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Exploring the Effectiveness of Attention 

Manipulations on Operator Performance in C2 Task:  

Computational Modeling Approach 

 

Final Technical Report 
Nicholas L. Cassimatis 

1 Abstract 

The goal of the project was to develop computational models that helped assess operator 

performance during cyberoperations.  Cyberoperation agents with good user models can 

be deployed to simultaneously monitor the effects of cyberoperations on several users.  

This in turn increases the trust in and success of these operations. 

 

A key obstacle to these user models was the limitations of the existing inference 

algorithms used to create them. These algorithms did not scale well in domains that 

extended over time, contained uncertainty over identity, included large numbers of 

entities and involved reasoning about the beliefs of other agents.  Cyberoperations have 

all these properties and thus there was a large gap between the needs of these operations 

and the abilities of existing inference mechanisms. 

 

In this project we developed inference mechanisms that made significant progress 

towards overcoming most of these obstacles.  The key to our approach was to find a way 

to integrate general inference algorithms together with specialized methods for dealing 

with time, identity, large numbers of objects and beliefs.  This approach was 

implemented within the Polyscheme cognitive architecture. 

 

This allowed us to achieve several results.  At the level of algorithms, these involved 

significant speedups to existing approaches that were empirically confirmed.  These 

advances enabled us to work with Assured Information Systems to create a 

cyberoperations agent that was able to manipulate a users system while reliably being 

able to detect whether the user detected the intrusion. 

 

The project led to three transitions.  Much of the technology developed here was key to 

the award of grants for the following three projects:  1.  A MURI award for a project 

headed by Nicholas Cassimatis, the PI for the present project, to use these user modeling 

methods to improve human-computer interactions, 2.  A DARPA SIBR with TracLabs 

that used these methods to monitor the operation of robots.  3.  An ONR SIBR also with 

TracLabs that used these methods to greatly improve the ability of robots and understand 

the goals of the users they were interacting with. 
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2 Introduction  
The goal of the project was to develop computational models that helped assess operator performance 

during cyberoperations.  Cyberoperation agents with good user models can be deployed to simultaneously 

monitor the effects of cyberoperations on several users.  This in turn increases the trust in and success of 

these operations. 

 

A key obstacle to these user models was the limitations of the existing inference algorithms used to create 

them. These algorithms did not scale well in domains that extended over time, contained uncertainty over 

identity, included large numbers of entities and involved reasoning about the beliefs of other agents.  

Cyberoperations have all these properties and thus there was a large gap between the needs of these 

operations and the abilities of existing inference mechanisms. 

 
To address these problems, we observe that each of the properties we seek in a cyberoperations agent is 

exhibited by some algorithm, but often at the cost of one of the other properties.  For example, many search 

algorithms and many probabilistic inference algorithms are general insofar as a wide variety of problems 

can be reformulated so that these algorithms can solve them.  They are flexible in that when small changes 

are made to the knowledge bases or models these methods use, they correctly update their inferences.  

However, for larger problems, these algorithms become prohibitive in time and/or space.  They thus trade 

efficiency for scalability.  Reactive and behavior-based systems trade generality for speed and dynamism.  

These systems can quickly adapt their behavior to new information about the environment, but are 

generally not capable of making many kinds of complex inferences and plans that many reasoning or 

planning algorithms can.  Approaches that are based on more complex and structured knowledge 

representation schemes such as frames [1], scripts [2] and cases [3] make the same tradeoff.  They can 

make inferences and plans that would take more general algorithms too much time.  However, frames, 

scripts and cases often do not work in situations that are even slightly different from those for which they 

were created.   

Because of such tradeoffs, it has been difficult to create a single system that exhibits all the desired 

characteristics of intelligent systems.  One approach to this problem is to create systems based on hybrids 

of these algorithms.  This paper presents a cognitive architecture, called Polyscheme, for implementing and 

executing such hybrids.  Polyscheme‟s design is motivated by some aspects of human cognitive 

architecture and several computational considerations.  Many methods of integration involve loosely-

coupled collections of modules or hybrids of only a small fixed set of algorithms.  Although Polyscheme 

includes modules that can encapsulate algorithms, it also enables algorithms to be implemented through 

sequences of “attention fixations” (each involving all the modules) called “focus traces”.  By interleaving 

these focus traces, Polyscheme can execute hybrids of algorithms where each step of each encapsulated 

algorithm can potentially be assisted by the others.  As explained below, this form of integration enables 

systems that have previously not been feasible. 

3 Unifying principles 
We can motivate an architecture for integrating hybrids of multiple classes of algorithms by recognizing 

that even though they are based on very different computational formalisms, they share many common 

elements. 

The following are some formal preliminaries.  Strings of the form P( … xi …, t,w) are called 

propositions.  They say that relation P holds over arguments xi during temporal interval t in world w.  Any 

kind of entity can be an argument.  A world is a history (past, present and future) of states.  P/w refers to a 

proposition like P except for having w is its world argument.  E (“eternity”) is the temporal interval such 

that all other temporal intervals occur during it.  R is the real world.  Terms can refer to the same object.  

This is indicated with Same(x,y,E,w).  T, F and U (“unknown”) are truth values for propositions. 

Propositions are used only to characterize certain aspects of Polyscheme and as an interlingua between 

Polyscheme modules.  Polyscheme is not a “logical” system insofar as it can use non-logical data structures 
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and its computation is not predominantly deductive or confined to manipulating formulae in some logical 

language. 

3.1 Common functions 

It is possible to characterize algorithms from very different formal frameworks as executing sequences of 

common functions.  In this case “function” refers not to a mathematical function, but to the purpose of an 

algorithm as in “the function of a sorting algorithm is to order the elements of a collection”.   These 

functions are described along with the notation we will use to refer to them. 

Store information.  Given information about P‟s truth value, store it.  Store(P,TV). 

Offer opinion.  Return a truth value for a proposition.  OpinionOn(P,TV). 

Forward inference.  Given some knowledge, infer what follows.  ForwardInference(BK), where 

BK = { ... (Pi, TVi) ... }, returns a list of propositions paired with their respective truth values. 

Request information/Subgoal.  In order to know about something, take actions to learn about it.  Given P, 

return a set of propositions such that information about their truths will help infer P‟s truth.  

RequestInformation(P).   

Identity.  For any object, find other objects to which it might be identical.  Where O refers to an object, 

BK is as above and W is an alternate world, return a set of objects that might be identical to O in W.  

Matches( O, BK, W) 

 

Algorithm 1. Gibbs Sampling 

 

Represent a state variable as a proposition.  Let {… Pi …} be the state variables. 

Start with an assignment of truth values to those propositions { ... (Pj/w0,TVi)...}. 

for i = 1 to MAX-SIMULATIONS: 

 for each j: 

Store(Pj, ForwardInference({ (P1/wj-1, OpinionOn(P1/wi-1)) ... 

(Pj-1/wi-1,OpinionOn(Pj-1/wi-1) )) 

Prob( P ) = the proportion of worlds, w, in which P/w is true 

 
 

Represent alternate worlds.  The ability to represent and make inferences about alternate states of the 

world is implicit in all of the above common functions since they all involve propositions with worlds as 

arguments. 

The following are examples of how some important algorithms can be implemented using common 

functions. 

 
Algorithm 2.  WalkSAT. 

 

for each proposition, P, Store(P, Random(T,F)) 

for i = 1 to MAX-FLIPS 

if OpinionOn(C) = T 

 Return { ... (Pi, OpinionOn(Pi) ... } 

else 

 with probability p,  

   Store(P, not(OpinionOn(R))) 

 otherwise  

Store(ForwardInference(BK).first()), where BK is the set of ordered pairs of each 

proposition with its truth value. 

 
 

A variant of Gibbs sampling [4] can be implemented as follows, where 
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ForwardInference(BK)samples a value for P given the value of variables in its Markov blanket in 

BK. 

Stochastic local search performed, for example,  by the WalkSAT algorithm [5], can be used to find 

solutions to boolean constraint satisfaction problems.  Many problems (e.g., planning, diagnosis and circuit 

design) can be mapped to satisfiability problems (or weighted variants  of them).  When the following 

focus scheme is in place, Polyscheme performs WalkSAT for a constraint C if 

ForwardInference(BK) returns a single ordered pair (P,TV) where P is the proposition such that 

flipping its truth value will make the most clauses in C true. 

 
Algorithm 3.  DPLL. 

 

DPLL (P,tv) 

  w  world from P‟s world by assuming P‟s truth value is tv. 

  if ForwardInference( P/w ) returns a contradiction 

  return false. 

  if all constraints in w are satisfied 

      return true. 

  V  RequestInformation(P/w). 

  return DPLL(V,true) ˅ DPLL(V,false) 

 
 

Modern variants [6, 7]  of the Davis-Putnam-Logemann-Loveland [8] algorithm are among the fastest 

complete satisfiability algorithms known.  DPLL performs depth-first search through the space of 

assignments of truth values to variables.  As each assignment is made, DPLL performs an elaboration step 

that makes assignments that follow from the existing assignments or can be assumed without contradiction.  

This elaboration step eliminates many impossible assignments from being explored and thus in many cases 

significantly speeds search.  If we assume that ForwardInference performs the DPLL elaboration 

step, then DPLL can be reformulated as in Algorithm 3.  Finally, case-based reasoning can be added to 

WalkSAT by modifying ForwardInference above to return propositions that were true in situations 

whose similarity to the current situation exceeds some threshold. 
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These examples illustrate how algorithms developed within very different formal frameworks can be 

executed with sequences of calls to the same five common functions.   

The fact that multiple algorithms from different subfields based on different formal frameworks can all 

be executed as sequences of common functions motivates an approach to integrating them.  We can create 

hybrids of two algorithms by interleaving the sequences of common functions that execute each algorithm. 

When an algorithm performs a common function on a proposition, we say that it attends to or fixes its 

attention on this proposition.  We call this event an attention fixation.  Each of the algorithms described 

earlier attends to (i.e. executes a common function on) one proposition at a time. 

The sequence of attention fixations an algorithm makes when it executes is called its focus trace.  Focus 

traces thus provide a uniform way of characterizing the execution of algorithms from different 

computational methods.  

Interleaving the focus traces from two algorithms amounts to executing a hybrid of those algorithms. 

Specifically, an algorithm H is a hybrid of algorithms A1 and A2 if H‟s focus trace includes fixations from 

A1 and A2.  Figure 1 illustrates the hybrid execution of case-based reasoning and search.  The focus trace 

(1c) for the hybrid of case-based reasoning and search is a combination of the focus traces for search (1a) 

and case-based reasoning (1b). 

3.2 Multiple implementation 

In each of the examples used to illustrate the common function principle, the common functions were 

implemented differently.  The ability of a surprisingly diverse collection of computational methods to 

implement each of the common functions is what we call the multiple implementation principle.  It is a key 

to enabling the integration of data structures and algorithms described herein.  The following examples lend 

support to the multiple implementation principle. 

 Storing information.  Both rule-based systems and neural networks store information.  Rule 

matchers must keep track of which propositions they have been given as input and which they have 

asserted as the result of rule matches.  Neural networks that implement content addressable memories store 

patterns using the weights of the connections between units in the network.  For example, the eigenvectors 

of the matrix representing unit connections in  Hopfield [9] neural networks, for example, correspond to 

patterns stored by those networks.  Thus, the function of storing information is a very simple example of 

how very different algorithms and data structures can implement the same common function. 

Forward inference.  Both rule-based systems and feed-forward neural networks, though based on very 

different data structures and algorithms, take inputs and produce outputs.  Forward-chaining in rule-based 

system matches the left-hand side of a rule against a set of propositions and asserts new propositions.   

Likewise, many forms of neural networks can be characterized as performing inference [10].  The values of 

input and output layers of neural networks can be represented as propositions (e.g., a unit representing that 

the temperature is 25 degrees Celsius can be represented using the proposition Temperature(25)).   Thus, 

Figure 1.  Algorithms and their focus traces.  The thick arrows depict a successful path to a goal found by a hypothetical run of a search 

algorithm.  The thin arrows depict other fixations explored during the search for the best path.  The focus trace (C) for the hybrid of case-

based reasoning and search is a combination of the focus traces for search (A) and case-based reasoning (B).  These combine to surmount 

the problem (depicted by „X‟) to simply applying the case. 
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just like rule-based systems, feed-forward neural networks can be characterized as taking propositions 

(those representing the values of the input units) and producing new propositions (those representing the 

values of the output units). 

Subgoaling. Backward chaining in rule-based systems, subgoaling in logic-theorem provers and 

subgoaling in means-end planners are obvious instances of the subgoaling common function.  Less 

obviously, to learn the truth values of propositions representing the output units of neural networks, one can 

perform a kind of subgoaling by finding (the truth values of propositions representing) the values of the 

input units.  Even directing visual attention is a form of subgoaling.  In this case, to learn about the truth 

value of a proposition representing the attribute of an object, a goal is made of directing a camera or a pair 

of eyes towards that object. 

Identity matching.  Algorithms used in object recognition (e.g., Bayesian Networks, neural networks, 

support-vector machines) all are performing a kind of similarity matching by taking a visually perceived 

object and finding the most similar stored object.  Case-indexing and retrieval schemes in case-based 

reasoning have the same function. 

Representing alternate worlds.  Mechanisms which can make inferences about the real world can make 

inferences about hypothetical worlds. 

These examples illustrate that common functions can be implemented using computational methods from 

very different subfields of artificial intelligence 

Implementing a single common function with multiple different algorithms and data structures enables 

another kind of hybridization.  Consider an algorithm, A, executed in a particular way using common 

functions C1 ... Cn.  If each of the C are executed using multiple computational methods M1 ... Mn, 

then every step of the execution of algorithm A will also involve the methods M. 

As another example, one could imagine Gibbs Sampling executed using a sequence of common 

functions, each of which is executed by a neural network.  Thus, although the neural network would be 

performing all the computation (in this case computing the likelihood of a proposition given its Markov 

blanket), the focus of Polyscheme can be selected in such a way that it implements Gibbs Sampling.  If one 

of the Mi executing a common function is an algorithm processing new sensor information, then every step 

of inference executing using this common function would incorporate up-to-date information from the 

world. 

3.3 Cognitive self-regulation 

The common function principle shows that very different kinds of algorithms can be executed as sequences 

of the same set of common functions.  How does an intelligent system implementing more than one 

algorithm decide which common functions to choose?  A recurrent theme among the algorithms used to 

illustrate the common function principle is that they choose which common function to execute in response 

to metacognitive problems. This is evident in several broad classes of algorithms. 

Search algorithms choose possible worlds by assuming the truth of propositions that are unknown.  If the 

truth value of a proposition is known, it is considered fixed and worlds with that proposition having the 

opposite value are not explored.  In the case of constraint-based search algorithms the metacognitive 

problem is ignorance, which occurs when the truth value of a proposition is not known.  In the case of 

search-based planning, the ignorance is often based on conflict since there is more than one possible next 

action to take or explore. 

Many stochastic simulation algorithms for probabilistic reasoning (e.g., Gibbs Sampling) also choose 

worlds to explore based on unknown values of a state variable. However, the level of ignorance in this case 

is somewhat reduced since a probability distribution for the state variable is known.  This leads to a 

somewhat different strategy of exploring worlds: worlds with more likely propositions being true are likely 

to be explored more often. 

Case-based reasoning algorithms are also often driven by ignorance and differ from search and stochastic 

simulation algorithms by how they react to ignorance.  Instead of exploring possible worlds where different 

actions are taken, they retrieve similar solutions to similar problems and try to adapt them. 

Thus, case-based reasoning, search and stochastic simulation are different ways of addressing different 

kinds of metacognitive problems.  We call the insight that many algorithms can be characterized by which 
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common functions they choose in response to metacognitive problems the cognitive self-regulation 

principle. 

This analysis resembles Soar‟s [11] implementation of universal weak methods by reacting to impasses 

(analogous to metacognitive problems) by reasoning in problem spaces (analogous to alternate worlds).  

However, together with the common function and multiple implementation principles, the cognitive self-

regulation principle motivates a significantly different architecture. 

4 Polyscheme 
The principles

1
 from the last section motivate the design of a cognitive architecture called Polyscheme.  In 

Polyscheme, algorithms can be implemented as strategies for focusing the attention of multiple modules.  

By combining strategies, we lay down hybrid focus traces (as described in the last section) and thus execute 

hybrids of algorithms implemented as focus control strategies.  By using modules based on different data 

structures and algorithms, we enable hybrids of algorithms implemented as focus control strategies and the 

algorithms in the modules.  By including modules that can sense the world and by tightly bounding the time 

each focus of attention takes, inference can constantly use and react to the latest information from the 

world.  This section and the next elaborate these points. 

A Polyscheme system is comprised of a set of specialist, S, an attention buffer, A, and a focus manager 

FM.  FM implements a getNextFocus() procedure that returns the next proposition to attend to.  All the 

specialists must implement the following procedures: Store(), OpinionOn(), Matches() and 

ModifyFM(). The latter influences which propositions FM selects.  It will be descrbied in more detail 

later in this section. 

At every time step, FM chooses a proposition for all the specialists to “focus on”.  Specifically, specialists 

give their opinions on the proposition‟s truth value, get all the other specialist‟s opinions on it, make their 

own inferences based on this new information and request other propositions for the FM to focus on.  The 

reason all specialists focus on the same proposition at the same time is so that (1) no specialist makes 

inferences based on a truth value another specialist knows to be incorrect and (2) because even though a 

proposition is focused on because specialist S1 requested focus on it, it might become relevant for some 

other specialist S2. 

More formally, the Polyscheme control loop is: 

 

Do forever:   

 “Select the next focus.” 

P = FM.getNextFocus().  

 

    “Get each specialists opinion on the focal prop.” 

For all specialists, S : 

  TVi = S.opinionOn(P) 

     

    “Inform specialists of each other‟s opinions.” 

For all specialists, S: 

  For each of the TVi 

   S. Store( P, TVi) 

 

 “Allow specialists to influence the Focus Manager.” 

 For the focus queue, Q, and all specialists, S: 

   S.modifyFM(P,Q) 

 

Once a focus of attention is chosen, all the specialists must focus on and therefore execute the same 

functions on it.  Therefore, the FM‟s choice of attention fixation controls the flow of computation.  We have 

                                                 
1 There are also several aspects of human psychology that motivate the main aspects of Polyscheme.  These are described in [12] 

and [13]. 
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experimented with several kinds of FMs, but will use a very simple FM based on a queue (FQ) to illustrate 

how attention selection can implement hybrids of many kinds of algorithms.   Although achieving all our 

long-term objectives will almost certainly require a more sophisticated focus manager, a queue-based focus 

manager has been sufficient to achieve significant results and demonstrate the promise of the approach.  

Thus, in what follows, ModifyFM() takes as input a queue and modifies it.  These modifications can 

involved adding elements, deleting them and changing their order. 

The principal means of interaction among specialists is the sharing of opinions in Polyscheme‟s control 

loop.  All specialists are first asked their opinion on the focal proposition and then each learn about these 

opinions and process them.  Therefore, specialists must wait for all of other specialists to finish offering 

their opinion before they proceed to use these opinions.  This keeps specialists from making an inference 

on the opinion of one specialist that is contradicted by another specialist during the same time step
2
.  If a 

proposition‟s truth value is inferred by a specialist during one iteration of the loop, other specialists will 

only learn about it if that proposition is focused on at a subsequent time step.  

To illustrate, consider a Polyscheme system that has a rule specialist with A  B, a perception specialist 

that can see that A and C is true and a neural network specialist that classifies B and C as a situation 

represented by the proposition D.  This licenses the following inferences: B is true (because A is true) and 

thus D is true (because B and C are classified as a situation where D is true).  The following is a sketch of 

how information would flow through the focus of attention in Polyscheme to generate these inferences: 

 

1. The perception specialists puts A and C on the focus queue. 

o Summary: The perception specialist requests that specialists focus on what it has seen to be 

true. 

2. At a later iteration of the control loop, A is chosen for focus. 

o Summary: A is focused on, perception specialist says it is true, rule specialist infers that B 

and requests for focus on B. 

o Taking opinions 

 The perception specialist asserts its opinion that A is true. 

o Storing opinions 

 The rule specialist infers that B is true. 

o Requesting focus 

 The rule specialist puts B on the focus queue.  

3. At a later iteration, B is chosen for focus 

o Summary:  “B is focused on, rule specialist asserts it is true (because of the rule AB), the 

neural network specialist commits this to memory.” 

o Taking opinions 

 The rule specialist asserts its opinion that B is true. 

o Storing opinion  

 The neural network specialist stores in its memory that B is true. 

o Requesting focus 

 None of the specialist infer anything new, so the focus queue is not changed. 

4. At a later iteration of the control loop, C is chosen for focus. 

o Summary: “C is focused on, perception specialist asserts it is true, neural network classifies 

this as situation D and requests that D be focused on. 

o Taking opinions 

 The perception specialist asserts its opinion that C is true. 

o Storing opinions 

 The neural network specialist stores in its memory that C is true and classifies this 

                                                 
2 This implies that if a specialist finishes computing its opinion before other specialists, it must waste time waiting for them to 

finish.  In practice, two factors mitigate this waste.  First, when a system is run on one or a few processors, idle CPU time is allocated 
to specialists not done computing and there is little waste.  Second, specialists are often designed to return their opinions very quickly.  

This minimizes the time they spend waiting for other specialist to finish.  Such waste as there is, however, is compensated for, 

significantly, by the fact that specialists will never make inferences based on information another specialist knows to be false.  Results 
reported later in this paper demonstrate that despite this waste, we can still achieve significant performance improvements 



9 

as a situation, D. 

o Requesting focus 

 The neural network specialist requests focus on D. 

5. At a later iteration, D is chosen for foucs. 

o Summary:  “D is focused on, the neural network specialist asserts it is true and all the other 

specialists learn this. 

o Taking opinions 

 The neural network specialist asserts its opinion that D is true. 

o Storing opinions 

 All the specialist learn that D is true. 

 

This example illustrates that if a specialist makes an inference about proposition P at one time step, it is 

only learned by other specialists after P is focused on at a future time step.  This is a relatively cumbersome 

process for making what intuitively appears to be a simple two-step inference.  However, as we will 

demonstrate below, implementing inference thus through the focus of attention of multiple specialists can 

generate signficiant benefits. 

5 Algorithms as focus control strategies 
In this section, we show how to implement algorithms using focus management in Polyscheme and 

illustrate the integration this enables.  We will concentrate mostly on algorithms from section II.  In that 

section algorithms were described using common functions.  In this section, specialists implement those 

common functions.  We illustrate how focus control chooses which propositions those common functions 

operate on.  In each case, a key component of the implementation is the how the ModifyFM procedure is 

implemented.  In the description of this procedure for each algorithm, we use italics to emphasize the role 

of a metacognitive problem (such as uncertainty, conflict or ignorance) in choosing the focus of attention.  

This illustrates how cognitive self-regulation (through the choice of attention fixation) is a common aspect 

of the flow of control in the algorithms we describe. 

First, let us consider how to implement a local search algorithm such as WalkSAT.  We can implement 

pure WalkSAT using a “constraint specialist”.  At any given time this specialist encodes a constraint C in 

conjunctive normal form.  The specialist‟s functions operate as follows: 

 

Store(P,TV): P and TV are added as a clause to C. 

 

ModifyFM(P,Q): If C is satisfied in P‟s world, w, then add Satisfied(C, E, w) to Q.  

Otherwise, put the proposition P involved in the most clauses with conflicting truth values at the front of 

the focus Q. 

 

OpinionOn(P):  If P is of the form Satisfied(C,w) return T if C is satisfied in w, otherwise 

return U.   

 

DPLL can be executed by a different kind of constraint specialist.  Storing a proposition performs 

elaboration. 

 

Store(P,TV): P and TV are added as a clause to C; perform the DPLL elaboration step on C. 

 

ModifyFM(P,Q): If C is satisfied in P‟s world, w, then add Satisfied(C, E, w) to Q.  

Otherwise, randomly choose a proposition P whose truth value remains uncertain and put it, and its 

negation, at the front of Q.  (It is common to improve DPLL with variable selection heuristics.  There is 

no obstacle to incorporating these heuristics into ModifyFM.) 

 

OpinionOn(P):  If P is of the form Satisfied(C,w) return T if C is satisfied in w, otherwise 

return U.   
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A system with repeated experience in similar environments will have made many inferences and solved 

many problems.  One can speed it up using a form of case-based reasoning.   A “case specialist” 

remembers previous states of the worlds and the relations among objects in those situations.   In a new 

situation, it is capable of finding similarities with the past and suggesting cases relevant to the present. 

  More specifically: 

 

Store(P,TV).  (P,TV) is added to memory. 

 

ModifyFM(P,Q).  If P‟s truth value is uncertain and it is involved in a structure (i.e., a set of 

related propositions) that is highly similar (above some threshold) to a to a proposition P1 in a 

previously encountered structure, then transform the old case into propositions that use the objects and 

times in the current situation and put those propositions on the queue. 

 

Three questions raised by this approach to case-based reasoning involve how the relevant features to a 

case are focused on, how cases are stored in memory and how similarity between cases is computed.  The 

last two questions are beyond the scope of the paper because our goal here is to provide a framework for 

integrating computational methods, not determining which specific methods are worth integrating.  As for 

the first question, some of the features of a case must be focused on because they were perceived or 

inferred by other specialists.  These will cue a case.  The ModifyFM procedure described above would then 

have the result of adding focus for the rest of the features.   

As an example of integration using focus traces, consider that case-based reasoning and WalkSAT 

integrate easily.  WalkSAT proceeds as it normally would, flipping the truth value of one proposition at a 

time and focusing on it.  When the case specialist finds a situation in the past that is sufficiently similar to 

this one, it essentially flips several truth values at once, hopefully getting WalkSAT much closer to a 

solution.  The brittleness of CBR is ameliorated by the fact that whatever inconsistencies there are between 

the past case and the current situation can be resolved by continued search by WalkSAT. 

Finally, for environments that are changing and/or are perceptible only through noisy sensors, every step 

Figure 2.   The robot tracking problem.  The robot in the foreground of (a) is tasked to track the robot in the distant 

right of (a).  The tracked robot disappears (b) behind an occluder and a robot with the exact appearance emerges (c) 

from the left of the occluder.  Polyscheme infers the two are identical and moves the tracking robot towards the visible 

robot. When (d) it sees an obstacle to robot motion behind the occluder, it infers the two robots are different.  
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of case-based reasoning and WalkSAT should be influenced by information from these sensors.  

Adding a “perception specialist” achieves this: 

 

ModifyFM(P,Q).  If sensors perceive that a proposition X has changed truth value, put X on the 

beginning of Q.  

 

OpinionOn(P).  Returns the truth value P had the last time it perceived it or U if you have never 

perceived it. 

 

Thus, during any attention fixation caused by the constraint or case specialist, if new information about a 

proposition P is perceived, the perception specialist will ask the focus manger to focus on it.  When 

Polyscheme does focus on P, the perception specialist will take the appropriate stance on it.  The case and 

constraint specialists will then learn about it through their Store() procedures and incorporate the 

information into their case-matching and search, respectively. 

These examples illustrate that algorithms from very different computational frameworks can be 

integrated using the same “computational building blocks”, i.e., the focus of attention of a set of modules. 

6 The benefits of focus trace integration 
We will describe how Polyscheme enables the best characteristics of multiple diverse computational 

methods to be combined by describing a working mobile robot [14] controlled by Polyscheme.  The robot‟s 

goal (illustrated in Figure 2) was to keep track of and follow another robot as it moved about and 

occasionally became occluded by other objects.  This task requires many of the characteristics of intelligent 

systems we described in the introduction.  The reasoning and planning problem was difficult.  Because the 

actions of the robots had side effects and because there was incomplete information (because of occlusion), 

traditional planners could not be used.  Formulating the physical constraints on objects (e.g., they do not 

pass through each other, gravity, etc.) in this domain in a SAT solver was prohibitive.  Memory demands 

grew exponentially with spatial resolution, exhausting the memory of typical desktop computers with grid 

sizes around 5x5x5.  Further, although operating in an environment while taking into account physical laws 

and potentially occluded objects is well beyond the reach of pure reactive systems, the positive 

characteristics of these systems were required.  The environment was constantly changing, so the robot had 

incomplete information and it therefore needed to be reactive and flexible enough to incorporate new 

information from its sensors into its planning and inference. 

 We briefly describe the Polyscheme system that controlled the robot.  The focus manager was a 

modification of the queue scheme described above.  The main modification was that propositions in the 

queue were associated with “satisfaction conditions” that would cause the proposition to be removed from 

the queue when they were met.  For example, if proposition P1 was put on the queue to help infer if P2 

was true, then if the truth of P2 is determined, there is no longer a need to focus on P1 and it is removed.  

The specialists included a perception specialist that detected the location and type of objects in the 

environment.  A physical constraint specialist kept track of physical constraints and a path specialist 

included a library of “path scripts” that described paths robots typically take. 

We can now use this robot to help describe how Polyscheme enables systems that exhibit the 

characteristics of algorithms based on diverse computational formalisms. 

 Generality and flexibility.  Methods such as local search, backtracking search and stochastic 

simulation make inferences, find plans or solve constraints in a very wide variety of domains.  This makes 

them general and flexible in that when a situation changes and is formulated for these algorithms, they will 

deal with them accordingly.  We have already described how to implement such algorithms within 

Polyscheme.  In our robot, these kinds of algorithms were used to maintain the physical constraints 

described above.  The benefit of doing so is that the system can also exhibit the following characteristics, 

which are not often exhibited in pure versions of these general algorithms when operating on many classes 

of problems.   

Speed.  General algorithms tend to be slow on larger problems because the state spaces they explore 

grow very quickly as a problem grows.  “Structured” reasoning and planning algorithms based on frames or 
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scripts do not have this problem since they do not generally search state spaces but instead make inferences 

or solve problems using large structured representations (i.e., frames, scripts or cases).   When these 

algorithms are implemented in Polyscheme together with more general and flexible algorithms, the best 

characteristics of each can be exhibited in the same system.  In our robot, Polyscheme could find a 

continuous path between two sightings of a tracked object more quickly than pure search because of its 

library of path scripts.  When a script was retrieved that did not completely match the existing situation, the 

constraint system would detect this contradiction and this would initiate a search for a model for changes to 

the script that would be more consistent with the situation.  While full search was always available, the 

script retrieval effectively meant that search began in a state much closer to the correct model of the world.  

Thus, the speed of structured approaches was combined with the generality and flexibility of search-based 

methods. 

Reactivity.  Environments whose states change and which are sensed through imperfect sensors require 

systems to be able to quickly update their plans and inferences upon new information.  Reactivity can be 

achieved using Polyscheme by mandating each focus of attention be quick and by including sensor 

specialists.  This guarantees that little inference will happen before new information is sensed.  When our 

robot moved to a different location and saw objects that were formerly occluded, the perception specialist 

requested that all the other specialists focus on this information immediately.  When they did, the constraint 

and path specialists were able to update their inferences and plans accordingly. 

The ability of the robot to engage in complex reasoning and planning while moving about in a changing 

world demonstrates that creating hybrids of algorithms in Polyscheme can enable a combination of 

characteristics not possible given existing individual methods alone. 

7 Evaluations and implemented systems 
We used Polyscheme to create several systems that illustrate the benefits of this approach to hybrid 

algorithm execution.  These benefits can be measured quantitatively and they can be illustrated by systems 

that provide qualitatively new functionality. 

7.1 Quantitative evaluations 

To confirm that Polyscheme‟s integration of multiple data structures and algorithms to constrain inference 

could lead to computational speedups, we performed quantitative evaluations on path planning and spatial 

reasoning problems. 

 
Path Planning.  Finding a path through a graph is an important problem in several fields, especially robot 

motion planning.  It is common to discretize a continuous space into a graph and use an algorithm such as 

A* [15] to find the optimal path through the graph.  This approach requires several assumptions to be made 

that do not obtain in many real-world environments.  The most important of these assumptions involve 

change.  For example, these algorithms typically do not enable planning to account for a change in a 

robot‟s abilities.  If a robot that can fit through a door picks up and caries a large object, it may no longer be 

able to move through the door.  Thus the link between the regions the door connects must be severed in the 

graph.  However, most path planning algorithms assume a fixed graph.  Another example of change that 

traditional motion planning algorithms do not account for involves changes in the environment that do not 

involve the robot.  For example, if a door closes automatically during certain temporal intervals, then the 

graph representing the connectivity of the regions must change.  (Even path planning algorithms such as 

Ariadne [16] that use multiple kinds of algorithms to improve search do not deal with change through time 

of this sort.)  For reasons such as these, dedicated motion planning algorithms cannot work in many real-

world situations.  

One solution to addressing the problem of action effects and change is to formulate path planning as a 

weighted SAT problem.  Side effects and changes of state would be easy to formulate as SAT constrains.   

However, to represent that states of objects can change over time, SAT encodings of such problems must 

include a copy of each state variable for every time step.   For example, it is not sufficient to have a 

door17Open variable.  One must have door17OpenAtTime1, door17OpenAtTime2, etc. variables.  Thus, the 

size of the required SAT formulation would be very large for situations that extend over many time steps.  
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However, the execution time of SAT algorithms, as will be illustrated below, grows exponentially with the 

number of variables.   Thus, for problems with many time steps, SAT encodings are not an efficient means 

of planning paths. 

   One solution to this problem is to introduce temporal intervals.  Rather than write that door17 is 

open at times 3,4,5,6,7,8,9,10 and 11, one can write that door17 is open over the interval (3,11).  However, 

SAT encodings would require that every possible interval be represented.  Thus, for example, a domain 

with 100 time points entails tens of thousands of temporal intervals with those times as end points.  Further, 

this formulation would not reduce the search space.  To move from A to B, the search algorithm would 

have to consider the world where the motion occurred at time 1, the world where it occurred at time 2, and 

so on, even though in most cases the specific time is irrelevant.  The root cause of the problem is that the 

SAT formulation requires all constraints to be grounded propositionally and that it cannot reason over 

indefinite objects.  If they could, then they could plan under the assumption, e.g., that the robot moved from 

A to B at “indefinite” time t and only reason about the specific bounds on t if they become relevant. 

To enable reasoning over new objects we, created a system for “generative” SAT (GenSAT) solving 

called GenDPLL [17].  It implements DPLL in the manner outlined in Section 3.  However, rather than 

encoding constraints as propositional SAT problems, it encoded them using first-order constraints.  These 

constraints were stored in a “formula specialist” that used a rule matching algorithm to perform the DPLL 

elaboration step.      

This enables intervals to be represented as “indefinite” times that are constrained between two initially 

unknown points.  For example, the following constraint encodes that if an object moves from being in A at 

time a to being in non-adjacent B at b, it must have traveled to an intermediate adjacent location at some 

time point. 

 

  
  

Thus, indefinite times eliminate the need to consider all the possible endpoints of t, significantly 

reducing the search space. 

We tested the increasing efficiency so enabled in a robot path-planning domain.  We presented 

Polyscheme and planners based on modern weighted SAT solvers a two-dimensional grid and two end 

points.  The grid contained obstacles whose locations changed over time and thus, for the reasoned 

mentioned above require the capability to reason about change.  The goal of these systems was to find the 

shortest possible path between points.  The fact that objects could change properties and locations made 

many common path planners unusable for this domain and, for the reasons mentioned earlier in the section, 

made this a very hard search problem for conventional SAT algorithms.  Because we desired the ability to 

include constraints that were not purely about paths we could not simply consider time a third dimension 

and use a three-dimensional path planner. 

We compared Polyscheme‟s performance against  LazySAT [18] and MiniMaxSAT [19].  LazySAT was 

used because it is the only weighted MaxSAT solver that lazily instantiates constraints.  LazySAT uses a 

WalkSAT-like [5] local-search algorithm.  Since such algorithms in many cases perform worse than 

systematic solvers, we also evaluated MiniMaxSAT‟s performance.  MiniMaxSAT is a weighted SAT 

solver based on MiniSAT, which is in turn an extension of MiniSAT.  MiniSAT, the winner of the 2006 

SAT Competition, is widely regarded as one of the best available SAT solvers. 

 
Figure 3.  The performance of Polyscheme, 

MiniMaxSat, and LazySat on a path planning 

problem.  

 

As Figure 3 illustrates, the performance 

of GenDPLL was approximately constant 

in the number of time points and 

performed faster than LazySAT on 

problems with more than approximately 5 
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time points and MiniMaxSAT with more than 35 time points.   The graph reflects CPU times and thus 

demonstrates that even though Polyscheme involves significantly more computation for any step in search, 

that its ability to use multiple data structures and algorithms to prune search often able to significantly 

compensate for this overhead. 

Averages of 10 runs for each number of time steps were used in forming the graph in order to average 

away changes in performance due to background processes on our computer or the specific problem 

instances.  Since LazySAT is not guaranteed to halt with an optimal solution, the times displayed indicate 

the speed with which it found a path that did not break hard constraints (e.g., that robots cannot pass 

through solid objects).  Although LazySAT lazily instantiates constraints, it does not reason over unknown 

objects and thus achieves neither reductions in the number of explored models nor the consequent speedups 

that are afforded by the GenSAT interval formulation.  In the indefinite interval formulation, merely adding 

time steps does not change the number of models that need to be considered. 

These results demonstrate that by using Polyscheme to create a hybrid of a SAT-solving algorithm 

(GenDPLL) and a rule matcher, that problems which were not solvable by these or other methods alone can 

be solved efficiently. 

 
Spatial reasoning.  Domains that involve spatial relations can pose a problem for inference algorithms 

because of the number of points they involve.  A 100x100 grid, for example, contains 10,000 points.  If one 

is uncertain about the location of A and only knows that point B is within 10 cells away from B, then there 

are on the order of 1 million possible configurations of A and B in that grid that are consistent with this 

knowledge.   

There are many “diagrammatic” reasoning systems that enable reasoning with such spatial constraints.  

They tend to be more efficient than, for example, SAT solvers on such problems in part because diagrams 

more compactly represent spatial relations.  Existing diagrammatic reasoning systems are however quite 

limited in their ability to also reason over non spatial constraints, and no such systems offer the generality, 

soundness and completeness of, SAT solvers. 

To address this problem, we created a hybrid system intended to provide the benefits of SAT methods 

while enabling considerably more efficient inference on problems with spatial relations.  The system was 

able to take input in the same form as other SAT solvers, except that some of the constraints could involve 

(possibly metric) spatial relations.  Examples include: Near(a,b,10) (“a is within ten units of b), Left(b,c) 

and Above(a,c).  Constraints could mix spatial and non-spatial relations so that a it would be possible to 

represent a constraints to the effect of, “Dogs on a leash are near the person holding the leash”.  Given such 

constraints as input, the system finds models that satisfy them, if they exist.   

This system, called DPLL-S, was based on a weighted SAT solver similar to the one described in the last 

section.  In addition, the system included a diagram component that kept track of spatial relations and used 

“possibility spaces” [20] to compactly represent relations.  Thus, rather than needing to represent every 

specific possible location of an object, it could represent the region (i.e., possibility space) where the object 

could potentially be located.  This representation would enable the diagram component to rule out many 

possible object locations very quickly.  For example, if  A is more than 70 units from B and C is within 10 

units of B, then, using standard grid algorithms, one can very quickly infer using possibility spaces that A is 

not near C.  The only way to rule out that possibility using a standard SAT solver would be to search over 

potentially millions of possible configurations of A, B and C.  The diagram specialist can therefore 

dramatically reduce the number of possibilities explored during search. 
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Figure 4.  The performance of DPLL-S vs. MiniMaxSAT. 

 

To measure the impact of this hybridized approach, we tested the system on problem instances of 

varying size.  Since a criticism of many diagrammatic reasoning systems has been that they are tested only 

on problems that suit them, we randomly generated problems.  We then solved these problems using 

MiniMaxSAT and our hybrid system.  On problems with smaller grid sizes, MiniMaxSAT outperformed 

the hybrid system.  However, with increasing grid sizes, the benefits of reasoning with possibility spaces 

increased and the hybrid system significantly surpassed MiniMaxSAT‟s performance.  Figure 4 shows 

these results.  “Near = n” in the legend indicates that problems run had the no Near predicate had an 

argument greater than n.  As n grows, there are generally more possible configurations that satisfy a 

constraint and thus performance deteriorated. 

 

7.2 Computational Complexity of Search 

The path planning and spatial reasoning problems we have been discussing have a high degree of 

computational complexity.  We make no claim that our approach somehow changes the complexity class of 

these problems.  Nor do we claim to have surmounted “no-free lunch” [21] theorems, which hold that “any 

two algorithms are equivalent when their performance is averaged across all possible problems” [22].  It is 

however very common for algorithmic improvements that do not change complexity characteristics to 

nevertheless make an approach tractable on problems that had been impossible before.  Innovations such as 

stochastic local search [23] and clause learning [6] have, for example, made SAT solvers usable on a wide 

range of new problems without altering the fact that SAT solving is an NP-complete problem.  Thought the 

technical details are quite different, Polyscheme follows in this tradition. 

Further, the performance gains mentioned here were specific to domains with spatial and temporal 

relations.  This is to be expected since the gains were achieved by hybridizing search with specialized 

spatial and temporal reasoning methods.  While the specificity of these improvements is a limitation of 

these systems, there is a wide body of research in cognitive science [24] indicating that reasoning in many 

domains can be mapped onto reasoning about set of relations such as time and space.  Confirming the 

potential breadth of application of such specializations is a topic for future research. 

 Finally, Polyscheme involves a significant amount of overhead that requires considerably more 

computation per state explored during search.  This is confirmed by our quantitative evaluations.  However, 

in the case of path planning, we showed that the new problem formulation Polyscheme enables 

significantly reduces the search space and hence the CPU time needed as problems involved larger time 

frames.  The spatial reasoning search showed how a diagram module could significantly reduce the number 

of states explored.  Since all our evaluations measured CPU time, they demonstrate that in many cases 

hybridized search can outperform deeper search using a single algorithm. 
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7.3 Systems with new functionality  

Although quantitative evaluations help measure and precisely characterize specific advances enabled, our 

ultimate goal in this work is to enable intelligent systems with functionality that formerly had not been 

straightforward to create, or which solved problems that could not be solved (in theory, not just efficiently) 

in other frameworks. 

The principle way to demonstrate that Polyscheme can enable this is to actually build such systems.  The 

robot from the last section is a prime example.  It can react to changes while making inferences and finding 

plans that purely reactive systems cannot and that conventional inference and reasoning algorithms achieve 

only (as we described in the SAT example above) on very small problem scales. 

A heterogeneous database retrieval system [25] implemented in Polyscheme also illustrates its benefits.  

This system makes sound and complete inferences over heterogeneous sources of computation and 

information.  It implements resolution theorem proving using common functions such as forward inference, 

subgoaling, and identity.  Each of these operations is implemented in specialists based on representations 

such as neural networks, production rules, geospatial coordinates and relational databases.  If these modules 

meet certain conditions (which in practice are easy to confirm), the total system‟s inference is sound and 

complete.  This system demonstrates how hybridizing algorithms provides both the benefits of logic 

programming (provable soundness and completeness) and the efficiency of special representations (such as 

those from neural networks and relational databases). 

Finally, the GenSAT language and GenDPLL algorithm we mentioned in the motion planning section 

overcome some severe difficulties that arise in domains with unknown objects.  Languages, such as 

GenSAT, that license the inference of objects unknown before inference can lead to models with infinite 

numbers of objects.   For example, a constraint to the effect that “all mammals have a mother” and “a 

person cannot be their own ancestor” require a model with infinite numbers of ancestors for any particular 

mammal.  As another example of finite theories with infinite models, many context-free grammars license 

infinite numbers of derivations.  Because traditional SAT solvers require all objects to be known in advance 

– this is true even of lazy sat solvers such as LazySAT – they cannot solve many problems in such 

domains.   In [17], we prove that hybridizing rule-matching with weighted constraint solving in GenDPLL 

enables models to be found of GenSAT theories even in many conditions where there are infinitely many 

models with infinite numbers of unknown objects.  In [26], we show how to use GenDPLL to provide 

parses for probabilistic context-free grammars, even in cases where a grammar has infinite numbers of 

derivations.   Since GenSAT can encode an extremely wide variety of constraints, this result enables 

linguistic knowledge (in the form of PCFG constraints0 and non-linguistic knowledge to jointly constrain 

interpretation during parsing. The absence of such an ability has been a serious obstacle to the use of 

context to disambiguate language.  

The heterogeneous database retrieval and GenSAT results had been beyond the theoretical reach of 

existing approaches.  No approach had previously enabled sound and complete answers to queries over 

information in such a wide variety of formalisms and no other approach had enabled reasoning over 

constraints as general and flexible as those in SAT to be jointly reasoned over with grammars that had 

infinite derivations.  These results thus demonstrate that executing hybrid algorithm through a focus of 

attention in Polyscheme not only can speed inference, but also enable inference in situations that had 

heretofore been theoretically intractable.   

8 Other approaches to integration 
Most approaches to integrating algorithms and/or their characteristics into a single system have taken a 

reductive, modular or “fixed” hybrid approach.  Reductive approaches tend to implement an algorithm or 

solve problems by a reduction to another approach.  This often consigns such systems to the limitations of 

the computational formalism or method being reduced to.  For example, reducing a first-order probabilistic 

logic reasoning problem to a graphical model belief propagation problem [27] means that one is still 

limited by the propositional representation and scalability characteristics of belief propagation inference 

algorithms.  Modular architectures for integration tend to enable modules based on different data structures 

and algorithms to communicate and/or cooperate.  Normally the only way to add an algorithm to such a 

system is to add a module based on that algorithm.  Polyscheme enables this kind of integration, but also 
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enables algorithms to be executed through the focus of attention.  This allows every single step of every 

algorithm to be executed using many data structures and algorithms and thus enables a much more 

thorough integration of algorithms.  Fixed hybrid approaches such as Clarion [28] and ACT-R [29, 30] 

create hybrids between a few specific algorithms.  Both include production systems that use reinforcement-

learning mechanisms for conflict resolution, but do not enable such close interaction between other 

algorithms implemented in those systems.    

Polyscheme differs from many cognitive architectures in being primarily inferential and not procedural. 

Most architectures, e.g., Icarus [31], Soar [11], Epic [32] and ACT-R choose an action at every step.  These 

actions are actual physical actions or operations on data structures in memory.  In Polyscheme, at every 

time step, specialists do not take or propose actions, but instead take stances on the truth value of 

propositions and suggest propositions to attend to.  A consequence is that Polyscheme includes mechanisms 

for communication and sharing information about the truth of propositions that make it much easier to 

implement many reasoning and inference algorithms. 

A focus of attention is a very important part of ACT-R and Rao‟s work [33] on visual routines.  

However, in ACT-R, the focus of attention is not used to implement algorithms and in neither case is it 

feasible (because of the absence of mechanisms involving truth values and alternate worlds) to implement 

and integrate reasoning and inference algorithms using this sort of focus of attention mechanism. 

Self-adaptive system architectures (e.g., [34, 35]) share some features of this approach.  They often 

contain multiple algorithms based on different methods.  Further, these architectures often contain some 

form of self-monitoring that detects problems among system components and reacts accordingly.  This is in 

some ways similar the role of choosing focus to deal with metacognitive problems in Polyscheme.  

However, these systems typically do not contain a notion of a focus of attention that all modules process 

simultaneously and they do not require all components to be able to simulate alternate worlds.  Thus, while 

nothing prevents these systems from including components that implement inference algorithms inside 

modules, they cannot implement these algorithms as the result of a guided focus of attention that involves 

all modules in every step of inference. 

Polyscheme‟s focus of attention is superficially reminiscent of blackboard systems (e.g., [36]) insofar as 

it is a shared entity multiple modules access.  However, the two have numerous and profound differences:  

the focus of attention in Polyscheme is tiny; Polyscheme has no shared-memory among modules while 

blackboards are such shared memory; Polyscheme modules can have arbitrarily large, varied and persistent 

memories while in many blackboard systems, the blackboard is the main form of memory; blackboard 

systems have no straightforward way of exploring alternate states of the world; and unlike the focus of 

attention in Polyscheme, modules in blackboard systems generally do not synchronize their operation.  

Most importantly, the lack of shared memory frees modules in Polyscheme to use a much more diverse 

array of representational formalisms. 

Finally, like the current approach, [37] proposes that many solutions to human intelligence arises from 

the interaction of specialized processors and explores the value of a focus of attention [38].  While it does 

not implement inference algorithms using a focus of attention and simulated worlds, it does provide a 

means of learning interactions among modules.  In Polyscheme, at present, these interactions are 

established by the system designers, though it is likely that additional benefits would result by using such 

methods to influence the interaction of specialists in Polyscheme.  

9 Technical Conclusions 
The goal of this paper has been a framework for creating a single system that can exhibit the best 

characteristics of algorithms based on different computational formalisms.  Our approach has been to create 

a cognitive architecture called Polyscheme that can execute hybrids of these algorithms.  Polyscheme 

enables two kinds of hybrids.  First, a Polyscheme system can include modules based on arbitrarily 

different algorithms and data structures so long as they implement the common functions.  Second, and 

most originally, Polyscheme can execute algorithms by guiding the “focus of attention” of these modules.  

Systems created using Polyscheme demonstrate that integration through a focus of attention enables 

systems that can make inferences and solve problems in situations beyond the reach of existing individual 

computational methods.  
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10 Transitions 

 

The project led to three transitions.  Much of the technology developed here was key to 

the award of grants for the following three projects:  1.  A MURI award for a project 

headed by Nicholas Cassimatis, the PI for the present project, to use these user modeling 

methods to improve human-computer interactions, 2.  A DARPA SIBR with TracLabs 

that used these methods to monitor the operation of robots.  3.  An ONR SIBR also with 

TracLabs that used these methods to greatly improve the ability of robots and understand 

the goals of the users they were interacting with. 

 

The total amount of funding for these projects was about $8,000,000. 
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