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HIGH STRAIN RATE MECHANICAL PROPERTIES OF GLASSY 

POLYMERS 
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Abstract.  Since the early 1990s, a range of experimental data has been generated describing the 
response of glassy polymers to high strain rate loading in compression.  More recently, research 
programs that study the combined effects of temperature and strain rate have made significant steps in 
providing better understanding of the physics behind the observed response, and also in modeling this 
response.  However, limited data are available in tension, and even more limited are data describing 
both the compressive and tensile response of the same polymer.  This paper investigates the 
compressive and tensile response of glassy polymers, using poly(vinyl chloride) as a representative 
material, across a range of stain rates from quasi-static to dynamic.  The pressure dependant yield in 
glassy polymers will be discussed through comparison of the tensile and compressive yield stresses. 
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INTRODUCTION 
 

A range of experimental data has been 
generated describing the response of glassy 
polymers to high strain rate loading in 
compression.  Recently, research programs that 
study the combined effects of temperature and 
strain rate have made significant steps in providing 
better understanding of the physics behind the 
observed response [1,2], and also in modeling this 
response [3,4].  However, limited data are available 
in tension, and even more limited are data 
describing both the compressive and tensile 
response of the same polymer [5-8].  In those 
studies that do examine tensile response, often 
there are large gaps in the strain rate dependence. 
These gaps are due to the relative difficulty of 
performing characterization experiments in tension, 
especially on polymers and especially at high rates.   

Tension testing of brittle, glassy polymers, like 

epoxy, is even more challenging due to the low 
strains to failure.  This brittleness can result in 
invalid tests due to failure outside the gauge length 
and susceptibility to bending.  Although 
experimental data exists on epoxy in compression 
across a range of strain rates [2,9]; very little data 
exists in tension [5,8].  In order to achieve valid 
tension tests on epoxy at high strain rates, pulse 
shaping techniques have been developed [5,8].  
Additionally, digital image correlation coupled 
with high speed photography has been used to 
measure the full field strain state in situ [8]. 

One very important reason for addressing this 
gap is that polymers exhibit pressure dependant 
yield, which has been measured in the past using 
complex loading apparatus [10-11].  However, 
comparison of the tensile and compressive yield 
stresses of individual polymers can also result in 
the determination of the hydrostatic pressure 
dependence in these materials [3,8,12]. 

Shock Compression of Condensed Matter - 2011
AIP Conf. Proc. 1426, 191-194 (2012); doi: 10.1063/1.3686252
2012 American Institute of Physics 978-0-7354-1006-0/$0.00
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In this study, poly(vinyl chloride), PVC, is 
used as a representative material.  The compressive 
behavior of PVC across a range of strain rates has 
been experimentally studied [4,13].   

 
 

EXPERIMENTAL PROCEDURE  
  

Impact resistant PVC (Type II) in the form of 
25.4 mm diameter extruded rod was machined into 
specimens of the appropriate dimensions. Right 
circular cylinders were used for all compression 
experiments, with the quasi-static experiments 
using 8 mm x 8 mm samples and the medium rate 
and dynamic experiments using 8 mm diameter by 
3.5 mm samples.  The samples for tensile 
experiments were based on the design by Gerlach, 
et al. [8] and were designed with a shortened gauge 
length and reduced radius of curvature in order to 
promote sample failure within the gauge length. 

Dynamic Mechanical Analysis (DMA) 
samples (60 mm long x 12.5 mm wide x 3.2 mm 
thick) were tested in dual cantilever configuration 
in a TA Instruments Q800 at frequencies of 1, 10, 
and 100 Hz, displacements of 5, 10, 15, and 25 µm 
and a temperature range of -100 oC to 190 oC. 

The quasi-static compression and tension 
experiments were conducted using a screw-driven 
Houndsfield load frame at strain rates from 10-3 s-1 
to 10-1 s-1.  The strain was measured using a laser 
extensometer (Fiedler Optoelectronik Model P-50), 
which has a resolution of 0.1 µm.  For the 
compression experiments, stripes were tracked on 
the compression anvils; for the tensile experiments, 
stripes were painted on the samples themselves.   

A custom-built hydraulic load frame was used 
to access strain rates 1-50 s-1 in both tension and 
compression.  A Linear Variable Differential 
Transformer (LVDT) was used to measure the 
displacement of the sample.    Additionally, a DRS 
Lightening DigiStreak camera was used to image 
the tensile experiments.  As in the quasi-static 
experiments, stripes were painted on the specimen, 
which were recorded by the camera and used to 
calculate strain in the gauge length. 

High strain rate compression experiments were 
performed using a Split Hopkinson Pressure Bar 
(SHPB); similarly, high strain rate tension 
experiments were performed using a Split 
Hopkinson Tension Bar (SHTB).  In both 

configurations, a gas driven projectile is used to 
impact either the end of the input bar in 
compression or a flange mounted on the end of the 
input bar in tension.  For the SHPB system, the 
input and output bars are made of 6061-T6 
aluminum.  In the SHTB system, the input bar is 
Ti6Al4V and the output bar is phosphor bronze.  A 
stress wave (compressive or tensile) then travels 
through the input bar until it reaches the sample.  
At the sample, part of the wave is reflected and part 
is transmitted.  A pulse shaper, in the form of a 
preloading bar, is used on the SHTB system in 
order to increase the rise time of the input wave 
and therefore smooth the wave, in particular 
removing a stress peak, which often occurs [8].  

The stress waves are measured using strain 
gauges mounted on the bars.  The SHPB system 
uses two sets of strain gauges mounted mid-way 
along the length of the input and output bars.  The 
data are acquired and analyzed as described in [14].  
It is valuable to ensure that the sample is in 
equilibrium [15]; this was done in all experiments.  
The SHTP system uses three sets of strain gauges 
in order to record the stress waves – two on the 
input bar and one on the output bar.  The use of 
three gauges allows for longer input pulses while 
using shorter input and output bars.  The gauge 
signals are used to calculate the force at and 
velocity of the two specimen-bar interfaces using 
and analysis in [16].  These are, in turn, used to 
derive the stress and strain in the specimen.  
Additionally, photographs were taken of the 
deforming sample in order to provide a further 
measure of strain.  A Specialised Imaging SIMX16 
high speed camera was used to take 16 pictures 
through the duration of the loading, and an edge 
detection algorithm was then used to track the 
position of stripes painted on the specimen surface. 

 
 

RESULTS AND DISCUSSION 
 

The dynamic mechanical analysis of PVC, 
Figure 1, showed that the α, or glass, transition, 
varies from 79.5 oC at 1 Hz to 83.7 oC at 100 Hz.  
The lower temperature β phase transition, 
attributed to restrictions in secondary chain 
motions [3], moves from -44 oC at 1 Hz to -30.8 oC 
at 100 Hz.  The β transition changes more than the 
glass transition over the same frequency range due 
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to the lower activation energy for the β transition. 
The temperature of the phase transition as a 

function of ln (ߝሶ) is plotted in Figure 2.  The strain 
rate is determined from the test frequency, 
displacement, and gauge length [3].  Extrapolation 
of the β phase transition to room temperature 
results in a strain rate of ~7000 s-1. 

The compressive and tensile response of PVC 
as a function of strain rate is shown in Figure 3.  
The stress increases with strain rate in both cases.  
In both sets of experiments, the stress-strain 
response is typical for a glassy polymer, with an 
initial elastic region followed by a non-linear 
elastic region and yield, then strain softening 
followed by strain hardening.  At higher strain rates 
(> 0.06 s-1), the strain hardening is masked by 
thermal softening due to the transition between 
isothermal and adiabatic test conditions [4].   

There are oscillations in the high strain rate 
tensile experiments, which are believed to be an 
experimental artifact.  The real stress-strain curve 
is believed to be an average line fitted through the 
oscillations.  The regular noise on this signal is due 
to the camera recording a picture at set intervals.  
These data illustrate the difficulties inherent in 
performing high strain rate tensile experiments on 
polymers, and work is ongoing to improve the 
quality of data obtained. 

The peak stress at yield for both the tensile and 
compression experiments is plotted in Figure 4.  
For many glassy polymers, the beta phase 
transition results in increased yield strength under 
high strain rate loading [2-3].  For PVC, the DMA 
results predict this transition at ~7000 s-1.  The  
 

 
Figure 1. Dynamic mechanical analysis of PVC. 

 
Figure 2. Shift in α and β transitions as a function of ߝሶ. 
 

 

 
Figure 3.   (a) Compressive and (b) tensile response of 
PVC as a function of strain rate.   
 
yield strength as a function of strain rate is 
approximately linear, at perhaps other than the 
highest strain rate compression experiments. 

The compressive yield is consistently above 
the tensile yield.  The ratio of the yield stress in  
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Figure 4.   Peak stress versus strain rate for PVC.   
 
compression versus tension at a given temperature 
and strain rate is a constant: |ఙ|ఙ ൌ √ଶାఓ√ଶିఓ                             (1) 
where σc is the compressive yield stress, σt is the 
tensile yield strength and μ is a constant: ߬  ߤ ൌ  (2)                   ݐ݊ܽݐݏ݊ܿ
where τ0 is the octahedral yield stress and p is the 
hydrostatic pressure [12].  For the data in this 
study, μ is ~0.22, which is in good agreement with 
published pressure dependant yield data [17].  
From Eq. 1, the relationship between tensile and 
compressive yield stress should be constant when a 
single simply activated flow process is driving the 
behavior of the polymer [12].  For PVC, in this 
temperature and strain rate regime, only the α 
process is active, as indicated by the β transition 
strain rate extrapolating to ~7000 s-1.   

 
 

CONCLUSIONS 
 

Poly(vinyl chloride), PVC, is experimentally 
studied in tension and compression varying strain 
rate.  DMA indicates the presence of two phase 
transitions in the polymer.  The α, or glass, 
transition, varies from 79.5 oC at 1 Hz to 83.7 oC at 
100 Hz.  The lower temperature, β, phase 
transition, attributed to restrictions in secondary 
chain motions, moves from -44 oC at 1 Hz to -30.8 
oC at 100 Hz.  The β transition strain rate 
extrapolates to room temperature at ~7000 s-1. 

The compressive and tensile stress-strain 
curves for PVC across a range of strain rates are 

typical for glassy polymers, and the yield strength 
increases with strain rate.  The compressive yield 
stress is consistently higher than the tensile yield 
stress and both are linearly dependant on strain rate 
within the regime tested.  The relationship between 
the compressive and tensile yield stress will be 
linear when a single simply activated flow process 
is driving the behavior of the polymer, which is in 
agreement with the extrapolation of the β transition 
strain rate from DMA data. 
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