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Arbitrarily High Order Space-time Method for Conservation Laws
on Unstructured Meshes

Second Annual and Final Report to AFOSR
regarding AFOSR Grant Number FA9550-08-1-0122

Shuangzhang Tu

Department of Computer Engineering
Jackson State University, Jackson, Mississippi

1 Foreword

This report first reviews our accomplishments on the research under AFOSR Grant FA9550-08-1-
0122 in the second year (March 15, 2009 - March 14, 2010), and then reviews the comprehensive
accomplishments over the entire project period (Mach 15, 2008 - March 14, 2010). Therefore, this
report also serves as the Final Report.

The high-order space time method proposed in this research has been termed as the discontinuous
Galerkin Cell-Vertex Scheme (DG-CVS) for its DG ingredient and its alternate cell vertex solution
updating strategy.

2 Accomplishments in the second year

In the second year, the effort addressed the following issues:

1. Solution limiting procedure. The limiting procedure performs as an alternative method to
limit (or remap) high order but oscillatory solutions across discontinuities, thus maintaining
the stability of DG-CVS. In the present approach, limiting is active only in truly oscillatory
regions detected by a reliable oscillation indicator. Since the limiter must be conservative,
the solution is reformulated in terms of the cell average and cell-averaged solution derivatives,
and the limiter limits the averaged solution derivatives only while preserving the cell average.
The limiter ensures the solution satisfies the following two constraints: (i) the solution does
not exceed the maximum or minimum cell averages in the local stencil; and (ii) the solution
gradient is consistent with the local solution variation across each edge. The limiting procedure
is recast as a quadratic programming problem with linear inequality constraints, which can
be solved by the active set method. It is hoped that through the quadratic programming,
the optimum limiting factors can be obtained while satisfying the linear constraints. For high
order solutions, these constraints are formulated as the sufficient (not necessary) conditions.
The method seems to work fine for 1-D equations (systems) and extension to higher dimensions
still needs more work.
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2. Employing the quadruple precision arithmetic via MPACK [1]. The purpose of doing this is to
verify that the DG-CVS is truly arbitrarily high-order accurate as long as the linear system
resulted from discretization can be accurately solved. In the current implementation, Taylor
polynomials are used as the basis functions and Taylor polynomials are notorious in generating
severely ill-conditioned systems. Therefore, double-precision arithmetic cannot reliably solve
the system when the degree (p) of basis polynomials is high (p > 4). The quadruple precision
arithmetic provided by MPACK is able to solve highly ill-conditioned systems and verifies
that optimal convergence rate, p + 1, can be reached for p > 4.

3. Improving the efficiency of the present high-order space-time method by implementing it on
the overset Cartesian/quadrilateral grids. Though the DG-CVS is designed for arbitrarily
unstructured grids, rectangular/quadrilateral grids are superior to triangular grids in terms
of efficiency. The body-fitted quadrilateral mesh is used to wrap the object and the Cartesian
grid serves as the background mesh. The contact boundary extracted from the quadrilateral
mesh is used to determine the overlapping region between the two meshes. The overlapping
region is kept minimum but large enough to transfer solutions between the two meshes. The
Cartesian mesh around the overlapping region is geometrically refined to match the resolution
of the corresponding quadrilateral mesh. The portion of the Cartesian mesh covered by the
quadrilateral mesh and the object and beyond the the overlapping region is discarded. The
inter-mesh solution transfer strategy is crucial in ensuring the global flux conservation. The
donor cell is the cell on the counterpart mesh where the receptor cell is located. A simple test
of a subsonic flow around a circular cylinder demonstrates that the current implementation is
quite successful.

4. Dissemination via conference and publications. The limiting procedure described above has
been presented and published (AIAA Paper 2009-3983) in the 19th AIAA Computational
Fluid Dynamics Conference, June, 2009, San Antonio, TX. The results of the implementation
on overset Cartesian/quadrilateral grids have been presented and published (AIAA Paper
2010-0544) in the 48th AIAA Aerospace Science Meeting, January 2010 in Orlando, Florida.
A revised comprehensive paper is to appear in Communications in Computational Physics.

3 Accomplishments in the entire grant period

Over the entire grant period, the present high-order space time method, which is termed as the
discontinuous Galerkin cell-vertex scheme (DG-CVS), has been verified and developed for both
scalar advection equations and compressible Euler equations. The work so far shows that DG-CVS
is a promising method for hyperbolic conservation laws. The most distinct features of the DG-CVS
can be summarized as:

• locally and globally space-time flux conservative.

• alternate solution updating at the cell level and the vertex level within each physical time
step.

• Riemann-solver-free for advection problem.

• high-order accurate in both space and time.

• highly compact regardless of the order.
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• suitable for arbitrarily unstructured meshes.

• simple boundary condition treatment.

A comprehensive list of accomplishments is given below:

1. Alternate cell vertex solution updating strategy. Inspired by the space-time conservation el-
ement/solution element (CE/SE) method [2], space-time flux conservation is enforced over
staggered space-time conservation elements. In this research universal definitions of CEs and
SEs using the cell-vertex structure of the underlying spatial mesh are utilized such that the
method is suitable for arbitrarily unstructured meshes. The solution within each physical
time step is updated alternately at the cell level and the vertex level. This strategy cir-
cumvents the need of using Riemann solvers to provide the inter-cell fluxes and leads to a
Riemann-solver-free solver.

2. Arbitrarily high-order accuracy in both space and time. The high order of accuracy is achieved
by employing high-order polynomials basis functions inside each SE, as in the discontinuous
Galerkin (DG) method [3]. What is different from the classic DG method is that no any type
of Riemann solvers is used for the inter-cell flux thanks to the cell vertex solution updating
strategy explained above. This DG ingredient also makes the current method deviate from
the CE/SE method by providing high order accuracy. For the DG ingredient and the cell-
vertex solution updating strategy, the new scheme here is termed as the discontinuous Galerkin
cell-vertex scheme (DG-CVS).

3. Formulation. Considering the following one dimension linear scalar advection equation

∂u(x, t)

∂t
+

∂f(u)

∂x
= 0 (1)

where u is the advected quantity and f is the flux. The approximate solution uh is sought
within each space-time solution element (SE), denoted as K. When restricted to the SE, uh

belongs to the finite dimensional space U(K) such that

uh(x, t) =
N
∑

j=1

φjsj (2)

where {φj}N
j=1 are some type of polynomial basis functions, {sj}N

j=1 are the unknowns to be
determined and N is the number of basis functions depending on the degree of the polynomial
function.
According to Galerkin orthogonality, one can multiply the governing equation with each of
the basis functions {φi}N

i=1 to obtain

ˆ

Ω
φi

(

∂uh

∂t
+

∂fh

∂x

)

dΩ = 0 for i = 1, · · · , N (3)

where Ω is the conservation element (CE) corresponding to the solution element K.
Integrating the resulting weak form by parts yields

ˆ

Ω

[

∂φi

∂t
uh +

∂φi

∂x
fh
]

dΩ =

ˆ

Γ
φiF

h
n
dΓ (4)
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Figure 1: Illustration of space-time flux conservation in a conservation element at the cell
level.

where
F h

n
= F h · n =

(

fh, uh
)

· (nx, nt) (5)

is the space-time flux normal to the boundary of the space-time CE. n = (nx, nt) is the outward
unit normal of the CE boundary. Γ = ∂Ω is the boundary of the CE under consideration.

The cell level CE shown in Fig. 1 is taken as a specific example here. As shown in Fig. 1,
divide Γ into five sections Γ1, Γ2, Γ3, Γ4 and Γ5 where Γ1 belongs to the SE associated with
(m + 1

2 , n + 1
2) where the solution is being sought, Γ2 and Γ3 the SE associated with (m,n)

and Γ4 and Γ5 the SE associated with (m+1, n). Note that the solutions at nodes (m,n) and
(m + 1, n) are known since they are at the previous time level. Considering the outward unit
normal of each boundary, Eq. (4) becomes

ˆ

Ω

[

∂φi

∂t
uh

m+ 1

2
,n+ 1

2

+
∂φi

∂x
fh

m+ 1

2
,n+ 1

2

]

dΩ −
ˆ

Γ1

φiu
h
m+ 1

2
,n+ 1

2

dΓ

(6)

=

ˆ

Γ2

φiF
h
n(m,n)dΓ −

ˆ

Γ3

φiu
h
m,ndΓ −

ˆ

Γ4

φiu
h
m+1,ndΓ +

ˆ

Γ5

φiF
h
n(m+1,n)dΓ

which leads to a linear or nonlinear equation system (depending on whether f is a linear or
nonlinear function of u) that can be solved for the unknown uh

m+1/2,n+1/2 at the space-time

node (m + 1/2, n + 1/2).

4. Choice of basis polynomials. In this project, Taylor polynomials are chosen as the basis func-
tions for three reasons. First, the Taylor polynomial has no restrictions on the geometric
shape of the conservation element (SE). The SE can be of arbitrary shape which is typically
polygonal cylinder on spatially unstructured meshes . By contrast, Lagrange polynomials are
only well defined on simplicial elements or elements allowing tensor products, and Chebyshev
polynomials and Legendre polynomials are only well defined on elements allowing tensor prod-
ucts.
Second, with Taylor polynomials, the basis functions are polynomials with respect to the
physical coordinates ∆x and ∆t. Other polynomials usually define the basis function using
reference coordinates (e.g., ξ and η). The numerical integration involves the derivatives of
the basis function with respect to the physical coordinates. With Taylor polynomials, the
derivatives can be directly obtained by taking the derivative of the basis functions with re-
spect to ∆x and ∆t without resorting to the chain rule as is required when other polynomials
are employed.
Third, the derivatives of Taylor polynomials are a lower order subset of the original Taylor
polynomials. This allows efficient implementation when evaluating integrals involving prod-
ucts of polynomials.
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The above discussions of the advantages of Taylor polynomials over other polynomials are
completely based on the implementation point of view. One should keep in mind that high
degree Taylor polynomials are notorious in generating severely ill-conditioned systems. It is
well known that the number of reliable digits of the solution of linear systems is related to
the conditioning of the system. As a result, high degree Taylor polynomials are expected to
yield inaccurate solutions due to the ill conditioning of the system. Therefore, choosing Taylor
polynomials is not wise from the accuracy point of view. However, the goal of this research
is to demonstrate the efficacy of the DG-CVS idea, so Taylor polynomials are employed for
quick implementation.

5. Insensitivity to Courant number when using high-order basis polynomials. It is well known that
some space-time and fully discrete methods exhibits excess dissipation when the time step is
vanishingly small. The present study shows that the present DG-CVS p1 case exhibits similar
phenomenon, namely, when the time step is vanishingly small, the accuracy is degraded.
However, for higher degrees, the DG-CVS is less and less sensitive to small Courant numbers.
Actually, in the case of p4, a slightly higher accuracy is obtained when a smaller time step is
used.

6. Quadrature-free implementation. The DG-CVS formulation involves both surface and volume
integrals. If the underlying spatial mesh is unstructured, the vertex-level CEs are general
polygonal cylinders containing general polygonal bases and quadrilateral side faces where the
Gaussian quadrature rule cannot be directly applied. In addition, even for purely rectan-
gular meshes where the Gaussian quadrature rule can be applied to all integrals, integra-
tion by quadrature rule is prohibitively expensive, especially in high dimensions. Therefore,
quadrature-free implementation is sought in the research to improve the efficiency of the
method. We can combine the divergence theorem and indefinite integration to transform a
volume integral to surface integrals and further to line integrals. Finally, analytical formulae
are available to evaluate the line integrals. Numerical experiments show that the quadrature-
free implementation drastically increases the efficiency by a factor of 60 for the case of p = 4.

7. Boundary condition treatment. The space-time formulation makes it simple to implement the
Dirichlet and Neumann boundary conditions. The boundary conditions are accounted for
by modifying the resulting linear equation system from discretization. Both the left hand
side matrix and right hand side vector are modified consistently. For the outflow boundary
condition, nothing needs to be modified as long as the matrix is formed by taking into account
the contribution from the outer side face of the boundary CE.

8. Accuracy for linear scalar advection equations (one dimension or two dimensions). In linear
advection equations, the flux satisfies the same polynomial distribution as the solution itself
scaled by a constant advection speed. If the solution inside the conservation element is assumed
to satisfy a polynomial of degree p, then the order of accuracy should be p + 1. This has been
confirmed in the grid convergence study for both 1-D and 2-D problems. The convergence
rates are truly optimal p + 1 as long as the equation system resulted from discretization can
be solved accurately. When p > 4, the system becomes highly ill-conditioned due to the use
of Taylor polynomial bases. Therefore, quadruple precision arithmetic is required to obtain
the optimal convergence rate when p is high.

9. Accuracy for nonlinear scalar advection equations (one dimension or two dimensions). In
nonlinear advection equations (e.g., inviscid Burgers equation), the flux is a nonlinear function
of the solution. Therefore, the flux satisfies a different polynomial distribution than the
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||error||∞ under different Courant number

Courant number σ = |a|δt/δx p1 p2 p3 p4

0.2 3.31E-02 1.42E-04 2.62E-05 4.12E-07

0.02 1.82E-01 3.18E-04 2.63E-05 2.42E-07

0.002 8.20E-01 3.14E-03 2.83E-05 2.08E-07

Table 1: Sensitivity to the Courant number of the present method.

solution itself. Thanks to the quadrature-free implementation, the integral involving the flux
can be evaluated exactly. The grid convergence study shows that the optimal convergence
rate of the solution can also be reached for inviscid 1-D and 2-D Burgers equations.

10. Accuracy on unstructured triangular meshes. The grid convergence study has also been con-
ducted on unstructured triangular meshes. Again, optimal convergence rate can be reached
for each p.

11. Extension to compressible Euler equations (one dimension or two dimensions). The DG-CVS
idea can be directly applied to more complex hyperbolic compressible Euler equations. In our
implementation, following Lowrie et al. [4], we choose the working variables to be

Q = [
√

ρ,
√

ρu,
√

ρv,
√

ρH]T (7)

where ρ, u, v, H are density, x- and y-velocity components, and specific total enthalpy, re-
spectively. By choosing such working variables, all components of the conservative state vector
and flux vectors can be expressed as the double product between working variables, which is
analogous to the inviscid Burger’s equation.

12. Solution limiting procedure. This has been explained in the section of “Accomplishments in
the second year”.

13. Quadruple precision implementation. This has been explained in the section of “Accomplish-
ments in the second year”.

14. Implementation on overset Cartesian/quadrilateral meshes. This has been explained in the
section of “Accomplishments in the second year”.

4 Numerical illustrations

This section presents some numerical results to illustrate the findings listed in sections 2 and 3.

Table 1 lists the ∞-errors of p1, p2, p3 and p4 cases when various Courant numbers are used for
a linear advection equation.

Figure 2 shows the convergence order of the DG-CVS. It can be seen that the optimal rate, p+1,
can be reached for all p (degree of the basis polynomial). Note that the p5 and p6 cases are run
using the quadruple precision arithmetic due to the ill-conditioning caused by Taylor polynomials.
Figure shows similar phenomenon for nonlinear inviscid Burgers equation. Figures 4 and 5 show
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Table 2: Order of accuracy for the 1-D linear sinusoidal wave advection at t = 1.0. Quadruple
precision.

p nc l1 error order l∞ error order

4 10 2.80E-07 - 4.12E-07 -

20 8.18E-09 5.096 1.25E-08 5.037

40 2.46E-10 5.057 3.81E-10 5.041

80 7.48E-12 5.039 1.17E-11 5.029

160 2.32E-13 5.013 3.63E-13 5.008

5 10 1.31E-08 - 2.19E-08 -

20 2.14E-10 5.933 3.53E-10 5.960

40 3.42E-12 5.967 5.51E-12 6.001

80 5.39E-14 5.986 8.58E-14 6.004

160 8.44E-16 5.999 1.33E-15 6.007

6 10 2.00E-11 - 2.95E-11 -

20 1.43E-13 7.129 2.16E-13 7.094

40 1.06E-15 7.072 1.64E-15 7.039

80 8.18E-18 7.022 1.28E-17 7.009

160 6.38E-20 7.003 9.98E-20 6.997

Table 3: Order of accuracy for the 1-D inviscid Burgers equation at t = 0.12. Quadruple precision.

p nc n̄iter l1 error order l∞ error order

4 10 5.45 5.57E-06 - 2.16E-05 -

20 5.00 1.79E-07 4.958 8.31E-07 4.703

40 4.93 8.09E-09 4.469 4.30E-08 4.270

80 4.82 2.47E-10 5.032 1.60E-09 4.750

160 4.56 7.60E-12 5.023 5.31E-11 4.912

5 10 5.64 1.44E-06 - 6.93E-06 -

20 5.21 1.84E-08 6.296 1.16E-07 5.905

40 4.98 5.33E-10 5.108 6.81E-09 4.086

80 4.89 9.86E-12 5.756 1.18E-10 5.848

160 4.74 1.67E-13 5.882 1.89E-12 5.968

6 10 5.61 4.98E-07 - 1.80E-06 -

20 5.30 6.82E-09 6.188 3.23E-08 5.799

40 4.96 5.87E-11 6.862 3.55E-10 6.510

80 4.90 5.15E-13 6.832 4.46E-12 6.312

160 4.77 4.61E-15 6.803 4.63E-14 6.592
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Table 4: Order of accuracy for the 2-D linear sinusoidal wave advection at t = 1.0 on unstructured
triangular meshes.

p mesh size (h) l1 error order l∞ error order

1 0.2 5.21E-02 - 1.07E-01 -

0.1 9.14E-03 2.51 2.01E-02 2.41

0.05 1.70E-03 2.43 3.97E-03 2.34

0.025 3.48E-04 2.29 8.37E-04 2.25

0.0125 7.71E-05 2.17 1.91E-04 2.13

2 0.2 4.68E-04 - 1.90E-03 -

0.1 4.06E-05 3.53 2.94E-04 2.69

0.05 3.88E-06 3.39 3.60E-05 3.03

0.025 4.09E-07 3.25 4.46E-06 3.01

0.0125 4.60E-08 3.15 5.60E-07 2.99

3 0.2 7.05E-05 - 2.77E-04 -

0.1 4.48E-06 3.98 1.76E-05 3.98

0.05 2.84E-07 3.98 1.11E-06 3.99

0.025 1.80E-08 3.98 6.96E-08 4.00

4 0.2 1.91E-06 - 8.61E-06 -

0.1 5.79E-08 5.04 2.80E-07 4.94

0.05 1.75E-09 5.05 9.41E-09 4.90

0.025 5.39E-11 5.02 3.18E-10 4.89

Table 5: Order of accuracy for the 2-D inviscid Burgers equation at t = 0.075 on unstructured
triangular meshes.

p mesh size (h) n̄iter l1 error order l∞ error order

1 0.2 3.39 2.12E-02 - 9.92E-02 -

0.1 3.53 5.58E-03 1.93 2.79E-02 1.83

0.05 3.18 1.40E-03 1.99 7.26E-03 1.94

0.025 2.95 3.46E-04 2.02 1.75E-03 2.05

0.0125 2.96 8.59E-05 2.01 4.26E-04 2.04

2 0.2 3.38 7.50E-04 - 1.14E-02 -

0.1 3.55 1.03E-04 2.86 1.73E-03 2.72

0.05 3.17 1.19E-05 3.11 2.60E-04 2.73

0.025 2.94 1.21E-06 3.30 4.21E-05 2.63

0.0125 2.97 1.28E-07 3.24 7.14E-06 2.56

3 0.2 3.52 4.35E-04 - 6.34E-03 -

0.1 3.64 3.47E-05 3.65 3.85E-04 4.04

0.05 3.29 2.42E-06 3.84 4.00E-05 3.27

0.025 2.95 1.52E-07 3.99 2.73E-06 3.87

0.0125 2.97 9.55E-09 3.99 1.67E-07 4.03

4 0.2 3.58 6.10E-05 - 7.15E-04 -

0.1 3.62 2.71E-06 4.49 3.82E-05 4.23

0.05 3.26 8.18E-08 5.05 1.77E-06 4.43

0.025 2.94 2.36E-09 5.12 8.07E-08 4.46
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Figure 2: Illustration of solution limiting.

Table 6: Comparison of the time cost in integration using the Gaussian quadrature rule and
quadrature-free approach.

Scaled time cost

p1 p2 p3 p4

Compute Mij contributions Gaussian quadrature 0.99 1.26 2.08 4.34

from the top face of CEs Quadrature-free 1 1 1 1

Compute Mij contributions Gaussian quadrature 1.78 5.64 24.48 60.38

from the volume of CEs Quadrature-free 1 1 1 1

the convergence orders of 2-D linear and nonlinear advection equations on unstructured triangular
meshes.

Figure 2 illustrates the performance of solution limiting.

Figure 3 shows the boundary condition treatment of inflow and outflow boundary conditions.

Table 6 illustrates the cost saving using the quadrature-free implementation compared to the
Gaussian quadrature integration.

Figures 4, 5 and 6 present some results for compressible Euler equations including the 1-D shock
tube problem, 2-D isentropic vortex advection problem and the forward-facing step problem.

Figure 7 shows the simulated pressure field on an overset Cartesian/quadrilateral mesh of a
subsonic flow around a circular cylinder.
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(a) t = 0.0 (b) t = 0.2 (c) t = 0.4

(d) t = 0.6 (e) t = 0.8 (f) t = 1.0

Figure 3: Advection of a doubly raised cosine surface. p2 solution on 40 × 40 rectangular mesh.
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Figure 4: Density distribution of the 1-D shock tube problem at t = 0.2 when various degrees of
basis polynomials employed. Without limiter.
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Figure 5: Advection of isentropic vortex on a 20 × 20 rectangular mesh. Comparison of density
accuracy between p1 − p4 cases. The close-up view is on the right.

Figure 6: Solution of a supersonic (M = 3) flow through a channel with forward-facing step at
t = 4.0. Without limiter. Left: p1 density field. Right: residual of the continuity equation.

Figure 7: Steady pressure field the inviscid flow (M = 0.1) passing around a circular cylinder.
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