

Optimization-based Management of Energy Systems

Authors: Yiqing Lin, Stella M Oggianu, Suman Dwari, Luis Arnedo

Presented by: Stella Maris Oggianu, PhD May 11, 2010

for

ENVIRONMENT, ENERGY SECURITY & SUSTAINABILITY SYMPOSIUM & EXHIBITIONE2S2

Funded by:

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collection this burden, to Washington Headquuld be aware that notwithstanding and DMB control number.	ion of information. Send comments arters Services, Directorate for Info	s regarding this burden estimate or prmation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE MAY 2011	A DEDODE TYPE			3. DATES COVERED 00-00-2011 to 00-00-2011		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Optimization-based Management of Energy Systems				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AD es Research Center, 3	` /	st	8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
	OTES DIA Environment, I I in New Orleans, L				um & Exhibition	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF					19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 12	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Why Distributed Power Systems / Energy Microgrids?

Security of supply, reduced energy, and minimized environmental impact

Security of energy supply

- Vulnerable loads served under all operating conditions.
- 'Customizable' power quality and reliability
- Seamless transition between islanding and off-grid operation

Reduced energy costs and environmental impact

- Improved power systems architectures
 - Waste heat utilization
 - 85-90% fuel utilization vs. 40-50% for central power
 - Renewable sources with energy storage
 - Maximize ROI
- Integrated demand/supply management:
 - Reduced energy consumption/cost,
 - Peak shaving
- Decrease in T&D losses and required infrastructure

- Energy microgrids are distributed power systems with the capability to work seamless in islanding and grid-connected modes.
- They include thermal and electrical systems

Energy Microgrids and Energy Management System (EMS)

Value and benefits

Objective

- To evaluate the benefits of microgrid and optimization-based supervisory system
- To understand the impact of equipment down-time and the value of perfect weather/loads information

Challenges

- Uncertainty in data and forecasts
- Results depend on microgrid architecture, weather and prices

Test cases architectures

Determined by minimizing initial cost with renewable usage constraints

	NC	СО	ОК	NY	TX
Grid	Yes, unlimited				
Solar PV (KW)	35 MW	0	0	0	20 MW
Wind turbines(kW)	65 MW	70 MW	65 MW	55 MW	50 MW
CHP	5 MW	17.5 MW	35 MW	27.5 MW	12.5 MW
(microturbines+absChiller)	microturbines	microturbines	microturbines	microturbines	microturbines
Diesel generators	4 MW	2 MW	8 MW	12 MW	2 MW
Batteries, Lil (kWh					
capacity)	1 MWh				

Energy Microgrids and Energy Management System (EMS)

Value and benefits: Optimization-based EMS could provide 5-20% cost savings compared to ruled base approaches

Key Results

- ✓ Feasible microgrids architectures are able to provide 50-60% annual operating cost reduction.
- ✓ Optimization-based supervisory microgrid control provides an average annual 5-20% cost reduction compared with simple rule-based control strategy

Annual Operating Cost Comparison

Operating Cost by Category (Site: NC)

Annual Cost Savings of Microgrid	NC	СО	ок	NY	TX
Scenario 2 (Grid & Renewable)	17%	13%	19%	16%	21%
Scenario 3 (Grid & Microgrid, Rule-based)	41%	49%	58%	51%	54%
Scenario 4 (Grid & Microgrid, Optimization-based)	60%	56%	64%	61%	61%
CO ₂ Reduction					
Scenario 4 (Grid & Microgrid, Optimization-based)	33%	35%	36%	35%	36%

Energy Management System for Energy Systems

Overview

- Energy Management System (EMS) performs effective coordination and dispatching of distributed energy resources
 - Functionally similar to economic dispatch & unit commitment in power systems
 - Selects combination of sources and storage to meet demand
 - Considers constraints on availability of supply and operational limitations
 - Interfaces with customers and utilities
- Conventional dispatching systems are optimization-based and use steady-state models
- Renewable intermittency and memory associated with storage require <u>planning and forecasting</u>
- Systematic decision-making with <u>uncertainties</u> in demand and availability of renewable resources

Energy Management System Framework

EMS performs effective coordination and dispatching of distributed energy resources

- Renewable intermittency and memory associated with storage → planning & forecasting
- Combines elements of forecasting, model prediction, and state estimation
- Repeated solution of finite-horizon stochastic programming problems

Energy Management System Framework

Real-time Model Predictive Methodology

Repeated decision-making over finite horizons

Energy Management Framework: Dealing with Uncertainties

Handling Uncertainties in Predicting Energy Resources and Load Profiles

- Operational decisions have to be made in the face renewable resources and load forecast uncertainty.
- We explored different methods to determine set-points for optimal operation <u>Method 1, Perfect information:</u> Use perfect/exact forecast
 <u>Method 2, expected-value solution:</u> Use the average of different forecasted scenarios <u>Method 3, stochastic solution:</u> Factors uncertainties for decision-making using a stochastic programming formulation. It assumes that:
 - It is impossible to find a solution that is ideal under all circumstances
 - Decisions are balanced, or hedged against the various scenarios

Energy Management Framework: Dealing with Uncertainties

System used to exploit Methods of Dealing with Uncertainties

- Grid-connected system
- Realistic cost data; objective to minimize monthly operating cost
- Load forecast is exact (can be easily relaxed)
- 24 hr horizon with 15 minute time-step

Energy Management Framework: Dealing with Uncertainties

Test Cases used to exploit Methods of Dealing with Uncertainties

Solar Radiation Forecast:

- Three cases (and predictive mean) considered
- Error in solar radiation forecast translates to error in PV power

Loads Forecast

- Two cases to capture effect of sizing and component interaction
 - Load 1: Load comparable to onsite generation capability
 - Stronger interaction between microgrid components
 - "Good" sizing of micro-grid towards grid independence
 - Load 2: Load larger than onsite generation
 - Weak interaction between microgrid components
 - Grid dependence

Energy Microgrid Framework Test Cases: Results

Exploring Methods of Dealing with Uncertainties

- Maximum cost of perfect information = Expected value of perfect information
 - Average cost difference between Method 3 and Method 1

Load 1 (Loads comparable with onsite power generation capacity)

	Method 1 Perfect Information	Method 2 Use Predictive mean	% Deviation Method 1 & Method 2	Method 3 Stochastic Programming	% Deviation Method 1 & Method 3
Case 1	\$6,404	\$6,534	2.0	\$6,694	4.5
Case 2	\$8,331	\$9,246	11.0	\$8,344	0.2
Case 3	\$7,429	\$7,908	6.4	\$7,560	1.8

Avg: 6.46%

Avg: 2.16%

Load 2 (Loads larger with onsite power generation capacity)

	Method 1 Perfect Information	Method 2 Use Predictive mean	% Deviation Method 1 & Method 2	Method 3 Stochastic Programming	% Deviation Method 1 & Method 3
Case 1	\$14,020	\$14,152	0.9	\$14,157	1.0
Case 2	\$17,996	\$18,121	0.7	\$18,082	0.5
Case 3	\$16,161	\$16,683	3.2	\$16,489	2.0

Avg: 1.6%

Avg: 1.6%

Energy Management Framework: Conclusions

Future Work and Implementation

Conclusions:

- Stochastic programming helps with decision making under uncertainty
- Stochastic programming tools can drastically reduce the value of perfect information
- Sizing, architecture and magnitude of loads dictate the required accuracy of forecasts

Future work:

- Include equipment reliability in the models / problem formulation
- Extension to include thermal power
- Extension to include load management (combined supply / demand)

The Energy Management Framework introduced in this presentation will be implemented in two energy microgrids demonstrations being prepared for DoD-ESTCP and DoE funded programs

