
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 
 

2. REPORT TYPE 
 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

 
 

5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

 
 

5e. TASK NUMBER 
 

 
 

5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 
 
 
 
 

 
 
 
 
 

 
 
 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
   
   
  11. SPONSOR/MONITOR’S REPORT  
        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
 
 
 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
 

b. ABSTRACT 
 

c. THIS PAGE 
 

  
 

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18 

01-17-2012 Final 4/1/08 – 11/30/10

Bridging the Gap Between Theory and Practice: Structure and 
Randomization in Large Scale Combinatorial Search FA9550-08-1-0196

Carla P. Gomes

Cornell University 
Office of Sponsored Programs 
373 Pine Tree Rd. 
Ithaca, NY 14850-2820

Air Force Office of Scientific Research 
875 N. Randolph St. Room 3112 
Arlington, VA 22203

AFRL-OSR-VA-TR-2012-0868 

Approved for public release

This research effort focused on three core research challenges: (1) How to explain the gap between formal analysis and practical performance for 
combinatorial search; (2) How to characterize and capture hidden tractable structure in real-world problems; and, (3) How to further boost 
combinatorial search methods for real-world problems. A series of advanced formal models for predicting the runtime of combinatorial search 
methods were developed. Models of runtime distributions of search methods capturing exponential and power law (heavy-tailed) regimes for both 
complete and incomplete randomized search methods were introduced, together with a generative model that generates search trees with any 
pre-defined degree of heavy-tailedness. New methods for the efficient computation of the number solution clusters and their marginal distributions 
were developed. The notion of “backdoor sets,” – a measure that characterizes hidden problem structure  – was extended to encompass 
combinatorial optimization problems as well as learning during search, thereby providing novel insights into the connection between the hidden 
structure of optimization problems and the surprising efficiency of today’s optimization engines. A novel Markov Chain Monte Carlo sampling strategy, 
inspired by a flat histogram method from statistical physics, was developed to compute the density of states of a Boolean formula. Multi-agent 
inference problems in dynamic environments were formulated into the framework of message passing algorithms and graphical models, generalizing 
the standard Kalman filter to the distributed case. A new hybrid strategy for the MaxSAT problem was also proposed, combining the complementary 
strength of local search and systematic search, bringing the best of both worlds in a way that is ideal for current multi-core architectures.

U U U



	
  
	
  
	
  
	
  
	
  

Bridging	
  the	
  Gap	
  Between	
  Theory	
  and	
  Practice:	
  
Structure	
  and	
  Randomization	
  in	
  Large	
  Scale	
  

Combinatorial	
  Search	
  
	
  

FA9550-08-1-0196 
 

Grant Period: 

4/1/08 – 11/30/10 

 
 
 
 
 

PI: Carla P. Gomes 
gomes@cs.cornell.edu 

Department of Computer Science 

Cornell University 

	
  
	
  

	
  
Final	
  Report	
  

 
 

 
 



 

Abstract 

This research effort focused on three core research challenges: (1) How to explain the gap 
between formal analysis and practical performance for combinatorial search; (2) How to 
characterize and capture hidden tractable structure in real-world problems; and, (3) How 
to further boost combinatorial search methods for real-world problems. Predicting the 
runtime of combinatorial search methods is a notoriously hard problem due to 
tremendous variations in runtime observed when solving practical problem instances. A 
series of advanced formal models for predicting the runtime of combinatorial search 
methods was developed. Models of runtime distributions of search methods capturing 
exponential and power law (heavy-tailed) regimes for both complete and incomplete 
randomized search methods were introduced, together with a generative model that 
generates search trees with any pre-defined degree of heavy-tailedness. In order to better 
understand and model solution spaces of combinatorial problems, new methods for the 
efficient computation of the number solution clusters and their marginal distributions 
were developed. These methods can effectively handle practical problem instances with 
tens of thousands of variables, containing solution clusters with sizes ranging over many 
orders of magnitude. Reasoning based on such clusters has been the key component of 
highly successful combinatorial search methods proposed recently. The notion of 
“backdoor sets,” --- a measure that characterizes hidden problem structure --- was 
extended to encompass combinatorial optimization problems as well as learning during 
search, thereby providing novel insights into the connection between hidden structure of 
optimization problems and the surprising efficiency of today’s optimization engines.  
Probabilistic reasoning techniques based on message passing, namely belief propagation 
and survey propagation, were analyzed in the context of combinatorial problems in the 
Boolean satisfiability domain, resulting in the first detailed study of the evolution of these 
search methods over time as well as the utilization of these techniques to provide 
statistical estimates on key properties of the solution space. The problem of computing 
the density of states of a Boolean formula, which is a generalization of Satisfiability 
Testing, MAX-SAT, and model counting, was also studied and a novel Markov Chain 
Monte Carlo sampling strategy, inspired by a flat histogram method from statistical 
physics, was developed. The new sampling method provides novel insights into 
combinatorial search spaces that lie far beyond the reach of previous techniques. Multi-
agent inference problems in dynamic environments were formulated into the framework 
of message passing algorithms and graphical models, generalizing to the distributed case 
of the Kalman filter. A new hybrid strategy for optimizing the MaxSAT problem was 
proposed, combining the complementary strength of local search and systematic search, 
bringing the best of both worlds in a way that is ideal for current multi-core architectures. 

	
  
 
 
 
 



 

1. Introduction 

In the last decade we have witnessed tremendous progress in the design and development 
of search algorithms for solving combinatorial problems. For example, consider progress 
in the complete or exact backtrack-style methods for constraint satisfaction problems 
(CSPs), and in particular Boolean satisfiability (SAT) problems. In the early 1990s we 
could only solve formulas with around 100 variables and 1,000 clauses, whereas current 
state-of-the-art complete Davis-Putnam- Logemann-Loveland (DPLL) based SAT solvers 
can now handle much larger real-world instances, with over 1,000,000 variables and over 
5,000,000 constraints. We have witnessed similar progress in the area of Integer 
Programming. Current complete state-of-the-art solvers for combinatorial problems seem 
to defy the theoretical worst-case results for solving real-world instances of hard 
computational problems. 

The research covered under this grant focused on three key research questions: (1) How 
to explain the performance gap between theory and practice for combinatorial problems. 
(2) How to characterize and capture hidden tractable structure in real-world problems. (3) 
How to further boost combinatorial search methods for real-world problems. 

Our work brings together techniques from constraint programming, mathematical 
programming, and satisfiability in a symbiotic way to address the three research 
questions. In order to evaluate the different approaches and methods, we considered a 
range of real-world benchmark problems from hardware and software verification to the 
design of experimental experiments, as well as more abstract problem domains such as 
combinatorial design, random constraint satisfaction problems (CSP), and random 
satisfiability (SAT).  

In the next sections we highlight our research accomplishments during the period of the 
grant which relate to the research questions and themes identified above. In Section 2 we 
describe our research on randomized search procedures and runtime distributions of 
search procedures. Section 3 describes methods for counting and sampling solutions of 
combinatorial problems. Section 4 studies the problem of uncovering so-called hidden 
structure in combinatorial problems. Section 5 describes methods for over-constrained 
problems and Section 6 presents methods for inference for dynamic processes. 

2. Randomization and runtime distributions of search methods 

Several factors have contributed to the tremendous progress that we have observed in the 
design and development of new algorithmic techniques and solvers for combinatorial 
problems, in addition to the increase in computational power.  In particular, these factors 
include more sophisticated data-structures, non-chronological backtracking, fast pruning 
and propagation methods, nogood (or clause) learning, combination of branching and 
cuts, and more recently randomization and restarts. See e.g., [9], for background 
literature. 



Randomization has greatly extended our ability to solve hard computational problems. In 
general, however, we think of randomization in the context of local search. While local 
search methods have proven to be very powerful, in some situations they cannot supplant 
complete or exact methods due to their inherent limitation: local search methods cannot 
prove inconsistency or optimality. Surprisingly, randomization and restarts have also 
been shown quite effective for complete backtrack-style search methods.  In fact, 
randomization and restarts are now an integral part of most state-of-the-art complete SAT 
and CSP solvers.   

The discovery of the effectiveness of randomization and restart strategies in complete or 
exact search methods was made in the context of the study of the runtime distributions of 
backtrack-style algorithms. For a long time researchers had observed that the 
performance of backtrack-style search methods can vary dramatically depending on the 
way one selects the next variable to branch on (the “variable selection heuristic”) and on 
what order the possible values are assigned to a variable (the “value selection heuristic”). 
In fact, quite often the branching heuristics provide incorrect search guidance, forcing the 
procedure to explore large sub-trees of the search space that do not contain any solution. 
As a consequence, backtrack-search methods exhibit a large variance in performance. For 
example, we see significant differences on runs of different heuristics, runs on different 
problem instances, and, for randomized backtrack-search methods, significant differences 
on runs with different random seeds. The inherent exponential nature of the search 
process appears to magnify the un-predictability of search procedures. In fact, it is not 
uncommon to observe a backtrack-search procedure “hang” on a given instance, whereas 
a different heuristic, or even just another randomized run, solves the instance quickly. 
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Fig. 1. Computational complexity and phase transition curves. Model E 〈17, 8,p〉.
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Fig. 2. The progression from heavy-tailed regime to non-heavy-tailed regime. Log–log plot of the survival functions of the runtime distributions of a backtrack-search
algorithm on instances of model E 〈17, 8,p〉, for different values of p [23].

Let {!i} denote the arrival times of a Poisson process with rate 1
and let Ri be independent and identically distributed random vari-
ables, independent of the sequence {!i}. If the series

∞∑

i=1

!−1/"
i Ri (6)

converges a.s., then it converges to a strictly "-stable random vari-
able [30]. This result shows that an "-stable with 0 <" <2 can be rep-
resented as a convergent sum of random variables involving arrival
times of a Poisson process.

For our simulations, in Eq. (6), we use a sum to n, with !i i.i.d.
Gamma(i, 1), i integer and Ri i.i.d. N(0, 1). Using N = 10, 000 replica-
tions in the simulations, combining the number of random variables
to be added (n) and tail index (") we obtain a result as in Fig. 3.
From Fig. 3 we see that when n is low, the log–log plot of the sur-
vival function exhibits linear behavior, an indication of heavy-tailed

behavior. Increasing the number of random variables i (n ↑) causes
the median of the distribution to increase and the heavy-tailed
regime is replaced by a fat-tailed regime, similar to the behavior
observed in Fig. 2.

Despite the fact that there is a good theoretical justification for
this approach, we were not able to obtain a good fit to our empirical
data. The understanding of the semantics of this model involving
sums of Poisson arrivals and its application to capture the different
statistical regimes of backtrack-search algorithms across different
constrainedness regions of random CSP instances requires further
research.

3.2. Mixtures of "-stable distributions

Our most successful approach for modeling the different sta-
tistical regimes observed in backtrack search across different



Although researchers had been well aware of the high variance of backtrack-search 
algorithms, the discovery of the so-called heavy-tailed nature of the runtime distributions 
of backtrack-search methods was somehow surprising and even counter-intuitive. Heavy-
tailed distributions exhibit power-law decay of the tails. That is why heavy-tailed 
distributions are also referred to as power-laws. (See Figure 1). The power-law decay of 
the tail causes it to be heavy, and therefore some of the moments do not converge —
heavy-tailed distributions are therefore characterized by infinite moments, e.g., they can 
have infinite mean, or infinite variance, etc. This is in contrast with non-heavy-tailed 
distributions characterized by exponential decay. Related to heavy-tailedness is fat-
tailedness. The notion of fat-tailedness may be introduced using the concept of kurtosis, 
and comparing the kurtosis of a given distribution with the kurtosis of the standard 
normal distribution. The kurtosis of the standard normal distribution is 3. A distribution 
with a kurtosis larger than 3 is fat-tailed or leptokurtic. Like heavy-tailed distributions, 
fat-tailed distributions have long tails, with a considerable mass of probability 
concentrated in the tails. Nevertheless, the tails of fat-tailed distributions are lighter than 
heavy-tailed distributions. Therefore, contrarily to heavy-tailed distributions, all the 
moments of fat-tailed distributions are finite. Examples of distributions that are 
characterized by fat-tails are the exponential distribution and the lognormal distribution. 
Interestingly, in the context of search, heavy-tails have been observed not only in 
aggregated runtime distributions of backtrack-search methods, when considering a 
collection of instances of the same class (e.g., random binary CSP instances generated 
with the same parameter space), but also when running a randomized backtrack-search 
procedure on the same instance several times, in which the randomization is only used to 
break ties in the variable and/or value selection. 

The understanding of the fat-tailed and heavy-tailed nature of the distributions underlying 
backtrack-search methods has led to the design of new search strategies, in particular 
restart strategies for complete backtrack-search methods. For example, we have shown 
how randomized restarts of search procedures can dramatically reduce the variance in the 
search behavior. In fact, we demonstrated that a search strategy with restarts provably 
eliminates heavy tails. Interestingly, Beame et al. showed that clause learning combined 
with restarts, as used by current-state-of-the-art SAT solvers, corresponds to a proof 
system exponentially more powerful than that of DPLL. 

While heavy-tailed behavior has been observed in backtrack-search methods, it is clear 
that it does not occur in all problem instances. In fact, backtrack-style algorithms exhibit 
dramatically different statistical regimes across the different constrainedness regions of 
random CSP models—a heavy-tailed regime in the under-constrained area is replaced by 
a non-heavy-tail regime as one moves towards the phase transition. 

 

2.1 A	
  generative	
  power-­‐law	
  search	
  tree	
  model	
  for	
  complete	
  or	
  exact	
  methods	
  	
  

(See [9] for a detailed description of this work and background literature.) 

A deep understanding of heavy-tailed phenomena involves formal generative models. In 



fact, the search for good generative models for power-law distributions is a new active 
research area across different domains. For example, the so-called model of preferential 
attachment that generates power-law degree distributions for random graphs is an 
abstraction for modeling how social networks or the Internet lead to heavy-tailed 
behavior. 

The generation of power-law distributions for backtrack search is also quite challenging, 
especially if one attempts to capture the full behavior of backtrack search. A compromise 
is to produce more abstract models, such as the model proposed by Chen et al. In such a 
model, only high level branching decisions leading to “subtrees of the search space” are 
modeled. Branching decisions within a given “subtree” are not modeled. Despite its level 
of abstraction, the model provided interesting insights into search algorithms. For 
example, it led to the so-called notion of backdoor set, a set of critical variables that 
captures the combinatorics of the problem with respect to the propagation procedure of 
the solver: once values are assigned to the backdoor set, the remaining problem is solved 
by propagation (see also section 3). 

Our research contribution to this topic during this grant period was twofold. We showed 
how the different regimes observed in backtrack-search methods across different 
constrainedness regions of random CSP models can be captured by a mixture of the so-
called stable distributions. Stable distributions capture a range of heavy-tailed and non-
heavy-tailed distributions. We also developed a generative search tree model whose 
distribution of the number of nodes visited during search is formally heavy-tailed. Even 
though our model is an abstraction of backtrack search, it is more realistic than previous 
models. In particular, while the model by Chen et al. only considers high level branching 
decisions leading to “subtrees of the search space”, more specifically, subtrees of  size 20 
, 21 , 22 , . . . , 2n nodes, our model considers finer grained branching decisions, at every 
node. Furthermore, it allows us to generate search trees with any degree of heavy-
tailedness. Our model also captures a key aspect of heavy-tailed behavior in backtrack 
search—the longer the run the more unlikely it is for the search procedure to stop. This 
overall behavior is achieved by the fact that the probability of going down the search tree 
decreases exponentially, combined with the fact that, as one goes down the search tree, 
the probability of making a “wrong decision” – i.e., not picking a terminal node that 
corresponds to a solution or that leads to a proof of unsatisfiability – given all the “wrong 
decisions” so far, increases. These two opposite factors – an overall exponential decrease 
in going down the search tree and an exponential increase in search space as we go down 
the search tree – are key to the generation of power-law decay. Our model captures 
binary trees as well as other tree shapes that more closely resemble the search trees 
produced in combinatorial search.  We should also point out that the nodes in our model 
capture different decision points, such as picking the next variable to branch on, or 
picking a value to assign to a variable, or picking a backtracking point, or more generally 
picking or not picking the “right terminal node”. Therefore, our model can be viewed as 
an abstraction for different variants of backtrack-search models  (See Figure 2). 



	
  

Figure	
  2	
  Different	
  variants	
  of	
  search	
  trees	
  with	
  power	
  law	
  decay	
  (alpha=1) 

	
  

Figure	
   3	
   –	
   Log–log	
   plot	
   of	
   survival	
   functions	
   of	
   stable	
   mixtures	
   (solid	
   line)	
   and	
   empirical	
   runtime	
  
distributions	
  of	
  a	
  backtrack-­‐search	
  algorithm	
  on	
  instances	
  of	
  Model	
  E,	
  p	
  =	
  0.05,	
  0.11,	
  and	
  0.24	
  (dashed	
  
line).	
  

 

We also showed how the different statistical regimes observed in the runtime 
distributions of backtrack-style algorithms on random CSP instances can be captured by a 
mixture of stable distributions, in which one of the components is heavy-tailed and the 
other component is the normal distribution (See Figure 3). This mixture provides 
interesting insights: despite the relative high weight of the normal distribution across the 
different regions, the extremely low alpha values of the heavy-tailed stable produce a 
heavy-tailed regime; as alpha is increased, the heavy-tailed component no longer 
outweighs the normal component, leading to exponentially decaying tails. From an 
algorithmic point of view the heavy-tailed regime corresponds to having an algorithm 
that has good chances of finding solutions with short runs, given the fact that this regime 
is in the under- or medium-constrained area. However, now and then it makes a sequence 
of mistakes that leads to extremely long tails, therefore heavy-tails. As the instances 
become harder, the heavy-tailed regime is replaced by a non-heavy-tailed regime in 
which the normal distribution dominates, with a corresponding increase in alpha. In this 
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Fig. 10. Different variants of search trees with power-law decay with ! = 1.
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Fig. 11. Tails obtained with our generative model for ! = 1 and different values of n.

in which one of the components is heavy-tailed and the other com-
ponent is the normal distribution. This mixture provides interesting
insights: despite the relative high weight of the normal distribu-
tion across the different regions, the extremely low ! values of the
heavy-tailed stable produce a heavy-tailed regime; as ! is increased,
the heavy-tailed component no longer outweighs the normal com-
ponent, leading to exponentially decaying tails. From an algorithmic
point of view the heavy-tailed regime corresponds to having an
algorithm that has good chances of finding solutions with short
runs, given the fact that this regime is in the under or medium con-
strained area, but now and then it makes a sequence of mistakes that
leads to extremely long tails, therefore heavy-tails. As the instances
become harder, the heavy-tailed regime is replaced by a non-heavy-
tailed regime in which the normal distribution dominates, with
corresponding increase in ". In this region the instances become
inherently harder, all the runs become homogeneously long, the
algorithm does not have a chance of producing short runs, therefore
the dramatic decrease in the ranges of the runtime distributions
and the fast drop of the tails.

In summary, we introduced a generative search tree model
that captures key aspects of heavy-tailed behavior in combinatorial
search. Furthermore our model allows us to generate search trees
with any degree of heavy-tailedness. We also showed how a mix-
ture of stable distributions captures the statistical regimes observed
in runtime distributions of backtrack-style algorithms across differ-
ent constrainedness regions of random CSP instances. We hope our
models will lead to further improvements in the design of search
methods.

Appendix A.

Let us denote the sequence of probabilities for each non-terminal
node of level n by Un and by Truncn(Un) the corresponding trun-
cated sequence with n decimal digits. Our goal is to show that using
Truncn(Un) instead of Un leads to the same power-law decay for the
distribution of X, the number of visited nodes during the search.

Lemma. If Un → 1, Un >0 and Truncn(Un + 1)!Truncn(Un) then
Truncn/Un → 1.

Proof. Let us start to note that

Truncn(Un)
Un

= 1 − Un − Truncn(Un)
Un

"1

Due the nature of truncation, Un −Truncn(Un)"10−n. Therefore,

1 − 10−n

Un
"1 − Un − Truncn(Un)

Un
"1

Since

lim

(

1 − 10−n

Un

)

= 1 − lim(10−n)
lim(Un)

= 1

then

Truncn(Un)
Un

→ 1 #
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Fig. 5. Log–log plot of survival functions of stable mixtures (solid line) and empirical runtime distributions of a backtrack-search algorithm on instances of Model E, p=0.05,
0.11, and 0.24 (dashed line).

distributions, where the heavy-tails disappear. In this region, the
normal distribution dominates the mixture (high values of ! and "
for the heavy-tailed stable component), causing the tails to drop fast.
Again, from an algorithmic point of view this is quite insightful: in
this region, the instances become inherently hard for the backtrack-
search algorithm, all the runs become homogeneously long, the
algorithm has no chance of producing short runs, therefore the vari-
ance of the backtrack search algorithm decreases and the tails of the
survival functions decay rapidly.

In order to provide further evidence of the suitability of ourmodel
of mixtures of distributions, we evaluated the “goodness of fit” for
all the instances of Model E discussed above. We generated the
distributions using the well-tested International Mathematics and
Statistics Library [31,32]. We then use an iterative procedure as de-
scribed, e.g., in [33], to compare the empirical data against the fitted
theoretical mixed distribution using the Kolmogorov–Smirnov (K–S)
goodness of fit test. Note that we have to use such an iterative pro-
cedure given that we are using mixtures of distributions and that
there is no closed form for the stable distributions with the parame-
ters required in our model (see Section 2). The two-sample K–S test
is one of the most useful and general non-parametric methods for
these purposes [34]. As discussed before, given that we are inter-
ested in studying the tail behavior of the distributions, we measure
the quality of the fit only taking into account tail data. For the sake
of uniformity, we used 5% of the tail (500 observations) in all cases.
Table 2 shows the results for the K–S statistics obtained for different
instances of Model E. We observe high “p” values, which means the
null hypothesis of equality of distributions is not rejected. We can
thus assume our real data series are well modeled by the fitted mix-
ture of distributions. In Fig. 5 we plot the empirical data and the fitted
distribution for p= 0.05, 0.11, 0.18 and 0.24. The near overlap of the
empirical curves and corresponding fitted distributions is striking.
Our model is able to reproduce the inflexions of the plots with high
accuracy.

As a final remark we would like to point out that the same
qualitative behavior is observed when considering different variants
of backtrack-search methods. The more sophisticated the method
(e.g., nogood learning, strong pruning and propagation), the nar-
rower the heavy-tailed region but still, as the instances become

too hard, the heavy-tailed regime is replaced by a non-heavy-tailed
regime.

4. Generative power-law search tree model

In this section we present an abstract generative search tree
model that produces power-laws. In order to motivate the topic we
start by considering two typical examples of exponential decay.

4.1. Exponential decay

We start by considering a full binary tree with N levels below
the root node (see Fig. 6, left panel), therefore a total of 2N+1 − 1
nodes. Let us assume we only have one terminal node (i.e., a solution
node or a node that leads to a proof of unsatisfiability) and that it
can be any node of the tree. We consider a search algorithm that at
each branching decision picks a node with probability 1

2 , until the
terminal node is found. We denote by X the total number of visited
nodes in the tree. In this model, the probability that the search stops
after n choices is 2−n and

P(X >n) = 2−n → 0 as n → ∞,

which means that the tail of the distribution has exponential
decay.

Now, with the same algorithm, let us consider a different binary
search tree. In each level there are two equiprobable nodes, one of
which is a terminal node, i.e., one in which the search terminates (a
solution is found or the algorithm proves that there is no solution).
(See Fig. 6, right panel.) In this case, the probability that the search
stops after n choices is also 2−n and the tail also has exponential
decay, that is, P(X >n) → 0 very quickly.

In order for us to have a model that exhibits hyperbolic or power-
law tail decay, the probability of terminal nodes, as we go down the
tree, must decrease, but slowly. In the following sections we present
different generative models of power-law decay for the number of
nodes visited during search.



region the instances become inherently harder, all the runs become homogeneously long, 
and the algorithm does not have a chance of producing short runs. Therefore, there is a 
dramatic decrease in the ranges of the runtime distributions and the fast drop of the tails. 

In summary, in this work we introduced a generative search tree model that captures key 
aspects of heavy-tailed behavior in combinatorial search. Furthermore, our model allows 
us to generate search trees with any degree of heavy-tailedness. We also showed how a 
mixture of stable distributions captures the statistical regimes observed in runtime 
distributions of backtrack-style algorithms across different constrainedness regions of 
random CSP instances. We hope our models will provide further insights into the design 
of new algorithmic strategies and lead to further improvements in the design of search 
methods. 

2.2 	
  Optimal	
  Noise	
  and	
  Runtime	
  Distributions	
  in	
  Local	
  Search	
  	
  
	
  

(See [5] for a detailed description of this work and background literature.) 

Designing, understanding, and improving, local search methods for constraint reasoning, 
and in particular for Boolean satisfiability (SAT), has been the focus of hundreds of 
research papers since the 1990s and even of earlier papers. For SAT, techniques such as 
greedy local search, tabu search, solution guided search, focused random walk, and 
reactive or adaptive search have led to much success. Specifically, Walksat stands out as 
one of the initial solvers that introduced many of the key ideas in use today and, is still 
competitive with the state of the art. 

Many attempts have been made to understand the behavior of local search methods in 
terms of local minima, exploring “plateaus”, the exploration vs. exploitation tradeoff, etc. 
However our formal understanding is limited mostly to relatively simple variants of local 
search, such as a pure greedy search, a pure random walk, or a combination of the two. 
This is not surprising as the techniques employed by Walksat and other state-of-the-art 
local search solvers are too complex to allow a formal analysis in terms of, for example, a 
traditional Markov Chain. At the same time, there is a wealth of information available 
from observations of the behavior of local search methods on a variety of domains, most 
notably for random 3-SAT. There is either formal or anecdotal evidence of various 
features, such as Walksat, scaling linearly at optimal noise but exponentially at sub-
optimal noise, and there are suggestions that the runtime distribution of local search on a 
single random instance has an exponentially decaying tail. Our work provides convincing 
empirical evidence in favor of, or even against, such anecdotal insights and observations. 
We studied the behavior of Walksat on hard, large, random 3-CNF formulas and 
investigated its time complexity in relation to the clause-to-variable ratio α and the 
(static) noise level – both of which Walksat is highly sensitive to. Unlike previous 
studies, our conclusions are based on very large formulas and are thus free of “small N 
effects”. This might explain the difference between our conclusions and those of, e.g., 
Hoos and Stutzle. 

While many new local search SAT solvers are based on “adaptive” or “dynamic” noise, 



these solvers are apparently unable to settle on the optimal noise setting for hard random 
3-CNF formulas, doing much worse than optimal static noise. E.g., we found that the 
SAT Competition 2009 winners in the satisfiable Random category, TNM and 
gnovelty+2, were slower than Walksat at optimal noise by a factor of roughly 4x for 
N=10,000 variable formulas with α = 4.2, 13x for N=20,000, 31x for N=30,000, 54x for 
N=40,000, and 785x for N=50,000. This also shows that, unlike Walksat, these adaptive 
noise solvers scale super-linearly in this domain, justifying the interest in our study of 
static noise. 
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Our work showed a surprisingly simple step-linear analytical fit for the value of the 
optimal noise as a function of α, and an equally simple analytical expression for the mean 
running time of Walksat (measured as the number of flips) at this optimal noise. This fit 
as well as our data exhibit linear scaling with N for α close to the phase transition region 
for 3-SAT. Second, we studied the runtime distribution of Walksat on single instances 
and found the first clear evidence of power-law decay in the probability of failure in T 
flips in the tail of the distribution. Power-law decays and heavy-tailed runtime 
distributions have been one of the key observations for DPLL-style systematic search 
solvers and have led to methodologies such as rapid restarts and algorithm portfolios. 
This phenomenon, however, is usually not associated with local search. We showed that 
after a (relatively long) “flat” region, the probability of failure decays exponentially in the 
high noise regime but as a power-law in the low noise regime. Third, we showed that as 
Walksat proceeds, the number of unsatisfied clauses exhibits an interesting gradual decay 
that happens only at near-optimal noise. The kind of empirical study pursued here 
requires a significant computational power (e.g., 100,000 runs for some low noise levels 
to observe a clear trend). We used Yahoo!’s Apache Hadoop based M45 cloud computing 
platform with the net computational effort being equivalent to around 14 years of single 
CPU time. 

 

 

 



2.3 Markov	
  Chain	
  Model	
  Capturing	
  Exponential	
  and	
  Power-­‐Law	
  Decay	
  

(See [5] for a detailed description of this work and background literature.) 

We developed a preliminary Markov Chain model capturing, e.g., exponential scaling 
with N and power-law decay at low noise. A model that captures such features and is yet 
simple to describe and simulate can be a very useful tool for understanding and exploiting 
the tradeoffs inherent in local search.  

The model has two parts. The first part is a linear MC with states corresponding to truth 
assignments that satisfy the same fraction of clauses of a formula F, with the leftmost 
state encapsulating all solutions. Second, hanging from each state in the top chain is a 
“trap gadget”, which captures the behavior of Walksat when it “gets lost” exploring parts 
of the search space without any solutions, leading to the heavy-tail. 

3. Counting and problem structure 
	
  
3.1 Computing	
  the	
  density	
  of	
  states	
  of	
  a	
  Boolean	
  formula	
  

(See [1 and 3 ] for a detailed description of this work and background literature.)	
  

As mentioned above, Boolean satisfiability (SAT) solvers have been successfully applied 
to a wide range of problems, ranging from automated planning to hardware and software 
verification. In all these applications, the original problem is encoded into a Boolean 
formula and the task is that of deciding whether it is satisfiable or not. 

Given the tremendous success of SAT solvers, a lot of attention has been directed toward 
extending this technology to the model counting problem, that is the problem of 
computing the number of distinct satisfying assignments for a given propositional 
formula. This task is also very important because of its wide range of applications. For 
example, several probabilistic inference problems in graphical models such as Bayesian 
inference can be effectively translated into model counting. Another very active line of 
research is devoted to the study of the optimization version of SAT, namely the 
maximum satisfiability problem (MAX-SAT), where the goal is to find a truth assignment 
that satisfies the maximum possible number of constraints. MAX-SAT is important 
because it can be effectively used to solve many fundamental graph theoretic problems 
such as MAX-CUT, MAX-CLIQUE, and Minimum Vertex Cover, and because it has 
direct applications in a wide range of domains such as routing problems and expert-
systems. 

In our work we considered the problem of computing the density of states of a Boolean 
formula, which is a generalization of Satisfiability Testing, MAX-SAT and model 
counting. Consider a combinatorial state space S, such as the set of all possible truth 
assignments to N Boolean variables. Given a partition of S into subsets, we considered 
the problem of estimating the size of all the subsets in the partition. This problem is also 
known as computing the density of states. For instance, given a Boolean formula with m 
constraints, we can partition the set of all possible truth assignments according to the 



number of constraints they violate. In this case, the density of states gives the size of all  
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(a) Log-Density for a Clique problem
brock400 2.clq.cnf from MaxSAT-2009.
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(b) Log-Density for a Spin Glass prob-
lem spinglass5 10.pm3.cnf from MaxSAT-
2009. Notice there are no configurations
with an even number of unsatisfied clauses.
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(c) Log-Density for a Clique problem
MANN a27.clq.cnf from MaxSAT-2009.
No solver presented at MAXSAT09 could
solve this instance (within 30 minutes).
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(d) Log-Density for the Logistic problem
bw large.a.cnf from SATLib.
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(e) Log-Density for the Pigeon Hole prob-
lem instance hole10.cnf from SATLib.
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(f) Log-Density for the Morphed Graph
Colouring problem sw100-1.cnf from
SATLib. .

Fig. 5. DOS for several large formulas from MaxSAT-2009 and SATLib ([16]).



 

the subsets defined by the number of violated constraints, i.e., the number of truth 
assignments that violate exactly k constraints, for 0 ≤ k ≤ m. Therefore, the problem of 
computing the density of states is a generalization of SAT, MAX-SAT and model 
counting 

The additional information provided by the full density of states distribution is especially 
useful in the context of probabilistic models defined through combinatorial constraints 
such as Markov Logic Theories. In fact, the description of the state space can be used to 
efficiently compute not only the normalization constant of the underlying probabilistic 
model (also known as the partition function), but also its parameterized version. This 
level of abstraction is a fundamental advantage for learning methods because it allows us 
to reason about the system more abstractly. For example, in the case of a Markov Logic 
Theory, we can parameterize the partition function Z(w1, . . . , wK) according to the 
weights w1, . . . , wK of its K first order formulas that define the theory. Upon defining an 
appropriate energy function and obtaining the corresponding density of states, we can use 
the information about the partition function to directly compute the model parameters that 
best fit the training data. 

 

To compute the density of states, we introduced MCMCFlatSat, a novel Markov Chain 
Monte Carlo (MCMC) sampling strategy, inspired by the Wang-Landau method ([6]), 
which is a flat histogram method from statistical physics. Given a combinatorial space 
and an energy function, a flat histogram method is a sampling strategy based on a Markov 
Chain that adaptively changes its transition probabilities until it converges to a steady 
state where it spends approximately the same amount of time in states with a low density 
of configurations (which are usually low energy states) as in states with a high density. 
This condition leads to a flat histogram of the energy levels visited that gives name to the 
method. 

Technically, MCMCFlatSat is an Adaptive Markov Chain Monte Carlo method. In an 
Adaptive MCMC scheme, the transition probabilities are adjusted over time in order to 
achieve some optimality condition, learning the parameters while the chain runs. Even 
though it is usually harder to rigorously prove convergence properties, adaptive MCMC 
algorithms can significantly improve the performance over standard MCMC methods. 

 

We conducted an extensive empirical analysis of MCMCFlatSat, demonstrating that our 
method converges quickly and accurately on a broad range of structured and synthetic 
instances. For instance, in the case of a logistic planning problem taken from SATLib, we 
are able to obtain this very fine grained information about a huge search space of 2459 
assignments in a matter of minutes. Moreover, we showed that our method is remarkably 
precise, because it finds that there exists only one model (solution), but at the same time 
it is able to estimate the mode of the distribution, which is roughly e300 times larger, thus 



counting both the needles and the haystack at the same time. See Figure 5. 

Even if computing the entire density of states is a more general and more difficult 
problem than standard model counting, comparing MCMCFlatSat with model counters 
still provides some useful insights. In particular, we can show that when the number of 
constraints is not too big, that is, the overhead derived from computing the entire density 
of states is not overwhelming, MCMCFlatSat competes against state of the art model 
counters in terms of running times, and often provides more accurate estimates. 

Because of the generality and the effectiveness of the flat histogram idea, we expect that 
this approach will find many other applications both in counting, probabilistic inference 
and learning problems. 

 

3.2 Solution	
  Clusters	
  in	
  Combinatorial	
  Problems:	
  Exact	
  and	
  Approximate	
  
Inference	
  Methods	
  

(See [14 and 3 ] for a detailed description of this work and background literature.)	
  

Message passing algorithms, in particular Belief Propagation (BP), have been very 
successful in efficiently computing interesting properties of succinctly represented large 
spaces, such as joint probability distributions. Recently, these techniques have also been 
applied to compute properties of discrete spaces, in particular, properties of the space of 
solutions of combinatorial problems. For example, for propositional satsfiability (SAT) 
and graph coloring (COL) problems, marginal probability information about the uniform 
distribution over solutions (or similar combinatorial objects) has been the key ingredient 
in the success of BP-like algorithms. Most notably, the survey propagation (SP) 
algorithm utilizes this information to solve very large hard random instances of these 
problems. 

Earlier work on random ensembles of Constraint Satisfaction Problems (CSPs) has 
shown that the computationally hardest instances occur near phase boundaries, where 
instances go from having many globally satisfying solutions to having no solution at all 
(a 'solution-focused' picture). In recent years, this picture has been redefined and it was 
found that a key factor in determining the hardness of instances in terms of search 
algorithm (or sampling algorithm) is the question: how are the solutions spatially 
distributed within the search space? This has made the structure of the solution space in 
terms of its clustering properties a key factor in determining the performance of 
combinatorial search methods (a 'cluster-focused' picture). 

Can BP-like algorithms be used to provide such cluster-focused information? For 
example, how many clusters are there in a solution space? How big are the clusters? How 
are they organized? Answers to such questions will shed further light into our 
understanding of these hard combinatorial problems and lead to better algorithmic 
approaches for reasoning about them, be it for finding one solution or answering queries 
of probabilistic inference about the set of solutions. The study of the solution space 



geometry has indeed been the focus of a number of recent papers, especially by the 
statistical physics community, which has developed extensive theoretical tools to analyze 
such spaces under certain structural assumptions and large size limits. 

We developed a purely combinatorial method for counting the number of clusters, which 
is applicable even to small size problems and can be approximated very well by message 
passing techniques (part of the work presented at the NIPS-08 conference; extended work 
in preparation for submission to PNAS). We proposed one of the first scalable methods 
for estimating the number of clusters of solutions of satisfiabilty (SAT) and graph 
coloring (COL) problems using a BP-like algorithm.  While the naïve method, based on 
enumeration of solutions and pairwise distances, scales to graph coloring problems with 
50 or so nodes and a recently proposed local search based method provides estimates up 
to a few hundred node graphs, our approach based on BP easily provided fast estimates 
for graphs with 100,000 nodes. 

We validated the accuracy of the approach by also providing a fairly non-trivial exact 
counting method for clusters, utilizing advanced knowledge compilation techniques 
(BDDs and the DNNF representation). Our approach works with the factor graph 
representation of the underlying problem. We derived a 'partition function' style quantity, 
denoted Z(-1), to count the number of clusters; this quantity is formally proved to be 
exactly the number of clusters on 2-SAT and on 3-COL instances satisfying a certain 
simple graph property, and empirically found to be very close to exact on a number of 
structure and random instances.  We then used the variational method to obtain BP 
equations for estimating Z(-1), the accuracy of which is validated independently. Overall, 
this approach provides a clear, principled method of reasoning about solution clusters of 
arbitrary discrete combinatorial problems. Unlike statistical physics based approaches 
such as survey propagation (SP), this approach starts with the first principles, precisely 
defining what 'clusters' are in the first place.  The resulting BP(-1) equations for Z(-1) 
may be seen as an alternative and intuitive derivation of the much-studied SP algorithm 
for k-SAT, and for k-COL it provides a finer-grained methodology for reasoning about 
clusters than SP equations for that problem. 
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4. Uncovering hidden structure in combinatorial problems 

[See [14 and 15 ] for a detailed description of this work and background literature.]	
  

Capturing and exploiting problem structure is key to solving large real-world 
combinatorial problems. A very fruitful and prolific line of research that has been 
pursued in the study of combinatorial problems is the identification of various structural 
properties of instances that lead to efficient algorithms. Ideally, one prefers structural 
properties that are “easily” identifiable, such as topological properties of the underlying 
constraint graph. As an example, the degree of acyclicity of a constraint graph, measured 
using various graph width parameters, plays an important role with respect to the 
identification of tractable instances. Other useful structural properties consider the nature 
of the constraints, such as their so-called functionality, monotonicity, and row convexity.  

Another approach for studying the nature of combinatorial problems of interest focuses 
on the role of hidden structure. One example of such hidden structure is a backdoor set—
a set of variables B such that once they are instantiated, the remaining problem simplifies 
to a tractable class (but not necessarily syntactically defined). The notion of 
simplification or tractability in the definition of backdoor sets is captured by a 
polynomial time algorithm or sub-solver that, given a formula, either correctly decides its 
satisfiability or rejects it. This easily captures the behavior of the propagation procedures 
of the standard DPLL algorithm for backtrack search such as unit propagation and pure 
literal elimination. Note that the problem may become simple due to different reasons for 
different value assignments to the backdoor variables. Moreover, the actual semantics of 
the constraints may play a critical role in making the problem simple w.r.t. the sub-solver 
under consideration. These two aspects embedded in the notion of tractability through 
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backdoors make this kind of structure “hidden”, in contrast to other structural notions 
such as bounded tree-width of the underlying constraint graph. 

The understanding of backdoor sets has important practical implications. A combinatorial 
problem with n variables and a backdoor set B can be solved by considering only 2|B| 
variable assignments instead of all 2n variable assignments (in the worst case), thereby 
yielding considerable computational savings when the backdoor set is a small subset of 
the set of all n variables. Therefore, the notion of a small backdoor set succinctly 
capturing the combinatorics of a problem provides a tool for analyzing and understanding 
the efficiency and performance of state-of-the-art solution techniques for large-scale real- 
world combinatorial problems. In addition, the demonstration of the existence of very 
small backdoor sets in real-world combinatorial problems has contributed to the design of 
novel search techniques by motivating the use of randomization, restarts, and algorithm 
portfolios in existing solution approaches. 
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From a practical point of view, the usefulness of backdoor sets depends on two factors: 1) 
whether problems of interest indeed have small backdoor sets, and 2) whether such small 
backdoor sets can be identified efficiently. In our research we compared different 
backdoor variants highlighting an important tradeoff between the size of the smallest 
backdoor and the computational complexity of deciding the existence of a backdoor set 
of a given size. We provided both theoretical and empirical characterizations of such 
tradeoffs. 

We examined the notion of backdoor sets in the context of Boolean satisfiability (SAT). 
Most complete search procedures for SAT are based on the Davis–Putnam–Logemann–
Loveland (DPLL) algorithm, a backtrack search procedure where one systematically 
chooses the next variable to assign and then applies polynomial-time propagation 
procedures (or sub-solvers) such as unit propagation and pure literal elimination to infer 
as many additional assignments as possible. The original work on backdoors for SAT was 
done with these kinds of polynomial-time algorithms in mind. Since then, follow-up work 
has focused on backdoor sets for which the resulting simplified sub-problems belong to a 
well-understood syntactically defined tractable class of conjunctive normal form (CNF) 
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Figure 9.4. Constraint graph of a real-world instance from the logistics planning domain. The

instance in the plot has 843 vars and 7,301 clauses. One backdoor set for this instance w.r.t.

unit propagation has size 16 (not necessarily the minimum backdoor set). Left: Constraint

graph of the original instance. Center: Constraint graph after setting 5 variables and perform-

ing unit propagation. Right: Constraint graph after setting 14 variables and performing unit

propagation.

ingly effective in finding small backdoors in many structured problem instances.
Figure 9.4 shows a visualization of the constraint graph of a logistics planning
problem and how this graph is drastically simplified after only a few variables
occurring in a small backdoor (found by SAT solvers) are set. In related work,
Slaney and Walsh [2001] studied the structural notion of “backbones” and De-
quen and Dubois introduced a heuristic for DPLL based solvers that exploits the
notion of backbone and outperforms other heuristics on random 3-SAT problems
[Dequen and Dubois, 2003, Dubois and Dequen, 2003].

9.2. Exploiting Runtime Variation: Randomization and Restarts

As it turns out, one of the most effective ways to address and exploit heavy-
tailed behavior is to add “restarts” to a backtracking procedure. We describe
this technique next, followed by a brief discussion of various ways to randomize
a backtrack search algorithm.

9.2.1. Restarts: Randomized and Deterministic Strategies

A restart, as the name suggests, is the process of stopping the current computation
of a SAT solver and restarting it from the beginning with a different random seed.4

For solvers employ caching techniques such as clause learning, the information
learned in one run is kept and used even after a restart, thus not letting the
computational effort spent so far go completely waste.

In the presence of heavy tailed behavior, a sequence of short runs instead
of a single long run may be a more effective use of computational resources.

4As we will see later in Section 9.2.2, restarting can be effective even for a deterministic
algorithm when other features such as learned clauses naturally guide the deterministic search
process in a different direction after the restart.



formulas, such as Horn, 2CNF, or renamable Horn (RHorn). Nishimura, Ragde, and 
Szeider introduced the notion of so-called “deletion” backdoors with respect to the 
syntactic tractable classes Horn and 2CNF, where deleting all occurrences of the 
backdoor variables from the formula results in a subformula that is 2CNF or Horn, 
respectively. This differs from the original notion of a strong backdoor set, where one 
needs to consider all possible value assignments to the backdoor variables. Nishimura, 
Ragde, and Szeider showed that deletion backdoor sets w.r.t. Horn and 2CNF can be 
found efficiently and that deletion backdoors and strong backdoors w.r.t. Horn and 2CNF 
are in fact equivalent. These positive formal results have motivated work on backdoors 
w.r.t. the tractable class of RHorn formulas, which is a strict superset of the class of all 
Horn formulas. First, several heuristic approaches for finding small deletion RHorn-
backdoors were proposed. Later, Razgon and O’Sullivan showed formally that the 
existence of a deletion RHorn-backdoor of a fixed size can be decided in polynomial 
time. 

Theoretically, we showed that the usefulness of deletion RHorn-backdoors is limited— 
they can be exponentially larger than the smallest strong RHorn-backdoors. Although 
backdoors w.r.t. the syntactic tractable classes 2CNF, Horn, and RHorn have been the 
subject of numerous theoretical papers showing some positive complexity results, 
empirical evidence that real-world problems in fact have small backdoors w.r.t. these 
classes is lacking. We provided integer programming encodings for finding the smallest 
deletion Horn- and RHorn-backdoors and empirically evaluate the size of the small- est 
deletion backdoors for these classes. Our results on a set of benchmarks show that the 
smallest deletion backdoors with respect to these well-understood tractable classes are 
consistently considerably larger than strong backdoors with respect to DPLL sub- solvers 
such as unit propagation and “probing” (also known as the failed-literal rule). For 
example, on a set of graph-coloring instances, probing results in backdoors of size less 
than 0.33% of the total number of variables, while the smallest deletion Horn- backdoors 
contain 66.67% of the variables. Our formal and empirical findings highlight the tradeoff 
between the favorable complexity of finding deletion 2CNF-, Horn-, and RHorn-
backdoors and the large size of the smallest such backdoors in practice. 

One key property of polynomial-time algorithmic sub-solvers employed by state-of- the-
art SAT solvers is the detection of trivially inconsistent formulas, that is, formulas that 
contain an empty clause. This property is not considered for tractable classes such as 
2CNF, Horn and RHorn. To address this issue, we defined the larger tractable class 
2CNF{} as the class of formulas that includes all 2CNF formulas as well as all formulas 
that contain an empty clause, and we defined the tractable classes Horn{} and RHorn{} 
similarly. Accounting for the presence of an empty clause may seem like an incon- 
sequential feature for a tractable class or a polynomial-time sub-solver underlying a 
backdoor set. However, we showed that including empty-clause detection can 
dramatically reduce the size of the resulting backdoor sets, albeit at the cost of increasing 
the worst-case complexity of backdoor detection beyond the “within NP” results known 
for the pure classes 2CNF, Horn, and RHorn. More precisely, we proved that deciding 
whether a given formula has a strong 2CNF{}-, Horn{}-, or RHorn{}-backdoor of fixed 
size k is both NP- and coNP-hard, and therefore strictly harder than NP, assuming NP ̸= 
coNP. However in terms of backdoor size, we showed that there exist families of 



formulas for which considering the tractable classes 2CNF{}, Horn{}, and RHorn{} 
leads to arbitrarily smaller backdoors than backdoors w.r.t. the pure 2CNF, Horn, and 
RHorn classes, respectively. In addition, empirically we found that in certain graph-
coloring instances with planted cliques of size 4, while the smallest strong Horn-
backdoor sets involve two-thirds of the variables, the fraction of variables in the smallest 
strong back- doors with respect to mere empty-clause detection converges to 0 as the size 
of the graph grows. These results again highlight the tradeoff, as a function of the 
underlying tractable class, between the size of the smallest backdoor set and the 
computational complexity of deciding the existence of a backdoor set of a given size. Our 
work characterizing the different variants of backdoor sets, both in size computational 
complexity, provides interesting insights into the development of new solution methods, 
which exploit structure in real-world instances. 

The original definition of a strong backdoor set B captures the fact that a systematic tree 
search procedure (such as the DPLL procedure for SAT) restricted to branching only on 
variables in B will successfully solve the problem. Furthermore, the tree-search 
procedure restricted to branching on the variables in B will succeed independently of the 
order in which it explores various parts of the search tree. However, most of the state-of- 
the-art DPLL-based SAT solvers, in addition to using sophisticated branching heuristics 
and data structures, rely heavily on clause learning, that is, adding new constraints or 
“nogoods” every time a conflict is encountered during the tree search. Clause learning is 
extremely useful in practice in addition to enabling provably exponentially shorter proofs 
of unsatisfiability. 

Adding new information as the search progresses has, however, not been considered in 
the traditional concept of backdoors. To address this limitation, we formally extended the 
concept of backdoors to the context of learning, where the branching order over the 
backdoor variables is taken into account and information learned from previous search 
branches is used by the sub-solver underlying the backdoor. The extended notion often 
leads to much smaller backdoors than the “traditional” ones. In particular, we proved that 
the smallest backdoors for SAT that take clause learning into account can be 
exponentially smaller than traditional backdoors that are oblivious to this solver feature. 
We presented empirical results showing that the added power of “learning-sensitive 
backdoors” is observable in practice by comparing backdoor sizes with and without 
clause learning for a set of real-world problems. 

Historically, there have been many similarities between research on combinatorial 
decision problems—in particular, Boolean satisfiability (SAT) – and research on 
combinatorial optimization problems – in particular, mixed-integer linear programming 
(MILP). These similarities suggest that concepts that have been used successfully in one 
realm can perhaps be extended to the other realm and lead to new insights. We 
investigated this from the angle of applying ideas from SAT to MILP. We extended the 
concept of backdoor sets to optimization problems, which raises interesting new issues 
not addressed by earlier work on backdoor sets for satisfiability. We introduced “weak 
optimality backdoors” for finding optimal solutions and “optimality-proof backdoors” for 
proving optimality. Similarly to clause learning in satisfiability search methods, effective 
optimization algorithms often involve adding new information such as cuts and tightened 



bounds as the search progresses. Therefore, we also introduced “learning-sensitive” 
backdoors for optimization. 

We provided the first experimental results showing that small backdoor sets exist for 
benchmark instances of mixed-integer linear programming optimization problems, and 
found that such instances often have backdoors involving fewer than 5% of the discrete 
variables. In addition, we demonstrated that studying backdoor distributions – capturing 
the probability that a random subset of the set of all the variables is a backdoor set as a 
function of the size of the subset – gives insight into search behavior. One prefers a 
backdoor distribution where subsets of small size have high probability of serving as 
backdoor sets. We provided empirical evidence that, for a given problem, the quality of 
the distribution of weak optimality backdoors relative to that of optimality-proof 
backdoors aligns roughly with the quality of the runtime distribution when finding an 
optimal solution, relative to the quality of the runtime distribution when proving 
optimality. Finally, we also designed a simple heuristic for selecting backdoor variables 
based on information provided by linear programming relaxations and showed that it can 
be used effectively when searching for small backdoors. 

5. Combinatorial Optimization for Over-Constrained Problems 

(See [12 and 13] for a detailed description of this work and background literature.)	
  

We have proposed a new hybrid strategy for optimizing over-constrained discrete 
combinatorial problems, where simultaneously satisfying all constraints is impossible and 
the goal is to find a value assignment to variables that satisfies as many constraints as 
possible.  In the context of SAT, this is referred to as the Maximum Satisfiability or the 
MaxSAT problem.  The proposed method combines the complementary strength of local 
search and systematic search, bringing the best of both worlds in a way that is ideal for 
multi-core architectures. 

Combining local and systematic search methods in a fruitful way has been a challenge, 
with limited success so far. The main bottleneck has been the nature and cost of 
information exchange between the solvers. Key design decisions include: what kind of 
information to communicate (lightweight or heavyweight), how to communicate it 
(message passing and synchronization or shared memory), how to use the communicated 
information (strict guidance or soft guidance), etc.  Hybrid solvers are often designed so 
that one solver waits for the other to finish during various stages of the search, thereby 
reducing the overall efficiency. 

Our proposed technique, based on shared memory architecture, enables continuous 
information exchange between two constraint solvers without slowing down either of the 
two. The main search effort here is driven by a local search algorithm, which is loosely 
coupled with and guided by a systematic search algorithm. Such a hybrid search strategy 
is surprisingly effective, leading to substantially better quality solutions to many 
challenging MaxSAT instances than what the current best exact or heuristic methods 
yield, and it often achieves this within seconds. This hybrid approach is naturally best 
suited to MaxSAT instances for which proving unsatisfiability is already hard; otherwise 



the systematic solver finishes a little too early and the method falls back to pure local 
search. Experiments on a large suite of hard, infeasible, industrial 'real-world' instances 
from the SAT Race 2008 competition have revealed a unique search behavior of the 
hybrid approach, and surprisingly good results by the solver, called MiniWalk, on nearly 
all of the instances considered. Unlike usual local search methods, which slowly but often 
uniformly move closer towards a solution with some noise, the hybrid method appears to 
stay fairly far from solutions most of the time during the search but every once in a while 
makes very steep descents towards a solution, presumably guided by the new search 
space areas that the coupled systematic search has moved to.  Such a search behavior has 
not been observed before for local search methods. 

We have also explored a complementary direction (presented at the SAT-09 conference), 
where the main search effort for an optimal solution is guided by a 'relaxed' systematic 
solution finder, and the final candidate solution is further improved in quality using local 
search.  Systematic search solvers typically work using a branch-and-backtrack scheme – 
fixing values of variables one at a time, testing whether a contradiction is detected by 
constraint propagation, and if so, backtracking to flip the value of the nearest conflicting 
variable. 

Constraint propagation and conflict analysis schemes, such as unit propagation and first 
unique implication point, are key to the success and scalability of Boolean satisfiability 
solvers. However, these techniques are not logically sound for MaxSAT style 
optimization problems. The team has proposed a relaxation of the systematic search 
paradigm as a heuristic method to find very good quality (though not necessarily optimal) 
solutions, which are then improved further using local search. This relaxation brings the 
power of constraint propagation and conflict analysis to MaxSAT solvers, as a heuristic 
strategy, while extending the solver to tolerate a small pre-specified number of conflicts. 
The resulting solver, called RelaxedMinisat, is the only (MaxSAT) solver capable of 
identifying a single bottleneck constraint in all but one instance in a test suite consisting 
of all unsatisfiable SAT Race 2008 industrial instances. 

6. Multiagent gaussian inference for dynamic processes 

(See [2 and 4] for a detailed description of this work and background literature.)	
  

Distributed inference tasks are becoming more and more important as myriads of tiny 
inexpensive sensing devices are being deployed, such as in phones and building 
materials. Problems of this type occur in a variety of different applications, ranging from 
multi-robot systems to wireless sensor networks, and include tracking, environmental and 
habitat monitoring, smart buildings control and surveillance activities. Despite the 
application specific differences, many of these inference problems can be modeled as a 
network of sensing devices that can perform local computations and communicate with 
other nodes, collaborating to produce global information from individual local data. 

In many of the settings mentioned, a centralized solution, in which a single computational 
node receives and processes all the information available, is either not feasible due to 
communication and energy restrictions or not desirable because it introduces a single 



point of failure and additional delays. Therefore there is a need for distributed solutions 
where inference is performed locally at each node on the basis of information that is 
retrieved both locally and by communication with neighboring nodes. 

The focus of our work concerning this topic has been on the general problem of Bayesian 
estimation, where a probability model is assumed to be known and one is interested in 
computing the posterior distribution of a collection of hidden variables (“the state”), 
given the evidence collected by a network of sensing devices. In particular, we focused 
on dynamic scenarios where the state of the world is changing over time. 

An example of such a problem is tracking, where the position (or its probability 
distribution) of an object moving in a sensor field needs to be estimated on the basis of 
the noisy measurements collected by a network of sensing devices. 

The main contribution of our work is a new framework to study distributed estimation 
problems in dynamic settings based on graphical models. Our approach generalizes the 
derivation of the Kalman filter in terms of Belief Propagation to a distributed setting. 
Using our framework, we obtained novel distributed estimation algorithms based on 
message passing techniques where each node is able to locally elaborate and fuse the 
information it receives before transmitting it again, thus distributing the computational 
burden and also reducing the use of communication resources. 

We evaluated our solution on a tracking application where the goal is to estimate the 
position of a moving target. We showed in simulation that our method outperforms the 
other state of the art techniques in terms of estimation error on a general class of 
problems, even in presence of data loss. Moreover, we showed that our solution is close 
to the theoretical optimum that is achievable in the presence of communication latencies. 

 

7. Summary 

This research effort focused on three core research challenges: (1) How to explain the gap 
between formal analysis and practical performance for combinatorial search; (2) How to 
characterize and capture hidden tractable structure in real-world problems; and, (3) How 
to further boost combinatorial search methods for real-world problems. Predicting the 
runtime of combinatorial search methods is a notoriously hard problem due to 
tremendous variations in runtime observed when solving practical problem instances. We 
developed a series of advanced formal models for predicting the runtime of combinatorial 
search methods. We introduced different models of runtime distributions of search 
methods capturing exponential and power law (heavy-tailed) regimes for both complete 
and incomplete randomized search methods, together with a generative model that 
generates search trees with any pre-defined degree of heavy-tailedness. In order to better 
understand and model solution spaces of combinatorial problems, we also developed new 
methods for the efficient computation of the number solution clusters and their marginal 
distributions. These methods can effectively handle practical problem instances with tens 
of thousands of variables, containing solution clusters with sizes ranging over many 



orders of magnitude. Reasoning based on such clusters has been the key component of 
highly successful combinatorial search methods proposed recently. We extended the 
notion of “backdoor sets,” --- a measure that characterizes hidden problem structure --- to 
encompass combinatorial optimization problems as well as learning during search, 
thereby providing novel insights into the connection between hidden structure of 
optimization problems and the surprising efficiency of today’s optimization engines.  We 
also analyzed probabilistic reasoning techniques based on message passing, namely belief 
propagation and survey propagation, in the context of combinatorial problems in the 
Boolean satisfiability domain, resulting in the first detailed study of the evolution of these 
search methods over time as well as the utilization of these techniques to provide 
statistical estimates on key properties of the solution space. In addition we studied the 
problem of computing the density of states of a Boolean formula, which is a 
generalization of Satisfiability Testing, MAX-SAT, and model counting, and developed a 
novel Markov Chain Monte Carlo sampling strategy, inspired by a flat histogram method 
from statistical physics. The new sampling method provides novel insights into 
combinatorial search spaces that lie far beyond the reach of previous techniques. We also 
formulated multi-agent inference problems in dynamic environments into the framework 
of message passing algorithms and graphical models, generalizing to the distributed case 
of the Kalman filter. We proposed a new hybrid strategy for optimizing the MaxSAT 
problem, combining the complementary strength of local search and systematic search, 
bringing the best of both worlds in a way that is ideal for current multi-core architectures. 
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