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ALGORITHM DEVELOPMENT FOR THE MULTI-FLUID PLASMA
MODEL

AFOSR Grant No. FA9550-09-1-0135

U. Shumlak

Department of Aeronautics and Astronautics
Aerospace & Energetics Research Program

University of Washington

Abstract

An algorithm is developed based on the multi-fluid plasma model derived
from moments of the Boltzmann equation. The MHD (magnetohydrodynamic)
model involves assumptions that limit its applicability. The multi-fluid plasma
model only assumes local thermodynamic equilibrium and, therefore, accurately
models the appropriate physical processes. The multi-fluid plasma model typi-
cally has two fluids representing electron and ion species. Large mass differences
between electrons and ions introduce disparate temporal and spatial scales and
require a numerical algorithm with sufficient accuracy to capture the multiple
scales. The multi-fluid capability is not limited to two species. Plasma with
multiple components can be modeled, e.g. impurity ions, neutral gas. The
multi-fluid equations are derived in divergence form for the naturally occurring
conserved variables. The source terms of the multi-fluid plasma model couple
the fluids to themselves (interspecies interactions) and to the electromagnetic
fields. The solution and evolution must be tightly coupled to prevent unstable
numerical oscillations. The electromagnetic field equations are solved by apply-
ing correction potentials or by using a mixed potential formulation to eliminate
any components of the fields that violate the divergence constraints. A dis-
continuous Galerkin method is developed to solve the governing equations on
a computational grid and to simulate plasma phenomena. Interspecies inter-
actions also occur through collisional source terms that account for the direct
transfer of momentum and energy. In addition to the plasma and electrody-
namic physics, the multi-fluid plasma model captures atomic physics in the
form reaction rate equations for ionization and recombination, which introduce
new temporal scales to the plasma dynamics model. The numerical algorithm
must treat the inherent stiffness introduced by the multiple physical effects of
the model. Fully implicit and semi-implicit treatments have been implemented
with the semi-implicit treatment showing promise for a more optimum method.
Nonreflecting boundary conditions using a lacunae-based method have been im-
plemented and provide higher solution fidelity for open boundary problems.
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1 Executive Summary

This project represents a two-year effort to develop a new algorithm for plasma
simulations based on the multi-fluid plasma model. The algorithm is capable of
three-dimensional, time-dependent plasma simulations that capture the multi-
physics and multi-scale effects of the complete multi-fluid plasma model. The
multi-fluid plasma equations is formulated in divergence form which includes
source terms. The source terms couple the fluids to the electromagnetic fields,
account for collisions between the fluids, and provide sinks and sources from the
atomic reactions. A high-order algorithm is developed that solves the complete
multi-fluid plasma model such that equilibrium, perturbation, and transient
phenomena can be accurately simulated. The algorithm uses the discontinuous
Galerkin method to achieve high-order accuracy. Novel numerical approaches
for time integration are investigated to perform simulations that are not limited
by the shortest timescale of the system. These methods include fully implicit
backward difference and a semi-implicit treatment. The algorithm takes ad-
vantage of the parallel computing architectures that are available locally and
at the Major Shared Resource Centers (parallel workstation cluster, Dell Pow-
erEdge, Cray XD1, and others). The new algorithm has been benchmarked
against known analytical results, previously published results, and experimen-
tal data from the Air Force Research Laboratories [the field reversed configu-
ration (FRC) implosions for magnetized target fusion (MTF) at Kirtland AFB
and FRC experiments at the University of Washington].

Many plasma simulation codes are currently based on the MHD (magne-
tohydrodynamic) model. The derivation of the MHD model involves several
assumptions that severely limit its applicability. MHD simulations of several
technologies important to the USAF have failed to predict the experimentally
observed plasma behavior, e.g. stability of field reversed configurations. Recent
success with the two-fluid plasma model has provided a development path for
plasma simulations that are more physically accurate and capable than MHD
models. [1–6] Building on the successful development of the two-fluid model,
a plasma simulation algorithm is developed for the multi-fluid plasma model.
The multi-fluid plasma model only assumes local thermodynamic equilibrium
within each fluid and is, therefore, more physically accurate and capable than
MHD models. The separate electron and ion response is accurately represented,
as well as, multi-component plasmas that can include impurities, neutrals.

The multi-fluid model is formulated in conservation form and lends itself
naturally to accurate fluid models. For example, an approximate Riemann
solver is developed for the two-fluid plasma model to compute the fluxes in
a stable and accurate manner. Several methods are investigated to solve the
electromagnetic field model, which includes the source terms and divergence
constraints. These methods include a purely hyperbolic formulation of the
Maxwell’s equation and a mixed potential formulation. The plasma fluids (elec-
trons and ions) and the electromagnetic fields communicate through the source
terms. The fluid momentum and energy equations have source terms that
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depend on E and B. The electromagnetic equations have source terms that
depend on vi and ve (Ampere’s law) and ni and ne (Gauss’s equation). All flu-
ids (plasma and neutral) communicate through scattering collisions and atomic
reactions that appear as source terms. Accurately coupling the source terms is
important both for numerical stability and for modeling plasmas where large
equilibrium forces exist.

The multi-fluid algorithm uses a discontinuous Galerkin, finite element
method for the spatial representation and a TVD Runge-Kutta method for
the time advance. [2] Solutions are found with up to 16th order spatial accu-
racy and 3rd order temporal accuracy. [7] The multi-fluid plasma algorithm
is used to model multiscale physics of current-carrying plasmas, such as the
Z-pinch [4] and the field reversed configuration (FRC) [5]. These plasma con-
figurations balance large equilibrium forces between the plasma pressure and
the electromagnetic pressure. The high-order algorithm is seen to significantly
improve the ability to maintain equilibrium with no artificial decay. [7]

Domain truncation is accomplished by implementing open boundary con-
ditions that are based on lacunae methods. The open domain boundary is
appended with an exterior domain that matches the interior solution and then
damps the solution before artificial reflections develop. Multi-fluid and arbitrar-
ily complex geometry capability has been demonstrated. [8] Plasma formation
process is modeled in a two-dimensional geometry which produces a plasma
from the collisions of electrons and neutrals. During the initial formation a
Langmuir wave is observed to propagate. FRC simulations are performed in
a five-block cylindrical grid. The simulation results show the development of
short wavelength drift turbulence.

The divergence constraints of Maxwell’s equations can be difficult to satisfy
with the presence of current and charge sources on an arbitrary computational
grid. The divergence constraints are satisfied by reformulating Maxwell’s equa-
tions to include correction potentials. The approach involves coupling the di-
vergence constraint equations with the time-dependent field equations to form
a purely hyperbolic equation set. [9] An alternative formulation of Maxwell’s
equations using mixed potential is also implemented. The mixed potential for-
mulation automatically satisfies the divergence constraints; however, a gauge
condition must then be enforced.

This project was performed by Prof. Uri Shumlak and graduate students
Robert Lilly, Noah Reddell, Eder Sousa, Bhuvana Srinivasan, and Andree Su-
santo. This project resulted in doctoral dissertations and master thesis:

• Bhuvana Srinivasan, “Numerical Methods for 3-dimensional Magnetic
Confinement Configurations using Two-Fluid Plasma Equations”, Ph.D.
2010.

• Andree Susanto, “Development of Electromagnetic Solvers for Use with
The Two-Fluid Plasma Algorithm”, M.S. 2009.

These dissertations and theses can be obtained from the University of Washing-
ton library system or from the project website, http://www.aa.washington.edu/research/cfdlab/.
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Archival journal and conference papers were published reporting on the work
from this project:

• U. Shumlak, R. Lilly, N. Reddell, E. Sousa, and B. Srinivasan, “Advanced
physics calculations using a multi-fluid plasma model”, Computer Physics
Communications 182 1767-1770 (2011).

• B. Srinivasan, A. Hakim, and U. Shumlak, “Numerical methods for two-
fluid dispersive fast MHD phenomena”, Communications in Computa-
tional Physics 10 (3), 183-215 (2011).

• J. Loverich, A. Hakim, and U. Shumlak, “A discontinuous Galerkin method
for ideal two-fluid plasma equations”, Communications in Computational
Physics 9, 240-268 (2011).

• A. Hakim and U. Shumlak, “Two-fluid physics and field-reversed config-
urations”, Physics of Plasmas 14, 055911 (2007).

2 Project Results

Plasmas are essential to many technologies that are important to the Air Force,
some of which have dual-use potential. These applications include portable
pulsed power systems, high power microwave devices, drag reduction for hyper-
sonic vehicles, advanced plasma thrusters for space propulsion, nuclear weapons
effects simulations, radiation production for counter proliferation, and fusion
for power generation. In general, plasmas fall into a density regime where they
exhibit both collective (fluid) behavior and individual (particle) behavior. The
intermediate regime complicates the computational modeling of plasmas.

2.1 Plasma Models — Kinetic, PIC, MHD, Multi-
Fluid

Plasmas may be most accurately modeled using kinetic theory. The plasma is
described by distribution functions in physical space, velocity space, and time,
f(x,v, t). The evolution of the plasma is then modeled by the Boltzmann
equation.

∂fα
∂t

+ vα ·
∂fα
∂x

+
qα
mα

(E + vα ×B) · ∂fα
∂v

=
∂fα
∂t

∣∣∣∣
collisions

(1)

for each plasma species α = ions, electrons. The Boltzmann equation cou-
pled with Maxwell’s equations for electromagnetic fields completely describe
the plasma dynamics. [10–12] However, the Boltzmann equation is seven di-
mensional. As a consequence of the large dimensionality plasma simulations
using the Boltzmann equation are only used in very limited applications with
narrow distributions, small spatial extent, and short time durations. [13, 14]
The seven dimensional space is further exacerbated by the high velocity space
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that is unused except for tail of the distribution or energetic beams. Boundary
conditions are difficult to implement in kinetic simulations.

Particle in cell (PIC) plasma model apply the Boltzmann equation to repre-
sentative superparticles which are far fewer (107) than the number of particles
in the actual plasma (1020). [15] PIC simulations have similar limitations as
simulations using kinetic theory due to statistical errors caused by the fewer
superparticles. Boundary conditions are also difficult to implement in PIC
simulations.

The other end of the spectrum in plasma model involves taking moments of
the Boltzmann equation and averaging over velocity space for each species which
implicitly assumes local thermodynamic equilibrium. The resulting equations
comprise the multi-fluid plasma model, where a fluid is defined for each species,
e.g. electrons, ions, neutrals. When only two fluids, electrons and ions, are
included, the resulting system is the two-fluid plasma model. [1] The two-fluid
equations can be combined to form the MHD model. [16] However, in the
process several approximations are made which limit the applicability of the
MHD model to low frequency and ignores the electron mass and finite Larmor
radius effects.

The MHD model treats the plasma like a conducting fluid and assigning
macroscopic parameters to describe its particle-like interactions. Plasma simu-
lation algorithms based on the MHD model have been very successful in model-
ing plasma dynamics and other phenomena. Codes such as MACH2 are based
on arbitrary Lagrangian/Eulerian formulations. [17] ALE codes are well suited
for simulating plasma phenomena involving moving interfaces. [18] However,
ALE codes cannot be formulated as conservation laws and lack many of the
inherent conservative properties. The MHD model has been successfully im-
plemented in conservative form to simulate realistic three-dimensional geome-
tries. [19, 20]

A severe limitation of the MHD model is the treatment the Hall effect
and diamagnetic terms. These terms represent the separate motions of the
ions and electrons. The Hall effect and diamagnetic terms also account for
ion current and the finite ion Larmor radius. These effects are important in
many applications such as electric space propulsion thrusters: Hall thrusters,
magnetoplasmadynamic (MPD) thrusters, Lorentz force thrusters. The Hall
term is also believed to be important to electrode effects such as anode and
cathode fall which greatly affect many directly coupled plasma applications.
Furthermore, the Hall and diamagnetic effects may be important for hypersonic
flow applications. [21]

The Hall terms can be difficult to stabilize because they lead to the whistler
wave branch of the dispersion relation. The phase and group velocities of the
whistler wave increase with frequency. The velocities become large even for
modest values of the Hall parameter. See Fig. 1 for the dispersion diagram.

A semi-implicit technique has been applied to treat the Hall term in a Hall-
MHD model. [22, 23] After the hyperbolic terms of the MHD equations are
advanced, the Hall terms are treated independently. The conserved variables
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Figure 1: Dispersion relations for the two-fluid plasma model and for the Hall-MHD
plasma model that results when asymptotic approximations are applied to the two-
fluid plasma model. For small wave numbers and low frequencies (right plot), the
upper branch of the Hall-MHD wave follows the R wave of the two-fluid model.
However, the waves diverge and the Hall-MHD wave fails to follow the resonance
at the cyclotron frequency. The wave speed grows without bound. Artificial hyper-
resistivity is required to damp this branch of the Hall-MHD wave.
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are then corrected. The procedure can be computationally intensive. The oper-
ator stencil uses 5 points in the sweep direction and 3 points in each orthogonal
direction. The complete operator stencil is 45 points. The semi-implicit method
works adequately for small Hall parameters, but becomes unstable or slow to
converge for the large Hall parameters often seen in applications.

As mentioned above, the multi-fluid plasma model is more complete than
either the MHD or Hall-MHD model. The multi-fluid plasma model resolves
plasma oscillations and speed of light propagation. However, many applications
are adequately modeled by lower frequency dynamics. Asymptotic approxima-
tions (me → 0, c → ∞) have been applied to the two-fluid plasma model to
eliminate the high frequency waves that limit the maximum numerical time
step. Neglecting electron inertia removes the limitation due to the electron
plasma and cyclotron frequencies. Infinite light speed removes the limitation
due to light transit times. The asymptotic approximations reduce the two-fluid
plasma model to the Hall-MHD model. However, applying these approxima-
tions fundamentally changes the dispersion relation, as evident in Fig. 1, and
introduces unphysical wave behavior. Specifically, the phase and group veloc-
ities of a Hall-MHD wave increase without bound with wave number. The
large wave speeds increases the stiffness of the equation system making accu-
rate numerical solutions difficult. Furthermore, the maximum wave number is
usually set by either the computational mesh spacing (kmax ∝ ∆x) or by an
artificial resistivity. Rigorous convergence studies are difficult with the simpler
plasma models since decreasing ∆x leads to larger kmax and shorter wavelength
phenomena.

2.2 Multi-Fluid Plasma Algorithm

The complexity of the multi-fluid model is greater the MHD model but signif-
icantly less than the kinetic model. In this project a new algorithm is devel-
oped that solves the multi-fluid plasma model using an approximate Riemann
solver. [1] The method tracks the wave propagation across the domain based
on conservation laws.

The governing equations for the multi-fluid plasma model (including the
electromagnetic equations) are expressed in divergence form. Similar to the
two-fluid plasma model, the governing equations for the multi-fluid plasma
models are derived by taking moments of the Boltzmann equation, Eq. (1), for
each species. Local thermodynamic equilibrium within each fluid is assumed.
The fluid variables are derived by taking moments of the distribution function.

The evolution of the particle densities is expressed by continuity equations.
The equations are the zeroth moment of the Boltzmann equation.

∂nα
∂t

+∇ ·
(

jα
qα

)
=
∂nα
∂t

∣∣∣∣
Γ

(2)

where nα is the number density for species α and the particle fluxes are defined
by the partial current densities jα = qαnαvα in terms of the charge qα and fluid
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velocity vα for each species. The net production rate of species α due to atomic
reactions is denoted on the right-hand side of the equation with a subscript Γ.
Contributions due to atomic reactions are described later.

The first moment of the Boltzmann equation yields momentum equations
for each species. The momentum equations are written in divergence form in
terms of the partial current densities.

∂jα
∂t

+∇·
(

jαjα
qαnα

+
qα
mα

Pα

)
=
q2
αnα
mα

E+
qα
mα

jα×B− qα
mα

∑
β

Rαβ +
∂jα
∂t

∣∣∣∣
Γ

(3)

where E and B are the electric and magnetic fields, Pα = pαI+Πα is the total
pressure tensor of species α (sum of the scalar pressure and the stress tensor),
and Rαβ is the momentum transfer vector from species α to species β. The
net current density (momentum) generation rate of species α due to atomic
reactions is denoted on the right-hand side of the equation with a subscript Γ.

The second moment of the Boltzmann equation yields energy equations for
each species which are expressed in divergence form for the total energy.

∂εα
∂t

+∇ ·
[
(εα + pα)

jα
qαnα

]
= jα ·

(
E +

∑
β Rαβ

qαnα

)
+
∂εα
∂t

∣∣∣∣
Γ

(4)

where the total energy is defined by

εα ≡
1

γ − 1
pα +

1

2
mαnαv

2
α (5)

where γ is the ratio of specific heats. An adiabatic equation of state is assumed.
The energy addition rate of species α due to atomic reactions is denoted on the
right-hand side of the equation with a subscript Γ and is described in a later
section.

Neutral fluids can be incorporated into the multi-fluid plasma model by
eliminating the species charge which returns the conventional expressions for
the governing equations.

2.2.1 Electromagnetic Field Evolution

The electromagnetic fields influence the motion of the plasma fluid through the
Lorentz force which is contained in Eq. (3). The motion of the plasma influ-
ences the evolution of the electromagnetic fields through the redistribution of
charge density and current density. Maxwell’s equations govern the evolution
of the electromagnetic fields. The net charge density

∑
α qαnα and total cur-

rent density
∑

α jα are calculated directly from the multi-fluid equations which
couple the electromagnetic fields.

∂B

∂t
= −∇×E (6)

ε0µ0
∂E

∂t
= ∇×B− µ0

∑
α

jα (7)
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ε0∇ ·E =
∑
α

qαnα (8)

∇ ·B = 0 (9)

An important area of progress is investigating accurate electromagnetic field
solvers. The electromagnetic field model includes divergence constraint rela-
tions, which if not accurately satisfied, can lead to nonphysical solutions. Spe-
cial treatment is required because the divergence relations over-constrain the
solution. Satisfying the divergence constraint relations requires adding correc-
tion potentials to form purely hyperbolic equations [9], which requires solving
additional hyperbolic equations to sweep the divergence error out of the domain
or formulating Maxwell’s equations with mixed potentials (scalar and vector
potentials) that automatically satisfy the divergence constraint relations.

The purely hyperbolic version of Maxwell’s equations are expressed as

∂B

∂t
+∇×E + γ∇ψ = 0 (10)

∂E

∂t
− c2∇×B + χc2∇φ = − 1

ε0

∑
α

qαnαvα (11)

∂φ

∂t
+ χ∇ ·E =

χ

ε0

∑
α

qαnα (12)

∂ψ

∂t
+ γc2∇ ·B = 0 (13)

where error propagation speeds γ and χ are introduced to convect the diver-
gence errors out of the domain.

The electromagnetic fields can be formulated using potentials that mathe-
matically satisfies the divergence constraint conditions, Eqs. (8) and (9). The
mixed potential formulation is derived by expressing the electric and magnetic
fields using scalar and vector potentials. Specifically, the scalar potential Φ and
vector potential A are defined by

E = −∇Φ− ∂A

∂t
, (14)

B = ∇×A. (15)

The potential formulation requires setting an arbitrary gauge condition that
affects the form of the resulting governing equations. If a Coulomb gauge
condition (∇ ·A = 0) is assumed, the evolution equations become

∇2Φ = − 1

ε0

∑
α

qαnα (16)

∂2A

∂t2
− c2∇2A =

1

ε0

∑
α

qαnαvα −∇
(
∂Φ

∂t

)
(17)
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Figure 2: Evolution of the magnetic field divergence for the purely hyperbolic and
mixed potential formulation of Maxwell’s equations.

If the Lorenz gauge ∇ ·A = − 1
c2
∂Φ
∂t is assumed, the field equations become

∂2Φ

∂t2
− c2∇2Φ =

c2

ε0

∑
α

qαnα (18)

∂2A

∂t2
− c2∇2A =

1

ε0

∑
α

qαnαvα. (19)

Both the purely hyperbolic and the mixed potential formulations have been
implemented to evaluate the ability of each method to preserve the diver-
gence constraint relations. Figure 2 shows the results for the GEM challenge
(Geospace Environmental Modeling Magnetic Reconnection Challenge) prob-
lem of collisionless magnetic reconnection. [24] The mixed potential formula-
tions show a divergence error on the order of machine precision and much lower
than the purely hyperbolic formulation. However, the computational effort for
the mixed potential formulation is significantly greater.

2.2.2 Characteristics of the Multi-Fluid Plasma Model

As presented above, the governing equations for the multi-fluid plasma model
including the electromagnetic equations are expressed in divergence form.

∂Q

∂t
+∇ · F = S (20)

where Q is the vector of conserved fluid variables, F is the tensor of hyperbolic
fluxes and S is the vector containing the source terms. The length of vectors
depends on the number of fluids included in the model. For Q, there are
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2 scalar and 1 vector variables for each fluid and 2 vector variables for the
electromagnetic fields.

The system of equations can be divided into the plasma fluid equations and
the electromagnetic field equations. The plasma fluid equations for species α
are written as

∂

∂t

nαjα
εα

+∇ ·


jα
qα

jαjα
qαnα

+ qα
mα

Pα

(εα + pα) jα
qαnα

 =


∂nα
∂t

∣∣
Γ

q2αnα
mα

E + qα
mα

jα ×B− qα
mα

∑
β Rαβ + ∂jα

∂t

∣∣∣
Γ

jα ·
(
E +

∑
β Rαβ

qαnα

)
+ ∂εα

∂t

∣∣
Γ

 , (21)

The electromagnetic field equations are written as

∂

∂t

[
B

c−2E

]
+∇×

[
E
−B

]
=

[
0

−µ0
∑

α jα

]
. (22)

Similar forms exist if either the purely hyperbolic or mixed potential formula-
tions are used.

The Jacobians of the hyperbolic fluxes ∂F/∂Q of the governing equations
[Eqs. (21) and (22)] are constructed in the usual way. The eigenvalues of the flux
Jacobians give the characteristic velocities. In one dimension, the eigenvalues
of the fluid equations are

λfluid = {vαx , vαx ± csα} (23)

where the acoustic speed for species α is defined as

csα =

√
γTα
mα

, (24)

γ is the ratio of specific heats, and the temperature is defined from the scalar
pressure, pα = nαTα.

The electron acoustic speed is larger than the ion acoustic speed for the same
fluid temperatures due to the large ion to electron mass ratio. The electron
acoustic speed can be larger than the Alfvén speed which is a component of the
eigenvalues of MHD. The Alfvén speed for an ion/electron plasma is defined as

vA =
B√

µ0 (mini +mene)
(25)

whereB is the magnetic field and µ0 is the permeability of free space (4π×10−7).
The eigenvalues of the field equations are

λfield = {±c} . (26)

Therefore, the eigenvalues of the multi-fluid plasma model are generally not
bounded by the eigenvalues of the MHD model. In general, the fastest times
that must be resolved in the multi-fluid plasma model are the light transit time
∆x/c and the electron plasma oscillation time ω−1

pe .
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2.2.3 Collisional Effects

The fluids of the multi-fluid plasma model interact primarily through the elec-
tromagnetic fields which produce long-range forces. However, the short-range
collisional effects can have a significant impact on the complete plasma behavior
and evolution. Specifically, the collisional effects can effectively thermalize the
fluids such that the complete plasma approaches a thermodynamic equilibrium.

The collisional terms allow for transfer of momentum and energy between
the different fluids. [25] The terms appear as frictional effects in Eqs. (3) and
(4),

∑
β Rαβ. The rate of momentum transfer from species α to species β is

given by
Rαβ = mαnαναβ (vα − vβ) . (27)

where ναβ is the collision frequency between species α and β. Momentum
conservation requires Rαβ = −Rβα and Rαα = 0.

2.2.4 Atomic Reactions

The purpose of including the effect of atomic reactions into the multi-fluid
plasma model is to capture the time-dependent ionization, recombination, and
charge exchange reactions that are important in laboratory and transient plas-
mas. Atomic reactions lead to transitions between the fluids in the multi-fluid
plasma model. For example, neutral ionization depletes the neutral fluid and
increases the ion and electron fluids. The reactions also transfer momenta and
energies between the fluids.

Contributions from atomic reactions are identified by terms on the right-
hand side of Eqs. (2), (3), and (4). The terms are expressed below for the
ionization (ion), recombination (rec), and charge exchange (cx ) reactions for a
hydrogen plasma composed of neutral hydrogen (α = n), ionized hydrogen (α =
i), and electrons (α = e). Additional reactions and other plasma constituents
are also possible. The contributions to the species densities are

∂nn
∂t

∣∣∣∣
Γ

= −Γion + Γrec , (28)

∂ni
∂t

∣∣∣∣
Γ

= Γion − Γrec , (29)

∂ne
∂t

∣∣∣∣
Γ

= Γion − Γrec . (30)

The contributions to the species momenta are

mn

qn

∂jn
∂t

∣∣∣∣
Γ

= − (Γion + Γcx )mnvn + (Γrec + Γcx )mivi, (31)

mi

qi

∂ji
∂t

∣∣∣∣
Γ

= (Γion + Γcx )mivn − (Γrec + Γcx )mivi, (32)
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me

qe

∂je
∂t

∣∣∣∣
Γ

= (Γion + Γcx )mevn − (Γrec + Γcx )meve. (33)

The contributions to the species energies are

∂εn
∂t

∣∣∣∣
Γ

= − (Γion + Γcx ) εn + (Γrec + Γcx ) εi, (34)

∂εi
∂t

∣∣∣∣
Γ

= (Γion + Γcx ) εn − (Γrec + Γcx ) εi, (35)

∂εe
∂t

∣∣∣∣
Γ

= (Γion + Γcx ) εn − (Γrec + Γcx ) εe. (36)

The reaction rates are given by

Γion = 〈σv〉ion nnni

Γrec = 〈σv〉rec neni

Γcx = 〈σv〉cx nnni

(37)

where Γion is the plasma source from electron impact ionization of neutrals,
Γrec is the plasma sink due to recombination, and Γcx is the plasma exchange
due to charge exchange. The cross sections can depend on temperature.

2.3 High-Order Discontinuous Galerkin Method

Electromagnetic forces are exerted on the plasma fluids through the source
terms of Eq. (20) and the fluid motion affects the fields through the source
terms of Eq. (20). Even with accurate hyperbolic flux calculations, inaccurate
calculation of the source terms can lead to incorrect results. Particularly in
equilibrium situations where forces from electromagnetic fields balance fluid
pressure or convective forces, the contributions from the source terms must be
accurately calculated to balance the divergence of the hyperbolic fluxes.

We have developed a discontinuous Galerkin method [26–28] to solve the
governing equations of the multi-fluid plasma model on a computational grid.
[2, 6–8] The discontinuous Galerkin method is a finite element approach that
allows for arbitrarily high order basis functions to model the variation of the
system variables. Source terms are automatically coupled.

The conserved variables of the multi-fluid plasma model are modeled with
a set of basis functions, vk, which can be any desired order. The governing
equations, expressed as Eq. (20), are multiplied by each basis function and
integrated over the mesh element volume Ω. An integral equation is generated
for each basis function.∫

Ω
vk
∂Q

∂t
dV +

∮
∂Ω
vkF · dS−

∫
Ω

F · ∇vkdV =

∫
Ω
vkSdV (38)

where the divergence theorem has been applied to the second term. The solu-
tion variables Q, flux F, and source vector S are given by the first term, the
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second term, and the right hand side of Eq. (20). The volume and surface inte-
grals are replaced with Gaussian quadrature. The source terms are projected
onto the basis functions and are, therefore, the same order accurate as the so-
lution variables. This satisfies the high- order accuracy requirement to preserve
the equilibrium balance between the divergence of the flux and the source.

The surface integral in Eq. (38) uses hyperbolic fluxes computed with a Roe-
type approximate Riemann solver. [1,29] In this method the overall solution is
built upon the solutions to the Riemann problem defined by the discontinuous
jump in the solution at each element interface. The numerical flux for a first-
order accurate (in space) Roe-type solver is written in symmetric form as

Fi+1/2 =
1

2
(Fi+1 + Fi)−

1

2

∑
k

lk (Qi+1 −Qi) |λk| rk (39)

where rk is the kth right eigenvector, λk is the kth eigenvalue, and lk is the kth

left eigenvector, evaluated at the element interface (i+ 1/2). The values at the
element interface are obtained by a Roe average of the neighboring elements.
The flux calculated as above is normal to the element interface which is the
desired orientation for calculating the surface integral.

For the two-dimensional, second-order accurate algorithm, a linear set of
basis functions are used.

{vk} = {v0, vx, vy} =

{
1,
x− xij
∆x/2

,
y − yij
∆y/2

}
(40)

where the center of the mesh element is located at (xij , yij) and extends ∆x by
∆y. The conserved variables Q are defined as

Q = Q0 +Qxvx +Qyvy (41)

within each mesh element. Update equations for the coefficients for each con-
served variable are found directly from Eq. (38) applied to each mesh element.

The temporal evolution is determined with a Runge-Kutta method. A third
order TVD method has been used successfully.

Extensions to higher order involves increasing the order of the basis func-
tions and following the evolution of the additional coefficients. For example the
third-order accurate basis functions would have the form

{vk} = {v0, vx, vy, vxy, vxx, vyy}. (42)

and each conserved variable Q is defined as

Q = Q0 +Qxvx +Qyvy +Qxyvxy +Qxxvxx +Qyyvyy (43)

within each mesh element.
The discontinuous Galerkin algorithm has been applied to the electromag-

netic plasma shock demonstrating the transition from gas dynamic shocks to
the MHD shock [30, 31] as the Larmor radius is reduced. Analysis of the data
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shows the differences caused by the additional plasma waves that are captured
in the two-fluid model and, consequently, in the algorithm developed here. [1]
It also illustrates the dispersive nature of the waves which makes capturing the
effect difficult in MHD algorithms. The electromagnetic plasma shock serves
to validate the algorithm to published data (MHD limit) and analytical results
(gas dynamic limit). The algorithm has also been applied to study collisionless
reconnection and the results are compared to published results of the GEM
challenge problem. [24] The problem is difficult to model and provides a rigor-
ous test for the algorithm and benchmarks to other algorithms. The evolution
of the reconnected magnetic flux compares remarkably well with the published
data. [2] Additional applications are discussed in more detail below.

2.4 Time-Integration Methods

The Runge-Kutta method described previously has proven to be robust and
accurate for explicit calculations. The multi-fluid plasma model has disparate
characteristic speeds and frequencies. The speeds range from the high speed of
light and electron plasma frequency (nanosecond times) to slow speed of bulk
fluid motion or ion sound speed (second or longer times). The short time scales
dictate a small time-step for any explicit time-integration method. Using the
high-order discontinuous Galerkin method further exacerbates the small time-
step.

The fast time scales contained in the multi-fluid plasma model are identified
by the eigenvalues discussed in Sec. 2.2. When phenomena of interest occurs on
these time scales then time steps of this size must be used. When phenomena
of interest occurs on longer time scales then it is desirable to use appropri-
ately large time steps. As discussed earlier, asymptotic approximations can be
applied to the multi-fluid plasma model to remove the most severe time scale
constraints; however, these approximations fundamentally change the physical
model and yield an equation system that can be more difficult to solve mathe-
matically. We propose to instead investigate mathematical methods that allow
time steps larger than the fastest time scales.

Fully implicit methods have been investigated. The governing equations are
written as

∂Q

∂t
= f(Q). (44)

The time advance can be expressed in an implicit form of arbitrary order ac-
curacy as

Qn+1 = g
(
∆t, Qn+1, Qn, Qn−1, ...

)
. (45)

A second-order Crank-Nicolson method has been implemented, where the time
advance equation is written as

Qn+1 = Qn +
∆t

2

[
f
(
Qn+1

)
+ f (Qn)

]
, (46)

which is solved iteratively using a variety of implicit numerical methods, e.g.
Conjugate Residual, Biconjugate Gradient, and GMRES, with preconditioners
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Figure 3: Electron and ion number densities for the electromagnetic shock problem
solved with the implicit method using time steps 200 times larger than the fastest
time system time scale. An explicit solution is also shown for comparison.

such as Incomplete LU and Additive Schwarz. The method has been applied
to several benchmark problems to compare the accuracy of the solution when
large time steps are used. Solution accuracy is well preserved for the resolved
timescale. However, the full implicit time integration is inefficient because of
the large size of the equation system.

The electromagnetic shock problem provides a rigorous benchmark because
it has fast phenomena associated with light and whistler wave propagation,
and it has slower phenomena associated with the massive ion motion. Figure 3
shows simulation results for the ion and electron number densities for the elec-
tromagnetic shock problem where steps 200 times larger than the light transit
time and 20 times larger than the electron characteristic time are used. An
explicit solution which resolves all of the time scales is also shown for compar-
ison. The solution shows that the electron dynamics are only approximately
modeled by the implicit method as expected, but the ion dynamics are well cap-
tured and agree with the explicit solution. Both methods use a second-order
discontinuous Galerkin spatial representation.

A semi-implicit method has been formulated to perform a splitting of the
governing equations of the two-fluid plasma model. The splitting is based on
the different expected physics and corresponding different scales dictated by
the specific model equations. Specifically, the electron fluid and electromag-
netic fields introduce the fast/small scales and are solved implicitly using the
method described by Eq. (46), and the ions introduce slow/large scales and
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are solved explicitly using the third-order accurate TVD Runge-Kutta time ad-
vance method. The combination of implicit and explicit treatments limits the
size of the operator matrix while still allowing time steps that are not limited
by the fast timescales. The time step is still limited by the ion motion; however,
the ion motion is often the timescale of interest and needs to be resolved for
accurate simulation results. The semi-implicit method has yielded encouraging
results by exploiting the fundamental physics of the governing equations. How-
ever, there are additional avenues to pursue to further incorporate the physics
of the governing equations into the numerical method.

2.5 Applications

The described above is implemented on parallel computers using an automatic
domain decomposition technique with MPI message passing. The algorithm
is implemented in a code called WARPX (Washington Approximate Riemann
Plasma) which uses C++ object oriented programming and other modern soft-
ware techniques to simplify the maintainability and extendibility of the code
and HDF5 for parallel output.

2.5.1 Field Reversed Configurations (FRC) in Three Dimen-
sions

WARPX has been applied to study Z-pinch dynamics and three-dimensional
FRC evolution to investigate anomalous resistivity that experimentally limits
the plasma current. An experiment at Kirtland AFB (AFRL/RDHP) forms
FRC plasmas, translates them into a cylindrical flux conserver, and compresses
the plasma to high energy densities by imploding the flux conserver onto the
plasma. FRC plasmas have been modeled using MHD codes with unsatisfac-
tory results. Specifically, FRC plasmas are characterized by large gyroradii
(L/rL = 2 − 4) and charge separation. MHD models have failed to predict
many experimental observations, such as observed stability and anomalous re-
sistivity. The lack of agreement is conjectured to be caused by two-fluid effects.
Sample evolutions of the FRC plasmoid are shown in Fig. 4.

2.5.2 Three-Fluid Plasma Model for Plasma Production

WARPX provides a flexible code framework that allows easy extension of the
physical model to include multiple fluids. We have extended WARPX to a
three-fluid (electrons, ions, and neutrals) simulation of plasma sheath forma-
tion. Atomic reactions are incorporated that describe the effects of collisions
between the species explicitly, allowing for the identification of regions of ioniza-
tion/recombination and interspecies momentum and energy transfer. Plasma
sheath formation is important for electrode-based plasma technologies, e.g.
plasma actuators for control of high-speed aerospace vehicles. The multi-fluid
model captures electron inertial effects and has revealed a new physical effect.
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Figure 4: Three-dimensional evolution of an FRC using the WARPX code. Small
scale variations are evident in the azimuthal direction indicative of a drift instability.

During the initial formation of the plasma sheath the applied electrode po-
tential excites a Langmuir wave that propagates into the bulk plasma. The
dispersion relation is given by

ω2 = ω2
pe +

3

2
k2v2

Te. (47)

Typically, sheath simulations assume electrostatic fields and miss the elec-
trodynamics of the formation process. Propagating Langmuir waves are shown
in simulation results in Fig. 5. The numerical dispersion agrees with the dis-
persion relation of Eq. (47).

The plasma sheath formation studies provide better physical understanding
into the plasma production process. Plasma (ions and electrons) is produced
by ionizing the neutral gas, and it is lost when it reaches the electrode and
recombines. An analytical model of the electrode describes secondary electron
emission and recombination at the electrode. In addition to the plasma sheath
that naturally forms around electrodes, a voltage can be applied to the elec-
trodes to drive a current through the plasma. Phenomena such as cathode and
anode drops are accurately simulated.

3 Conclusions

Investigating advanced plasma models is motivated by the need to simulate
complicated plasma physics phenomena that is not captured in simpler models.
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Figure 5: Initial plasma production showing the propagation of a Langmuir wave in
the electron density (black trace) and electric field. Numerical dispersion calculated
in (k,ω) space agrees with analytical dispersion relation (dashed line).
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The multi-fluid plasma model is proving to be a model that is significantly more
advanced and complete than the usual MHD model without the computational
complexity required in general kinetic models. This project has developed the
multi-fluid plasma model and cast the governing equations in a balance law form
that lends itself to accurate numerical solutions. The algorithm developed in
the project, its implementation into WARPX, and its application to benchmark
and real experimental problems have demonstrated the capability of both the
multi-fluid plasma model and the numerical techniques in the algorithm.
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