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Abstract

We present an efficient computational approach to perform real-space electronic struc-
ture calculations using an adaptive higher-order finite-element discretization of Kohn-
Sham density-functional theory (DFT). To this end, we develop an a priori mesh adaption
technique to construct a close to optimal finite-element discretization of the problem. We
further propose an efficient solution strategy for solving the discrete eigenvalue problem
by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature, and a
Chebyshev acceleration technique for computing the occupied eigenspace. Using the pro-
posed solution procedure, we investigate the computational efficiency afforded by higher-
order finite-element discretizations of the Kohn-Sham DFT problem. Our studies suggest
that staggering computational savings—of the order of 1000−fold—can be realized, for
both all-electron and pseudopotential calculations, by using higher-order finite-element
discretizations. On all the benchmark systems studied, we observe diminishing returns in
computational savings beyond the sixth-order for accuracies commensurate with chemi-
cal accuracy, suggesting that the hexic spectral-element may be an optimal choice for the
finite-element discretization of the Kohn-Sham DFT problem. A comparative study of
the computational efficiency of the proposed higher-order finite-element discretizations
suggests that the performance of finite-element basis is competing with the plane-wave
discretization for non-periodic pseudopotential calculations, and is comparable to the
Gaussian basis for all-electron calculations. Further, we demonstrate the capability of
the proposed approach to compute the electronic structure of materials systems contain-
ing a few thousand atoms using modest computational resources, and good scalability of
the present implementation up to a few hundred processors.
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1 Introduction

Electronic structure calculations have played a significant role in the investigation of ma-
terials properties over the past few decades. In particular, the Kohn-Sham approach to
density functional theory (DFT) [1] has made quantum-mechanically informed calcula-
tions on ground-state materials properties computationally tractable, and has provided
many important insights into a wide range of materials properties. The Kohn-Sham
approach is based on the key result of Hohenberg & Kohn [2] that the ground-state prop-
erties of a materials system can be described by a functional of electron density. Though,
the existence of an energy functional has been established by the Hohenberg-Kohn result,
its functional form is not known to date. The work of Kohn & Sham [1] addressed this
challenge in an approximate sense, and has laid the foundations for the practical appli-
cation of DFT to materials systems. The Kohn-Sham approach reduces the many-body
problem of interacting electrons into an equivalent problem of non-interacting electrons
in an effective mean field that is governed by the electron density. This effective single-
electron description is exact in principle for ground-state properties, but is formulated in
terms of an unknown exchange-correlation term that includes the quantum-mechanical
interactions between electrons. This exchange-correlation term is approximated using
various models—commonly modeled as an explicit functional of electron density—and
these models have been shown to predict a wide range of materials properties across
various materials systems. We note that the development of increasingly accurate and
computationally tractable exchange-correlation functionals is an active research area in
electronic structure calculations. Though the Kohn-Sham approach greatly reduces the
computational complexity of the original many-body Schrödinger problem, simulations
of large-scale material systems with DFT are still computationally very demanding. Nu-
merical algorithms which are robust, computationally efficient and scalable on parallel
computing platforms are always desirable to enable DFT calculations at larger length
and time scales, and on more complex systems, than possible heretofore.

The plane-wave basis has traditionally been one of the popular basis sets used for
solving the Kohn-Sham problem [3, 4, 5]. The plane-wave basis allows for an efficient
computation of the electrostatic interactions that are extended in real-space through
Fourier transforms. However, the plane-wave basis also has some notable disadvantages.
In particular, calculations are restricted to periodic geometries that are incompatible
with most realistic systems containing defects (for e.g. dislocations). Further, the plane-
wave basis provides a uniform spatial resolution which can be inefficient in the treat-
ment of non-periodic systems like molecules, nano-clusters etc., or materials systems
with defects, where higher basis resolution is often required in some spatial regions and
a coarser resolution suffices elsewhere. Moreover, the plane-wave basis is non-local in
real space, which significantly affects the scalability of computations on parallel com-
puting platforms. Thus, the development of real-space techniques for electronic struc-
ture calculations has received significant attention over the past decade, and we refer
to [6, 7, 8, 9, 10, 11, 12, 13] and references therein for a comprehensive overview. Among
the real-space techniques, the finite-element basis presents some key advantages—it is
amenable to unstructured coarse-graining, allows for consideration of complex geome-
tries and boundary conditions, and is scalable on parallel computing platforms. We refer
to [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28], and references therein, for a
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comprehensive overview of the past efforts in developing real-space electronic structure
calculations based on a finite-element discretization.

While the finite-element basis is more versatile than the plane-wave basis [14, 18], it is
not without its shortcomings. Prior investigations have shown that linear finite-elements
require a large number of basis functions—of the order of 100, 000 basis functions per
atom—to achieve chemical accuracy in electronic structure calculations (cf. e.g. [22, 29]),
and this compares very poorly with plane-wave basis or other real-space basis functions.
It has been demonstrated that higher-order finite-element discretizations can alleviate
this degree of freedom disadvantage of linear finite-elements in electronic structure cal-
culations [23, 29, 30]. However, the use of higher-order elements increases the per basis-
function computational cost due to the need for higher-order accurate numerical quadra-
ture rules. Furthermore, the bandwidth of the matrix increases cubically with the order
of the finite-element, which in turn increases the computational cost of matrix-vector
products. In addition, since a finite-element basis is non-orthogonal, the discretization of
the Kohn-Sham DFT problem results in a generalized eigenvalue problem, which is more
expensive to solve in comparison to a standard eigenvalue problem resulting from using
an orthogonal basis (for e.g. plane-wave basis). Thus, the computational efficiency af-
forded by using a finite-element basis in electronic structure calculations, and its relative
performance compared to plane-wave basis and other real-space basis functions (for e.g
Gaussian basis), has remained an open question to date.

A recent investigation in the context of orbital-free DFT has indicated that the use of
higher-order finite-elements can significantly improve the computational efficiency of the
calculations [31]. For instance, a 100 − 1000 fold computational advantage has been re-
ported by using a fourth-order finite-element in comparison to a linear finite-element. In
the present work, we extend this investigation to study the Kohn-Sham DFT problem and
attempt to establish the computational efficiency afforded by higher-order finite-element
discretizations in electronic structure calculations. To this end, we develop: (i) an a
priori mesh adaption technique to construct a close to optimal finite-element discretiza-
tion of the problem; (ii) an efficient solution strategy for solving the discrete eigenvalue
problem by using spectral finite-elements in conjunction with Gauss-Lobatto quadrature,
and a Chebyshev acceleration technique for computing the occupied eigenspace. We sub-
sequently study the numerical aspects of the finite-element discretization of the formu-
lation, investigate the computational efficiency afforded by higher-order finite-elements,
and compare the performance of the finite-element basis with plane-wave and Gaussian
basis on benchmark problems.

The a priori mesh adaption technique proposed in this work is based on the ideas
in [32, 33], and closely follows the recent development of the mesh adaption technique
for orbital-free DFT [31]. We refer to [26, 27] for recently proposed a posteriori mesh
adaption techniques in electronic structure calculations. The mesh adaption technique
proposed in the present work is based on minimizing the discretization error in the ground-
state energy, subject to a fixed number of elements in the finite-element mesh. To this
end, we first develop an estimate for the finite-element discretization error in the Kohn-
Sham ground-state energy as a function of the characteristic mesh-size distribution, h(r),
and the exact ground-state electronic fields comprising of wavefunctions and electrostatic
potential. We subsequently determine the optimal mesh distribution by determining the
h(r) that minimizes the discretization error. The resulting expressions for the optimal
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mesh distribution are in terms of the degree of the interpolating polynomial and the
exact solution fields of the Kohn-Sham DFT problem. Since the exact solution fields are
a priori unknown, we use the asymptotic behavior of the atomic wavefunctions [34] away
from the nuclei to determine the coarse-graining rates for the finite-element meshes used
in our numerical study. Though the resulting finite-element meshes are not necessarily
optimal near the vicinity of the nuclei, the mesh coarsening rate away from the nuclei
provides an efficient way of resolving the vacuum in non-periodic calculations.

We next implement an efficient solution strategy for solving the finite-element dis-
cretized eigenvalue problem, which is crucial before assessing the computational efficiency
of the basis. We note that the non-orthogonality of the finite-element basis results in a
discrete generalized eigenvalue problem, which is computationally more expensive than
the standard eigenvalue problem that results from using an orthogonal basis like plane-
waves. We address this issue by employing a spectral finite-element discretization and
Gauss-Lobatto quadrature rules to evaluate the integrals which results in a diagonal
overlap matrix, and allows for a trivial transformation to a standard eigenvalue problem.
Further, we use the Chebyshev acceleration technique for standard eigenvalue problems to
efficiently compute the occupied eigenspace (cf. e.g. [35] in the context of electronic struc-
ture calculations). Our investigations suggest that the use of spectral finite-elements and
Gauss-Lobatto rules in conjunction with Chebyshev acceleration techniques to compute
the eigenspace gives a 10 − 20 fold computational advantage, even for modest materials
system sizes, in comparison to traditional methods of solving the standard eigenvalue
problem where the eigenvectors are computed explicitly. Further, the proposed approach
has been observed to provide a staggering 100 − 200 fold computational advantage over
the solution of a generalized eigenvalue problem that does not take advantage of the
spectral finite-element discretization and Gauss-Lobatto quadrature rules. In our imple-
mentation, we use a self-consistent field (SCF) iteration with Anderson mixing [36], and
employ the finite-temperature Fermi-Dirac smearing [3] to suppress the charge sloshing
associated with degenerate or close to degenerate eigenstates around the Fermi energy.

We next study various numerical aspects of the finite-element discretization of the
Kohn-Sham DFT problem. We begin our investigation by examining the numerical rates
of convergence of higher-order finite-element discretizations of Kohn-Sham DFT. We
remark here that optimal rates of convergence have been demonstrated for quadratic
hexahedral and cubic serendepity elements in pseudopotential Kohn-Sham DFT calcula-
tions [20, 26], and mathematically proved for Kohn-Sham DFT for the case of smooth
pseudopotential external fields [37]. We also note that there have been several works on
the mathematical analysis of optimal rates of convergence for non-linear eigenvalue prob-
lems [38, 39, 40]. However, the mathematical analysis of optimal rates of convergence of
the finite-element discretization of Kohn-Sham DFT problem involving Coulomb-singular
potentials is an open question to date, to the best of our knowledge. In the present
study, we compute the rates of convergence of the finite-element discretization of Kohn-
Sham DFT for a range of finite-elements including linear tetrahedral element, hexahedral
spectral-elements of order two, four and six. Two sets of benchmark problems are con-
sidered in this study: (i) all-electron calculations on boron atom and methane molecule;
(ii) pseudopotential calculations on a non-periodic barium cluster consisting of 2× 2× 2
body-centered cubic (BCC) unit cells and a periodic face-centered cubic (FCC) calcium
crystal. In these benchmark studies, as well as those to follow, the proposed a priori
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mesh adaption scheme is used to construct the meshes. These studies show rates of con-
vergence in energy of O(h2k) for a finite-element whose degree of interpolation is k, which
denote optimal rates of convergence as demonstrated in [20, 37]. An interesting aspect of
this study is that optimal rates of convergence have been observed even for all-electron
calculations involving Coulomb-singular potentials, which, to the best of our knowledge,
have not been analyzed or reported heretofore.

We finally turn towards assessing the computational efficiency afforded by higher-
order finite-element discretizations in Kohn-Sham DFT calculations. To this end, we use
the same benchmark problems and measure the CPU-time for the solution of the Kohn-
Sham DFT problem to various relative accuracies for all the finite-elements considered
in the present study. We observe that higher-order elements can provide a significant
computational advantage in the regime of chemical accuracy. The computational savings
observed are about 1000-fold upon using higher-order elements in comparison with a
linear finite-element for both all-electron as well as pseudopotential calculations. We
observe that a point of diminishing returns is reached at the sixth-order for accuracies
commensurate with the chemical accuracy, where the degree of freedom advantage of
higher-order finite-elements is nullified by the increasing per basis-function costs. To
further assess the effectiveness of higher-order finite-elements, we conduct pseudopotential
calculations on large aluminium clusters ranging from 3 × 3 × 3 to 5 × 5 × 5 FCC unit
cells using the hexic spectral finite-element, and compare the computational times with
that of plane-wave basis discretization using ABINIT package [5]. We note that similar
relative accuracies in the ground-state energies are achieved using the hexic finite-element
with a lower computational cost in comparison to the plane-wave basis. Furthermore,
we computed the electronic structure of an aluminum cluster of 7 × 7 × 7 FCC unit
cells, containing 1689 atoms, with the finite-element basis using modest computational
resources, which could not be simulated in ABINIT due to huge memory requirements.

We also investigate the efficiency of higher-order elements in the case of all-electron
calculations on a larger materials system and compare it with the Gaussian basis using
the GAUSSIAN package [41]. In this case, the benchmark system is a graphene sheet
containing 100 atoms. We find that the solution time using the finite-element basis is
larger by a factor of 10 in comparison to Gaussian basis, and we attribute this differ-
ence to the highly optimized Gaussian basis functions for C-C bonds that resulted in
the far fewer basis functions required to achieve chemical accuracy. While this difference
in the performance can be offset by the better scalability of finite-element discretiza-
tion on parallel computing platforms, there is also much room for further development
and optimization in the finite-element discretization of the Kohn-Sham DFT problem.
For instance, especially in the context of all-electron calculations, the partitions-of-unity
finite-element method with atomic-orbital enrichment functions can significantly reduce
the required number of finite-element basis functions as recently demonstrated in [42],
and presents an important direction for further investigations. Finally, we assess the
parallel scalability of our numerical implementation. We demonstrate the strong scaling
up to 192 processors (limited by our access to computing resources) with an efficiency
of 91.4% using a 172 atom aluminium cluster discretized with 3.91 million degrees of
freedom as our benchmark system.

The remainder of the paper is organized as follows. Section 2 describes the vari-
ational formulation of the Kohn-Sham DFT problem followed by a discussion on the
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discrete Kohn-Sham DFT eigenvalue problem. Section 3 develops the error estimates for
the finite-element discretization of Kohn-Sham DFT, and uses these estimates to present
an a priori mesh adaption scheme. Section 4 describes our numerical implementation
of the self-consistent field iteration of the Kohn-Sham eigenvalue problem, and, in par-
ticular, discusses the efficient methodologies developed to solve the Kohn-Sham DFT
problem using the finite-element basis. Section 5 presents a comprehensive numerical
study demonstrating the computational efficiency afforded by higher-order finite-element
discretizations in electronic structure calculations, and also provides a performance com-
parison of finite-element basis with plane-wave and Gaussian basis. We finally conclude
with a short discussion and outlook in Section 6.

2 Formulation

In this section, we describe the Kohn-Sham DFT energy functional and the associated
variational formulation. We subsequently review the equivalent self-consistent formula-
tion of the Kohn-Sham eigenvalue problem, and present the discretization of the formu-
lation using a finite-element basis.

2.1 Kohn-Sham variational problem

We consider a material system consisting of N electrons and M nuclei. The spinless
Kohn-Sham energy functional describing the N electron system is given by [43, 44]

E(Ψ,R) = Ts(Ψ) + Exc(ρ) +EH(ρ) + Eext(ρ,R) + Ezz(R), (1)

where

ρ(r) =

N
∑

i=1

|ψi(x)|2 (2)

represents the electron density. In the above expression, we denote the spatial coordi-
nate by r, whereas x = (r, s) includes both the spatial and spin degrees of freedom.
We denote by Ψ = {ψ1(x), ψ2(x), · · · , ψN (x)} the vector of orthonormal single electron
wavefunctions, where each wavefunction ψi ∈ X × {α, β} can in general be complex-
valued, and comprises of a spatial part belonging to a suitable function space X (elab-
orated subsequently) and a spin state denoted by α(s) or β(s). We further denote by
R = {R1,R2, · · ·RM} the collection of all nuclear positions. The first term in the
Kohn-Sham energy functional in (1), Ts(Ψ), denotes the kinetic energy of non-interacting
electrons and is given by

Ts(Ψ) =

N
∑

i=1

∫

ψ∗
i (x)

(

−1

2
∇2

)

ψi(x) dx , (3)

where ψ∗
i denotes the complex conjugate of ψi. Exc in the energy functional denotes the

exchange-correlation energy which includes the quantum-mechanical many body inter-
actions. In the present work, we model the exchange-correlation energy using the local
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density approximation (LDA) [45, 46] represented as

Exc(ρ) =

∫

εxc(ρ)ρ(r) dr , (4)

where εxc(ρ) = εx(ρ) + εc(ρ), and

εx(ρ) = −3

4

(

3

π

)1/3

ρ1/3(r) , (5)

εc(ρ) =







γ

(1+β1

√
(rs)+β2rs)

rs ≥ 1,

A log rs +B + C rs log rs +D rs rs < 1,
(6)

and rs = (3/4πρ)1/3. Specifically, we use the Ceperley and Alder constants as given
in [46]. We remark that we have restricted the present formulation and study to LDA
exchange-correlation functionals solely for the sake of clarity, and the formulation can
be trivially extended (cf. e.g. [24]) to local spin density approximation (LSDA) and
generalized gradient approximation (GGA) exchange-correlation functionals.

The electrostatic interaction energies in the Kohn-Sham energy functional in (1) are
given by

EH(ρ) =
1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| dr dr′ , (7)

Eext(ρ,R) =

∫

ρ(r)Vext(r,R) dr =
∑

J

∫

ρ(r)VJ(r,RJ) dr , (8)

Ezz =
1

2

∑

I,J 6=I

ZIZJ

|RI −RJ |
, (9)

where EH is the Hartree energy representing the classical electrostatic interaction energy
between electrons, Eext is the interaction energy between electrons and the external
potential induced by the nuclear charges given by Vext =

∑

J VJ(r,RJ) with VJ denoting
the potential (singular Coulomb potential or pseudopotential) contribution from the J th

nucleus, and Ezz denotes the repulsive energy between nuclei with ZI denoting the charge
on the Ith nucleus. We note that in a non-periodic setting, representing a finite atomic
system, all the integrals in equations (3)-(8) are over R

3 and the summations in (8)-(9)
include all the atoms I and J in the system. In the case of an infinite periodic crystal, all
the integrals over r in equations (3)-(8) extend over the unit cell, whereas the integrals
over r′ extend in R

3. Similarly, in (8)-(9) the summation over I is on the atoms in the
unit cell, and summation over J extends over all lattice sites. We note that, in the context
of periodic problems, the above expressions assume a single k-point (Γ−point) sampling.
The computation of the electron density and kinetic energy in (2) and (3) for multiple
k-point sampling involves an additional quadrature over the k-points in the Brillouin zone
(cf. e.g [47]).

The electrostatic interaction terms as expressed in equations (7)-(9) are nonlocal in
real-space, and, for this reason, evaluation of electrostatic energy is the computationally
expensive part of the calculation. Following the approach in [48, 24], the electrostatic
interaction energy can be reformulated as a local variational problem in electrostatic
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potential by observing that 1
|r| is the Green’s function of the Laplace operator. To this end,

we represent the nuclear charge distribution by b(r,R) = −
M
∑

I=1

ZI δ̃RI
(r), where ZI δ̃RI

(r)

represents a bounded smooth charge distribution centered at RI , either corresponding
to a pseudopotential, or, in the case of all-electron calculations, a regularization of the
point charge having a support in a small ball around RI with charge ZI . The nuclear
repulsion energy can subsequently be represented as

Ezz(R) =
1

2

∫ ∫

b(r,R)b(r′,R)

|r− r′| dr dr′ . (10)

We remark that, while this differs from the expression in equation (9) by the self-energy of
the nuclei, the self-energy is an inconsequential constant depending only on the nuclear
charge distribution, and is explicitly evaluated and subtracted from the total energy
in numerical computations (cf. Appendix C in [31]). Subsequently, the electrostatic
interaction energy, up to a constant self-energy, is given by the following variational
problem:

1

2

∫ ∫

ρ(r)ρ(r′)

|r− r′| dr dr′ +

∫

ρ(r)Vext(r) dr+
1

2

∫ ∫

b(r,R)b(r′,R)

|r− r′| dr dr′

= − inf
φ∈Y

{

1

8π

∫

|∇φ(r)|2 dr−
∫

(ρ(r) + b(r,R))φ(r) dr

}

, (11)

where φ(r) denotes the trial function for the total electrostatic potential due to the
electron density and the nuclear charge distribution and Y is a suitable function space
discussed subsequently.

Using the local reformulation of electrostatic interactions, the Kohn-Sham energy
functional (1) can be rewritten as

E(Ψ,R) = sup
φ∈Y

L(φ,Ψ,R) , (12)

where

L(φ,Ψ,R) = Ts(Ψ) +Exc(ρ)−
1

8π

∫

|∇φ(r)|2 dr+
∫

(ρ(r) + b(r,R))φ(r) dr . (13)

Subsequently, the problem of determining the ground-state energy and electron density
for given positions of nuclei can be expressed as the following variational problem:

inf
Ψ∈X

E(Ψ,R) , (14)

where X =
{

Ψ | 〈ψi, ψj〉X×{α,β} = δij
}

with 〈 , 〉X×{α,β} denoting the inner product
defined on X×{α, β}. X denotes a suitable function space that guarantees the existence
of minimizers. We note that bounded domains are used in numerical computations,
which in non-periodic calculations corresponds to a large enough domain containing the
compact support of the wavefunctions and in periodic calculations correspond to the
supercell. We denote such an appropriate bounded domain, subsequently, by Ω. For
formulations on bounded domains, X = Y = H1

0 (Ω) in the case of non-periodic problems
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and X = Y = H1
per(Ω) in the case of periodic problems are appropriate function spaces

which guarantee existence of solutions (cf. e.g. [24]). Mathematical analysis of the Kohn-
Sham DFT problem proving the existence of solutions in the more general case of R3

(X = H1(R3)) has recently been reported [49].

2.2 Kohn-Sham eigenvalue problem

The stationarity condition corresponding to the Kohn-Sham variational problem is equiv-
alent to the non-linear Kohn-Sham eigenvalue problem given by:

Hψi = ǫiψi, (15)

where

H =

(

−1

2
∇2 + Veff(ρ,R)

)

(16)

is a Hermitian operator with eigenvalues ǫi, and the corresponding orthonormal eigen-
functions ψi for i = 1, 2, · · · , N denote the canonical wavefunctions. The electron density
in terms of the canonical wavefunctions is given by

ρ(r) =

N
∑

i=1

|ψi(x)|2 , (17)

and the effective single-electron potential, Veff(ρ,R), in (16) is given by

Veff(ρ,R) = Vext(R) + VH(ρ) + Vxc(ρ) = Vext(R) +
δEH

δρ
+
δExc

δρ
. (18)

As discussed in Section 2.1, it is efficient to compute the total electrostatic potential,
defined as the sum of the external potential (Vext(R)) and the Hartree potential (VH(ρ)),
through the solution of a Poisson equation

− 1

4π
∇2φ(r,R) = ρ(r) + b(r,R) ,

which is given by

φ(r,R) ≡ VH(ρ) + Vext(r,R) =

∫

ρ(r′)

|r− r′| dr
′ +

∫

b(r′,R)

|r− r′| dr
′ . (19)

Finally, the system of equations corresponding to the Kohn-Sham eigenvalue problem are
given by

(

−1

2
∇2 + Veff(ρ,R)

)

ψi = ǫiψi, (20a)

ρ(r) =

N
∑

i=1

|ψi(x)|2, (20b)

− 1

4π
∇2φ(r,R) = ρ(r) + b(r,R) ; Veff(ρ,R) = φ(r,R) +

δExc

δρ
, (20c)

which have to be solved with appropriate boundary conditions based on the problem
under consideration. The formulation in (20) represents a nonlinear eigenvalue problem
which has to be solved self-consistently, and is subsequently discussed in Section 4. Next
we turn to the discrete formulation of the above Kohn-Sham eigenvalue problem.

9
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2.3 Discrete Kohn-Sham eigenvalue problem

If Xh represents the finite-dimensional subspace with dimension nh, the finite-element
approximation of the various field variables (spatial part of the wavefunctions and the
electrostatic potential) in the Kohn-Sham eigenvalue problem (20) are given by

ψh
i (r) =

nh
∑

j=1

Nj(r)ψ
j
i , (21)

φh(r) =

nh
∑

j=1

Nj(r)φ
j , (22)

where Nj : 1 ≤ j ≤ nh denote the basis of Xh. Subsequently, the discrete eigenvalue
problem corresponding to (20) is given by

HΨ̃ i = ǫhi MΨ̃ i , (23)

where Hjk denotes the discrete Hamiltonian matrix, Mjk denotes the overlap matrix (or
commonly referred to as the mass matrix in finite-element literature), and ǫhi denotes ith

eigenvalue corresponding to the eigenvector Ψ̃ i. The expression for the discrete Hamil-
tonian matrix Hjk for a non-periodic problem with X = Y = H1

0 (Ω) as well as a periodic
problem on a supercell with X = Y = H1

per(Ω) is given by

Hjk =
1

2

∫

Ω
∇Nj(r) .∇Nk(r) dr+

∫

Ω
V h
eff(r,R)Nj(r)Nk(r) dr . (24)

We refer to [20] for the expression of Hjk in the case of a periodic problem on a unit-cell
using the Bloch ansatz. The discrete Kohn-Sham eigenvalue problem (23) is a generalized
eigenvalue problem with an overlap matrix Mjk =

∫

Ω Nj(r)Nk(r) dr, which results from
the non-orthogonality of the finite-element basis functions. However, the generalized
eigenvalue problem (23) can be transformed into a standard Hermitian eigenvalue problem
as follows. Since the matrix M is positive definite symmetric, there exists a unique
positive definite symmetric square root of M, and is denoted by M1/2. Hence, the
following holds true

HΨ̃ i = ǫhi MΨ̃ i

⇒ HΨ̃ i = ǫhi M
1/2M1/2

Ψ̃ i

⇒ H̃Ψ̂ i = ǫhi Ψ̂ i (25)

where

Ψ̂ i = M1/2
Ψ̃ i

H̃ = M−1/2HM−1/2

We note that H̃ is a Hermitian matrix, and (25) represents a standard Hermitian eigen-
value problem. The actual eigenvectors are recovered by the transformation Ψ̃ i =
M−1/2

Ψ̂ i. We remark that Ψ̂ i is a vector containing the expansion coefficients of the

10
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eigenfunction ψh
i (r) expressed in an orthonormal basis spanning the finite-element space.

Furthermore, we note that the transformation to a standard eigenvalue problem (25) is
computationally advantageous only if the matrix M−1/2 can be evaluated with modest
computational cost. This is readily possible by using spectral finite-elements rather than
conventional finite-elements, and is discussed in detail in Section 4.

The convergence of finite-element approximation for the Kohn-Sham DFT model was
shown in [24] using the notion of Γ−convergence. We also refer to the recent numerical
analysis carried out on finite dimensional discretization of Kohn-Sham models [37], which
also provides the rates of convergence of the approximation. Next, we derive the optimal
coarse-graining rates for the finite-element meshes using the solution fields in the Kohn-
Sham DFT problem.

3 A-priori mesh adaption

We propose an a priori mesh adaption scheme in the spirit of [33, 32] by minimizing the
error involved in the finite-element approximation of the Kohn-Sham DFT problem for
a fixed number of elements in the mesh. The proposed approach closely follows the a
priori mesh adaption scheme developed in the context of orbital-free DFT [31]. In what
follows, we first derive a formal bound on the energy error |E − Eh| as a function of the
characteristic mesh-size h, and the distribution of electronic fields (wavefunctions and
electrostatic potential). We note that, in a recent study, error estimates for a generic
finite dimensional approximation of the Kohn-Sham model have been derived [37]. How-
ever, the forms of these estimates are not useful for developing mesh-adaption schemes
as the study primarily focused on proving the convergence of the finite-dimensional ap-
proximation and determining the convergence rates. We first present the derivation of
an error bound in terms of the canonical wavefunctions and the electrostatic potential,
and subsequently develop an a priori mesh adaption scheme based on this error bound.

3.1 Estimate of energy error

In the present section and those to follow, we demonstrate our ideas on a system con-
sisting of 2N electrons for the sake of simplicity and notational clarity. Let (Ψ̄

h
=

{ψ̄h
1 , ψ̄

h
2 · · · ψ̄h

N} , φ̄h , ǭh = {ǭh1 , ǭh2 · · · ǭhN}) and (Ψ̄ = {ψ̄1 , ψ̄2 · · · ψ̄N}, φ̄ , ǭ = {ǭ1 , ǭ2 · · · ǭN})
represent the solutions (spatial part of canonical wavefunctions, electrostatic potential,
eigenvalues) of the discrete finite-element problem (23) and the continuous problem (20)
respectively. In the following derivation and henceforth in this article, we consider all
wavefunctions to be real-valued and orthonormal. We note that it is always possible
to construct real-valued orthonormal wavefunctions for both non-periodic problems as
well as periodic problems on the supercell. The wavefunctions are complex-valued for
periodic problems on a unit-cell (with multiple k-points using the Bloch ansatz), and the
following approach is still valid, but results in more elaborate expressions for the error
bounds. Using the local reformulation of electrostatic interactions in the Kohn-Sham
energy functional (equations (12)-(13)), the ground-state energy in the discrete and the

11
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continuous problem can be expressed as:

Eh(Ψ̄
h
, φ̄h) = 2

N
∑

i=1

∫

Ω

1

2
|∇ψ̄h

i |2 dr+
∫

Ω
F (ρ(Ψ̄

h
)) dr− 1

8π

∫

Ω
|∇φ̄h|2 dr+

∫

Ω
(ρ(Ψ̄

h
) + b)φ̄h dr ,

(26)

E(Ψ̄, φ̄) = 2

N
∑

i=1

∫

Ω

1

2
|∇ψ̄i|2 dr+

∫

Ω
F (ρ(Ψ̄)) dr− 1

8π

∫

Ω
|∇φ̄|2 dr+

∫

Ω
(ρ(Ψ̄) + b)φ̄ dr ,

(27)
where

F (ρ) = ǫxc(ρ)ρ .

Proposition 3.1. In the neighborhood of (Ψ̄, φ̄ , ǭ), the finite-element approximation
error in the ground-state energy can be bounded as follows:

|Eh − E| ≤ 2
N
∑

i=1

[1

2

∫

Ω
|∇δψi|2 dr+

∣

∣

∣

∣

ǭi

∫

Ω
(δψi)

2 dr

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
F ′(ρ(Ψ̄))(δψi)

2 dr

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
(δψi)

2φ̄ dr

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫

Ω
ψ̄i δψi δφ dr

∣

∣

∣

∣

]

+
1

8π

∫

Ω
|∇δφ|2 dr

+ 8

∣

∣

∣

∣

∣

∣

∫

Ω
F ′′(ρ(Ψ̄))

(

∑

i

ψ̄iδψi

)2

dr

∣

∣

∣

∣

∣

∣

.

(28)

Proof. We first expand Eh(Ψ̄
h
, φ̄h) about the solution of the continuous problem, i.e

Ψ̄
h
= Ψ̄+ δΨ and φ̄h = φ̄+ δφ, and we get

Eh(Ψ̄+ δΨ, φ̄+ δφ) = 2
N
∑

i=1

∫

Ω

1

2
|∇(ψ̄i + δψi)|2 dr+

∫

Ω
F
(

ρ(Ψ̄+ δΨ)
)

dr

− 1

8π

∫

Ω
|∇(φ̄+ δφ)|2 dr+

∫

Ω

(

ρ(Ψ̄+ δΨ) + b
)

(φ̄+ δφ) dr ,

(29)

which can then be simplified, using the Taylor series expansion, to

Eh(Ψ̄
h
, φ̄h) = 2

N
∑

i=1

∫

Ω

1

2
(|∇ψ̄i|2 + |∇δψi|2 + 2∇ψ̄i · ∇δψi) dr+

∫

Ω
F (ρ(Ψ̄)) dr

+ 4

N
∑

i=1

∫

Ω
F ′(ρ(Ψ̄))ψ̄i δψi dr+ 8

∫

Ω
F ′′(ρ(Ψ̄))

(

N
∑

i=1

ψ̄i δψi

)2

dr+ 2

N
∑

i=1

∫

Ω
F ′(ρ(Ψ̄))(δψi)

2 dr

− 1

8π

∫

Ω

(

|∇φ̄|2 + |∇δφ|2 + 2∇φ̄ · ∇δφ
)

dr+

∫

Ω
(ρ(Ψ̄) + b)φ̄ dr+ 4

N
∑

i=1

∫

Ω
ψ̄i δψi φ̄ dr

+

∫

Ω
(ρ(Ψ̄) + b)δφ dr+ 2

N
∑

i=1

∫

Ω
(δψi)

2φ̄ dr+ 4

N
∑

i=1

∫

Ω
ψ̄i δψi δφ dr+O(δψ3

i , δψ
2
i δφ) .

(30)

12
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We note that (Ψ̄, φ̄ , ǭ) satisfy the following Euler-Lagrange equations for each i =
1, . . . , N .

1

2

∫

Ω
∇ψ̄i · ∇δψi dr+

∫

Ω
F ′(ρ(Ψ̄))ψ̄i δψi dr+

∫

Ω
ψ̄i δψi φ̄ dr = ǭi

∫

Ω
ψ̄i δψi dr , (31a)

− 1

4π

∫

Ω
∇φ̄ · ∇δφ dr+

∫

Ω
(ρ(Ψ̄) + b)δφ dr = 0 . (31b)

Using (30) and the Euler-Lagrange equations (31), we get

Eh − E = 2

N
∑

i=1

∫

Ω

[

1

2
|∇δψi|2 + 2 ǭi ψ̄i δψi + F ′(ρ(Ψ̄))(δψi)

2

]

dr+ 8

∫

Ω
F ′′(ρ(Ψ̄))

(

N
∑

i=1

ψ̄iδψi

)2

dr

− 1

8π

∫

Ω
|∇δφ|2 dr+ 2

N
∑

i=1

[
∫

Ω
(δψi)

2φ̄ dr+ 2

∫

Ω
ψ̄i δψi δφ dr

]

+O(δψ3
i , δψ

2
i δφ) .

(32)

The orthonormality constraint functional in the discrete form is given by

c(Ψh) =

∫

Ω
ψh
i ψ

h
j dr− δij , (33)

and upon expanding about the solution Ψ̄, we get

c(Ψ̄
h
) =

∫

Ω
(ψ̄i + δψi)(ψ̄j + δψj) dr − δij (34)

=

∫

Ω

[

ψ̄iψ̄j + δψiψ̄j + δψjψ̄i + δψiδψj

]

dr− δij . (35)

Using
∫

Ω
ψ̄iψ̄j dr = δij , (36)

and c(Ψ̄
h
) = 0 in (35), we get for i = j

2

∫

Ω
ψ̄iδψi dr = −

∫

Ω
(δψi)

2 dr i = 1, 2, . . . , N . (37)

Using equations (32) and (37), we arrive at the following error bound in energy

|Eh − E| ≤ 2
N
∑

i=1

[1

2

∫

Ω
|∇δψi|2 dr+

∣

∣

∣

∣

ǭi

∫

Ω
(δψi)

2 dr

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
F ′(ρ(Ψ̄))(δψi)

2 dr

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω
(δψi)

2φ̄ dr

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∫

Ω
ψ̄i δψi δφ dr

∣

∣

∣

∣

]

+
1

8π

∫

Ω
|∇δφ|2 dr

+ 8

∣

∣

∣

∣

∣

∣

∫

Ω
F ′′(ρ(Ψ̄))

(

∑

i

ψ̄iδψi

)2

dr

∣

∣

∣

∣

∣

∣

.
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Proposition 3.2. The finite-element approximation error in proposition 3.1 expressed in
terms of the approximation errors in electronic wave-functions and electrostatic potential
is given by

|Eh−E| ≤ C

(

∑

i

‖ ψ̄i − ψ̄h
i ‖21,Ω +|φ̄− φ̄h|21,Ω +

∑

i

‖ ψ̄i − ψ̄h
i ‖0,Ω‖ φ̄− φ̄h ‖1,Ω

)

(38)

Proof. We use the following norms: | · |1,Ω represents the semi-norm in H1 space, ‖ · ‖1,Ω
denotes the H1 norm, ‖ · ‖0,Ω and ‖ · ‖0,p,Ω denote the standard L2 and Lp norm
respectively. All the constants to appear in the following estimates are positive and
bounded. Firstly, we note that

∑

i

1

2

∫

Ω
|∇δψi|2 dr ≤ C1

∑

i

|ψ̄i − ψ̄h
i |21,Ω , (39)

∑

i

|ǭi|
∫

Ω
(δψi)

2 dr =
∑

i

|ǭi|
∫

Ω
(ψ̄i − ψ̄h

i )
2 dr ≤ C2

∑

i

‖ ψ̄i − ψ̄h
i ‖20,Ω . (40)

Using Cauchy-Schwartz and Sobolev inequalities, we arrive at the following estimate

∑

i

∣

∣

∣

∣

∫

Ω
F ′(ρ(Ψ̄))(δψi)

2 dr

∣

∣

∣

∣

≤
∑

i

∫

Ω

∣

∣

∣
F ′(ρ(Ψ̄))(ψ̄i − ψ̄h

i )
2
∣

∣

∣
dr

≤ C3

∑

i

‖ F ′(ρ(Ψ̄)) ‖0,Ω‖ (ψ̄i − ψ̄h
i )

2 ‖0,Ω

= C3

∑

i

‖ F ′(ρ(Ψ̄)) ‖0,Ω‖ ψ̄i − ψ̄h
i ‖20,4,Ω

≤ C̄3

∑

i

‖ ψ̄i − ψ̄h
i ‖21,Ω . (41)

Further, we note
1

8π

∫

Ω
|∇(φ̄− φ̄h)|2 dr ≤ C4|φ̄− φ̄h|21,Ω . (42)

Using Cauchy-Schwartz and Sobolev inequalities we arrive at

∑

i

∣

∣

∣

∣

∫

Ω
(δψi)

2φ̄ dr

∣

∣

∣

∣

≤
∑

i

∫

Ω

∣

∣

∣
(ψ̄i − ψ̄h

i )
2 φ̄
∣

∣

∣
dr ≤

∑

i

‖ φ̄ ‖0,Ω‖ (ψ̄i − ψ̄h
i )

2 ‖0,Ω

≤ C5

∑

i

‖ ψ̄i − ψ̄h
i ‖20,4,Ω

≤ C̄5

∑

i

‖ ψ̄i − ψ̄h
i ‖21,Ω . (43)
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Also, we note that

∑

i

∣

∣

∣

∣

∫

Ω
ψ̄i δψi δφ dr

∣

∣

∣

∣

≤
∑

i

∫

Ω

∣

∣

∣
ψ̄i(ψ̄i − ψ̄h

i )(φ̄ − φ̄h)
∣

∣

∣
dr

≤
∑

i

‖ ψ̄i ‖0,6,Ω‖ ψ̄i − ψ̄h
i ‖0,Ω‖ φ̄− φ̄h ‖0,3,Ω

≤
∑

i

C6 ‖ ψ̄i − ψ̄h
i ‖0,Ω‖ φ̄− φ̄h ‖1,Ω , (44)

where we made use of the generalized Hölder inequality in the first step and Sobolev
inequality in the next. Finally, we use Cauchy-Schwartz inequality to arrive at
∣

∣

∣

∣

∣

∣

∫

Ω
F ′′(ρ(Ψ̄))

(

∑

i

ψ̄iδψi

)2

dr

∣

∣

∣

∣

∣

∣

≤
∫

Ω

∣

∣F ′′(ρ(Ψ̄))
∣

∣

(

∑

i

∣

∣ψ̄i

∣

∣

2

)(

∑

i

|δψi|2
)

dr (45)

=
∑

i

∫

Ω

∣

∣F ′′(ρ(Ψ̄))ρ(Ψ̄)(δψi)
2
∣

∣ dr (46)

≤ C7

∑

i

‖ ψ̄i − ψ̄h
i ‖20,Ω . (47)

Using the bounds derived above, it follows that

|Eh−E| ≤ C

(

∑

i

‖ ψ̄i − ψ̄h
i ‖21,Ω +|φ̄− φ̄h|21,Ω +

∑

i

‖ ψ̄i − ψ̄h
i ‖0,Ω‖ φ̄− φ̄h ‖1,Ω

)

(48)

We now bound the finite-element discretization error with interpolation errors, which
in turn can be bounded with the finite-element mesh size h. This requires a careful
analysis in the case of Kohn-Sham DFT and has been discussed in [37]. Using the results
from the proof of Theorem 4.3 in [37], we bound the estimates in equation (48) using the
following inequalities (cf. [50])

|ψ̄i − ψ̄h
i |1,Ω ≤ C̄0|ψ̄i − ψI

i |1,Ω ≤ C̃0

∑

e

hke |ψ̄i|k+1,Ωe
, (49a)

‖ ψ̄i − ψ̄h
i ‖0,Ω≤ C̄1 ‖ ψ̄i − ψI

i ‖0,Ω≤ C̃1

∑

e

hk+1
e |ψ̄i|k+1,Ωe

, (49b)

|φ̄− φ̄h|1,Ω ≤ C̄2|φ̄− φI |1,Ω ≤ C̃2

∑

e

hke |φ̄|k+1,Ωe
, (49c)

‖ φ̄− φ̄h ‖0,Ω≤ C̄2 ‖ φ̄− φI ‖0,Ω≤ C̃3

∑

e

hk+1
e |φ̄|k+1,Ωe

, (49d)

where k is the order of the polynomial interpolation, and e denotes an element in the
regular family of finite-elements [50] with mesh-size he covering a domain Ωe. Using the
above estimates, the error estimate to O(h2k+1) is given by

|Eh − E| ≤ C
∑

e

h2ke

[

∑

i

|ψ̄i|2k+1,Ωe
+ |φ̄|2k+1,Ωe

]

. (50)
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3.2 Optimal coarse-graining rate

Following the approach in [33], we seek to determine the optimal mesh-size distribution
by minimizing the approximation error in energy for a fixed number of elements. Using
the definition of the semi-norms, we rewrite equation (50) as

|Eh − E| ≤ C
Ne
∑

e=1

[

h2ke

∫

Ωe

[

∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1φ̄(r)|2
]

dr
]

, (51)

where Ne denotes the total number of elements in the finite-element triangulation, and
Dk+1 denotes the (k + 1)th derivative of any function. An element size distribution
function h(r) is introduced so that the target element size is defined at all points r in Ω,
and we get

|Eh − E| ≤ C
Ne
∑

e=1

∫

Ωe

[

h2ke

[

∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1φ̄(r)|2
]

dr
]

, (52)

≤ C′

∫

Ω
h2k(r)

[

∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1φ̄(r)|2
]

dr . (53)

Further, the number of elements in the mesh is in the order of

Ne ∝
∫

Ω

dr

h3(r)
. (54)

The optimal mesh-size distribution is then determined by the following variational prob-
lem which minimizes the approximation error in energy subject to a fixed number of
elements:

min
h

∫

Ω

{

h2k(r)
[

∑

i

|Dk+1ψ̄i(r)|2+ |Dk+1φ̄(r)|2
]}

dr subject to :

∫

Ω

dr

h3(r)
= Ne . (55)

The Euler-Lagrange equation associated with the above problem is given by

2kh2k−1(r)
[

∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1φ̄(r)|2
]

− 3η

h4(r)
= 0 , (56)

where η is the Lagrange multiplier associated with the constraint. Thus, we obtain the
following distribution

h(r) = A
(

∑

i

|Dk+1ψ̄i(r)|2 + |Dk+1φ̄(r)|2
)−1/(2k+3)

, (57)

where the constant A is computed from the constraint that the total number of elements
in the finite-element discretization is Ne.

The coarse-graining rate derived in equation (57) has been employed to construct the
finite-element meshes by using the a priori knowledge of the asymptotic solutions of ψ̄i(r)
and φ̄(r) for different kinds of problems we study in the subsequent sections.
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4 Numerical implementation

We now turn to the numerical implementation of the discrete formulation of the Kohn-
Sham eigenvalue problem described in Section 2. We first discuss the higher-order finite-
elements used in our study with specific focus on spectral finite-elements, which are
important in developing an efficient numerical solution procedure.

4.1 Higher-order finite-element discretizations

Linear finite-element basis has been extensively employed for a wide variety of appli-
cations in engineering involving complex geometries and moderate levels of accuracy.
On the other hand, much higher levels of accuracy (chemical accuracy) is desired in
electronic structure computations of materials properties. To achieve the desired chem-
ical accuracy, a linear finite-element basis is computationally inefficient since it requires
a large number of basis functions per atom [29, 22]. Hence, we investigate if higher-
order finite-element basis functions can possibly be used to efficiently achieve the desired
chemical accuracy. To this end, we employ in our study C0 basis functions comprising of
linear tetrahedral element (TET4) and spectral hexahedral elements up to degree eight
(HEX27, HEX125SPECT, HEX343SPECT, HEX729SPECT). The numbers following
the words ‘TET’ and ‘HEX’ denote the number of nodes in the element, and the suffix
‘SPECT’ denotes that the element is a spectral finite-element. We note that spectral
finite-elements [51, 52] have been employed in a previous work in electronic structure cal-
culations [30], but the computational efficiency afforded by these elements has not been
thoroughly studied. We first briefly discuss spectral finite-elements (also referred to as
spectral-elements) employed in the present work and the role they play in improving the
computational efficiency of the Kohn-Sham DFT eigenvalue problem.

The spectral-element basis functions employed in the present work are constructed
as Lagrange polynomials interpolated through an optimal distribution of nodes corre-
sponding to the roots of derivatives of Legendre polynomials, unlike conventional finite-
elements which use equispaced nodes in an element. Such a distribution does not have
nodes on the boundaries of an element, and hence it is common to append nodes on the
element boundaries which guarantees C0 basis functions. These set of nodes are usually
referred to as Gauss-Lobatto-Legendre points. Furthermore, we note that conventional
finite-elements result in a poorly conditioned discretized problem for a high order of in-
terpolation, whereas spectral-elements are devoid of this deficiency [52]. The improved
conditioning of the spectral-element basis was observed to provide a 2-3 fold compu-
tational advantage over conventional finite-elements in a recent benchmark study [31]
conducted to assess the computational efficiency of higher-order elements in the solution
of the orbital-free DFT problem.

A significant advantage of the aforementioned spectral-elements is realized when we
conjoin their use with specialized Gaussian quadrature rules that have quadrature points
coincident with the nodes of the spectral-element, which in the present case corresponds
to the Gauss-Lobatto-Legendre (GLL) quadrature rule [53]. Importantly, the use of such
a quadrature rule will result in a diagonal overlap matrix (mass matrix) M. To elaborate,
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consider the elemental mass matrix Me given by
∫

Ωe

Ni(r)Nj(r) dr =

∫ 1

−1

∫ 1

−1

∫ 1

−1
Ni(ξ, η, ζ)Nj(ξ, η, ζ) det(Je) dξ dη dζ (58)

=

nq
∑

p,q,r=0

wp,q,rNi(ξp, ηq, ζr)Nj(ξp, ηq, ζr) det(Je) (59)

where (ξ, η, ζ) represents the barycentric coordinates, Je represents the elemental jaco-
bian matrix of an element Ωe, and nq denotes the number of quadrature points in each
dimension in a tensor product quadrature rule. Since the quadrature points are coinci-
dent with nodal points, the above expression is non-zero only if i = j, thus resulting in
a diagonal elemental mass matrix and subsequently a diagonal global mass matrix. A
diagonal mass matrix makes the transformation of the generalized Kohn-Sham eigenvalue
problem (23) to a symmetric standard eigenvalue problem (25) trivial. As discussed and
demonstrated subsequently, the transformation to a standard eigenvalue problem allows
us to use efficient solution procedures to compute the eigenspace in the self-consistent
field iteration. We note that, while the use of the GLL quadrature rule is important
in efficiently transforming the generalized eigenvalue problem to a standard eigenvalue
problem, this quadrature rule is less accurate in comparison to Gauss quadrature rules.
An n point Gauss-Lobatto rule can integrate polynomials exactly up to degree 2n − 3,
while an n point Gauss quadrature rule can integrate polynomials exactly up to degree
2n−1. Thus, in the present work, we use the GLL quadrature rule only in the evaluation
of the overlap matrix, while using the more accurate Gauss quadrature rule to evaluate
the discrete Hamiltonian matrix H.

4.2 Self-consistent field iteration

As noted in Section 2, the Kohn-Sham eigenvalue problem represents a nonlinear eigen-
value problem and must be solved self-consistently to compute the ground-state electron
density and energy. We use computationally efficient schemes to evaluate the occupied
eigenspace of the Kohn-Sham Hamiltonian (discussed below) in conjunction with finite
temperature Fermi-Dirac distribution and charge density mixing to develop an efficient
and robust solution scheme for the self-consistent field iteration of Kohn-Sham problem.

Algorithm 1 depicts the typical steps involved in the self-consistent field (SCF) iter-
ation. An initial guess of the electron density field is used to start the computation. A
reasonable choice of such an initial guess is the superposition of atomic charge densities,
and is used in the present study. The input charge density (ρhin(r)) to a self-consistent
iteration is used to compute the total electrostatic potential φ(r,R) by solving the follow-
ing discrete Poisson equation using a preconditioned conjugate gradient method provided
by PETSc [54] package:

nh
∑

k=1

[ 1

4π

∫

Ω
∇Nj(r) .∇Nk(r) dr

]

φk =

∫

Ω

(

ρhin(r) + b(r,R)
)

Nj(r) dr . (61)

Subsequently, the effective potential Veff is evaluated to set up the discrete Kohn-Sham
eigenvalue problem (23). We now discuss the different strategies we have investigated to
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Algorithm 1 Self Consistent Field Iteration

1. Provide initial guess for electron density ρh0(r) on the finite-element mesh. This will be
the input electron density for the first self-consistent iteration (ρhin(r) = ρh0(r)).

2. Compute the total electrostatic potential φh(r,R) = VH(ρ
h
in(r))+Vext(b(r,R)) by solving

the discrete Poisson equation.

3. Compute the effective potential, Veff(ρ
h
in,R) = Vxc(ρ

h
in) + φh(r,R) .

4. Solve for the occupied subspace spanned by the eigenfunctions ψh
i (r), i = 1, 2 · · · Ñ , corre-

sponding to Ñ (Ñ > N/2) smallest eigenvalues of the Kohn-Sham eigenvalue problem (23).

5. Calculate the fractional occupancy factors (fi) using the Fermi-Dirac distribution (Sec-
tion (4.2.2))

6. Compute the new output charge densities ρhout from the eigenfunctions:

ρhout(r) = 2
∑

i

f(ǫi, ǫF )|ψh
i (r)|2, (60)

7. If ||ρhout(r) − ρhin(r)|| ≤ tolerance, stop; Else, compute new ρhin using a mixing scheme
(Section 4.2.3) and go to step 2.

compute the occupied eigenspace of the Kohn-Sham Hamiltonian H, and their relative
merits.

4.2.1 Solver strategies for finding the occupied eigenspace

We examined two different solution strategies to compute the occupied subspace: (i) ex-
plicit computation of eigenvectors at every self-consistent field iteration; (ii) A Chebyshev
filtering approach.

4.2.1.1 Explicit computation of eigenvectors: We first discuss the methods
examined in the present work that involve an explicit computation of eigenvectors at a
given self-consistent iteration. We recall that the discrete Kohn-Sham eigenvalue problem
is a generalized Hermitian eigenvalue problem (GHEP) (23). As mentioned previously,
by using the GLL quadrature rules for the evaluation of the overlap matrix M, which
results in a diagonal overlap matrix, the generalized eigenvalue problem can be trivially
transformed into a standard Hermitian eigenvalue problem (SHEP). We have explored
both approaches in the present work, i.e. (i) solving the generalized eigenvalue problem
employing conventional Gauss quadrature rules; (ii) solving the transformed standard
eigenvalue problem by using GLL quadrature rules in the computation of overlap matrix.

We have employed the Jacobi-Davidson (JD) method [55] to solve the GHEP. The
JD method falls into the category of iterative orthogonal projection methods where the
matrix is orthogonally projected into a lower dimensional subspace and one seeks an
approximate eigenpair of the original problem in the subspace. The basic idea in JD
method is to arrive at better approximations to eigenpairs by a systematic expansion of
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the subspace realized by solving a “Jacobi-Davidson correction equation” that involves
the solution of a linear system. The correction equation is solved only approximately,
and this approximate solution is used for the expansion of the subspace. Though the
JD method has significant advantages in computing the interior eigenvalues and closely
spaced eigenvalues, we found the JD method to be computationally expensive for systems
involving the computation of eigenvectors greater than 50, due to the increase in the
number of times the correction equation is solved.

On the other hand, we employed the Krylov-Schur (KS) method [56] for solving the
SHEP. In practice, one could also use the JD method to solve the SHEP, but, as previ-
ously mentioned, the JD method is expensive to solve systems involving few hundreds
of electrons and beyond. The KS method can be viewed as an improvement over tra-
ditional Krylov subspace methods such as Arnoldi and Lanczos methods [57, 58]. The
KS method is based on Krylov-Schur decomposition where the Hessenberg matrix has
the Schur form. The key idea of the KS method is to iteratively construct the Krylov-
subspace using Arnoldi iteration and subsequently filter the unwanted spectrum from
the Krylov-Schur decomposition. This results in a robust restarting scheme with faster
convergence in most cases.

We now demonstrate the computational efficiency realized by solving the discrete
Kohn-Sham eigenvalue problem as a transformed SHEP in comparison to GHEP. To this
end, we consider an all-electron simulation of a graphene sheet containing 16 atoms with
96 electrons (N = 96) and a pseudopotential simulation of 3× 3× 3 face-centered-cubic
aluminum nano-cluster containing 172 atoms with 516 electrons (N = 516) as benchmark
systems. The relative error in the ground-state energy for the finite-element mesh used
in the case of graphene is around 1.2 × 10−5 while it is around 3.6 × 10−6 in the case of
aluminium cluster. The reference ground-state energy is obtained using the commercial
code GAUSSIAN in the case of the all-electron simulation of the graphene system, while it
is obtained using the convergence study presented in Section 5 for the aluminium cluster.
Table 1 shows the computational time taken for the first SCF iteration in each of the
above cases. All the times reported in the present work represent the total CPU times.
The Jacobi-Davidson method for GHEP and Krylov-Schur method for SHEP provided

Table 1: Comparison of Generalized vs Standard eigenvalue problems

Element Type DOFs Problem Type N Time (GHEP) Time (SHEP)

HEX125SPECT 1368801 graphene 96 1786 CPU-hrs 150 CPU-hrs

HEX343SPECT 2808385 Al 3× 3× 3 cluster 516 2084 CPU-hrs 80 CPU-hrs

by SLEPc package [59] have been employed in the present study. It is interesting to note
that a 10-fold speedup is realized by transforming the Kohn-Sham eigenvalue problem
to a SHEP in the case of graphene, while a 25-fold speedup was obtained in the case of
aluminium cluster. We note that a similar observation was recently reported in [26] where
the GHEP was transformed to SHEP via the mass-lumping approximation. Further, other
simulations conducted as part of the present study suggest that this speedup increases
with increasing system size.
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4.2.1.2 Chebyshev filtering: We now examine the alternate approach of Cheby-
shev filtering proposed in [35], which is designed to iteratively compute the occupied
eigenspace at every SCF iteration. We note that the Chebyshev filtering approach is
only valid for standard eigenvalue problems. To this end, we use the aforementioned
approach to convert the GHEP to a SHEP by employing the GLL quadrature rules in
computing the overlap matrix, and remark that the use of spectral elements in conjunc-
tion with the GLL quadrature is crucial in using the Chebyshev filtering technique to
solve the Kohn-Sham eigenvalue problem in a finite-element basis. The Chebyshev fil-
tering approach is based on a subspace iteration technique, where an initial subspace is
acted upon by a Chebyshev filter constructed from the Kohn-Sham Hamiltonian that
transforms the subspace to the occupied eigenspace.

In the present work, at any given SCF iteration, we begin with the initial subspace V
formed from the eigenvectors of the previous SCF iteration. We note that, as is the case
with all subspace iteration techniques, we choose the dimension of the subspace V , Ñ ,
to be larger than the number of filled ground-state orbitals. Typically, we choose Ñ ∼
N
2 + 20. This is also necessary to employ the finite temperature Fermi-Dirac smearing,
discussed in Section 4.2.2, to stabilize the SCF iterations in materials systems that have
very small band-gaps or have degenerate states at the Fermi energy. As proposed in [35],
the Chebyshev filter is constructed from a shifted and scaled Hamiltonian, H = c1H̃+c2,
where H̃ is the transformed Hamiltonian in the SHEP (cf. equation (25)). The constants
c1 and c2 which correspond to the scaling and shifting are determined such that the
unwanted eigen-spectrum is mapped into [−1, 1] and the wanted spectrum into (−∞,−1).
In order to compute these constants, we need estimates of the upper bounds of the
wanted and unwanted spectrums. The upper bound of the unwanted spectrum, which
corresponds to the largest eigenvalue of H̃, can be obtained inexpensively by using a small
number of iterations of the Lanczos algorithm. The upper bound of the wanted spectrum
is chosen as largest Rayleigh quotient of H̃ in the space V from the previous SCF iteration.
Subsequently, the degree-m Chebyshev filter, pm(H), which magnifies the spectrum of H
in (−∞,−1)—the wanted eigen-spectrum of H̃—transforms the initial subspace V to the
occupied eigenspace of H̃. The degree of the Chebyshev filter and the number of filters
employed are chosen such that the obtained space is a close approximation of the occupied
space, with the residuals in the eigenvalue problem below a prescribed tolerance. We
note that the action of the Chebyshev filter on V can be performed recursively, similar
to the recursive construction of the Chebyshev polynomials [60]. After obtaining the
occupied eigenspace, we orthogonalize the basis functions, and subsequently project H̃

into the eigenspace to compute the eigenvalues that are used in the Fermi-Dirac smearing
discussed in the next subsection.

We now compare the computational times taken for a single SCF iteration solved
using an eigenvalue solver based on Krylov-Schur method and the Chebyshev filter using
the aforementioned benchmark problems comprising of a 16-atom graphene sheet and
172-atom aluminium cluster. We use a Chebyshev polynomial of degree 800 for the
graphene all-electron calculation and a polynomial degree of 12 for aluminum cluster
pseudopotential calculation respectively. We remark that the degree of the polynomial
required for the Chebyshev filter depends on the largest eigenvalue of the Hamiltonian H̃,
which controls the ratio of the wanted to the unwanted eigen-spectrum and determines the
effectiveness of a Chebyshev filter. We note that the largest eigenvalue is in turn related
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Table 2: Comparison of Standard eigenvalue problem vs Chebyshev filtered sub-
space iteration (ChFSI)

Element Type DOFs Problem Type N Time (SHEP) Time (ChFSI)

HEX125SPECT 1368801 graphene 96 150 CPU-hrs 12.5 CPU-hrs

HEX343SPECT 2808385 Al 3× 3× 3 cluster 512 80 CPU-hrs 13 CPU-hrs

to the finite-element discretization, which increases with decrease in the element-size of
the finite-element mesh. In general, all-electron calculations require locally refined meshes
near the nuclei as they involve Coulomb-singular potential fields and highly oscillatory
core wavefunctions. Hence, a very high degree of Chebyshev polynomial (of the order of
102−103) needs to be employed to effectively filter the unwanted spectrum. On the other
hand, simulations performed on systems with smooth external pseudopotential require
Chebyshev polynomial degrees between 10 to 30. As is evident from the results, we clearly
see a factor of 12 speedup that is obtained in the case of graphene, and a factor of around
6 speedup that is obtained in the case of aluminium cluster. The speedup obtained was
even greater for larger materials systems.

The use of spectral finite-elements in conjunction with Chebyshev filtered subspace
iteration presents an efficient and robust approach to solve the Kohn-Sham problem using
the finite-element basis. For all the subsequent simulations reported in the present work,
we employ the Krylov-Schur method for the first SCF iteration and use the Chebyshev
filtering approach for all subsequent iterations to compute the occupied eigenspace.

4.2.2 Finite temperature smearing: Fermi-Dirac distribution

For materials systems with very small band gaps or those with degenerate energy levels
at the Fermi energy, the SCF iteration may exhibit charge sloshing—a phenomenon
where large deviations in spatial charge distribution are observed between SCF iterations
with different degenerate (or close to degenerate) levels being occupied in different SCF
iterations. In such a scenario, the SCF exhibits convergence in the ground-state energy,
but not in the spatial electron density. It is common in electronic structure calculations
to introduce an orbital occupancy factor [3] based on the energy levels and a smearing
function to remove charge sloshing in SCF iterations. A common choice for the smearing
function is the finite temperature Fermi-Dirac distribution, and the orbital occupancy
factor fi corresponding to an energy level ǫi is given by

fi ≡ f(ǫi, ǫF ) =
1

1 + exp( ǫi−ǫF
σ )

, (62)

where the smearing factor σ = kBT with kB denoting the Boltzmann constant and T
denoting the temperature in Kelvin. In the above expression, ǫF denotes the Fermi
energy, which is computed from the constraint on the total number of electrons given by
∑

i 2fi = N . We note that the convergence of ground-state energy is quadratic in the
smearing parameter σ [3].
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4.2.3 Mixing scheme:

The convergence of the SCF iteration is crucially dependent on the mixing scheme, and
many past works in the development of electronic structure methods have focussed on this
aspect [61, 36, 62, 63, 64]. In the present work, we employ an n-stage Anderson mixing

scheme [36], which is briefly described below for the sake of completeness. Let ρh
(n)

in (r)

and ρh
(n)

out (r) represent the input and output electron densities of the nth self-consistent

iteration. The input to the (n + 1)th self-consistent iteration, ρh
(n+1)

in (r), is computed as
follows

ρh
(n+1)

in = γmix ρ̄
h
out + (1− γmix) ρ̄

h
in (63)

where

ρ̄hin(out) = cn ρ
h(n)

in(out) +

n−1
∑

k=1

ck ρ
h(n−k)

in(out) (64)

and the sum of all the constants ci is equal to one, i.e.,

c1 + c2 + c3 + · · ·+ cn = 1 . (65)

Using the above constraint, equation (64) can be written as

ρ̄hin(out) = ρh
(n)

in(out) +

n−1
∑

k=1

ck

(

ρh
(n−k)

in(out) − ρh
(n)

in(out)

)

. (66)

Denoting F = ρhout − ρhin, the above equation can be written as

F̄ = F (n) +
n−1
∑

k=1

ck

(

F (n−k) − F (n)
)

. (67)

The unknown constants c1 to cn−1 are determined by minimizing R = ||F̄ ||22 = ||ρ̄hin −
ρ̄hout||22, which amounts to solving the following system of (n − 1) linear equations given
by:

n−1
∑

k=1

(

F (n) − F (n−m), F (n) − F (n−k)
)

ck =
(

F (n) − F (n−m), F (n)
)

m = 1 · · · n− 1 (68)

where the notation (F,G) stands for the L2 inner product between functions F (r) and
G(r) and is given by

(F,G) =

∫

F (r)G(r) dr . (69)

The value of the parameter γmix in equation (63) is chosen to be 0.5 in the present work.
All the integrals involved in the linear system (68) are evaluated using Gauss quadrature

rules, and the values of ρh
(n)

in(out)(r) are stored as quadrature point values after every nth self
consistent iteration. In all the simulations conducted in the present work, the Anderson
mixing scheme is used with full history.
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5 Numerical results

5.1 Rates of convergence

We begin with the examination of convergence rates of the finite-element approximation
using a sequence of meshes with decreasing mesh sizes for various polynomial orders of
interpolation. The benchmark problems used in this study, include: (i) all-electron cal-
culations performed on boron atom and methane molecule, which represent non-periodic
problems with a Coulomb-singular nuclear potential; (ii) pseudopotential calculations
performed on a barium cluster that represents a non-periodic problem with a smooth
external potential, and a bulk calculation of face-centered-cubic (FCC) calcium crystal.
In the case of all-electron calculations, the nuclear charges are treated as point charges
on the nodes of the finite-element triangulation and the discretization provides a regular-
ization for the electrostatic potential. We note that the self-energy of the nuclei in this
case is mesh-dependent and diverges upon mesh refinement. Thus, the self energy is also
computed on the same mesh that is used to compute the total electrostatic potential,
which ensures that the divergent components of the variational problem on the right
hand side of equation (11) and the self energy exactly cancel owing to the linearity of the
Poisson equation (cf. Appendix C in [31] for a detailed discussion).

We conduct the convergence study by adopting the following procedure. Using the a
priori knowledge of the asymptotic solutions of the atomic wavefunctions [34], we deter-
mine the coarsening rate from equation (57) which is used to construct the coarsest mesh.
Though the computed coarsening rates use the far-field asymptotic solutions instead of
the exact ground-state wavefunctions that are a priori unknown, the obtained meshes
nevertheless provide a systematic way for the discretization of vacuum in non-periodic
calculations as opposed to using an arbitrary coarse-graining rate or uniform discretiza-
tion. In the case of periodic pseudopotential calculations, a finite-element discretization
with a uniform mesh-size is used. A uniform subdivision of the initial coarse-mesh is
carried out to generate a sequence of refined meshes, which represents a systematic re-
finement of the finite-element approximation space. The ground-state energies from the
discrete formulation, Eh, obtained from the sequence of meshes constructed using the
HEX125SPECT element and containing Ne elements are used to fit an expression of the
form

|E0 − Eh| = C(1/Ne)
2k/3 , (70)

to determine the constants E0, C and k. The obtained value of E0, which represents
the extrapolated continuum ground-state energy computed using the HEX125SPECT
element, is used as the reference energy to compute the relative error |E0−Eh|

|E0|
in the

convergence study of various orders of finite-elements reported in subsequent subsections.

5.1.1 All-electron calculations

We first begin with all-electron calculations by studying two examples: (i) boron atom
(ii) methane molecule.

5.1.1.1 Boron atom: This is one of the simplest systems displaying the full com-
plexity of an all-electron calculation. For the present case, we use a Chebyshev filter of
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order 500 to compute the occupied eigenspace. As discussed in Section 4.2.2, we use a
finite-temperature smearing to avoid instability in the SCF iteration due to charge slosh-
ing from the degenerate states at the Fermi energy. A smearing factor σ = 0.0003168 Ha
(T=100K) is used in the present study. We first determine the mesh coarse-graining
rate by noting that the asymptotic decay of atomic wavefunctions is exponential, and an
upper bound to this decay under the Hartree-Fock approximation is given by [34]

ψ(r) ∼ exp
[

−
√
2 ǫ̃ r

]

for r → ∞ , (71)

where −ǫ̃ denotes the energy of the highest occupied atomic/molecular orbital. While
the above estimate has been derived for the Hartree-Fock formulation, it nevertheless
provides a good approximation to the asymptotic decay of wavefunctions computed using
the Kohn-Sham formulation. We use the aforementioned estimate, though not optimal,
for all the wavefunctions in the atomic system, and adopt this approach for all systems
considered subsequently. Hence, in equation (57), we consider ψ̄i to be

ψ̄(r) =

√

ξ3

π
exp
[

−ξ r
]

where ξ =
√
2 ǫ̃ . (72)

The electrostatic potential governed by the Poisson equation with a total charge density
being equal to the sum of 5ψ̄2(r) and −5δ(r) is given by

φ̄(r) = −5 exp (−2ξ r)

(

ξ +
1

r

)

. (73)

Using the above equations, the mesh coarse-graining rate from equation (57) is given by

h(r) = A





5

π
ξ2k+5 exp (−2 ξ r) + 25 exp (−4 ξ r)

[

ξk+22k+1 +
k+1
∑

n=0

(

k + 1

n

)

2nξn(k + 1− n)!

rk−n+2

]2




−1/(2k+3)

.

(74)

Since ǫ̃ in the above equation is unknown a priori, the value of ǫ̃h determined on a
coarse mesh is used in the above equation to obtain h(r). We now perform the numerical
convergence study with tetrahedral and hexahedral spectral elements up to eighth order
using this coarse-graining rate, and the results are shown in figure 1. The value of E0

computed from equation (70) is −24.34319127 Ha, which is used to compute the relative
errors in the energies. We observe that all the elements studied show close to optimal
rates of convergence, O(h2k), where k is the degree of the polynomial. An interesting
point to note is that, although the governing equations are non-linear in nature and
the nuclear potential approaches a Coulomb-singular solution upon mesh refinement,
optimal rates of convergence are obtained. Recent mathematical analysis [37] shows that
the finite-element approximation for the Kohn-Sham DFT problem does provide optimal
rates of convergence for pseudopotential calculations. To the best of our knowledge,
mathematical analysis of higher-order finite-element approximations of the Kohn-Sham
DFT problem with Coulomb-singular nuclear potentials is still an open problem.

We note that, in the case of linear finite-elements, a large number of elements are
required to even achieve modest relative errors. In fact, close to five million linear TET4
elements are required for a single boron atom to obtain a relative error of 10−2, while
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TET4: k = 1.77
HEX27: k = 3.77
HEX125SPECT: k = 7.78
HEX343SPECT: k =11.78
HEX729SPECT

Figure 1: Convergence rates for the finite-element approximation of a single boron
atom.

relative errors up to 10−4 are achieved with just few hundreds of HEX125SPECT and
HEX343SPECT elements, and even higher accuracies are achieved with a few thousands
of these elements.

5.1.1.2 Methane molecule: The next example we study is methane with a C-H
bond length of 2.07846 a.u. and a C-H-C tetrahedral angle of 109.4712◦ . For the present
case, we use a Chebyshev filter of order 500 to compute the occupied eigenspace, and a
smearing factor σ = 0.0003168 Ha (T=100K) for the Fermi-Dirac smearing. As in the
case of boron atom, the finite-element mesh for this molecule is constructed to be locally
refined around the atomic sites, while coarse-graining away. The mesh coarsening rate
in the vacuum is determined numerically by employing the asymptotic solution of the
far-field electronic fields, estimated as a superposition of single atom far-field asymptotic
fields, in equation (57). To this end, asymptotic behavior of the atomic wavefunctions in
carbon atom (ψ̄C(r)) is chosen to be

ψ̄C(r) =

√

ξ3

π
exp
[

−ξ r
]

where ξ =
√
2 ǫ̃ , (75)

where ǫ̃ (negative of the eigenvalue of the highest occupied eigenstate) is determined
from a coarse mesh calculation of single carbon atom. The corresponding electrostatic
potential is governed by the Poisson equation, with total charge density being equal to
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the sum of 6|ψ̄C (r)|2 and −6δ(r), and is given by

φ̄(r) = −6 exp (−2ξ r)

(

ξ +
1

r

)

. (76)

In the case of hydrogen atom, the analytical solution is given by

ψ̄H(r) =

√

1

π
exp
[

− r
]

, (77)

and the corresponding electrostatic potential is given by

φ̄(r) = − exp (−2 r)

(

1 +
1

r

)

. (78)

We now perform the numerical convergence study with both tetrahedral and hexahedral
elements with the meshes constructed as explained before. Figure 2 shows the convergence
results for the various elements, and figure 3 shows the isocontours of electron density for
methane molecule. The value of E0, the reference ground-state energy of the methane
molecule, is found to be −40.12028478 Ha. As in the case of boron atom, we obtain close
to optimal convergence rates, and significantly higher relative accuracies in ground-state
energies are observed by using higher-order elements.
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Figure 2: Convergence rates for the finite-element approximation of a methane
molecule.
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Figure 3: Electron density isocontours of methane.

5.1.2 Pseudopotential calculations

We now turn to pseudopotential calculations in multi-electron systems. A pseudopoten-
tial constitutes the effective potential of the nucleus and core electrons experienced by
the valence electrons. Pseudopotentials are constructed such that the wavefunctions of
valence electrons outside the core and their corresponding eigenvalues are close to those
computed using all-electron calculations. In the present work, we use the local evanes-
cent core pseudopotential [65] as a model pseudopotential to demonstrate our ideas. This
pseudopotential has the following form

V I
ion = − Z

Rc

(

1

y
(1− (1 + βy)e−αy)−Ae−y

)

, (79)

where Z denotes the number of valence electrons and y = |r −RI |/Rc. The core decay
length Rc and α ≥ 0 are atom-dependent constants [65]. The constants β and A are
evaluated by the following relations:

β =
α3 − 2α

4(α2 − 1)
, A =

1

2
α2 − αβ. (80)

5.1.2.1 Barium cluster: The first pseudopotential calculation we present is a bar-
ium 2 × 2 × 2 body-centered cubic (BCC) cluster with a lattice parameter of 9.5 a.u..
A Chebyshev filter of order 16 is employed to compute the occupied eigenspace, and a
smearing factor σ = 0.000634 Ha (T=200K) is used for the Fermi-Dirac smearing. The
finite-element mesh for this molecule is constructed to be uniform in the cluster region
where barium atoms are present, while coarse-graining away. The mesh coarsening rate
in the vacuum is determined numerically by employing the asymptotic solution of the
far-field electronic fields, estimated as a superposition of single atom far-field asymptotic
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fields, in equation (57). To this end, asymptotic behavior of the atomic wavefunctions in
barium atom (ψ̄(r)) is chosen to be

ψ̄(r) =

√

ξ3

π
exp
[

−ξ r
]

where ξ =
√
2 ǫ̃ , (81)

where ǫ̃ (negative of the eigenvalue of the highest occupied eigenstate) is estimated from
a coarse mesh calculation. The corresponding electrostatic potential is determined by
the Poisson equation, with total charge density being equal to the sum of 2ψ̄2(r) and
−2δ(r), and is given by

φ̄(r) = −2 exp (−2ξ r)

(

ξ +
1

r

)

. (82)

The numerical convergence study is conducted with both tetrahedral and hexahedral el-
ements, and Figure 4 shows the rates of convergence for the various elements considered
that are close to optimal rates of convergence. The value of E0, the energy per atom,
is found to be −0.638599384 Ha. The main observation that distinguishes this study
from the all-electron study is that all orders of interpolation provide much greater accu-
racies for pseudopotential calculations in comparison to all-electron calculations. Linear
basis functions are able to approximate the ground-state energies up to relative errors
of 10−3, whereas relative errors of 10−6 can be achieved with higher-order elements with
polynomial degrees of four and above.
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Figure 4: Convergence rates for the finite-element approximation of 2×2×2 barium
cluster.
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Figure 5: Electron density contours of 2× 2× 2 barium cluster.

5.1.2.2 Perfect crystal with periodic boundary conditions: The next ex-
ample considered is that of a perfect calcium face-centered cubic (FCC) crystal with
lattice constant 10.55 a.u.. A Bloch ansatz [47] is used in the simulation with 10 k-points
(high symmetry) to sample the first Brillouin zone, which represents a quadrature rule of
order 2 [66]. The eigenspace is computed using the Krylov-Schur method, and a smear-
ing parameter of 0.003168 Ha (T=1000K) is used in these simulations. Figure 6 shows
the rates of convergence for the various higher-order finite-elements considered in the
present work. The value of E0, the reference bulk energy per atom, is computed to be
−0.729544738 Ha. We note that the results are qualitatively similar to the pseudopo-
tential calculations on barium cluster.
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Figure 6: Convergence rates for the finite-element approximation of bulk calcium.
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5.2 Computational cost

We now examine the key aspect of computational efficiency afforded by the use of higher-
order finite-element approximations in the Kohn-Sham DFT problem. As seen from
the results in Section 5.1, higher-order finite-element discretizations provide significantly
higher accuracies with far fewer elements in comparison to linear finite-elements. How-
ever, the use of higher-order elements increases the per-element computational cost due
to an increase in the number of nodes per element, which also results in an increase in the
bandwidth of the Hamiltonian matrix. Further, higher-order elements require a higher-
order accurate quadrature rule, which again increases the per-element computational
cost. Thus, in order to unambiguously determine the computational efficiency afforded
by higher-order finite-element discretizations, we measured the CPU-time taken for the
simulations conducted on the aforementioned benchmark problems for a wide range of
meshes providing different relative accuracies. All the simulations are conducted using
meshes with the coarse-graining rates determined by the approach outlined in Section 3.2.
All the numerical simulations reported in this work are conducted using a parallel imple-
mentation of the code based on MPI, and are executed on a parallel computing cluster
with the following specifications: dual-socket six-core Intel Core I7 CPU nodes with 12
total processors (cores) per node, 48 GB memory per node, and 40 Gbps Infiniband
networking between all nodes for fast MPI communication. The various benchmark cal-
culations were executed using 1 to 12 cores, while the results for the larger problems
discussed subsequently were executed on 48 to 96 cores. It was verified (see Section 5.3)
that our implementation scales linearly on this parallel computing platform for the range
of processors used, and hence the total CPU-times reported for the calculation are close
to the wall-clock time on a single processor. The number of processors used to conduct
ABINIT and GAUSSIAN simulations for the comparative studies, discussed subsequently,
are carefully chosen to ensure scalability of these codes, and are typically less than 20
cores.

5.2.1 Benchmark systems

We first consider the benchmark systems comprising of boron atom, methane molecule,
barium cluster and bulk calcium crystal. The mesh coarsening rates for these benchmark
systems derived in Section 5.1 are employed in the present study. The number of elements
are varied to obtain finite-element approximations with varying accuracies that target
relative energy errors in the range of 10−1 − 10−7. We employ the same numerical
algorithms and algorithmic parameters—order of Chebyshev filter, finite-temperature
smearing parameter—as discussed in Section 5.1 for the present study. The total CPU-
time is measured for each of these simulations on the series of meshes constructed for
varying finite-element interpolations and normalized with the longest time in the series
of simulations for a given material system. The relative error in ground-state energy is
then plotted against this normalized CPU-time. Figures 7, 8, 9 and 10 show these results
for boron, methane molecule, barium cluster and bulk calcium crystal, respectively.

Our results show that the computational efficiency of higher-order interpolations im-
proves as the desired accuracy of the computations increases, in particular for relative
errors of the order of 10−5 and lower, which corresponds to chemical accuracy. We note

31



Motamarri, Nowak, Leiter, Knap, & Gavini

that a thousand-fold computational advantage is obtained with higher-order elements
over linear TET4 element even for modest accuracies corresponding to relative errors of
10−2. For relative errors of 10−3, quadratic HEX27 element performance is similar to
other finite-elements with quartic interpolation and beyond, and sometimes marginally
better. However, all higher-order elements significantly outperform linear TET4 ele-
ment. Considering relative errors of 10−5, quartic HEX125SPECT element performs
better in comparison to quadratic HEX27 element almost by a factor of 10, while hexic
HEX343SPECT element is computationally more efficient than HEX125SPECT element
by a factor greater than three and this factor improves further for lower relative errors.
The octic HEX729SPECT element performs only marginally better than the hexic ele-
ment for relative errors lower than 10−5. Comparing the results across different materials
systems, we observe that the performance of lower-order elements is inferior in the case
of all-electron systems in comparison to pseudopotential systems. For instance, at a rela-
tive error of 10−2, the solution time using TET4 is more than three orders of magnitude
larger than HEX343SPECT for the case of methane molecule. However, the solution time
is three orders of magnitude larger for TET4 over HEX343SPECT for the case barium
cluster at a relative error of 10−3.

In summary, for chemical accuracies corresponding to relative errors lower than 10−5,
the computational efficiency improves significantly with the order of the element up to
sixth-order, with diminishing returns beyond. Further, the relative performance of higher-
order elements with respect to linear TET4 element in the case of all-electron calculations
is significantly better in comparison to pseudopotential calculations. Lastly, qualitatively
speaking, the sequence of graphs of relative error vs. normalized CPU-time for the various
elements tend towards increasing accuracy and computational efficiency with increasing
order of finite-element interpolation. However, we note that, for the systems studied, the
point of diminishing returns in terms of computational efficiency of higher-order elements
for relative errors commensurate with chemical accuracy is around sixth-order.

5.2.2 Large materials systems

In this section, we further investigate the computational efficiency afforded by higher-
order finite-elements by considering larger material systems involving both pseudopoten-
tial and all-electron calculations. As a part of this investigation, we demonstrate the
effectiveness of the higher-order finite-elements by comparing the solution times of pseu-
dopotential calculations against plane-wave basis set and solution times of all-electron
calculations against a Gaussian basis set providing similar relative accuracy in the ground-
state energy. The systems chosen as a part of this study are aluminium clusters containing
3× 3× 3, 5× 5× 5, 7× 7× 7 FCC unit cells for the case of pseudopotential calculations,
and a graphene sheet containing 100 atoms in the case of all-electron calculations.

5.2.2.1 Pseudopotential calculations: The pseudopotential calculations on alu-
minum clusters are conducted using the evanescent core pseudopotential [65]. All the
simulations in these case studies use superposition of single-atom electron densities as
the initial guess for the electron density in the first SCF iteration. We used the Krylov-
Schur iteration for solving the eigenvalue problem in the first SCF iteration and used
Chebyshev filtered subspace iteration for the subsequent SCF iterations. The order of
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Figure 7: Computational efficiency of various orders of finite-element approxima-
tions. Case study: boron atom.
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Figure 8: Computational efficiency of various orders of finite-element approxima-
tions. Case study: methane molecule.
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Figure 9: Computational efficiency of various orders of finite-element approxima-
tions. Case study: barium 2× 2× 2 BCC cluster.
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Figure 10: Computational efficiency of various orders of finite-element approxima-
tions. Case study: bulk calcium FCC crystal.
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Chebyshev filters used for the 3×3×3, 5×5×5 and 7×7×7 aluminum clusters are 12, 30
and 50 respectively. All simulations are conducted using a finite temperature Fermi-Dirac
smearing parameter of 0.0003168 Ha (T=100K). In order to conduct a one-to-one com-
parison, the plane-wave simulations are also conducted using the same pseudopotential
and finite temperature Fermi-Dirac smearing used in the finite-element simulations.

Aluminium 3× 3× 3 cluster:

We first consider an aluminium cluster containing 3 × 3 × 3 FCC unit cells with a lat-
tice spacing of 7.45 a.u.. The system comprises of 172 atoms with 516 electrons. The
finite-element mesh for this calculation is chosen to be uniform in the cluster region con-
taining aluminium atoms, while coarse-graining away. The mesh coarsening rate in the
vacuum is determined numerically by employing the asymptotic solution of the far-field
electronic fields, estimated as a superposition of single atom far-field asymptotic fields,
in equation (57). To this end, the asymptotic behavior of atomic wavefunctions in an
aluminium atom (ψ̄(r)) is chosen to be

ψ̄(r) =

√

ξ3

π
exp
[

−ξ r
]

where ξ =
√
3 ǫ̃ , (83)

where ǫ̃ (negative of the eigenvalue of the highest occupied eigenstate) is determined from
a single aluminum atom coarse mesh calculation. The corresponding total electrostatic
potential, governed by the Poisson equation with total charge density being equal to the
sum of 3ψ̄2(r) and −3δ(r), is given by

φ̄(r) = −3 exp (−2ξ r)

(

ξ +
1

r

)

. (84)

Table 3: Convergence with finite-element basis for a 3×3×3 FCC aluminum cluster
using HEX125SPECT element

Degrees of freedom Energy per atom (eV) Relative error

184, 145 -54.1076597 3.4 ×10−2

1, 453, 089 -56.0076146 1.8 ×10−4

11, 546, 177 -56.01788889 1.3 ×10−6

We obtain the converged value of the ground-state energy by following the procedure
outlined in Section 5.1. We use a sequence of increasingly refined HEX125SPECT finite-
element meshes on a cubic simulation domain of side 400 a.u., and compute the ground-
state energy Eh for these meshes which are tabulated in Table 3. Using the extrapolation
procedure discussed in Section 5.1 (equation (70)), we compute the reference ground-state
energy (energy per atom) to be E0 = −56.0179603 eV . The relative errors reported in
Table 3 are with respect to this reference energy, and this reference energy will be used
to compute the relative errors for all subsequent simulations for this material system.
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Table 4: Comparison of higher-order finite-element (FE) basis with plane-wave
basis for a 3× 3× 3 FCC aluminum cluster

Type of basis set Relative error Time (CPU-hrs)

Plane-wave basis (cut-off
30 Ha, cell-size of 60 a.u.)

3.3 ×10−6 646

FE basis (HEX343SPECT,
2, 808, 385 nodes, domain
size: 200 a.u.)

3.6 ×10−6 371

In order to assess the performance of higher-order finite-elements on this material sys-
tem, we conduct the finite-element simulation with a mesh containing HEX343SPECT
elements and compare the computational CPU-time against a plane-wave basis code
ABINIT [5] solved to a similar relative accuracy in the ground-state energy. The finite-
element simulation has been performed on a cubic domain size of 200 a.u. with a mesh
coarsening rate away from the cluster of atoms as determined using equations (57), (83), (84).
The resulting mesh contains 12, 800 HEX343SPECT elements with 2, 808, 385 nodes. The
plane-wave basis simulation has been performed by using a cell-size of 60 a.u. and a cut-
off energy of 30 Ha with one k-point to obtain the ground-state energy of similar relative
accuracy as the finite-element simulation. The solution times for the finite-element basis
and the plane-wave basis are tabulated in Table 4. These results demonstrate that the
performance of higher-order finite-element discretization is comparable, in fact better by
a two-fold factor, to the plane-wave basis for this material system. Figure 11 shows the
electron density contours on the mid-plane of the 3 × 3 × 3 aluminum cluster from the
finite-element simulation.

Figure 11: Electron density contours of 3× 3× 3 FCC aluminium cluster.
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Aluminium 5× 5× 5 cluster:

We next consider an aluminium cluster containing 5× 5× 5 FCC unit cells with a lattice
spacing of 7.45 a.u.. This material system comprises of 666 atoms with 1998 electrons.
The finite-element mesh is constructed along similar lines as the 3×3×3 cluster, where a
uniform mesh resolution is chosen in the cluster region containing aluminium atoms and
coarse-graining away into the vacuum with a numerically determined coarsening rate as
discussed earlier. As before, we first obtain the reference ground-state energy by using
a sequence of increasingly refined HEX125SPECT finite-element meshes with a cubic
simulation domain of side 800 a.u. and extrapolating the computed ground-state energies
on these meshes (cf. Table 5). The reference ground-state energy (energy per atom),
thus determined, is E0 = −56.0495071 eV .

Table 5: Convergence with finite-element basis for a 5 × 5 × 5 FCC cluster using
HEX125SPECT element

Degrees of freedom Energy per atom(eV) Relative error

394, 169 -54.8536312 2.1 ×10−2

3, 124, 593 -56.0425334 1.2 ×10−4

24, 883, 937 -56.0494500 1.01 ×10−6

We now assess the performance of higher-order finite-elements on this material system
in comparison to a plane-wave basis. The finite-element simulation in this case has been
performed on a simulation domain size of 400 a.u. containing 36, 064 HEX343SPECT
elements with 7, 875, 037 nodes. The plane-wave basis simulation conducted using the
ABINIT package has been performed on a cell-size of 80 a.u. and a cut off energy of 30 Ha
with one k-point to sample the Brillouin zone to obtain the ground-state energy of similar
relative accuracy. The solution time for the finite-element basis and the plane-wave basis
are tabulated in Table 6, which shows that using higher-order finite-elements one can
achieve similar computational efficiencies as afforded by a plane-wave basis, at least in
the case of non-periodic calculations. Figure 12 shows the electron density contours on
the mid-plane of the 5× 5× 5 FCC cluster from the finite-element simulation.

Aluminium 7× 7× 7 cluster:

As a final example in our case study of pseudopotential calculations, we study an alu-
minium cluster containing 7×7×7 FCC unit cells with a lattice spacing of 7.45 a.u. This
material system comprises of 1688 atoms with 5064 electrons. We only use the finite-
element basis to simulate this system as the plane-wave basis calculation was beyond
reach for this material system with the computational resources at our disposal. The
finite-element simulation has been performed on a cubic simulation domain with a side of
800 a.u.. The finite-element mesh was constructed as described in the simulation of other
aluminum clusters, and comprised of 69, 984 HEX343SPECT elements with 15, 257, 197
nodes. The computed energy per atom for this aluminum cluster is −56.06826762 eV ,
and figure 13 shows the electron density contours on the mid-plane of the cluster.

37



Motamarri, Nowak, Leiter, Knap, & Gavini

Table 6: Comparison of higher-order finite-element (FE) basis with plane-wave
basis sets for a 5× 5× 5 FCC aluminum cluster

Type of basis set Relative error Time (CPU-hrs)

Plane-wave basis (cut-off
30 Ha, cell-size of 80 a.u)

2.1 ×10−5 7307

FE basis ( HEX343SPECT,
7, 875, 037 nodes, domain
size: 400 a.u.)

7.9 ×10−6 6619

Figure 12: Electron density contours of 5× 5× 5 FCC aluminium cluster.
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Figure 13: Electron density contours of 7× 7× 7 FCC aluminium cluster.

5.2.2.2 All-electron calculations: We now demonstrate the performance of higher-
order finite-element discretization in the case of all-electron calculations, by considering a
graphene sheet as our benchmark problem. We simulate a graphene sheet containing 100
atoms (600 electrons) with a C-C bond length of 2.683412 a.u.. We first obtain a con-
verged value of the ground-state energy by conducting simulations using the GAUSSIAN
package [41] using the polarization consistent DFT basis sets (pc-n), which have been
demonstrated to provide a systematic convergence in Kohn-Sham DFT calculations [67].
Since these basis sets are not directly available in the GAUSSIAN package, we introduce
them as an external basis set for conducting these simulations. The ground-state energy
value obtained for triple-zeta pc-3 basis set is taken as the reference value (E0) in this
study, which is computed to be E0 = −37.7619141 Ha per atom.

We assess the performance of higher-order finite-elements on this material system
by comparing the computational CPU-time against the pc-2 basis set, which provides
similar relative accuracy in the ground-state energy with respect to the E0 determined
above. The finite-element mesh for this problem is chosen to be uniform in the region
containing carbon atoms with local refinement around each atom while coarse-graining
away into vacuum. The mesh coarsening rate in the vacuum is determined numerically
by employing the asymptotic solution of the far-field electronic fields, estimated as a su-
perposition of single atom far-field asymptotic fields, in equation (57). To this end, the
asymptotic behavior of the atomic wavefunctions in carbon atom (ψ̄(r)) is chosen to be as
in equation (75). Since the GAUSSIAN package does not account for partial occupancy
of energy levels, we suppress the Fermi-Dirac smearing in the finite-element simulations

39



Motamarri, Nowak, Leiter, Knap, & Gavini

for the present case in order to conduct a one-to-one comparison. Table 7 shows the
relevant results of the simulation with figure 14 showing the electron density contours of
the graphene sheet. We remark that the finite-element simulation with HEX125SPECT
elements is ten-fold slower than the GAUSSIAN simulation with pc basis set. We note
that the pc basis set is highly optimized for specific material systems, which is reflected
in the far fewer basis functions required for these calculations. We believe this is the
main reason for the superior performance of Gaussian basis, which, however, may not
be transferable to generic material systems—for e. g. metallic systems. We also note
that the computational time using finite-element basis functions can possibly be reduced
significantly by enriching the finite-element shape functions with single atom wavefunc-
tions using the partitions-of-unity approach [68, 69]. The degree of freedom advantage
of the partitions-of-unity approach for Kohn-Sham calculations has been first demon-
strated in [42], and presents a promising future direction for all-electron Kohn-Sham
DFT calculations.

Table 7: 100 atom graphene sheet (600 electrons)

Type of basis set Relative error Time (CPU-hrs)

pc2 (Gaussian, 3, 000 basis functions) 1.06 ×10−4 666

FE basis (HEX125SPECT, 8, 004, 003 nodes) 1.2 ×10−4 7461

Figure 14: Electron density contours of a graphene sheet containing 100 atoms.

5.3 Scalability of finite-element basis:

The parallel scalability of our numerical implementation is demonstrated in Figure 15.
We study the strong scaling behavior by measuring the relative speedup with increasing
number of processors on a fixed problem of constant size, which is chosen to be the
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aluminum 3 × 3 × 3 cluster discretized with HEX125SPECT elements containing 3.91
million degrees of freedom. The speedup is measured relative to the computational CPU-
time taken on 2 processors, as a single processor run was beyond reach due to memory
limitations. It is evident from the figure, that the scaling is almost linear. The relative
speedup corresponding to 96-fold increase in the number of processors is 87.82, which
translates into an efficiency of 91.4%.
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Figure 15: Relative speedup as a function of the number of processors.

6 Conclusions

In the present study, we have analyzed numerically the higher-order adaptive finite-
element discretization of the Kohn-Sham DFT problem. The present work is focussed
towards demonstrating the significant computational efficiency in electronic structure cal-
culations that is afforded by using an adaptive higher-order spectral finite-element dis-
cretization in conjunction with appropriate solution strategies. We use the self-consistent
field formulation of the Kohn-Sham DFT problem as our starting point. In order to aid
our investigation, we first developed estimates for the discretization error in the ground-
state energy in terms of the ground-state electronic fields (wavefunctions and electrostatic
potential) and characteristic mesh-size. These error estimates and the a priori knowl-
edge of the asymptotic solutions of far-field electronic fields were used to construct mesh
coarsening rates for the various benchmark problems considered in this work. Since the
finite-element discretization of the Kohn-Sham problem results in a generalized eigenvalue
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problem, which is computationally expensive to solve, we presented an approach to triv-
ially transform this into a standard eigenvalue problem by using spectral finite-elements
in conjunction with the Gauss-Lobatto quadrature rules that results in a diagonal overlap
matrix. We subsequently examined two different strategies to solve the Kohn-Sham prob-
lem: (i) explicit computation of eigenvectors at every self-consistent field iteration; (ii) a
Chebyshev filtering approach that directly computes the occupied eigenspace. We found
that the Chebyshev filtered approach presents with significant computational savings for
both pseudopotential, as well as, all-electron calculations.

Using the derived error estimates and the a priori knowledge of the asymptotic solu-
tions of far-field electronic fields, we constructed close to optimal finite-element meshes
for the various benchmark problems, which include all-electron calculations on systems
comprising of boron atom, methane molecule and pseudopotential calculations on barium
cluster and bulk calcium crystal. We employed the Chebyshev filtering approach on the
transformed standard eigenvalue problem in our numerical investigations to study the
computational efficiency of higher-order finite-element discretizations. To this end, we
first investigated the performance of higher-order elements by studying the convergence
rates of linear tetrahedral element and hexahedral spectral-elements up to sixth-order.
In all the benchmark problems considered, we observed close to optimal rates of conver-
gence for the finite-element approximation in the ground-state energy. Importantly, we
note that optimal rates of convergence were obtained for all orders of finite-element ap-
proximations, considered in this work, even for all-electron Kohn-Sham DFT calculations
with Coulomb-singular potentials, the mathematical analysis of which, to the best of our
knowledge, is an open question to date.

We further investigated the computational efficiency afforded by the use of higher-
order finite-elements up to eighth-order spectral-elements. To this end, we used the mesh
coarsening rates determined from the proposed mesh adaption scheme and studied the
CPU time required to solve the benchmark problems. Our results demonstrate that
significant computational savings can be realized by using higher-order elements. For
instance, a staggering 1000−fold savings in terms of CPU-time are realized by using
sixth-order hexahedral spectral-element in comparison to linear tetrahedral element. We
also note that the point of diminishing returns in terms of computational efficiency was
determined to be around sixth-order for the benchmark systems we examined. To further
assess the performance of higher-order finite-elements, we extended our investigations to
study large materials systems and compared the computational CPU-time with commer-
cially available plane-wave and Gaussian basis codes. We first conducted pseudopotential
simulations on aluminium clusters containing 172 atoms and 666 atoms using sixth-order
spectral-element in our implementation, as well as, the plane-wave basis in ABINIT
package solved to the similar relative accuracy in the ground-state energy. These stud-
ies showed that the computational CPU-time required for the finite-element simulations
is lesser in comparison to plane-wave basis sets underscoring the fact that higher-order
finite-elements can compete with plane-waves, at least in non-periodic settings, when
employed in conjunction with efficient solution strategies. Furthermore, we were able
to compute the electronic structure of an aluminium cluster containing 1, 688 atoms by
employing the sixth-order spectral-element, which was not possible using ABINIT due to
large memory requirements. Next, we examined the computational efficiency in the case
of all-electron calculations on a graphene sheet containing 100 atoms. The all-electron
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calculations were conducted using polarization consistent Gaussian DFT basis sets and
the fourth-order spectral-element basis, and we observed that the computational time for
the finite-element basis was 10−fold greater than the Gaussian basis.

The prospect of using higher-order spectral finite-elements as basis functions, in con-
junction with the proposed solution strategies, for Kohn-Sham DFT electronic struc-
ture calculations is indeed very promising. While finite-elements have the advantages of
handling complex geometries and boundary conditions and exhibit good scalability on
massively parallel computing platforms, their use has been limited in electronic structure
calculations as their computational efficiency compared unfavorably to plane-wave and
Gaussian basis functions. The present study shows that the use of higher-order discretiza-
tions can alleviate this problem, and presents a useful direction for electronic structure
calculations using finite-element discretization. Further, the computational cost in the
case of all-electron calculations can be further reduced by enriching the finite-element
shape functions with single-atom wavefunctions using the partitions-of-unity approach,
and is currently being studied. Last, but not the least, the implications of using higher-
order spectral finite-element approximations in the development of a linear scaling Kohn-
Sham DFT formulation is a worthwhile subject for future investigation.
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