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 In Situ Estimation of Applied Biaxial Loads with Lamb Waves 
 

 

Fan Shi, Jennifer E. Michaels and Sang Jun Lee 
 

School of Electrical and Computer Engineering, Georgia Institute of Technology, 

Atlanta, GA, USA 30332-0250 
 

 

ABSTRACT. Spatially distributed arrays of piezoelectric discs are being applied to monitor the 

integrity of critical metallic structures using guided elastic waves.  These transducers are 

subjected to in situ operational and environmental conditions, and stress variations are of 

particular importance because of their cumulative effects on the fatigue life of the structures.  

Waves propagating between array elements are directly affected by applied loads because of 

both dimensional changes and the acoustoelastic effect.  In particular, changes in phase velocity 

are a function of the direction of propagation for a particular Lamb wave mode and frequency.  

This paper shows from numerical solutions of the acoustoelastic wave equation that it is possible 

to decouple the effects of a homogeneous biaxial stress into its two principal components.  As a 

consequence of this decoupling combined with material isotropy, the acoustoelastic response of 

guided waves is described by only two constants, both of which can be determined from a single 

uniaxial loading experiment.  Furthermore, an arbitrary biaxial load can be estimated from time 

shifts of signals recorded between array elements.  The method is validated experimentally by 

recording load-dependent data during fatigue tests.  The additional impact of interference 

between guided waves and opened cracks is mitigated by removal of data from some transducer 

pairs.  Results show that applied stresses can be successfully recovered from the measured 

changes in guided wave signals even in the presence of significant fatigue damage.  

 

Keywords:  Guided Waves, Acoustoelasticity, Applied Loads 
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I. INTRODUCTION 

Metallic plate-like structures are widely used in the construction of engineering structures such 

as are common for aerospace, automotive and civil applications.  The fatigue life of these 

structures is critical for the safety of users.  However, vibrations and large deflections during 

normal operation cause stresses that cause damage and limit fatigue life.  Thus, in situ 

measurements of stresses are important to ensure the quality of metallic plate-like materials, and 

it is advantageous to utilize the guided wave transducers that are already in place for damage 

detection.  Furthermore, recording data during variable applied stress conditions is useful for 

selecting appropriate baseline data for various structural health monitoring methods using guided 

waves [1].  

 

Most nondestructive evaluation techniques to estimate stresses are based upon acoustoelastic 

theory [2], which refers to the variation of ultrasonic wave speeds with applied or residual 

stresses.  Pao et al. [3, 4] provided a detailed summary of acoustoelastic theory of bulk waves, 

and derived several formulae to calculate residual stresses, including acoustoelastic birefringence 

techniques.  Degtyar and Rokhlin [5] also developed an approach to simultaneously calculate 

stresses and stress-dependent elastic constants by inverting the angle dependence of phase 

velocities as measured with bulk waves.   

 

When stresses are concentrated near the surface, it is more appropriate to employ surface waves 

for their measurement.  For example, noncontact acoustic microscopy was applied to measure 

acoustoelastic constants and residual stresses via surface waves [6].  Duquennoy et al. [7, 8] 

derived theoretical formulae to calculate surface wave acoustoelastic constants directly from 2
nd

 

and 3
rd

 order elastic constants measured using bulk waves.  Junge et al. [9] introduced a method 
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to recover stresses from the polarization of surface waves instead of wave speed changes because 

polarization is more sensitive to applied stresses than relative phase velocities.  Both bulk and 

surface wave methods that rely upon absolute measurements of velocity are adversely affected 

by anisotropic texture effects and surface roughness, although differential methods that measure 

changes in wave speed from an unstressed reference state are much less affected.  

         

Acoustoelastic effects have also been investigated for propagation of guided waves in rod-like 

structures supporting a single direction of propagation.  In the domain of prestressed tendons or 

cable stays, Rizzo and Scalea [10] experimentally investigated the effects of frequency on 

acoustoelastic sensitivity in a bar to enable selecting a frequency that maximizes the sensitivity 

of the stress monitoring technique.  Chen and Wilcox [11] developed a finite element technique 

for modeling the dispersion relationship of guided wave propagation in prestressed cable-like or 

rail-like structures, and compared it with an Euler-Bernoulli beam model regarding the 

sensitivity of certain modes and frequencies to applied loads.  Loveday and Wilcox [12] used the 

semi-analytical finite element method to reduce the complexity of the 3-D finite element 

formulation into discretization of a 2-D mesh, and analyzed measurement of axial loads in rail-

like structures.  Chaki and Bourse [13] developed a method to optimize the measurement of 

uniform axial stress in steel strands by taking acoustoelastic and geometrical considerations into 

account.  Bartoli et al. [14] proposed a methodology using nonlinear ultrasonic waves to monitor 

prestress levels in tendons by measuring the nonlinear parameter β as a function of applied 

stresses.  
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Less research has been focused on guided waves in plate-like structures because of the added 

complexity of considering both 2-D applied stresses (i.e., biaxial vs. uniaxial) and 2-D guided 

wave propagation.  Desmet et al. [15] theoretically determined guided wave dispersion curves 

for stressed polymer foils and compared them with experimental results, but neglected third-

order elastic constants due to the small values of stress applied.  Lematre et al. [16] studied the 

dispersion characteristics of Lamb wave propagation in a piezoelectric plate with a uniform 

applied stress, but did not report results for either biaxial loads or propagation at an angle to a 

uniaxial load.  Zagrai et al. [17] experimentally measured acoustoelastic guided wave signal 

responses for wave propagation parallel and perpendicular to applied uniaxial stresses.   

          

       To the best knowledge of the authors, published methods using Lamb waves to monitor stress 

levels consider only guided waves propagating parallel or perpendicular to the direction of an 

applied, uniaxial stress.  However, for operation under realistic conditions, near-homogeneous 

stresses in plate-like structures are in general biaxial with unknown principal directions.  The 

motivation of this paper is to develop a strategy for in situ estimation of a general homogeneous, 

biaxial stress field using a spatially distributed array of guided wave sensors, which is an 

extension of work reported in [18].  

 

       This paper is organized as follows.  Section II presents the theory, which includes a description 

of the geometry of the plate and the estimation methodology.  Section III is the numerical 

verification of proposed methodology.  Experimental results are presented and discussed in 

Section IV, and concluding remarks are made in Section V. 
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II. THEORY 

The primary effect of an applied load on guided wave propagation is a time shift ∆t of a received 

guided wave signal, which is caused by both changes in phase velocity and dimensions of the 

plate.  As is well-known for bulk wave acoustoelasticity [3], analysis can take place in either a 

natural coordinate system, where all spatial variables are measured relative to the unstressed 

material, or an initial coordinate system, where variables are relative to the stressed specimen.  

Here the natural system is convenient to use because the transducers are permanently affixed to 

the plate and in the natural system, the separation distance does not change.  Thus, the change in 

phase velocity ∆cp in this natural system can be calculated from the measured time shift ∆t as 

follows [19]: 

2

p p

t
c c

d


   . (1) 

 

Here cp is the phase velocity at zero load and d is the distance between transducers in the natural 

coordinate system.  In this paper, Eq. (1) is used to extract phase velocity changes from 

experimentally measured time shifts ∆t.  

 

 

To describe guided wave propagation in an aluminum plate of thickness h with biaxial applied 

stresses in the plane of the plate, a coordinate system is introduced as defined in Fig. 1.  The 

unknown biaxial stresses σ11 and σ22 are assumed to be applied along the x1 and x2 axes of the 

rectilinear coordinate system xi, from which a measurement coordinate system, indicated by xiʹ, 

is rotated by an angle α.  It is further assumed that ultrasonic guided waves are propagating along 

a direction in the x1-x2 plane that makes an angle θ with respect to the x1 axis and θʹ with respect 

to the x1ʹ axis. 
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Gandhi et al. [19] have developed theory to calculate dispersion curves for Lamb wave 

propagation in prestressed plates with biaxial applied loads.  Details of the theory are reported 

in [20].  Using software developed by Gandhi [20], dispersion curves for different propagating 

angles are plotted in Fig. 2(a) over a narrow frequency range for the S0 fundamental guided wave 

mode, which illustrates the anisotropic effect caused by an applied anisotropic load.  Fig. 2(b) 

shows changes of phase velocity with respect to propagation angle for this same mode and a 

frequency of 400 kHz.  As noted by Gandhi [20], it can be seen that there is a sinusoidal relation 

between angle of propagation and change in phase velocity ∆cp. 

  

Based on this sinusoidal dependence, equations that describe the relation between phase velocity 

change and propagation angle for uniaxial applied stresses at 0° and 90° have the following 

forms:                    

22

2 2

11 1 20
( ) ( cos sin )pc K K


   


   , (2) 

11

2 2

22 3 40
( ) ( cos sin )pc K K


   


   . (3) 

 

In these equations, ∆cp is the change of phase, θ is the direction of guided wave propagation in 

the principal (unprimed) coordinate system, and K1, K2, K3 and K4 are the four acoustoelastic 

constants for the particular frequency, mode and applied stress direction.  Similar equations have 

been used for bulk and surface waves although the corresponding acoustoelastic constants are 

independent of frequency [3].  For an isotropic plate, the four acoustoelastic constants can be 

reduced to two (i.e., K1 = K4, K2 = K3) because of symmetry.  We hypothesize that the linear 

combination of Eqs. (2) and (3) describes the change of phase velocity for an applied biaxial 

stress: 
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2 2

1 11 2 22 2 11 1 22( ) ( )cos ( )sinpc K K K K           . (4) 

This equation is written in the unprimed coordinate system where the principal axes of the 

applied stress are aligned with the coordinate axes.  However, measurements are made in the 

primed coordinate system, which is rotated by an angle α from the principal axis system.  In this 

system, changes in phase velocity are, 

2 2

1 11 2 22 2 11 1 22

0 1 2

( ') ( )cos ( ) ( )sin ( )

cos(2 ) sin(2 ).

pc K K K K

a a a

        

 

       

   

 

(5) 

The coefficients ai are, 

  

1

0 1 2 11 222
( )( )a K K     , (6) 

1

1 1 2 11 222
( )( )cos(2 )a K K      , (7) 

1

2 1 2 11 222
( )( )sin(2 )a K K       . (8) 

These equations suggest a strategy to estimate the principal values and direction of the applied 

stresses.  First, acoustoelastic constants K1 and K2 are estimated by least-squares from known 

uniaxial applied loads via Eq. (3) using measurements of phase velocity changes at multiple 

angles of propagation.  Second, for similar measurements made at an unknown load, the 

coefficients a0, a1 and a2 can be determined by least-squares using Eq. (5).  Finally, the applied 

stresses σ11 and σ22 and the angle α are solved by inverting Eqs. (6), (7) and (8) for the unknown 

quantities: 
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1 2

1

1
tan ,

2

a

a
   
  

 
 (9)    

0 1 2 1 1 2
11 2 2

1 2

cos(2 )( ) ( )
,  

cos(2 )( )

a K K a K K

K K






  



 

(10)     

0 1 2 1 1 2
22 2 2

1 2

cos(2 )( ) ( )
,

cos(2 )( )

a K K a K K

K K






  



 

(11) 

 

III. NUMERICAL VERIFICATION 

The proposed strategy for estimating biaxial loads depends upon the hypothesis that changes in 

phase velocity due to a biaxial load are a linear combination of the two contributions for the 

uniaxial principal components.  To verify this hypothesis, numerical simulations are performed 

to assess its validity.  The changes of phase velocity at the 400 kHz for the S0 mode of guided 

waves in a homogeneous and isotropic aluminum plate of thickness 3.175 mm were chosen to be 

consistent with the later experimental verification.  The material properties of the plate for 

numerical simulation are described in Table 1.   Note that the software calculates all phase 

velocity changes in the natural (unstressed) coordinate system. 

 

First, phase velocity changes ∆cp were calculated for multiple uniaxial stress conditions as 

σ11 = 0 and σ22 increasing from 0 to 100 MPa in steps of 10 MPa; the propagation angle θ varied 

from 0 to 90 degrees in steps of 5 degrees.  Second, acoustoelastic constants K1 and K2 were 

estimated by least-squares using Eq. (3) using the multiple known uniaxial stresses and 

corresponding phase velocity changes ∆cp obtained from the first step; their values were 

consistent for all loads considered.  Third, theoretical phase velocity changes were calculated as 

a function of propagation angle for multiple cases of α, σ11 and σ22.  Finally, K1 and K2 
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determined from the second step were used in Eq. (5) to approximate the changes of phase 

velocity for the multiple cases of α, σ11 and σ22.   

 

The approximate results calculated as per Eq. (5) were found to be in excellent agreement with 

the theoretical phase velocity changes ∆cp for all cases considered.  Typical results are shown in 

Fig. 3 for two cases: (1) α = 30°, σ11 = 50 MPa, σ22 = 100 MPa, and (2) α = 90°, σ11 = 10 MPa, 

σ22 = 40 MPa.  The root mean square errors for these two cases are 0.0663m/s and 0.0112m/s, 

respectively, and are typical for all cases considered.  Therefore, the assumed sinusoidal 

dependence and linear combination of uniaxial loads as expressed in Eqs. (4) and (5) are taken to 

be correct. 

 

IV. EXPERIMENTS AND RESULTS 

Fatigue tests were conducted for an array of six surface-bonded PZT transducers permanently 

attached to two different 6061 aluminum plates.  Each transducer pair corresponds to guided 

wave propagation along a particular direction, which corresponds to the line connecting the 

transducers.  Figures 4 and 5 show sketches of the transducer pattern and plate geometry for the 

two plates.  Both specimens were fatigued using a 3 Hz sinusoidal tension-tension profile from 

16.5 MPa to 165 MPa.  Ultrasonic signals from the 15 unique transducer pairs were recorded for 

uniaxial loads ranging from 0 to 115 MPa in steps of 11.5 MPa as each data set.  Several data 

sets were recorded during each fatigue test, where each data set contains 11 static loading 

measurements.  Information about the crack growth in the two plates is summarized in Table 2.  

 

Data were recorded by exciting each transducer in turn with a broadband chirp waveform, and 

the measured signals were filtered by a 7 cycle, Hanning windowed, 400 kHz tone burst signal as 
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described in [21].  The S0 Lamb wave mode was chosen for analysis because it has clear first 

arrivals from all the transducer pairs and it is also the dominant mode at this frequency.  The 

only other possible mode at 400 kHz is the slower A0 mode, and the echoes were not sufficiently 

distinct to accurately extract phase velocity changes.  

 

A. CALIBRATION AND ERROR ANALYSIS 

The calibration procedure was performed to calculate the acoustoelastic constants K1 and K2 

using data recorded from the first data set for both fatigue tests.  Figure 6(a) shows the received 

S0 signals from transducer pair 2-5 (i.e., transmitting on #2 and receiving on #5) of data set #1 

from the first specimen at different loads.  The zero crossings of these direct arrivals were 

extracted as a function of applied load and are plotted in Fig. 6(b); it can be seen that the small 

time shifts relative to zero load are linear with load over the entire load range.  The 

corresponding changes of phase velocity ∆cp for the 11 loading conditions and 15 transducer 

pairs in data set #1 were calculated by Eq. (1) from the calculated time shifts, nominal values of 

cp obtained at zero-load from dispersion curves, and measured transducer separation distances.  

The data of ∆cp calculated from all the transducer pairs were then used in Eq. (3) to estimate 

constants K1 and K2 from all known uniaxial loads via the best sinusoidal fit. 

 

Figure 7 shows the sinusoidal fit for phase velocity changes ∆cp with respect to the angle of 

propagation for one specified load.  To evaluate the fit, the root mean square (RMS) error 

between the experimental and fitted data as shown in Figure 7 was computed using the estimated 

values of K1 and K2 obtained from all of the uniaxial loads.  The small value of 0.5037m/s 

indicates an excellent sinusoidal fit, and the corresponding values of K1 and K2 (-3.42×10
-7 

m/s/Pa and 0.69×10
-7 

m/s/Pa, respectively) are thus assumed to be accurate.  The same 
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calibration procedure was applied to data set #1 of fatigue test 2, although the specimen during 

calibration was not pristine (the four holes were pre-drilled).  The acoustoelastic constants K1 and 

K2 were found to be -3.77×10
-7 

m/s/Pa and 0.71×10
-7 

m/s/Pa, respectively, which are very close 

to those values calculated from the first specimen.  

 

Once K1 and K2 are obtained, applied stresses and directions can be estimated from the phase 

velocity changes ∆cp obtained from later data sets using Eqs. (5), (9), (10) and (11).  However, as 

the cracks grow in the plate and open under load, the received ultrasonic signals are affected by 

the guided waves interacting with and scattering from the cracks.  As shown in Fig. 8 for 

transducer pair 2-5 of data set #9 from the first fatigue test, the relationship between time shift 

and applied load is no longer linear over the full range of applied loads.  As the time shift data 

become skewed by the opening cracks, there are resulting errors in the phase velocity changes 

∆cp.  These errors affect the sinusoidal fit of Eq. (5) and subsequent determination of both the ai 

and the recovered stress information. 

 

To determine error bars for estimated stress results, consider the following least squares 

minimization based upon Eq. (5):   

  
2

0 1 2

1

( ) cos(2 ) sin(2 )
N

p i i i

i

E c a a a  


       . (12) 

The resulting values of a0, a1 and a2 can be expressed as a linear combination of the ∆cp(θʹi), the 

change of phase velocity measured by the ith transducer pair: 

1

0

21

1 1 2

2 1 2

( )
1 1 1

( )
cos(2 ) cos(2 )   cos(2 )

sin(2 ) sin(2 ) sin(2 )
( )

p

p

N

N

p N

c
a

c
a

a
c




  

  




 
            
     

            

C , (13) 
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where the C matrix is defined as [22], 

1 1

2

1 1 1

2

1 1 1

cos(2 ) sin(2 )

cos(2 ) cos (2 ) cos(2 )sin(2 )

sin(2 ) cos(2 )sin(2 ) sin (2 )

N N

i i

i i

N N N

i i i i

i i i

N N N

i i i i

i i i

N  

   

   

 

  

  

 
  

 
 

     
 
 

    
 

 

  

  

C . (14) 

 

The variance associated with each aj can then be calculated by: 

2

2 2

1

( ) .
( )

N
j

j i

i p i

a
a

c
 



 
    
  (15) 

Here σi is the standard deviation of ∆cp(θʹi), the change in phase velocity measured from the ith 

transducer pair.  These standard deviations are all assumed to be equal, and are set to the sample 

standard deviation of the errors of ∆cp(θʹi) from the sinusoidal fit performed for each unknown 

load.  Thus, when there are no cracks and the fit is very good, the standard deviation is low, and 

as cracks grow and affect the guided wave signals, the fit becomes worse and the standard 

deviation increases.   

 

Finally, the standard deviation of estimated stresses and directions are computed from the 

variance of parameters a0, a1 and a2 as follows, 

2 2
2 2

2 2 2 2

0 0

( ) ( )   and  ( ) ( ) .nn
nn j j

j jj j

a a
a a

 
     

 

    
           
   (16) 

This procedure was implemented for both fatigue tests to obtain error bars on final estimated 

results.  
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B. FATIGUE TEST 1 RESULTS 

The eventual accuracy of the estimated loads is driven by the sinusoidal fit of ∆cp(θi).  As was 

seen in Figure 7, this fit is typically very good when there are no cracks.  In contrast, Figure 9 

shows typical data from the first fatigue test for two different loads when cracks are present.  If 

the data points (all solid and open circles) are compared to the sinusoidal fit (dashed lines), there 

are clearly significant errors for some of the data points.  These errors are particularly large for 

transducer pairs whose path of direct propagation lies close to the site of cracking, as was shown 

in Figure 8. 

 

To minimize the effects of opening cracks on stress estimates, data from some of the transducer 

pairs were eliminated.  As shown in Fig. 4, it can be seen that the direct arrivals for three 

transducer pairs travelled directly through the cracked region: 1-4, 2-5, and 3-6.  Data from these 

three pairs were excluded from the sinusoidal fit as shown by the solid line in Figure 9; the three 

excluded data points are denoted by open circles.  The standard deviation of Δcp was estimated 

from the errors relative to the sinusoidal fits, parameters a0, a1, and a2 were calculated using 

Eq. (5), and σ11, σ22 and α were calculated from Eqs. (9), (10) and (11).  The corresponding errors 

were estimated for both cases (with and without eliminating data) using Eq. (16).  

 

Figure 10 shows estimated principal stress components and direction plotted as a function of data 

set number.  For Fig. 11(a), the actual values are σ11 = 0 MPa, σ22 = 46 MPa, and α = 0°; for 

Fig. 11(b) they are σ11 = 0 MPa, σ22 = 92 MPa, and α = 0°.  It can be seen that elimination of the 

three transducer pairs reduces the impact of cracks and significantly improves the accuracy of the 

recovered values. 
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C. FATIGUE TEST 2 RESULTS 

Another fatigue test was taken for the examination of the efficacy of the load estimation strategy 

using an aluminum plate with a different geometry as shown in Fig. 5.  The distribution and 

growth of cracks in the specimen used in fatigue test 2 is much more complicated because the 

four holes provide additional sites of crack initiation.  A total of eight cracks initiated and grew 

around the region of holes during the fatigue test. However, the same idea of eliminating 

transducer pairs whose paths intersected with cracks was still effective.  The difference is that 

only the six transducer pairs corresponding to waves propagating near the periphery of the 

transducer polygon were used; the nine transducer pairs 1-4, 2-5, 3-6, 1-6, 3-4, 1-5, 3-5, 2-4 and 

2-6 were eliminated.  Figure 11 shows estimated loads and directions compared with actual 

applied stresses for two different loading cases.  As expected, elimination of transducer pairs 

gives better results. 

 

V. DISCUSSION AND CONCLUSIONS 

Results from both fatigue tests show that the proposed method of estimating applied biaxial 

stresses from a spatially distributed array of guided wave transducers can provide accurate 

results when cracks are not present along the paths of propagation.  As cracks grow and interfere 

with received signals, the accuracy of the estimates decreases, which is mitigated by removing 

some of the data.  While the accuracy may not be as good as what can be achieved using, for 

example, dedicated strain gages, the method has the advantage of not requiring additional 

transducers. 

 

This method is of particular interest for the case where a spatially distributed transducer array is 

attached on a plate-like structure since multiple transducer pairs correspond to guided waves 
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propagating at various angles.  It can be used to estimate loads in conjunction with sparse array 

imaging of damage by using the same transducers and recorded signals.  Measuring phase 

velocity changes ∆cp at multiple angles in the measurement coordinate system has the advantage 

of estimating the unknown direction of the applied stress, which cannot be achieved from 

measurements along a single direction.  Furthermore, only two acoustoelastic constants are 

needed to estimate unknown applied stresses and directions, and these two constants can be 

estimated from a single uniaxial loading case.  

 

Recommended future work includes performing experimental measurements incorporating true 

biaxial loads, and adapting the estimation strategy to anisotropic materials.  It may also be 

possible to develop an algorithm to automatically mitigate the impact of cracks on ultrasonic 

signals when the locations of the cracks are unknown.   
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Table 1.  Density and elastic constants of aluminum used for simulations. 

 

Property Value and Units 

ρ 2700 kg/m
3
 

λ 50.281 GPa 

μ 25.902 GPa 

l -252.2 GPa 

m -324.9 GPa 

n -351.2 GPa 

 

 

 

 

Table 2.  Descriptions of crack growth during the two fatigue tests. 

 

 Fatigue Test 1 Fatigue Test 2 

Data Set 

 

Fatigue 

Cycles 

Notes 

Largest Crack 

Fatigue 

Cycles 

Notes 

Largest Crack 

1 0 Pristine plate 0 4 holes 

2 0 Starter hole 0 4 holes, 2 notches 

3 0 Hole with notch 2,000 0.7 mm 

4 5,000 0 2,500 1.3 mm 

5 8,000 1.6 mm 3,000 1.8 mm 

6 10,000 3.6 mm 3,500 2.0 mm 

7 12,500 5.4 mm 5,500 4.3 mm 

8 15,500 7.7 mm 6,500 4.9 mm 

9 17,000 9.9 mm 7,000 5.4 mm 

10 18,500 13.4 mm 7,500 6.4 mm 

11 19,500 16.8 mm 8,500 8.4 mm 

12 20,000 19.5 mm 9,500 10.5 mm 

13 20,400 22.7 mm 10,400 13.0 mm 

14 20,600 25.2 mm --- --- 
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Figure 1.  Geometry for guided wave propagation in a prestressed aluminum plate. 

 

 

 

  

 

 

 

 

 

 

 (a) (b) 

Figure 2.  (a) Dispersion curves for the S0 mode at different propagation angles when σ11 = 30 

MPa and σ22 = 80 MPa.  (b) Changes of phase velocity for the S0 mode at 400 kHz as a function 

of propagation angle when σ11 = 30 MPa and σ22 = 80 MPa. 
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 (a) (b) 

Figure 3.  Phase velocity changes for the S0 mode at 400 kHz versus propagation angle for 

different applied loads.  (a) σ11 = 50 MPa, σ22 = 100 MPa, and α = 30 degrees.  (b) σ11 = 10 MPa, 

σ22 = 40 MPa, and α = 90 degrees. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.  Drawing of the specimen and transducer geometry for fatigue test 1 (not to scale). 
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Figure 5.  Drawing of the specimen and transducer geometry for fatigue test 2 (not to scale). 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Figure 6.  (a) First arrivals of transducer pair 2−5, data set #1 (no holes, no cracks) of fatigue 

test 1, for all 11 uniaxial loading conditions.  (b) Zero crossing times with respect to loads for 

transducer pair 2−5, data set #1. 
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Figure 7.  Experimental data and sinusoidal fit of phase velocity changes versus angle for data 

set 1 of fatigue test 1 when σ11 = 0 MPa, σ22 = 92 MPa. 

 

 

 

 

 

 

   

  

 

 

 (a) (b) 

 

Figure 8.  (a) First arrivals of transducer pair 2−5, data set #9, fatigue test 1, for all 11 uniaxial 

loading conditions.  (b) Zero crossing times with respect to loads for transducer pair #2−5, data 

set #9 

 

Approved for public release; distribution unlimited.



Load estimation with Lamb waves Page 23 

-90 -45 0 45 90
-35

-30

-25

-20

-15

-10

-5

0

5

Propagation Angle (degrees)

P
h

a
s
e

 V
e

lo
c
it
y
 C

h
a

n
g

e
 (

m
/s

)

 

 

Selected Pairs

Dropped Pairs

Sinusoidal Fit by Selected Pairs

Sinusoidal Fit by All Pairs

-90 -45 0 45 90
-50

-40

-30

-20

-10

0

10

Propagation Angle (degrees)

P
h

a
s
e

 V
e

lo
c
it
y
 C

h
a

n
g

e
 (

m
/s

)

 

 

Selected Pairs

Dropped Pairs

Sinusoidal Fit by Selected Pairs

Sinusoidal Fit by All Pairs

2 3 4 5 6 7 8 9 10 11 12 13 14
-50

0

50

100

150

200

S
tr

e
s
s
 (

M
P

a
)

 

 


22


11

All Pairs Selected Pairs

2 3 4 5 6 7 8 9 10 11 12 13 14
-40

-20

0

20

40

Data Set Number

A
n

g
le

 (
d

e
g

re
e

)

 

 



All Pairs Selected Pairs

2 3 4 5 6 7 8 9 10 11 12 13 14
-50

0

50

100

150

200

 

 


22


11

All Pairs Selected Pairs

2 3 4 5 6 7 8 9 10 11 12 13 14
-40

-20

0

20

40

Data Set Number

 

 



All Pairs Selected Pairs

 

 

 

 

  

 

 

 (a) (b) 

Figure 9.  Experimental data and sinusoidal fit of phase velocity changes versus angle for data 

set #9.  (a) σ11 = 0 MPa, σ22 = 46 MPa, (b) σ11 = 0 MPa, σ22 = 92 MPa 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

 

Figure 10.  Estimated stresses and orientation angles for all data sets of fatigue test 1.  (a) σ11 = 0 

MPa, σ22 = 46 MPa, α = 0°.  (b) σ11 = 0 MPa, σ22 = 92 MPa, α = 0°. 
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 (a) (b) 

Figure 11.  Estimated stresses and orientation angles for all data sets of fatigue test 2.  (a) σ11 = 0 

MPa, σ22 = 46 MPa, α = 0°.  (b) σ11 = 0 MPa, σ22 = 92 MPa, α = 0°.                               
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