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Part I: Mechanical Properties of Fiber-Reinforced Composites with 
Silica Nanoparticle-Enhanced Matrix 

OBJECTIVE 
To achieve the benefit from adding nanoparticles to polymer matrix, the nanoparticles must 

be well dispersed in the matrix. Moreover, to maximize this benefit, high loading of nanoparticles 
must not cause adverse effects. The objective of the present research was to use a sol-gel in-situ 
produced silica nanoparticle-modified epoxy to manufacture fiber composites in order to enhance 
the mechanical properties of fiber composites. The corresponding theoretical models for strength 
and fracture toughness predictions were to be developed. 

TECHNICAL APPROACH 
An epoxy containing in-situ grown silica nanoparticles was used as the matrix to 

manufacture glass/epoxy composite. Vacuum assisted resin transfer molding (VARTM) process 
was used to fabricate unidirectional E-glass fiber reinforced silica/epoxy nanocomposites. Off- 
axis composite specimens with and without silica nanoparticles were tested to compare the 
compressive strength. A method for extracting the longitudinal compressive strength of the GFRP 
was developed based on the off-axis test data. Moreover, a microbuckling model was employed 
to predict the compressive strength based on the stress-strain curve of the silica nanocomposite. 

ACCOMPLISHMENTS 

1. Introduction 
It is well known that most advanced fiber composites are stronger in tension (in the fiber 

direction) than in compression. This behavior is due to fact that the compressive strength of 
unidirectional composites is governed by microbuckling of fibers embedded in the matrix [1, 2]. 
It has been shown that composite compressive strength is proportional to the elastic-plastic 
tangent shear modulus of the matrix [3]. Thus, raising the elastic-plastic tangent shear modulus 
leads to a higher compressive strength of the composite. 

It is now well established that the addition of a small amount of nanoparticles in a 
polymer may markedly improve its mechanical properties especially its stiffness. A few attempts 
have been made to take this advantage of nanoparticle infused matrix to enhance the compressive 
strength of composite [4-6]. Subramaniyan and Sun [4] reported about 17% and 19% gain in 
compressive elastic modulus with 3 wt% and 5 wt% nanoclay loadings, respectively, in vinyl 
ester resin. Using these stiffened matrices, they found about 22-36% improvement in the 
longitudinal compressive strength of glass fiber reinforced composite with 36% fiber volume 
fraction. Iwahori et al. [5] used 5-10 wt% cup-stacked type carbon nanofiber as reinforcing 
particles to stiffen epoxy matrix and reported 15% or less improvement in compressive strength 
of carbon/epoxy composite. On the other hand, Cho et al. [6] infused 3 wt% and 5 wt% disk-like 
graphite nanoparticles in epoxy via sonication and reported 10% and 16% gain in longitudinal 
compressive strength of carbon/epoxy composite respectively with 55% fiber volume fraction. 
Tsai and Wu [7] investigated the effect of nano-sized organoclay on tensile properties of glass 
fiber reinforced composites with particles loadings of 2.5-7.5 wt.%. They reported 74% and 67% 
improvement in transverse tensile strength and modulus whereas the properties deteriorated in the 
longitudinal direction. In all these studies, hand layup was used to fabricate the laminated 
composites and sonication was used to disperse nanoparticles in the resin (except [5]). These are 
the two major steps employed to produce fiber nanocomposites which are time and labor 
intensive and, thus, prevent bulk productions for real field applications. Moreover, with few 
exceptions, the mechanical properties (strength, fracture toughness) of nanocomposites produced 



using these methods tend to go down when particle loading exceeds 4-5 wt% [8-10] due to poor 
dispersion of nanoparticles in the resin. 

The main purpose of the present work is to verify that an epoxy containing well dispersed 
nanoparticles can be used to form fiber composites with a greatly enhanced compressive strength 
as well as tensile strength. Moreover, it is demonstrated that the more versatile VARTM process 
can be used to manufacture fiber composites with high nanoparticles loadings. In order to avoid 
the agglomeration of nanoparticles at higher loading, some researchers modified the chemical 
surface of the fillers to enhance the interfacial compatibility with the polymers- a process known 
as sol-gel. Using this method, organosol (colloidal fillers in organic solvent) is prepared with a 
required concentration, and then in the subsequent step, the solvent is replaced with polymers to 
form a well dispersed agglomerate-free nano-particle/polymer composite system. Several studies 
have been reported on silica /epoxy nanocomposites fabricated from organosilicasol [11-13]. 
Sprenger et al. [11] and Kinloch et al. [12] investigated the effect of silica nanoparticles on the 
fracture behavior of epoxy resin. However, in both cases, reactive liquid rubber (CTBN) was 
added as primary modifier to improve the fracture properties. The addition of silica nanoparticles 
further increased the toughness as well as retrieved the modulus loss due to the presence of 
flexible rubber molecules. Optimizing the epoxy with 6.9% CTBN and 3.5% silica, Sprenger et al. 
[11] made glass fiber reinforced composites and reported moderate increase (about 25%) in 
interlaminar fracture energy (GiC) whereas Kinloch et al. [12] reported about 200% improvement 
in Gic for carbon fiber reinforced composites. They added 9% CTBN and 10.5% silica to modify 
epoxy resin. While most of the works related to this material have focused on the fracture 
behavior [14-15], Zhang et al. [16] revealed 30-40% improvement in tensile and flexural modulus 
of epoxy resin with 23% silica. 

In our previous study [17], we showed that flexural properties (strength, modulus) of 
silica/epoxy nanocomposite increased gradually with particle loading as contrast to the 
conventional one via sonication. The silica content was as high as 15% by weight. Adebahr et al. 
[18] showed the mechanical properties (toughness, modulus) can be improved with a particle 
loading upto 40 wt%. But the viscosity of silica/epoxy resin rose sharply after 15 wt% of silica 
content. In the present study, an epoxy with 15 wt% silica nanoparticles is used to fabricate glass 
fiber composite in order to be able to use the VARTM process. The VARTM process is slightly 
modified to make up for the increased viscosity of silica/epoxy resin. Compressive strengths of 
glass fiber composites with/without silica nanoparticles are measured using off-axis specimens. 
Tensile tests were also performed to evaluate longitudinal and transverse tensile strengths of 
nanocomposite. Finally, a microbuckling model is developed to predict the compressive strengths 
of the composites tested. 

2. Experimental 

2.1 Materials 
The epoxy resin used in this study was diglycidylether of bisphenol A (DGEBA) with 

epoxy equivalent weight of 162 g/mole (SC 79 supplied by API [19]) and the hardener was 
cycloaliphatic amine. The silica nanoparticles in epoxy (Nanopox F400) were procured from 
nanoresins AG [20]. The silica nanoparticles were synthesized from aqueous sodium silicate 
solutions by sol-gel technique [21]. After undergoing a process of surface modification and 
solvent exchange, the epoxy resin contains silica nanoparticles with an average particle size of 20 
nm in diameter. Unidirectional E-glass fiber cloth (E-LR-0908-14) from Vectoreply® [22] was 
used to fabricate fiber reinforced laminates. 

2.2. Fabrication 
The required amount of Nanopox F400 was diluted with standard DGEBA to get 15 wt% 

of silica particles in the end product. In the subsequent step, the hardener was added and stirred 



with a mechanical stirrer for about 5 minutes. In order to remove the bubbles produced during 
this vigorous mixing, the mixture was then degassed for an hour. After degassing, the mixture 
was poured into an aluminum mold and vitrified for 4 hours at a temperature of 60°C. The panel 
was then post cured. 

Fiber reinforced composites were fabricated using VARTM process. A minor adjustment 
was made in VARTM process to make a continuous flow of nanophased epoxy (Nanopox F 400). 
Conventional VARTM procedures were followed for lay-up and arrangement of 16 layers of 
glass fibers with a vacuum pressure of 75 KPa. Usually, the air bubbles trapped in the resin and 
lay-ups are removed during this resin flow under vacuum. In case of the nanophased resin, it was 
not quite possible to completely take out the air bubbles due to the increased viscosity. Hence, the 
nanophased resin was degassed under vacuum for an hour before it was infused into the VARTM 
mold. For consistency, this step was also followed for neat resin. It should be noted that the 
nanophased resin flow time was as much as twice that of neat resin. The laminate was cured in 
hot press with a uniform pressure of 130 KPa under vacuum for about 4 hours at 60°C and then 
post-cured. Similar procedures were followed for tensile specimen by arranging 6 layers of glass 
fiber. For compression test specimens, composites with two fiber volume fractions of 42% and 
50% were fabricated whereas it was 47% for tension test specimens. 

2.3. Compression tests 

2.3.1. Silica/epoxy resin 
Block specimens (10mmxl0mmxl5mm) for the compression test were cut from neat and 

silica/epoxy matrix panels using a water jet cutting machine. All the specimens were then lapped 
with 6 \im and 15 urn diamond slurry to ensure parallel and smooth loading surfaces. Quasi-static 
compression tests were performed using an MTS machine with a self adjusting support (Fig. 1) to 
ensure uniform compressive pressure without any bending during the test. Lubricant was used on 
the contact surfaces between the specimens and the supports to minimize the contact friction to 
allow the induced shear deformation to fully develop during the test. The test was performed at a 
cross-head speed of 0.0015 mm/s with a nominal strain rate of 10"4 /s. Two strain gauges were 
mounted on two opposite sides of the specimen to monitor the bending of the specimen during 
the compression test. 

Specimen 

Hemispheric 
hardened steel 

Grease 

elf adjusting 
mechanism 

Figure 1: Self adjusting support for uniform 
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2.3.2. Fiber reinforced silica/epoxy nanocomposites 
For unidirectional composites, compressive loading along the fiber direction (0°) often 

causes the failure in the form of fiber brooming which is an end failure and not a true 
representation of compressive strength of the composite. In this study, compression tests on off- 
axis composite specimens with angles of 5°, 10° and 15° were conducted from which the 
longitudinal compressive strength (0°) was extracted. The off-axis block specimen of 
6mmx6mmxl0mm were cut at these three angles from a unidirectional composite panel. 
Compression tests were performed at a cross head speed of 0.001 mm/s (Fig 1). 

2.4 Tension tests 
Tension tests were carried out in MTS machine in both longitudinal and transverse 

directions at a cross head speed of 1 mm/min. The longitudinal (0°) and transverse (90°) tension 
specimen dimensions were 230mm* 12mm><2.2mm and 170mm><25mm><2.2mm, respectively. 40 
mm long PCB was used as the end-tabs, bonded using a high strength epoxy adhesive to prevent 
grip failure and slippage of specimens during the test. 

3. Result and Discussion 

3.1. Compressive properties of silica/epoxy resin 
Silica/epoxy resin samples were imaged using a Phillips CM-100 TEM as shown in Fig. 

2. The image shows a very uniform distribution of silica nanoparticles. The particles appear to be 
agglomeration-free and the individual particles can be identified very clearly. 
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Figure 2: TEM images of 15 wt% silica/epoxy resin 

Fig. 3 shows the compressive stress-strain curves of neat silica/epoxy resins. With 15 
wt% silica nanoparticle loading, the Nanopox F400 nanocomposite shows a significant increase 
in compressive strength and modulus. The gain in compressive elastic modulus is about 40%. 
Similar improvements were reported in flexural strength, flexural modulus and failure strain with 
15 wt% silica in epoxy fabricated from Nanopox F 400 [17]. It should be noted that the tangent 
modulus of the silica/epoxy is also higher than that of the neat epoxy. 

3.2. Compressive strength of fiber reinforced nanocomposite 

3.2.1. Off-axis compressive strength 



140 

120 

100 

80 

Epoxy with 15 wt% Silica 
Neat Epoxy 

0.04 0.06 0.08 0.10 

Strain (mm/mm) 

Figure 3: Compressive behaviors of neat and 15 wt% silica/epoxy resin 

A typical microbuckling failure is shown in Fig. 4. The results of compressive strength 
are shown in Fig. 5 for three different off-axis angles of 5°, 10° and 15°. The figure shows the 
average values of at least 4 samples. Fig. 5 also shows the comparison of neat and nanophased 
composites with two fiber volume fractions (Cf) of about 42% and 50%, respectively. At all three 
off-axis angles, composites with the higher Cf show higher compressive strengths than those of 
composites with the lower Cf for both neat and nanophased composites. The low Cf nanophased 
composites show 10-30% improvement in strength than the neat composite at corresponding 
angles. However, the improvement is much pronounced (20%-40%) in high Cf composites than 
the low CfComposites. 

Figure 4: Typical microbuckling failure 

3.2.2. Longitudinal compressive strength 
Theoretically, the longitudinal compressive strength of a unidirectional fiber composite 

can be measured by conducting a compression test on the 0° specimen. However, such a test 
often produces end (brooming) failure rather than microbuckling failure. Lee and Soutis [23] 
conducted compression tests in combined shear loading and end loading by employing an anti- 
buckling device. Their test results showed a decreased compressive strength of unidirectional 



composites as specimen thickness increased, and observed end failures in thick-section composite 
specimens. In most of the studies in compressive strength of composites, shear loading through 
the use of end tabs or wedge grips was utilized partially or fully in conducting compression tests. 
Thus, the compressive strengths measured were influenced by the presence of shear stresses. 

□ Neat +41% 

5 deg     10deg    15deg 

Cf«42% 

5 deg     10 deg    15 deg 

Cf«50% 

Figure 5: Off-axis compressive strengths of neat and nanophased fiber composites 

Figure 6: Extraction of longitudinal compressive strengths of neat and nanophased 
fiber composites 

In this study, the longitudinal compressive strength was extracted from off-axis strength 
results by extrapolation and by the elastic-plastic fiber microbuckling model. The applied 
compressive strength on the off-axis specimen is first transformed into normal stress G\ \ and shear 
stress Gi2 (according to the coordinate transformation law) and then plotted for fiber composites 
containing neat and nanophased matrices with fiber volume fractions of 42% and 50%, 
respectively, as shown in Fig. 6. The longitudinal compressive strength corresponds to the value 
of Gn at G\2= 0, i.e., the 0 degree specimen. According to the fiber microbuckling model to be 
presented in Section 4, compressive strength is not linearly dependent on shear stress. However, 
from Fig. 6, for each composite system a straight line seems to give a good fit of the off-axis 



strength data. Thus, the longitudinal strength for each composite system is extracted based on this 
linear projection. This projection technique has been used elsewhere with fairly good results as 
compared with experimental data or model predictions [4, 24]. The composite compressive 
strengths obtained in this manner are tabulated in Table 1, which indicate 81% and 62% 
improvements in longitudinal compressive strength for composites with 15 wt% silica particles 
for 42% and 50% fiber volume fractions, respectively. 

Table 1: Longitudinal compressive strengths of neat and   nanophased fiber composites 

Fiber Volume 
Fraction 

Longitudinal Compressive Strength 
(MPa) 

Improvement 

Neat                       Nano 
» 42% 
- 50% 

360                         650 
420                         680 

81% 
62% 

3.3 Tensile strength of fiber reinforced nanocomposite 

3.3.1 Longitudinal tensile strength 
The respective average values of tensile strength and Young's modulus of composites 

with/without silica nanoparticles are shown in Fig. 7. It was found that silica nanoparticles yield 
little effect on the Young's modulus of the nanocomposite. This is expected because matrix 
modifications, in general, would not influence fiber dominated properties. However, it is 
interesting to find that the nanocomposite with 15wt% spherically shaped silica nanoparticles 
showed 11% increase in longitudinal tensile strength. The addition of well dispersed silica 
nanoparticles reduces the brittleness of epoxy matrix [ 17] and, as a result, may attribute to the 
slight increase in longitudinal tensile strength. 
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Figure 7: Tensile strength and modulus in longitudinal direction 



Figure 8: Tensile strength and modulus in transverse direction 

3.3.2 Transverse tensile strength 
The average transverse tensile strengths and moduli of composites with/without silica 

nanoparticles are shown in Fig. 8. It was found that the nanocomposite shows 32% and 41% 
increase in tensile strength and modulus in the transverse direction, respectively. For transversely 
loaded tension specimens, matrix cracking is the dominant failure mode for unidirectional 
composites. Hence, the improvement in the transverse tensile strength of the nanocomposite may 
be attributed to stiffened matrix due to the addition of nanoparticles. 

4. Prediction by Microbuckling Model 
An existing fiber microbuckling model developed by Sun and Jun [3] is used to validate 

the longitudinal compressive strength of both neat and nanophased unidirectional composites as 
discussed in Section 3.2.2. Sun and Jun [3] developed this model based on Rosen's [2] elastic 
microbuckling model and obtained the longitudinal compressive strength for unidirectional fiber 
composites as 

Qep 

».-i-T (I) 

where Cf is the fiber volume fraction and GJ is the matrix elastic-plastic tangent shear modulus. 
Details of the derivation can be found in Ref.3. This compression failure model was later 
extended by Subramaniyan and Sun [4] for large off-axis angles. 

From Sun and Jun model [3], the incremental plastic shear strain in the matrix is obtained 

9CT2 

dr;1=—^d<xn (2) 
do 

Hf 
where H   = —^ is the plastic tangent modulus which depends on the instantaneous state of 

stress. The effective stress G , the effective stress increment da , and the effective plastic strain 
increment dep can be expressed as 

a = y[3J^ = a^lß2 cos4 S + 3 sin 2 0cos2 0 

da = da^ß1 cos4 6 + 3sin2 0 cos2 0 

dep=^-de>de> 



1 Ef 
where p = , a = , Cm is the matrix volume fraction, Ef is the fiber modulus, 0 is 

aC,+Cm £ j in ms 

the off-axis angle, and Ems is the secant modulus of the matrix calculated from the uniaxial stress 
strain curve of the matrix. 

By using Gl2 = (T Sin 0 Cos 6, the plastic shear strain increment given in eqn. 2 can be 

9sin20 
written as    dy{2 = 

12     (ß2cos20 + 3sin20)Ht 

don . The elastic shear strain increment is given by 

dox, dy[i = — where Gm is the elastic shear modulus of the matrix. After adding the elastic and 
Gm 

plastic shear strain increments and rearranging, the matrix elastic-plastic shear modulus can be 
expressed as 

Cep _     J_       9 sin 2 0 
"       [Gm      {ß2cos20 + 3sm20)Hp\ 

K * 

As the matrix elastic-plastic tangent shear modulus depends on stresses at the time of 
microbuckling, eqn. 1 must be solved numerically. An incremental procedure is used to find the 
critical compressive strengths at different off-axis angles as well as 0°. The composite applied 
stress G is increased incrementally from zero and the initial value of a was calculated. At each 
stage, ß and effective stress G in the matrix are calculated. The effective plastic strain € 

corresponding to this effective stress G is found from the effective stress-effective plastic strain 
curve which is the same as the uniaxial stress/plastic strain curve of the matrix. In the next step, 
the effective stress increment dG and the effective plastic strain increment de   are also 

calculated from which the plastic tangent modulus Hp is obtained. The secant modulus Em is also 
calculated from current effective stress-effective plastic strain curve and is used to find a for next 
step. Once Hp is known, eqn. 3 is used to find the elastic-plastic shear modulus of the matrix and 
eventually the current critical stress in the composite is obtained. The process is repeated until the 
critical stress exceeded the applied stress and hence giving the composite failure stress. 

The experimental compressive failure stresses for different off-axis angles are shown in 
Fig. 9. The model predictions are also presented as solid lines. The initial fiber misalignment 
angles are chosen to fit the experimental data. The misalignment angles vary between 2-3.6° for 
different composite panels and are shown in Table 2. However, these values are within the 
experimental measurements of fiber misalignment of composites [25]. Except for the 
nanocomposite with 49% fiber volume, the model predictions agree quite well with the 
experimental results. 

Table 2: Misalignment angles for different composites 

Type Volume Fraction Misalignment Angle 

Neat 
43% 3.4 
50% 3 

Nano 
42% 2.6 
49% 2 
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Figure 9: Prediction of compressive strength using microbuckling model 

5. Conclusion 
It is concluded that sol-gel is a very effective method for producing agglomerate-free 

silica nanoparticles in epoxy resins. With 15 wt% silica nanoparticle loading, the nanophased 
resin showed a greater elastic modulus than that of the neat resin. The silica-nanoparticle 
modified resin (Nanopox F 400) substantially enhanced the longitudinal compressive strength of 
E-glass fiber reinforced composites. It was found that the enhancement was greater in fiber 
composites with lower fiber volume fractions. In case of tensile properties, the composite with 
silica nanoparticles-enhanced matrix showed a slight improvement in the longitudinal direction 
whereas the improvement in the transverse direction was quite significant. The elastic-plastic 
microbuckling model can be used to predict the enhancement in the composite compressive 
strength based on the stress-strain curve of the modified matrix. 

It has been demonstrated that the VARTM process with a minor adjustment can be used 
to manufacture quality nanocomposites even with high (15 wt%) particle loadings. Due to the 
small size (20nm) of the silica particle and its spherical shape, the filtration of particles during the 
VARTM process was avoided. Moreover, the silica nanoparticles were grown in-situ using the 
sol-gel method which can be readily produced in bulk. The proposed method of making fiber 
reinforced composites with silica nanoparticle-modified epoxy matrix appears to be feasible for 
volume productions. 
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Part II: Novel Sandwich Structures with Internal Resonators 

OBJECTIVE 

The objective of this study is to investigate the dynamic behavior of sandwich structures 
containing a novel core with embedded resonators. By designing the resonance frequency of the 
resonators, the sandwich structure is expected to reject impingent waves. If successfully 
completed, this type of sandwich structures will become quiet under dynamic loads. 

TECHNICAL APPROACH 

In a typical sandwich construction, the face sheets are the major load-bearing components 
and the lightweight core is used to support the face sheets and take the transverse shear force. A 
weakness of sandwich structures is their low impact resistant strength and impact energy 
absorption capability. We propose to add a very important function in the core for blocking 
incident blast wave and increasing its capability in storing temporarily the impact energy. 
Resonators are inserted into the core to provide a new degree of freedom in motion. Models for 
this new sandwich structure are first constructed. These models are subsequently employed to 
study wave propagation in and the bandgap structure of the sandwich structure. Finally, sandwich 
specimens are manufactured and dynamic experiments are conducted to verify the analytical 
results. 

ACCOMPLISHMENTS 

1. Introduction 

In a typical sandwich construction, the face sheets are the major load-bearing components 
and the lightweight core is used to support the face sheets and take the transverse shear force. A 
weakness of sandwich structures is their low impact resistant strength and impact energy 
absorption capability. In the present study, we propose to add a very important function in the 
core for blocking incident blast wave and increasing the capability in storing temporarily the 
impact energy. Figure 1 shows a design of such a sandwich construction with a foam core that 
contains distributed "rigid" containers that are embedded in the foam core. Inside each container 
there is an internal mass/resonator supported by a spring. 

Foam core 

_X 
Internal mass 

4s v 
i\ ifi \a \i\ \i\ \i\ m id \i\ I 

Figure 1 Sandwich beam with internal resonators. 

In the sandwich beam, each resonator consists of a mass m and a linear spring with a spring 
constant denoted by k. By employing an energy averaging technique, the deformation energy and 
kinetic energy per unit length for the sandwich beam are obtained as 
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+ GA 
'a JV 

IT' 
\2 

1  k, v2 
---(v,-v) (1) 

1 1  W  .3 r=i(^v2
+P/^)+^v,2 (2) 

respectively, where GA is transverse shear rigidity, El is bending rigidity, pA is mass of the 
sandwich beam per unit length, pi is rotary inertia, v and (p are the transverse displacement and 
rotation of the sandwich beam, respectively, vt is the transverse displacement of the internal mass, 
and a is the spacing of the internal masses. By using the Hamilton's principle, the equations of 
motion for the sandwich beam are obtained as 

GA(v" + <p')-pAv + -(vl-v) = 0 
a 

Ely" - GA{y +<p)- pl(f> = 0 

-(v.-v)+—v,=0 

(3) 

a a 

2.   Dispersion curves 

For harmonic waves, the three displacement functions v, y, and v/ all contain the wave 

forme'(<7J:~ö*) in which q is wave number and 0) is angular frequency. The dispersion equation can 
be readily obtained as 

Axo? + A2co4 + A3a? + A4 = 0 (4) 

where 

m 

\a J 
Al = -pip A 

A2=\(pIGA + EIpA) q2+GApA 
m } + pIpA -1 'km^ 

\aj 
PI 

A3=   \EIGA 
Ka ) 

f K \ 

q4+\(p!GA + EIpA) --\ + \™\Ellq2+GApA 
km\ 
—T V 

^\GA,AA=EIGA 
r K\ 

\a) 
q*. 

Figure 2 shows the three branches of the dispersion curves of harmonic waves propagating in a 
sandwich beam of infinite extent. The dimensions and material parameters adopted in the 
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calculations are listed in Table 1. The face sheets are IM7/953-2A [0/90]2s laminates with an 

effective elastic modulus Ef ; the core material is Rohacell IG-3 with elastic shear modulus G.. 

The thicknesses of the sheet and the core are denoted by hf and hc, respectively, and b denotes 

the width of the beam. The densities of the face sheet and the core are 1600 kg I m3 and 32 kg I ml, 
respectively. Table 2 summarizes the bending rigidity, shear stiffness, mass per unit length, and 
rotary inertia of the sandwich beam. The accuracy of the present sandwich beam model is 
evaluated by comparing the results obtained from theoretical model given by equation (4) with 
those obtained by a finite element analysis based on the original discrete mass model. 

Table 1 Dimension and material constants of the face feet and the core. 

Ef(GPa) Gc(MPa) hf(m) Kim) Km) a(m) k(Nlm) m(kg) 

92 10 0.001 0.025 0.025 0.01 103 io-2 

Table 2 Properties of the sandwich beam. 

El(Pam4) GA(Pam2) pA(kg/m) pl{kgm) 

776.25 6.75xl03 0.1 1.4542X10"5 

In   Figure   2,   the   normalized   angular   frequency   is   defined   as   CO = O)lco0 where 

(O0 = 4klm =316 rad I sec is the local resonance frequency of the resonator, and q = qa is 

dimensionless wave number. It is noted that there is a band gap between (O- 1 and (O- 3.317. 
Theoretically, in this frequency range, harmonic waves cannot propagate. The aforementioned 
phenomenon may be explained more explicitly by investigating the nature of the dimensionless 
wave number for wave frequencies within the band gap. For this purpose, the dispersion equation, 
equation (4), can be viewed as an equation for wave number q as a function of frequency CO. For 
a given frequency CO the solution for wave number can be calculated from equation (4). The 
solution may be complex in the form of q =aq = a + iß. If ß exists, then the wave amplitude 

should exhibit a spatial decay. This is why ß is referred to as "attenuation factor." Of interest is 

that when wave frequency approaches the local resonance frequency co0, the attenuation factor 

ß becomes unbounded. In other words, the maximum wave attenuation would be attained at the 
local resonance. 
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Figure 2 Dispersion curves for harmonic waves: three branches. 
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Figure 3 Attenuation factor as a function of dimensionless frequency CO. 

3.   Continuum Representation 

If the sandwich beam with internal resonators is treated as a conventional sandwich beam 
with an effective core, then the equations of motion reduce to 

GA(v'+<p')-(pA)eirv = 0 

Elq>" -GA(v'+(p)- plip = 0 
(5) 
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in which (pA)    is the effective mass per unit length. The dispersion equation based on this 

model can be expressed as 

GAEIq4 -(GAplQ)2+El(pA)e(r of)q2 + (pIof -GA)(pA)eff of = 0 (6) 

To truly represent the original sandwich beam with resonators, the equivalent mass (pA)     of 

this representative sandwich beam has to be chosen so that the dispersion curves match those of 
the exact ones presented in figure 2. The result is 

,      v GApIof-GAEIq" 
[P   )eff~{pIof-GA-EIq2}of 

(7) 

Since the dispersion curves obtained from equation (4) give the solution of q2 in terms of 

frequency 0), thus, (pA)efl can be considered as a function of frequency alone. Consequently, the 

dimensionless frequency-dependent mass per unit length (pA)    /pA can be depicted as a 

function of frequency as shown in figure 4. It is seen that when wave frequency approaches the 

local resonance (i.e., OJ—>1), the effective mass becomes unbounded. Moreover, the effective 

mass becomes negative if OJ > 1 . In fact, the frequency region of negative effective mass 
coincides with the band gap. 
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Figure 4 Dimensionless effective mass per unit length. 

4.   Transient Response 

Consider a long sandwich beam with resonators as shown in figure 1. The left end is assumed 
to be actuated with a prescribed displacement given by 



v(t) = v0sincot       t>0 

v(t) = 0 / < 0 
(8) 

The corresponding frequency spectrum of the actuation for CO = 319.4 rad/sec (or 
CO/co0 = 1.01) is shown in figure 5. It is evident that the dominant forcing frequency is CO =319.4 

rad/sec. The deformed shape of the first 4 m of the sandwich beam at time 0.439 sec is displayed 
in figure 6(a). Figure 6(b) shows the snap shot of the vertical motions of the internal masses at 
time 0.439 sec. The results of figures 6(a) and 6(b) clearly show a significant spatial decay of 
amplitude of the flexural motion of the beam. In other words, the motion produced by the 
actuation at the left end is forbidden to propagate into the sandwich beam. It is also noted that the 
amplitude of vibration of the internal masses is more than an order of magnitude larger than that 
of the sandwich beam. This indicates that a much greater portion of the actuation work is stored 
in the resonators especially in those near the actuated end. 

CO 
Figure 5 Frequency spectrum of the displacement actuation. 
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Figure 6 Mode shape at time 0.439 sec for (a) sandwich beam deflection v and (b) 
displacements of the resonators. 

5.   Experimental Verification 
In the previous sections, the behavior of wave propagation in a sandwich beam with 

internal resonators was studied analytically. It was found that, with the occurrence of a bandgap, 
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waves generated by actuations in certain frequency range were forbidden to propagate into the 
sandwich beam without attenuation. By tailoring the local resonance frequency of the resonator, 
the range and the location of the bandgap can be selected. Also, from finite element simulation 
results, it was seen that waves could be significantly attenuated in a sandwich beam with a finite 
number of internal resonators if the forcing frequency was near the local resonance frequency. It 
was concluded that the resonators could be used as a mechanism for suppressing the flexural 
motion in a sandwich structure. In this section, experimental results are presented. 

5.1 Specimen and Experimental Set-up 

In order to verify the analytical as well as numerical results, a sandwich beam of rectangular 
cross-section 1.905 x 3.175 cm and 75.7 cm long was fabricated. The core consists of Rohacell 
IG-51 foam with 61 holes drilled through the thickness periodically to accommodate resonators. 
A representative individual resonating element is shown in Fig. 7. Empty plastic tubes were 
inserted in the first 14.5 cm, plastic tubes containing the spring-mass system (resonating units) 
were inserted in the next 31.4 cm and again empty plastic tubes without resonators were inserted 
in the remaining length of the beam. The face sheets used are AS4/3501-6 composite laminates 
with stacking sequence [02/902/02]. A schematic of the beam is shown in Fig. 8. For comparison, 
another sandwich beam without the resonators was also fabricated. 

Fig. 7 Individual spring-mass-spring and an assembled unit cell. 
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Fig. 8 Sandwich beam having a section with resonators. 
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Fig. 9 Experimental set-up. 

Figure 9 shows the experimental set-up. The sandwich beam was simply supported on one 
end while the other end excited by a piezoelectric stack actuator. The stack actuator used was 
model PSt 1000/25/200, obtained from Piezomechanik GmbH. The power for the Piezostack 
operation came from a complimentary Piezomechanik GmbH high power amplifier (model RCV 
1000/5). The shaker provides the input excitation generated using a waveform generator. 

5.2 Experimental Results 

Wave bandgaps are effectively described using the frequency response function (FRF) [1], 
For comparison, the FRFs for the beams with and without the resonators were acquired using a 
white-noise signal with bandwidth from 0 to 1000Hz. The input was obtained by a force 
transducer attached at the input end, while the output acceleration was measured 60 cm away 
from the input end. The obtained FRFs are shown in Fig. 10. A clear dip in the FRF 
corresponding to the local resonance frequency is seen for the beam with resonators, while no 
such a bandgap is found in the FRF for the beam without resonators. Also, the modal peaks in the 
beam with resonators are shifted to lower frequencies due to the added mass in the beam. 

200 

- With Resonators 
• Without Resonators 

1000 400 600 80 
Frequency [Hz] 

Fig. 10. Comparison of frequency responses of beams with and without resonators to noise i/p. 

Moreover, displacement time histories at various fixed frequencies were measured using 
B&K 4507B accelerometers. One accelerometer was placed at the point of excitation to estimate 
the input displacement history, while the second accelerometer was placed at the output end. The 
collected accelerometer signals were numerically integrated twice to obtain the displacement 
history. The displacement time-histories obtained at the specified locations at a driving frequency 
of 497Hz are shown in Fig. 11. The results obtained show a substantial amplitude decay of the 
flexural motion of the beam with resonators as compared to that of the beam without resonators 
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when driven at a frequency close to the local resonance frequency. 
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Fig. 11 Displacement time-histories obtained at a driving frequency of 497Hz. (a) input signal; (b) 
output signal at x = 10cm for beam with resonators; (c) output signal at x = 60 cm for beam with 
resonators; (d) output signal at x = 60 cm for beam without resonators. 

6. Application to Hull Slamming 

To verify that our present sandwich structure with resonators can efficiently suppress 
vibration induced by hull slamming, one simulation is performed. Consider two long and 

0.14 
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periodically supported sandwich beams shown in Figs. 12(a) and 12(b). One has two sections 
with resonators but the other does not. The interval between resonators is chosen to be 0.012m, 
and the number of resonators placed in the beam is 50. The cyclic impulse exhibited in Fig. 13(a) 
is applied to the center section of each beam, and the frequency spectrum of the impulse is 
depicted in Fig. 13(b). It is seen that the dominant frequency is 20 Hz. As previously mentioned, 
in periodically supported structures, harmonic waves can propagate only in certain frequency 
bands [2]. Hence, we design the supports so that the wave generated by the impulse can propagate 
without attenuation along the sandwich beam without resonators. Moreover, in order to show the 
filtering phenomenon, the local resonance frequency of resonators is selected as the dominant 
frequency (20 Hz) of the impulse. Figures 14(a) and 14(b) show the spectrum analysis of the 
responses in section (1) and section (3) of the beam without resonators, respectively. It appears 
that the intensity of the wave remains almost the same in both sections. Figures 15(a) and 15(b) 
show the responses at the same locations in the sandwich beam which contains resonators in 
section (2). It is observed that the intensity of the wave decreases conspicuously after it travels 
through section (2). 

Z=3m   Totnl lenath=2~in im  p 

m *       L 
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__     ^      _    ^_ 
* m lb 
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m            m      L     m k fh    o)     Hh (2) jfti     (3)    $h             fhi           Ah 

(b) 
Fig. 12 (a) Supported sandwich beam with homogenous core and (b) supported sandwich beam 

having two sections with resonators. 
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Fig. 13 (a) Cyclic loading (b) the corresponding frequency spectrum. 
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Fig. 14 Spectrum analysis of the wave (a) in section (1) and (b) in section (3) of the beam without 

resonators, respectively. 
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Fig. 15 Spectrum analysis of the wave (a) in section (1) and (b) in section (2) of the beam 

containing resonators, respectively. 

7. Sandwich Beam with Periodic Cores 

7.1 Introductory Remarks 
Our previous work has found that sandwich structures with resonators can produce a 

significant effect on wave attenuation and vibration reduction. Furthermore, by choosing the 
local resonance frequency of the resonator, the desired location of the bandgap can be obtained. 
Besides the use of resonators, the work done by Mead [2-3] showed that periodic structures can 
produce a similar mechanism to give rise to wave attenuation. In other words, this type of 
periodic structure offers an alternate mechanism to stop wave propagation in sandwich structures. 
Following Mead's work, Ruzzene and Tsopelas [4] applied the concept of periodic structural 
assemblies to a sandwich plate. They found that different honeycomb core materials placed 
periodically in the sandwich plate are capable of obstructing the propagation of waves over 
specified frequency bands. The location and the extent of the stop bands can be modified by an 
appropriate selection of the periodicity and the geometrical and physical properties of the core. 
The purpose of the present study is to further investigate the dynamic characteristics of sandwich 
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structures consisting of periodically varying core properties and compare the efficiency of this 
type of sandwich beam with that of the corresponding sandwich beams with resonators. The 
Bloch theorem [5] is employed to find the stop bands of sandwich structures with periodic cores. 
Numerical examples are presented to illustrate the wave blocking behavior of the sandwich beam. 
The efficiencies of sandwich structures with resonators and with periodic cores, respectively, are 
compared. 

Foam Core 1 Foam Core 2 

-[ — - ~T "T 7T 

Fig. 16 An infinite sandwich beam with periodic cores 

v 

<=$ 

y 

(2,   <2L 
*1   "2 

(a) (b) 
Fig. 17 The sketch of a unit cell 

7.2 Dispersion Equation 
Figure 16 displays the schematic of a sandwich beam with periodic core materials. A unit cell 

is shown in Fig. 17(a). This unit cell is regarded as a binary composite Timoshenko beam shown 
in Fig. 17(b). The beam is composed of an infinite repetitions of alternating section 1 with length 
üt and section 2 with length a 2. The lattice constant is denoted by a which equals to aT -I- ü ;. 
Two different core materials are used to construct the sections 1 and 2. The origin of the local 
coordinate is located at the junction. 

The equations of motion for sections 1 and 2 are given by 

(<?A)«[vw(x,Ö *Vr)0u)] -<pA)**#w0M3 =0 (9) 

(BQ&f^Gfrt) - (GÄ)W[vwUÖ + ?Cr)fo Ö] " 0?/)(r)#(r)Ct,t) =0      (10) 

where r - 1, 2 for distinguishing section 1 from section 2, (EI)1^ denotes bending 
rigidity, (<L4)'^is shear rigidity, (pj4)^is mass per unit length, v(x,t) is vertical displacement, 
and <p(x,t) is rotation of the cross-section of the sandwich beam. By assuming a general 
harmonic wave propagating in the sandwich beam, two displacement functions v and cp can be 
expressed in the wave form jK«*-«*) in which q is wave number and OJ is angular frequency. 
Using the technique of separation of variables, displacement v(x, t) and rotation ^T(J^ , t) can be 
expressed as v(x)e~iwiand ip(ix}a~iui, respectively. Substituting these two functions in Eqs. (9) 
and (10) yields the general solutions of the form: 
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t>«« = D»."S?- +■ D«,*,W* + D«Xrt« + D««'^ (11) 

#»0d = l^^<-«J*i^ + R«.af« + R«.*?1« (12) 

where D,   are constant amplitudes and 

*[r> = D^aiW^f-O^W^VCK«)«*,^ for/ =1,2,3,4. 
At the junction (x = 0) between the two core elements, continuities of deflection, rotation, 
moment and shear force must be satisfied as follows: 

v<ö(o) = 0W(o) (13) 

fMOO-fUOO (14) 

#«(0)=#«(;o) (15) 

(fcO«>l?tO(0) + f "»(Of)] = (€A) »[O^(0D +#<a)(0)] (16) 

Due to the periodicity of the infinite structure in the JC direction, the displacement, rotation, 
moment, and shear force also have to obey the Bloch theorem [5], namely, 

*(°(a2) = e*a0(ü(-ai) (17) 

#<*6ta)-fl««4ti>(-*) (18) 

#<*(*)-«^"(-«l) (19) 

(GA)«[r'-'(a.) +■ ^(a*)] = **« (OQWpWC-*) +■ ^(-aj]      (20) 

where q is wave number. Eqs. (13) - (20) form a standard eigenvalue problem from which the 
dispersion relationship between wave frequency 0) and wave number q is obtained. For a given cu, 
the values of q are obtained from solving this dispersion equation. Depending on whether q is real 
or complex, pass bands or stop bands are determined. 

7.3 Dispersion Curves and Stop Bands 
Table 1 lists the dimensions and material constants adopted in the computation, and the 

corresponding sandwich beam properties are listed in Table 2. The face sheet is AS43501-6 
carbon/epoxy composite laminate [O^/WT/OJ with an effective elastic Young's modulus Er-; 
and the core material is Rohacell IG-51 foam. The thickness of the face sheet and that of the core 
are denoted by ht- and hv respectively, and the width of the beam is denoted by b. The densities 
of the face sheet and the core are \550kg/7tiz and 52.1 kg Jm3, respectively. 

Table 1 Dimensions and material constants of specimen. 
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Er(GPa) hfM ^ic(m) ö(m) 

97.19 7.62 xl(T* 3.02 XlO"2 0.019 

Table 2 Effective properties of the sandwich beam. 

EI(Pa ■ m+) fct<Pa-m2) pA(k&/m) pKkg-m) 
677 IAS x 10+ 0.075 1.31 x 10 "5 

Consider an infinite sandwich beam with periodic foam cores. The lattice constant is chosen to 
be a = 0.15m, and at = a2 = 0.37Sm. Four sandwich beams are considered in order to show the 
effect of shear rigidity and mass density on the dispersion curves. Table 3 lists the properties of 
these four beams. Figures 18(a), 18(b), 18(c), and 18(d) show the dispersion curves for the four 
sandwich beams, respectively, ci and ß denote, respectively, the real part and imaginary part of 
the dimensionless wave number, namely q = qa = a +- iß. It is concluded that Beam III is more 
capable of enlarging the stop band and increasing the value of ß than the other three beams. In 
Fig. 18(d), it is noted that the width of frequency in the stop bands becomes very narrow. That is, 
increasing the ratio of the shear rigidities of the two cores while decreasing that of the mass 
densities with the same proportion yields little effect on wave attenuation. Another important 
finding is that a larger lattice constant leads to lower frequencies in the stop band. 

Table 3 Ratios of shear rigidit ies and mass densities for four sandwich beams 
Beam I Beam II Beam III Beam IV 

Pi/Pi 4 1 4 1/4 
(GA)2/(GA\ 1 4 4 4 
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Fig. 18 Dispersion curves of (a) Beam I, (b) structure Beam II, (c) beam III, and (d) Beam IV. 

The results in Fig. 18 indicate that mass density or shear rigidity of the sandwich core can 
change the magnitude of ß as well as modify the location and width of the stop bands. Hence, we 
further conduct an investigation in the effect of pz/Pi and tnat °f (GÄ)z/(GÄ)i on tne maximum 
value of ß and the gap width of stop bands in sandwich beams with periodic cores. We take the 
lattice constant to be 0.012m, i.e., a* = a2 = 0.006m. Figure 19 shows the variation of ßmax and 
the bandgap width for the first stop band with varying properties of the core. In Fig. 19(a), the 
shear rigidities of the two cores are chosen to be identical, the ratio of mass density is assumed to 
be 2.5, 5, 7.5, 10, or 12.5. Conversely, in Fig. 19(b), the densities of the two core materials are 
assumed identical, and the ratio (C?^)2/(<?A)1 varies from 2.5 to 12.5. In Fig. 19(c), p2/Piand 
{<"*)z/(<«Oi are assumed to be equal and both vary from 2.5 to 12.5. It is found that the larger 
ratio p2fPior (^Or/C^Oi is taken, the larger jf?m<IX is obtained. It is also observed that among 
the three cases, the last one can give the largest ßmax and the widest frequency gap. 
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Fig. 19 Effect of the ratio pz/Pi or {GA}zf(ß&\ on Än«x and the width °ftne ^ Dand gaP- 

7. 4 Simulation of Wave Attenuation 
To capture the attenuation behaviour of wave propagation, consider a 15m long sandwich 

beam actuated at the left end with the prescribed displacement history given by 

v(t) = VQSirutyt   t > 0 (13) 

The material properties of Beam III are used to perform the computation. Figures 20(a), 20(b), 
and 20(c) show the wave motions in the sandwich beam excited with three different driving 
frequencies, 400 rad/sec, 1080 rad/sec, and 4945 rad/sec, respectively. The first excitation 
frequency is located within the 1st pass band; the second one is within the 1st stop band; the third 
is within the 3rd stop band. As expected, wave amplitude is significantly reduced with distance in 
the last two cases. In contrast, there is no considerable wave attenuation found in the first case. It 
is also found that a larger value of ß gives a greater reduction in wave amplitude. 
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Fig. 20 Mode shape at different times for (a) o) = 400 rad/sec, (b) &j = 1080 rad/sec, (c) cü = 
4945 rad/sec. 

7.5 Wave Filtering 
The sandwich structure with a periodic core can be used as a band filter. For illustration, a 

sandwich beam having a section with periodic cores as shown in Fig. 21 is studied. Sixteen unit 
cells of periodic core are embedded in the sandwich beam. An excitation of the form given by Eq. 
(13) with a dominant frequency is applied at the left end of the beam. The actuation frequency is 
1080 rad/sec, same as the one considered in Fig. 20(b). 

Figure 22 shows the comparison of the responses of the beams with and without periodic 
cores, respectively. It is found that, initially, the responses are identical. However, after the wave 
passes through the section with periodic cores, the wave amplitude is significantly reduced. In 
contrast, no appreciable change in wave amplitude is seen in the sandwich without periodic cores. 
It is also noted that there is a significant reflection of incident wave from the section with periodic 
cores to the section without periodic cores. 
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Fig. 21 Sandwich beam with a section containing periodic cores 
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Fig. 22 Wave profiles of sandwich beam with and without periodic cores 

8. Comparison of Sandwich Structures with Resonators and with Periodic Cores 

Both sandwich structures with resonators and with periodic cores are capable of stopping 
waves with certain frequencies from propagating into the beam. It is of interest to compare the 
efficiencies in wave attenuation between these two types of sandwich constructions. 

In order to objectively compare the efficiency in wave attenuation and the width of the 
generated bandgap between a sandwich beam with periodic cores and that with resonators, the 
mass densities of the two beams must be set equal. Consider the unit cells of the two types of 
sandwich beams as shown in Fig. 23. The unit length a is chosen as 0.048m. The total mass 
varies with different ratios pz/Pias discussed in Fig 19(a), but here the density ratios are taken as 
5.0, 10.0, 15.0, and 20.0 instead. 

1 
a a 

(a) (b) 
Fig. 23 Sandwich structure (a) with periodic cores (b) with resonators. 

The local resonance frequency of resonators o>0 for the beam with resonators is selected to 
be the same as the optimized frequency LOC which produces the maximum attenuation factor ß in 
the beam with periodic cores, i.e., to0 = o\. Using the 1st band gap as an example, Fig. 24(a) 
displays the variation of ßrjßc ratio with varying wave frequency and mass density. ßr and ßc 

denote the attenuation factors of the two sandwich beams, respectively, and rö = GJAO0 = OJ/WC. 

It is seen that as &j -» 1, ßr/ßc becomes very large, and that even at a distance away from Ö5 = 1, 
the difference between the two decay factors remains quite substantial. In other words, resonators 
always provide much better efficiency in wave attenuation than periodic cores. In Fig. 24(b), it is 
obvious that, for the beam with resonators, the bandgap width is proportional to the ratio of core 
mass densities. In contrast, for the beam with periodic cores, the gap width grows more slowly. It 
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is concluded that increasing the ratio of densities of cores might not lead to a wider gap. One can 
also conclude that with the same weight of the beam, resonators may make a greater impact on 
wave attenuation. Figure 19 gives such example . The actuation (see Eq. (13)) is given in terms of 
a prescribed displacement applied to the respective left ends of the two beams. The applied 
frequency is 60 = l.lä>0. The ratio of mass densities is chosen to be 8.6, namely, the last case in 
Fig. 18(a). Figures 25(a) and 25(b) show, respectively, the deformed shapes of the first 1 m of the 
sandwich beams at elapsed time of 0.0097sec, after actuation begins. It is evident that for the 
beam with resonators, a sharp spatial decay of amplitude of the flexural motion takes place 
whereas for the beam with periodic cores, decay is much more gradual. 
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Fig. 24 Comparison between two types of sandwich beams for (a) ß ratio, and (b) the gapwidth. 
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Fig. 25 Wave profile at elapsed time of 0.0097sec for (a) beam with resonators, and (b) beam 
with periodic cores. 

9. Conclusion 

The dynamic behavior of sandwich beams containing resonators was investigated 
analytically and experimentally. It was found that, near the local resonance frequency of the 
resonator, harmonic waves cannot propagate without attenuation in amplitude and that the extent 
of the bandgap can be selected by altering the local resonance frequency of the resonator. Also, 
the magnitude of the internal mass has a greater influence on the size of the bandgap than the 
spring constant of the resonator. It is concluded that the sandwich structure with resonators is 
capable of efficiently blocking waves in a certain frequency range near the local resonance 
frequency of the resonator. 

In this study, it was shown that sandwich beams with resonators embedded in the core or 
with periodic core properties can produce stop bands to forbid wave propagation. For the 
sandwich beam with a periodic core to obtain large bandgap widths, the ratio of densities and that 
of rigidities of the two core materials must have the same proportion. Based on the comparison 
between beams with periodic cores and beams with resonators, it is concluded that the latter is 
more efficient in effecting wave attenuation and vibration reduction. Moreover, the desired 
bandgap can be easily achieved by selecting the local resonance frequency of resonators. This is 
especially true for low frequency bandgaps. 
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