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Abstract - This paper introduces an information quality 
metric and a definition for fusion gain in multi-target 
tracking systems.  We validate the reasonableness of 
these quantities and illustrate the relationship between 
fusion gain, scenario difficulty, and tracker 
effectiveness.  The information quality metric is closely 
related to the information reduction factor, and has 
direct application to sensor management. 
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1 Introduction 
Subject to a miss-distance threshold, detector performance 
can be characterized fully by the target probability of 
detection, the false alarm rate, and the localization error. 
This performance characterization, while straightforward, 
does not generally lead to statistically-consistent 
performance evaluation. A proposed statistically-
consistent approach that relies on a maximum likelihood 
formulation is discussed in [1]. 

Performance evaluation for multi-target trackers is more 
problematic due to the additional time dimension. Indeed, 
many performance metrics have been proposed in the 
tracking and fusion literature, and it appears that no set of 
metrics fully characterizes tracker performance. While 
most approaches account for a track-continuity 
requirement, a recently-proposed metric does not [2].  We 
propose here a simple information-quality metric that has 
several appealing qualities. In future work, it will be of 
interest to apply this metric to tracker-oriented sensor 
management. 

Section 2 defines the information quality metric and 
fusion gain; related derivations are in appendices A-B.  
Sections 3-4 describe a simulation study aimed at 
validating that our definition of fusion gain is reasonable, 
and at relating fusion gain to scenario difficulty and 
tracker effectiveness.  Section 5 summarizes our work and 
suggests future directions. 

2 The information quality metric and 
fusion gain 

Assume that detection-level statistics are given by the 
probability of detection ( Dp ), the contact rate per scan 

(n), and the contact measurement error ( ). Given a 
scenario with tn  targets in a measurement space with 

covariance Z , we define detector performance as 

follows.  (The approximation assumes Z .) 

 

   

 1

11

1

1

tr

tr

tr

tr

,,


















 














 


Z

Z
tDtD

Z

tD

D

n

npn

n

np

n

np

npf

.      (1) 

 
An interpretation for the metric is that it quantifies the 
average information content of an arbitrarily selected 
detection, under a single-target assumption.  As such, it 
measures the information quality (IQ) provided by the 
detector.  Information quality as defined here is 
dimensionless, thanks to the denominator term that 
quantifies the information content of a contact in the 
center of the sensor measurement space. 

Correspondingly, assume that track-level statistics are 

given by the track hold ( T
Dp ), the average number of 

tracks ( Tn ), and the track localization error ( T ).  

Tracker performance under the IQ metric is given by: 
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Note that Tn  is the average number of tracks at any time; 
as such, it reflects false track duration, which the usual 
false track rate metric does not.   

Further, the track-level statistics may be computed in a 
global or local fashion. Under the former, there is a single 
mapping of track to targets. Under the latter, the mapping 
is scan-based and does not reflect track continuity. 

The term 
n

np tD  in equation (1) can be thought of as the 

probability of success, the probability that an arbitrarily 
selected contact is target originated.  The expression is 
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correct under the assumption of a deterministic number of 
targets and of detector contacts.  In the non-deterministic 
case, we may replace tn  and n with t  and tDp   , the 

expected number of targets and of contacts, respectively.  
(Note that following standard convention   denotes the 
number of false returns.)  The resulting expression is 
correct under a Poisson assumption; the reader is referred 
to further details in appendices A-B.  The relationship 
between the IQ metric and the previously-introduced 
information reduction factor is discussed in appendix C. 

The IQ metric has the following characteristics: 
 

 It is a scalar metric that accounts for both detection 
and localization objectives; 

 It is computed analogously at either to the tracker 
input or output, allowing for a direct computation 
of fusion gain as a ratio of IQ metrics; 

 It accounts for false detection and track information 
(which the information-metric in [3] does not); 

 It reflects the operationally-relevant notion of 
quality of information, rather than the total 
information as in [3]; 

 It is flexible in that it can require or not require 
track continuity, depending on whether track-
level statistics are evaluated in a global or scan-
based fashion. 

 
Note that the IQ metric does not directly reflect track 
fragmentation. 

There are two fundamental requirements for the IQ 
metric to be of interest in target-tracking applications, 
including sensor management.  The first is that it have a 
meaningful interpretation with respect to data quality for 
the tracker input and output.  In particular, information 
quality represents the information in detector (or tracker) 
data compared with a contact (or track) at the center of the 
sensor measurement space.  A higher input IQ must lead 
to a higher output IQ for a given scenario and a given 
multi-target tracker.  Second, the ratio of IQ metrics, the 
fusion gain, must be meaningful.  In particular, it must 
reflect scenario difficulty and tracker effectiveness.   

Thus, we are interested in examining the following: 
 

 Is output IQ monotonically increasing as a function 
of input IQ? 

 Does fusion gain decrease for increasingly 
challenging multi-target scenarios? 

 Does fusion gain increase for increasingly 
sophisticated tracker implementations? 

 
Subject to satisfactory responses to these questions, 

optimizing the detection-level IQ metric can be proposed 
as a paradigm for track-oriented sensor management.  
Further, note that the IQ metric applies both to trackers 
that include and those that do not include track labeling.  
We will use a classical multi-hypothesis tracker for our 
analysis [4]; alternatively, it would be of interest to 

explore as well a tracker of the latter sort, like the 
recently-proposed SJPDA [5].  

3 Simulation framework 
We base our statistical analysis on simulated positional 
measurement data from a single sensor with a fixed revisit 
rate.  Contact simulation parameters are listed in table 1. 
 
Table 1. Data simulation settings in Monte Carlo studies. 

Parameter Setting 
number of Monte Carlo 

realizations 
50

surveillance region (180m)2

scenario duration 150sec 
sensor revisit time 1sec 

number of targets tn  1 or 2 

sensor Dp  1, 0.8, or 0.6 

sensor data rate n 25 or 20 
sensor localization error   


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 =2m, 1.5m, or 1m 
 

We base our output tracker performance statistics on the 
output of a multi-hypothesis tracker that includes logic-
based track management and track-oriented hypothesis 
management with a linear-programming (LP) relaxation 
approach to hypothesis pruning.  This paradigm has been 
used successfully in ground, undersea, and maritime 
surveillance contexts [4].  Key tracker parameters are 
identified in table 2. 

 
Table 2. Tracker settings in Monte Carlo study. 

Parameter Setting 
track filter maneuverability 

index 
0.1m2s-3

track filter prior velocity 
covariance 

1m/sec 

track correlation gate 99% 
track initiation 4-of-4 

track kill 4 misses 
hypothesis tree depth 0 or 3 

track classification distance 
threshold 

2  

 
While the tracker is assumed to have knowledge of 

sensor characteristics, it does not know the number of 
targets.  Thus, evaluation of the input IQ metric in 
practical settings must use the expected number of targets, 
as mentioned in the previous section and as discussed in 
greater length in the appendices.  

The input IQ metric is computed immediately by 
equation (1) using the appropriate values in table 1.  
Output performance requires a more involved procedure.  
For each realization of tracker output, we determine a 
global mapping of tracks to truth using the distance 



threshold (see table 2), and subsequently compute track 
hold, average number of tracks, and track localization.  
The results are averaged over all realizations in the Monte 

Carlo study.  That is, we first determine estimates of T
Dp , 

Tn , and T , and subsequently evaluate output IQ by 
equation (2). 

Note that, for a surveillance region of size YXZ   
[m2] and assuming positional measurements, in equations 
(1-2) we have the following: 
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Also, note that in equation (2), assuming identical errors 
in both dimensions and letting T  be the average track 

positional error, we have: 
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4 Simulation results 
Our simulation study is intended to address the three 
issues posed in section 2 regarding the characteristics of 
input IQ, output IQ, and fusion gain.  We now address 
these in turn. 

All the simulation realizations shown in the figures use 
the same color code convention: target trajectories are in 
magenta, target contacts are magenta dots, false contacts 
are black dots, true tracks are blue, and false tracks are 
red. 

4.1 Monotonicity in output IQ 

We examine a single-target scenario, with initial position 
of (-75m, 5m) and fixed velocity (1m/s, -0.067m/s).  We 
consider three combinations of sensor performance 
characteristics ( Dp , n, and  ), leading to three input IQ 

values.  For each, we run a separate Monte Carlo study; 

the resulting estimates of T
Dp , Tn , and T  are used in 

assessing output IQ.  Results are given in table 3, and a 
realization is illustrated in figure 1. 
 
Table 3. Single-target performance results as a function of 

sensor characteristics. 
Scenario Input IQ Output IQ Fusion gain 

Dp =0.6, n=25, 

 =2m 

16.20 340.77 21.04 

Dp =0.8, n=20, 

 =2m 

27.00 1,057.66 39.17 

Dp =0.8, n=20, 

 =1.5m 

48.00 2,171.07 45.23 

 

The results in table 3 provide evidence that input and 
output IQ are meaningful representations of detector and 
tracker performance, respectively.  Indeed, higher input IQ 
leads to higher output IQ.  Note however that, as seen 
here, fusion gain is generally not fixed for a given ground 
truth scenario and tracker implementation.  This may 
partly depend on the fact that we have not tuned our 
tracker to input data detection characteristics; had we done 
so, fusion gain might be more consistent across a range of 
detector characteristics, thus suggesting that it should be 
solely a function of scenario difficulty and tracker 
effectiveness. 

4.2 Fusion gain dependence on scenario 
difficulty 

We now fix the sensor detection and localization 
characteristics ( Dp =0.8, n=20, and  =1.5m), and 

examine tracker performance for a number of scenarios of 
varying difficulties:  
 

 Low difficulty – single target with initial position of 
(-75m, 15m) and fixed velocity of (1m/s, -
0.2m/s); 

 Intermediate difficulty – two crossing targets with 
initial positions of (-75m, 15m) and (-75m, -15m)  
and fixed velocities of (1m/s, -0.2m/s) and (1m/s, 
0.2m/s), respectively; 

 High difficulty – two slowly-crossing targets with 
initial positions of (-75m, 5m) and (-75m, -5m)  
and fixed velocities of (1m/s, -0.067m/s) and 
(1m/s, 0.067m/s), respectively. 

 
Results are given in table 4, and a few realizations are 

illustrated in figures 2-5.  We see that there is 
progressively lower fusion gain with increasing scenario 
difficulty.  This suggests that fusion gain as defined here 
is a meaningful representation of pre-tracker to post-
tracker performance improvement. 
 

Table 4. Tracking performance results as a function of 
scenario degree-of-difficulty. 

Scenario Input IQ Output IQ Fusion 
gain 

single target 48.00 2,171.07 45.23 
crossing 
targets 

96.00 1,146.36 11.94 

slowly-
crossing 
targets 

96.00 883.56 9.20 

 

4.3 Fusion gain dependence on tracker 
effectiveness 

Finally, we fix (idealized) sensor detection and 
localization characteristics ( Dp =1, n=2, and  =1m) as 



well as the scenario (slowly-crossing targets, as above).  
We examine performance for two choices of hypothesis 
tree depth (n-scan); results are in table 5.  (Note that the 
results in previous sections were based on n-scan=0.) 
 

 
Table 5. Tracking performance results as a function of 

tracker complexity. 
Scenario Input IQ Output IQ Fusion gain 
n-scan=0 2,700.00 3,001.44 1.11 
n-scan=3 2,700.00 3,290.77 1.22 

 
Interestingly, given the high input IQ, fusion gain is 

close to unity.  We see that fusion gain increases with 
increasing tracker complexity; this provides further 
confidence in the notion of fusion gain as defined in this 
work. 

It is instructive to examine the estimates of T
Dp , Tn , 

and T  that give rise to the results in table 5.  In 

particular, we have the following: 
 

 n-scan=0: T
Dp =0.52, Tn =1.99, T =0.684m ; 

 n-scan=3 : T
Dp =0.58, Tn =1.99, T =0.690m  

 
These numbers illustrated why fusion gain is difficult to 

achieve in high-difficulty scenarios, particularly where the 
input IQ is already high.  Indeed, though Dp =1, the 

output track hold is only slightly above 0.5, due to 
numerous track-swap occurrences that lead to false track 
classification and adversely affect the track hold metric.  
An illustration of this phenomenon is given in figures 6-7. 
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Figure 1. One realization of the single-target scenario  
(case 3 – best-performing sensor). 
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Figure 2. One realization of the crossing-targets scenario. 
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Figure 3. One realization of the slowly-crossing targets 
scenario. 
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Figure 4. Another realization of the slowly-crossing 
targets scenario. 
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Figure 5. Close-up of target crossing in figure 4: track 
fragmentation due to target proximity. 
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Figure 6. A track swap example, with ideal sensor data. 
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Figure 7. Close-up on the track swap in figure 6. 

5 Conclusion 
This paper introduces an information quality metric and a 
definition for fusion gain in multi-target tracking systems.  
We validate the reasonableness of these quantities and 

illustrate the relationship between fusion gain, scenario 
difficulty, and tracker effectiveness.  Additionally, we 
study the relationship between the information quality 
metric and the previously-introduced information 
reduction factor. 

The IQ metric has many appealing features.  Principally, 
it couples detection and localization performance and can 
be applied analogously at the tracker input or output.  We 
have seen in section 4.1 that, for a fixed scenario and 
tracker instantiation, higher input IQ leads to higher 
output IQ.  Thus, we would suggest that the metric can be 
fruitfully applied in sensor management application: 
sensor selection based on input IQ optimization should 
correspondingly lead to good performance in terms of 
output IQ. 

As a side note, it would be of interest to examine the 
reference, dumb detector or tracker used to characterize 
the denominator in equations (1-2).  It would be 
interesting to consider an improved, possibly non-
deterministic, a priori solution that accounts for a non-
unity expected number of targets t . 
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A The Case of Poisson Targets and False 
Returns 
Assume that the number of targets tn  obeys the Poisson 

distribution with mean t , that is: 
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Assume further that the number of false returns is Poisson 
with mean  . As before, assume each target is observed 

with probability Dp . 

The probability that a contact is target originated is 
given by: 
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In deriving the above result, we invoke the merging and 
thinning properties of the Poisson process [6]. 

B The Case of One Target and Poisson 
False Returns 

We evaluate here the prior probability that a contact is 
target originated, under the assumption of a single target 
and of a Poisson distributed number of false returns with 
mean  .  

Conditioned on the total number of contacts cn , the 

probability of a contact i being target originated is denoted 
by )( ci n  and is given by [7]: 
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where i=0 denotes the event that none of the contacts is 
target originated.  

The unconditional probability   (constant for all 1i ) 
of a contact being target originated, is obtained by 
averaging )( ci n  over the probability mass function of 

cn , which is given by: 
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Thus, we have: 
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The expression in equation (10) differs from the 
probability of success as obtained in the deterministic case 
(section 2) and the Poisson case (appendix A).  
Nonetheless, in the limit of a large number of false 
returns, the expressions are equivalent. 

C Information Quality and Information 
Reduction Factor 

In the case where the number of targets is known and 
equal to one, fusion gain is defined as: 
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The numerator in equation (11) is approximately equal to 
the trace of the Fisher Information Matrix (FIM) ZJ   

which is given by [8]: 
 

1
2

 qJ Z .         (12) 

 
where 2q is the information reduction factor (IRF) which 

depends on the probability of detection, the density of 
false contacts, and the measurement noise covariance. 

Unfortunately, the expression for 2q  cannot be 

expressed in closed form: its evaluation requires heavy 
numerical integration.  We prefer instead 3q , which has a 

simple interpretation as well: it represents the prior 
probability that a measurement is target originated given 
that there are false contacts with density   and a true 
detection with probability Dp .  

As a sanity check on the similarity in these factors, we 
see that Dpq 3  for 0  and 03 q  for  .  

Figure 8 motivates the use of 3q  as a new information 

reduction factor by showing promising accuracy of the 
approximation. 
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Figure 8. The dependence of the IRF 2q  and 3q  on 

average number of false contacts for various detection 
probabilities. The plot assumes a 2-dimensional 

measurement vector with g=4 sigma gate and 0.7Dp  . 

 


