1

(b) Lode parameter, L = 1

Figure 15. Distributions of normalized stress σ11/Σ1 after the first elastic step and at Ee = 0.2 and
0.8 under constant true stress creep loading for stress triaxiality χ = 0.33. (a) L = −1. (b) L = 1.

σ11 = 968MPa under constant true stress loading but to 1189MPa under constant nominal stress loading
since Σ1 has increased to 922MPa due to the reduction in cross sectional area. At Ee = 0.8 the maximum
stress concentration has shifted towards the tip of the void which has taken on a needle-like shape and
the maximum value of σ11/Σ1 is 1.63. The maximum σ11 under constant true stress creep loading is
1222MPa and is 2.69GPa under constant nominal stress loading since Σ1 = 1.65GPa at Ee = 0.8.

For χ = 0.33 and L = 1, Fig. 15(b), Σ1 = 500MPa after the first elastic step and the peak value of
σ11/Σ1 is 2.37 and occurs at the circumference of the void in x2−x3 plane. Under constant nominal stress
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(a) Lode parameter, L = −1

(b) Lode parameter, L = 1

Figure 16. Distributions of normalized stress σ11/Σ1 after the first elastic step and at Ee = 0.2 under
constant true stress creep loading for stress triaxiality χ = 3. (a) L = −1. (b) L = 1.

creep, Σ1 increases to 554MPa at Ee = 0.2. At Ee = 0.2 the maximum stress concentration is still on the
x2 − x3 plane but has slightly shifted away from the void surface and has increased to σ11/Σ1 = 2.66 so
that the maximum values of σ11 are 1.33GPa and 1.47GPa for constant true stress and constant nominal
stress loading, respectively. For χ = 0.33 and L = 1 at Ee = 0.8, void collapse has led to the void
evolving into a shape like that of a penny shaped crack. The maximum value of σ11/Σ1 has increased to
2.79 and occurs near the tip. Under constant nominal stress loading Σ1 = 751MPa at Ee = 0.8 leading
to σ11 = 2.10GPa at the point of maximum stress concentration while σ11 = 1.40GPa for constant true
stress loading.

Distributions of σ11/Σ1 for χ = 3 and L = −1 and L = 1 are shown in Fig. 16. At Ee = 0
Σ1 = 2750MPa for L = −1 and Σ1 = 2500MPa for L = 1; the maximum value, σ11/Σ1 = 1.48, is the
same for both L = −1, Fig. 16(a), and L = 1, Fig. 16(b). At Ee = 0.2 the peak value of σ11/Σ1 is 1.83
for L = −1 and 2.11 for L = 1. For L = −1 the maximum value occurs at the center of the ligament
between adjacent voids along both the x2 and x3 axes, Fig. 16(a). For L = 1 at Ee = 0.2 the maximum
value is attained only along the x3 axis. At Ee = 0.2 the maximum stress values are 5.0GPa for L = −1
and 5.3GPa for L = 1 under constant true stress loading.
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4. Discussion

Our analyses were motivated by the experiments in [1,2] on creep of a nickel based single crystal superalloy
under uniaxial tensile loading. Since our aim is to model porosity evolution in creep we considered applied
stresses (of one kind or another) not varying with time. In the experiments the applied nominal stress was
fixed so that type of loading was imposed in our calculations. However, for comparison purpose as well
as to provide a basis for developing a phenomenological creep damage constitutive relation the response
under time constant true stresses applied to the unit cell was also analyzed. This latter type of loading is
analogous to the type of loading applied in the ductile fracture oriented studies. Although the imposed
loading in the crystals tested in [1,2] was uniaxial tension, say due to constraint or inhomogeneity effects,
the stress state can differ and, in particular, there can be regions of locally enhanced stress triaxiality as
well as local variations in the value of the Lode parameter.

The calculations show that the time history of deformation and porosity depends on which type of
creep loading is imposed. However, when the evolution of void volume fraction and shape is considered
as a function of a measure of the overall creep strain, the results from the two types of imposed loading
essentially coincide. This is not particularly surprising because (except for the effect of elasticity) the
slip system resolved shear stress-resolved shear strain relation is history independent. If the slip system
flow rule were strongly history dependent this conclusion would not hold. Another simplification in the
crystal constitutive relation is that only self hardening has been considered. It is worth noting that with
porosity evolution considered as a function of strain, our results exhibit many of the same qualitative
features regarding the dependence on stress triaxiality and Lode parameter values as those found in
ductile fracture oriented cell model studies.

In our analyses we have considered one value of initial applied Mises effective stress. The initial
applied Mises effective stress is time independent under constant true stress creep loading whereas it
increases with time under constant nominal stress creep loading. In the absence of experimental creep
data at different stress levels at 760◦C for the material tested in [1,2] we used a representative value for the
secondary creep slip system power law exponent. Since, at least with this constitutive characterization,
the creep response is essentially history independent and the void shape changes mainly occur when the
material is in the secondary creep regime, we expect that the macroscopic stress dependence will exhibit
this same power law relation. Additional parameter studies are needed to determine the orientation
dependence of the porosity evolution. The results of such analyses together with the constant true
stress results obtained here could provide the background for developing a phenomenological constitutive
relation using a framework such as in [47].

We have used the Lode parameter to characterize the role of the third invariant of the applied
stress. Another parameter that could be used for that purpose is the parameter ω in Nahshon and
Hutchinson [20] which has the convenient feature that it lies between zero and one. The value of ω is zero
for all axisymmetric stress states. The value of the Lode parameter can be 1 or −1 for an axisymmetric
stress state (two of the applied stresses on the unit cell equal). Our three dimensional analysis of void
growth showed that significantly different void evolution histories are possible for L = 1 and L = −1
because the results depend on which plane contains the two equal stresses.

Budiansky et al. [36] found that an isolated initially spherical void in an isotropic matrix under
power law creep for high stress triaxiality tends to become a prolate spheroid for stress ratios giving
L = −1 whereas it tends to become an oblate spheroid for stress ratios giving L = 1. Here, for those
loading conditions the same shape evolution occurs until void interaction effects come into play and the
void aspect ratio then tends to increase and three dimensional void growth is observed. Similar void
interaction effects were seen in [39] for an initially spherical void in an isotropic axisymmetric (L = −1)
unit cell under power law creep at high stress triaxiality. For uniaxial tension with χ = 0.33 and L = −1,
Budiansky et al. [36] found that the void predominantly elongates in the loading direction leading to a
needle-like shape. Whereas for χ = 0.33 and L = 1 the void collapses forming a penny-shaped crack. In
our cell model calculations at low stress triaxiality values void interaction effects are not dominant and
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the void shape in our analyses evolves as in [36].
With reducing thickness of the sheet specimens Srivastava et al. [1] found that local cleavage played

a significant role in the observed creep rupture process whether environmental effects were dominant or
not. Our analyses suggest that the high local stresses that develop in the ligament between voids could
precipitate cleavage which would lead to an abrupt loss of load carrying area. This then would increase
the stress on the remaining load carrying material and so act to precipitate further cleavage. This loss of
area would be more damaging for thinner cross-sections. This could account for a thickness debit effect
in Ni-based single crystal superalloys in circumstances where surface damage effects do not come into
play.

5. Conclusions

Finite deformation finite element analyses of void growth in an fcc crystal under isothermal creep loading
conditions were carried out. The slip system constitutive relation modeled primary and secondary creep.
A unit cell was analyzed for crystals with a < 001 > orientation and with a fixed initial void volume
fraction of 0.01. The effect of stress triaxiality values (the ratio of mean normal true stress to Mises
effective stress) between 0.33 and 3 and Lode parameter values between −1 and 1 was considered for
both constant applied true stress loading and for constant applied nominal stress loading. For both types
of loading proportional true stress ratios were maintained. The results show that:

1. For fixed values of the stress triaxiality and Lode parameter, the mode of creep loading (constant
applied true stress or constant applied nominal stress) has a significant effect on the time histories
of the macroscopic effective creep strain and the void volume fraction. This dependence is more
pronounced at low values of the stress triaxiality.

2. The effect of imposed loading type stems from the loading mode dependence of the macroscopic
effective creep strain. The dependence of the void volume fraction and shape evolution on the
macroscopic effective creep strain is independent of whether constant true stress or constant nominal
stress creep loading is applied. The main features of this dependence are similar to the observations
in previous cell model analyses of void growth under monotonically increasing loading.

3. There is no significant effect of the value of the Lode parameter at high values of the stress triaxiality.
At low values of the stress triaxiality the evolution of void volume fraction (including whether or not
void collapse occurs) and the void shape evolution can be strongly dependent on the Lode parameter
value.

4. Due to void growth and the change in void shape the local stress magnitude in the void vicinity
generally increases with time. For low values of the stress triaxiality, stress concentration factors
exceeding 2.5 were found.

5. A possibility, for certain materials, is that locally high stresses could initiate cleavage before void
coalescence occurs. The associated loss of stress carrying capacity would be more pronounced for
thinner specimens and this could lead to a thickness debit effect.
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