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ABSTRACT  

 

Camouflaged robots and leave-behind surveillance sensors are desirable in information, surveillance and reconnaissance 
operations to minimize the chances of detection by the enemy.  Today’s camouflaging techniques involve nets and 
painted patterns that are fixed in color and geometry, limiting their use to specific environments; a fact illustrated by 
numerous changes in military uniforms designed to fit the latest operating environment.  Furthermore, nets are bulky and 
can interfere with the operation or use of a robot or leave-behind sensor.  A more effective technique is to automatically 
adapt surface patterns and colors to match the environment, as is done by several species in nature.  This can lead to the 
development of new and more effective robotic behaviors in surveillance missions and stealth operations.  This 
biologically-inspired adaptive camouflage can be achieved by a) sampling the environment with a camera, b) 
synthesizing a camouflage image, and c) reproducing it on color electronic paper – a thin low-power reflective display – 
that is part of the outer enclosure surface of the robot or device.  The focus of this paper is on the work performed for the 
first two steps of the process.  Color-camouflage-synthesis is achieved via modifications made to a gray-level texture-
synthesis method that makes use of gray-level co-occurrence matrices.  Statistic equality in color-proportion is achieved 
with the use of conditional probability constraints. 

Keywords: adaptive camouflage, color texture synthesis, GLCM, spin-flip, robot, unmanned system 
 

1. INTRODUCTION  
One of the most basic instincts in nature is to hide and not be seen.  This gives predators the element of surprise when 
hunting for prey, significantly increasing the success-rate of catching food, ensuring their survival until the next hunt.  
For prey, on the other hand, camouflaging significantly increases the chances of evading predators, ensuring their 
survival until the next encounter.  Many animals (predator or prey) must be able to hide in relatively open fields because 
a shelter is not always available.  To do so, nature provides camouflaging as a means of blending in with the background 
and not be seen.  Because camouflaging has proven to be extremely effective, most species possess some form of 
camouflage.  Examples are shown in Figure 1. 

 
Figure 1.  A mixed variety of camouflage patterns found in moths (left), reptiles (center), mammals (right). 
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The effectiveness of animal camouflage appears to be dependent on the diversity of its natural habitat.  The camouflage 
of an animal may be highly adapted and extremely effective if the general background of its habitat has little diversity.  
In contrast, the camouflage of an animal living in a diverse habitat area may be more effective in some environments and 
less so in others.  There are a few species, however, that possess the ability to change or adapt their camouflage based 
upon the environment.  Octopuses and cuttlefish are two such examples and are shown in Figure 2. 

 
Figure 2.  Examples of adaptive camouflaging capability of cuttlefish (left two images) and octopus (right two 
images). 

Because nature has proven that camouflaged animals can effectively hide or attack, it is no accident that the military has 
followed suit with a rich history of camouflaging ships, aircraft, vehicles, uniforms, weapons, and many other devices 
(Figure 3).  Military camouflage colors and patterns have evolved throughout history to improve their effectiveness, with 
each variant designed for a specific environment.  As a result, the camouflage pattern is only effective in areas where the 
local background remains relatively unchanged, much like the habitat area of most species in nature.  For a military 
system that is capable of operating in a wide-variety of environments, its camouflage must adapt accordingly.  The lack 
of this capability forces the military to periodically alter camouflage patterns and colors to fit the theater of operation.  A 
testament to this fact is the changing military uniforms that are designed to fit the latest operating environment.   

 
Figure 3.  Fixed camouflage pattern examples used by the military (from left to right) for arctic, riverine, 
mountainous, woodland, and generic green or tan environments. 

Ground troops are not the only military assets in need of camouflaging.  Robots have become valuable assets for the 
military and their use in wartime operations has grown considerably over the past several years.  As robots continue to 
evolve technologically, they will be used in more complex missions.  For example, a robot may be used for information, 
surveillance, and reconnaissance (ISR) missions and be required to frequently change its observation location.  Since the 
local background of one location may be drastically different than that of another, the ISR robot must be able to adapt its 
camouflage accordingly.  If using leave-behind sensors scattered to monitor a wide area the local background for each 
leave-behind sensor may vary considerably.  The operational environments can change as well, even if their local 
background has few variations.  For example, woodland, urban, arctic, and desert environments have drastically different 



 

 

backgrounds from one another.  In all cases, the ISR robot and leave-behind sensor must adapt their camouflage patterns 
accordingly to reduce their visual signature and increase survivability. 

The remainder of the paper is structured as follows: section 2 gives background information regarding attempts to 
achieve invisibility and adaptive camouflaging; section 3 will discuss the proposed approach taken to achieve adaptive 
camouflaging; section 4 will describe the color-texture-synthesis technique and experimental results, and section 5 will 
discuss future work. 

2. BACKGROUND 
Research conducted to achieve invisibility and active camouflaging has seen some activity in the recent past1.  A 
common practice is to place a camera behind an object and display-panels in front of it that show background images 
captured by the camera.  The illusion is that the object seems invisible when looking at its front, but this is only effective 
from a single vantage point.  This approach requires knowledge of the observer location in order to calculate the proper 
size of the displayed image and to ensure the display panels are facing the observer. 

To achieve invisibility outside the visible spectrum BAE Systems has developed a cloaking technology that works in the 
infrared (IR) band2.  Demonstrations have been performed on vehicles outfitted by hand-sized hexagonal “pixels” that 
can be heated or cooled to match the ambient temperature, making the vehicle blend into the IR background.  Duke 
University has been able to demonstrate invisibility in the microwave band using metamaterials3.  Microwave radiation 
approaching the metamaterial object flows around it and recombines on the opposite side with little disturbance, making 
the object appear as if it is not there.  The invisibility, however, is limited to a 2D planar region and for a very narrow 
band of microwave frequencies.  Neither of these two approaches is adaptable to the visible spectrum. 

An adaptive camouflage system called CAMELEON4, developed by the Netherland’s Army collaboratively with 
Germany and Canada, targets the visible spectrum.  An array of Polymer LEDs (PLEDs) is placed behind fixed color 
filters, with the individual PLED brightness level optimally adjusted with the aid of a camera to match the background.  
The use of electrochromic materials (tunable color filters) is considered, but such development appears to still be in the 
research phase.  Drawbacks of this system from a man-portable robotic perspective are insufficient resolution, due to the 
relatively large size of an individual PLED, and continuous power consumption of the PLEDs, which makes this 
technology unsuitable for extended missions. 

3. APPROACH 
Attaining invisibility is not trivial and much research is still needed.  A more practical interim approach is to make the 
camouflaged object difficult to distinguish from its surrounding environment in order to keep observers unaware of its 
presence.  Because there is no assumption made about the location of the observer with respect to the camouflaged 
object, no attempt is made to project a background image on the front-side of the object.  Instead, a synthesized 
camouflage pattern that is visually similar to the surrounding environment of the object is presented on display panels on 
its exterior surface.  The display-panel technology is important, as it is required to faithfully reproduce colors and 
brightness levels capable of matching the local environment.  There are new display-technologies being developed that 
look promising and will be discussed in the following section; however, what is of equal importance is knowing what to 
display on them.  Texture synthesis is an important part of this concept and a critical component in the development of a 
future Adaptive Electronic Camouflage (AEC) system. 

3.1 AEC overview 

Adaptive camouflaging requires the appearance of the outer surface of a robot or a leave-behind sensor to change in 
color and pattern to match the surrounding environment.  This can be achieved by taking an image of the local 
environment with the existing onboard camera of a robot, synthesizing a statistically equivalent texture image, and 
displaying the synthesized image on the exterior display panels that shroud the robot or leave-behind sensor.  Electronic 
paper (e-paper) may be a potential solution for the display panel5, 6.  E-papers possess many characteristics that are 
similar to regular paper: For starters they are reflective in nature – the more light that shines upon them the greater will 
be the perceived brightness level, and vice versa.  For example, if part of an AEC robot is under shade and the other 
under sunlight the part under shade will naturally appear darker than the part under sunlight.  This eliminates the need 
for complex analysis of light and shadow in order to accordingly adjust the brightness level for various regions of a 
display panel.  Secondly they are thin and flexible – the conformal nature of e-papers allow them to bend around corners, 



 

 

which can be exploited to design exterior shells with minimal sharp edges, which look out of place in natural 
environments.  Finally, they require zero power for image retention – this is critical for long-term ISR missions.  The 
display only consumes a small amount of power to change the displayed image; otherwise, no power is consumed for 
image retention. 

For a leave-behind sensor in need of camouflaging but not equipped with a camera, the camouflage pattern can be 
computed externally (by a user or delivery robot) and downloaded to it.  If the leave-behind sensor is sufficiently small, 
it is possible to skip the texture-synthesis process and simply display the image taken from the environment.  However, 
the image taken may be of insufficient resolution to entirely cover a larger object, requiring tiling, which generates 
repetitive patterns that will look unnatural. 

3.2 Texture synthesis approach 

A wide-variety of texture-synthesis methods can be found in the literature, and a comprehensive review is beyond the 
scope of this paper.  However, patch-based7 synthesis and pixel-based8 synthesis are two well-known methods. 

The texture synthesis method used on this effort is pixel-based and makes use of the gray-level co-occurrence matrix9 
(GLCM).  GLCMs provide second-order statistics (relationships between pairs of pixels) for a texture image.  A brief 
review is given in section 4.1.  The texture-synthesis method that makes use of GLCMs is the spin-flip algorithm10.  The 
algorithm begins by computing the GLCMs, GIN and GOUT, of the input image (e.g., image of local environment) and 
output image (randomly generated), respectively.  The algorithm randomly selects a pixel from the output image and 
cycles its gray-level through all values.  For each value, GOUT is updated.  The value of the selected pixel is permanently 
changed to the gray-level value that minimizes the error between GIN and GOUT.  Without selecting a pixel twice, this 
process repeats itself until all pixels are considered, which constitutes a single iteration.  With each iteration, the error 
between GIN and GOUT decreases such that GOUT becomes statistically equivalent to GIN.  This repetitive process can stop 
in one of two ways: 1) after completing a fixed number of iterations or 2) when reaching a predetermined minimum error 
between two consecutive iterations.  Selecting a fixed number of iterations has been experimentally shown to be 
sufficient. 

The texture synthesis results from this approach have been shown to have high correlation with the human perception of 
texture similarity10.  Since the goal of the AEC system is to make observers unaware of the presence of the camouflaged 
object, the camouflage image must be visually similar to its surrounding environment as perceived by human observers.  
Therefore, the GLCM-based texture-synthesis technique is very well suited for this purpose. 

4. COLOR TEXTURE SYNTHESIS 
This section will provide a brief overview of the GLCM-based texture-synthesis approach and the modifications devised 
to produce color textures.  Several example of color-texture synthesis will also be provided. 

4.1 GLCM review 

For a given texture, a GLCM provides second-order statistics, which captures the spatial relationship for a pair of pixels 
that are separated by a displacement vector d = [dx dy].  For each displacement vector dl = [dxl, dyl], where l = 1, 2,…, 
M, a GLCM is calculated.  Collectively the M GLCMs comprise the set G = {GLCM1, GLCM2,…, GLCMM}.  The cell 
value of GLCMl(i,j) is determined by counting the number of times the first pixel has value i and the second pixel, 
separated by d, has value j.  Examples of GLCMs for two specific displacement vectors are shown in Figure 4. 

 
Figure 4.  GLCM examples for displacements d1 = [2 0] and d2 = [-1 1]. 

Since the row and column indices of a GLCM correspond to the gray-level values of a pixel-pair in the input image, the 
GLCM will be of size N x N, where N is the total number of gray-level values within the input image.  In Figure 4, the 
GLCMs are of size 3 x 3 since the gray-level values of the input image range from1 to 3.  For a very simple image, like a 



 

 

checkerboard pattern, where every other pixel alternates between the values 0 and 1, a single GLCM having 
displacement vector d = [1 0], will completely describe the image.  The GLCM in this case would be of size 2 x 2 with 
cells (0,0) and (1,1) containing the value zero, while cells (0,1) and (1,0) containing equal and non-zero values.  For 
more complex and realistic textures, more displacement vectors must be considered, and a GLCM calculated for each in 
order to have a comprehensive statistical description for the texture.  The collective displacement vectors form the set D 
= {d1, d2,…, dM}, which defines the spatial neighborhood.  For example, displacement vectors d1 = [1 0], d2 = [1 1], d3 = 
[0 1], and d4 = [-1 1] form the spatial neighborhood D = {d1, d2, d3, d4}.  Due to symmetry, there is no need to calculate 
–dl, where l = 1…4; only displacement vectors that vary over 180 degrees are considered.  In this example, the size of D, 
as spanned by displacement vectors dl, is 2 x 3. 

4.2 Color texture synthesis 

Clearly, GLCMs only capture the gray-level dependencies for pairs of pixels, and so color dependencies must also be 
taken into account.  If color dependencies are not considered and the spin-flip algorithm applied to each channel (e.g., R, 
G, and B) independently, the combined synthesized channels will produce random colors that are not found in the input 
image, which results in a camouflage pattern that does not match the local environment. 

To include color dependencies, it is necessary to incorporate inter-channel and intra-channel pixel dependencies.  The 
former is simply the gray-level dependencies produced by the GLCMs of the spatial neighborhood.  The latter is 
produced by a set of conditional probability matrices (see modification #1).  The color-texture-synthesis process, which 
is a modified version of the gray-level texture-synthesis process, is applied to each channel.  Whether the channels are 
the traditional R, G, and B color channels, Hue (H), Saturation (S), and Luminosity (L) channels, or some other triplet, 
the process is the same.  The channels are designated as A, B, and C to maintain independence from channel 
representation.  The color-texture-synthesis process begins by generating a random output image for channel A that is 
iteratively modified for a fixed number of iterations.  A random output image for channel B is generated that is 
dependent upon the final synthesized image for channel A, and iteratively modified for a fixed number of iterations.  
Finally, a random output image for channel C is generated that is depended upon the final synthesized images for 
channels A and B, and iteratively modified for a fixed number of iterations.  The combined channels A, B, and C form 
the final synthesized image. 

Three modifications are made to the gray-level texture-synthesis process, which are required for producing color 
textures, as described below. 

Modification #1 – The first modification is to develop conditional probabilities for channels B and C instead of using 
histograms.  The required probabilities are PA(i), PB(j | i), PC(k | i,j), where A, B, and C are the H, L, and S channels, 
respectively.  The rationale behind the ordering of the channels is explained in section 4.3, however, as far as the texture-
synthesis process is concerned, it does not matter.  The variable i, j, and k are the gray-level pixel value for channels A, 
B, and C, respectively. 

Figure 5 illustrates the intra-channel dependencies in the form of conditional probability trees.  Suppose the input image 
(of the local environment) is of size X x Y (e.g., 4 x 4) and converted from RGB-space into HSL-space with A = H, B = 
L, and C = S.  Furthermore, suppose that the gray-level pixel value in any channel A, B, or C can take on only one of 
three values.  The conditional probability matrices in Figure 5 are generated as follows:  For channel A, count all the 
pixels with value H1 and divide by the total number of pixels TA = XY to obtain p1.  Do the same for values H2 and H3 to 
obtain p2 and p3, respectively.  Together the pi values form the probability vector PA(i) or the histogram for channel A.  
For the next channel, count every pixel in channel B when the corresponding pixel location in channel A has value H1, to 
obtain the sum TB|H1.  Next, count all the pixels with value L1 and divide by TB|H1 to obtain p1,1.  Then count all the pixels 
with value L2 and divide by TB|H1 to obtain p1,2.  Repeat for pixel value L3.   

To determine TB|H2, count every pixel in channel B that occurs when the corresponding pixel location in channel A has 
value H2.  To obtain p2,1, divide the total number of pixels with value L1 by TB|H2.  Repeat for all remaining values to 
determine pi,j to form the conditional probability matrix PB(j | i).  Finally, count every pixel in channel C when the 
corresponding pixel location in channel A has value H1 and the corresponding pixel location in channel B has value L1, 
to obtain the sum TC|H1,L1.  Next, count all the pixels with value S1 and divide by TC|H1,L1 to obtain p1,1,1.  Repeat this 
process to determine TC|H1,L2, TC|H1,L3, and all the remaining sums needed to calculate p1,2,1, p1,3,1, and all the remaining 
probabilities pi,j,k that collectively form the conditional probability matrix PC(k | i,j). 



 

 

 

 
Figure 5.  A sample input image shows the corresponding pixel locations for the combination H3 (red), L3 (blue), 
and S2 (orange), that occur with probability p3,3,2 (highlighted in PC(k | i,j))  in channels A, B, and C.  Similarly, 
the combination H3 and L3 occur with probability p3,3 (highlighted in PB(j | i)) in channels A and B.  Finally, the 
value H3 occurs with probability p3 (highlighted in PA(i)) in channel A. 

Modification #2 – The second modification ensures that the color proportions in the final synthesized image are 
statistically equivalent to the color proportions in the input image.  For example, if one color occurs more often than 
another color in the input image, the same will be true in the synthesized image.  This is achieved by making use of the 
probabilities discussed in modification #1. 

The standard gray-level texture-synthesis process requires an initial random image that is generated based on the 
histogram of the input image, which ensures that the gray-level proportions are maintained in the final synthesized 
image.  For color-texture-synthesis, an initial random image is also required, but for channels B and C the conditional 
probabilities PB(j | i) and PC(k | i,j) are used instead of the histograms PB(j) and PC(k).  Each pixel value in the initial 
random image of channels B and C is drawn from the conditional probabilities PB(j | i) and PC(k | i,j), respectively.  This 
ensures that as the random image is iteratively modified, the color proportions are maintained.  The initial random image 
for channel A, however, only requires the histogram PA(i), because channel A is completely independent. 

Modification #3 – The third modification ensures that the final synthesized image only contains colors that appear in the 
input image.  In other words, the final camouflage image will not contain colors that do not appear in the local 
environment.  As discussed in section 3.2, the spin-flip algorithm cycles the gray-level values of the pixel under 
consideration to determine which gray-level produces the minimum error between the sets GIN and GOUT.  It is clear from 
Figure 5 that some combinations of H, L, and S do not occur in the input image.  For example, the combinations H1-L2 
and H2-L2-S1 do not exist in the input image; their probabilities p1,2 and p2,2,1 are equal to zero.  Therefore, the spin-flip 
algorithm must not consider such combinations while cycling through pixel values.  To enforce this restriction, the spin-
flip algorithm only cycles through pixel values that have a probability PB(j | i) > 0 and PC(k | i,j) > 0.  Consider Figure 5 
and note that pixel value L2 does not occur in combination with pixel value H1.  As a result, the spin-flip algorithm only 
cycles through values L1 and L3 for a pixel in channel B that has a corresponding pixel in channel A with value H1.  
Similarly, for a pixel in channel C that has corresponding pixels in channels A and B equal to H2 and L1, respectively, 
the spin-flip algorithm only considers pixel values S1 and S2. 

4.3 Results 

Several parameters must be specified before the texture-synthesis process can begin.  They are: size of the spatial 
neighborhood, number of iterations, number of gray-levels, and size of the output image.  The size of the spatial 
neighborhood defines the extent of the displacement vector d.  A larger spatial neighborhood will result in a synthesized 
image that better captures the features of the input image.  The number of iterations determines the amount of error 



 

 

between the sets GIN and GOUT.  The error is reduced with increasing number of iterations, but with diminishing gains.  
The number of gray-levels determines the size of the GLCMs and the shades of gray used to produce the synthesized 
image.  The last parameter specifies the size of the synthesized image.  An increase in value for any of these parameters 
will result in an exponential increase in synthesis time.  In order to help reduce the synthesis time and improve the 
quality of the synthesized textures, Copeland et al. 10 suggest using a multi-resolution technique (to allow for a reduction 
in the size of the spatial neighborhood), reducing the number of gray-levels (they use 8 gray-levels computed via K-
means clustering), and using weighted error calculations.  The color-texture-synthesis process incorporates these 
techniques. 

The color-texture-synthesis process also requires specifying the triples and the ordering of the channels.  Although they 
have no impact on the synthesis time, experimental results show that working in the HSL-space with an ordering of A = 
H, B = L, and C = S, produces somewhat better (more similar-looking) results than working in the RGB-space.  This 
appears to be the result of the probability distribution for individual GLCMs in the set GIN.  Generally, for a vast 
majority of images taken from nature, the gray-levels of the R, G, and B channels are more uniformly distributed than 
that of the H-channel.  Since the gray-levels of the H-channel represent color tones, and there are usually just a handful 
of color-tones in such images, the gray-level distribution of the H-channel will be highly non-uniform. 

As a result, the probability distribution of the corresponding GLCM will be highly non-uniform.  In addition, the low 
spatial frequency of color-tones in such images will result in highly non-uniform probability distributions in a greater 
number of GLCMs in the set GIN.  This non-uniformity is advantageous when using the weighted-error method because 
it will force the spin-flip algorithm to favor pixel values that will minimize the larger discrepancies (caused by the non-
uniformities) between the sets GIN and GOUT.  In other words, the spin-flip algorithm will choose pixel values in the 
output image that better represent (look more similar to) the input image. 

The ordering of the L and S channels does not appear to make a significant contribution to texture similarity, possibly 
due to the increased uniformity in gray-levels as compared to the H channel.  However, the probability distribution of the 
L-channel gray-level values is generally more non-uniform than that of the S-channel gray-levels, therefore, it is 
processed next, with B = L.  Figure 6 shows an example of a synthesized color texture along with the error for each 
iteration and resolution. 
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Figure 6.  Input image (top left) and synthesized image (top right) using the multi-resolution technique with four 
levels.  A spatial neighborhood of 11 x 21 was used for level 1 (image size 32 x 32), 9 x 17 for level 2 (image size 
64 x 64), 7 x 13 for level 3 (image size 128 x 128), and 5 x 9 for level 4 (final image size 256 x 256).  The error 
plots (bottom row) show the decreasing error between the sets GIN and GOUT with increasing iterations.  The error 
increases with each level due to the increasing size of the synthesized image and D. 



 

 

The error is obtained using the sum of absolute difference between the sets GIN and GOUT. 
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The indices u and v correspond to the size of an individual GLCM and vary from 0 to N-1.  The index w corresponds to 
the number of GLCMs and varies from 1 to M.  The error metric is only meaningful in evaluating the performance of the 
texture-synthesis process by comparing synthesized images of the same size, same triplet, and same spatial 
neighborhood D.  Variations in D and image size will cause variations in the number of GLCMs and probability 
distributions, respectively, which will result in error values that cannot be compared.  Comparing the error between the R 
and H channels, for example, is also meaningless; therefore, the triplets must also be the same. 

Figure 7 shows the effects of modification #2.  The columns from left to right correspond to channels A = H, B = L, and 
C = S.  The top row is the input image, the middle row the initial output image created randomly, and the bottom row the 
final synthesized image.  The initial image for channel A is entirely random because channel A is independent of any 
other channel.  However, the initial images for channels B and C are clearly not randomly distributed and depend on the 
final synthesized image of the previous channel.  Modification #2 allows the color proportions to be maintained in the 
final synthesized image. 

Hue Luminosity Saturation

Input

Initial

Final

 
Figure 7.  Individual channels A = H, B = L, and C = S.  Top row is the original image, middle row the initial 
image, and bottom row the synthesized image.  Initial image for channels B and C shows non-random distribution 
of pixel values resulting from modification #2. The low resolution of the initial output image (32 x 32) is due to 
using the multi-resolution technique. 

Figure 8 shows the results of several more synthesized images placed alongside their corresponding input image.  
Although a synthesized image is not entirely identical to the corresponding input image, its appearance is very similar.  
This similarity is maintained whether the input image is stochastic in nature or has some level or repetitive features, 



 

 

which supports the fact that the GLCM-based texture-synthesis process produces results that have a high correlation with 
the human perception of texture similarity. 

 
Figure 8.  Results of color texture synthesis.  The left half of each texture shows the input image and the right half 
the synthesized image.  Although the synthesized texture is not identical to the input image, the similarity is highly 
evident. 

4.4 AEC simulation 

To visualize the effectiveness of camouflaging an ISR robot using the color-texture-synthesis process, a simple 3D 
model of a fictional ISR robot was placed within various environments and its camouflage pattern changed according to 
the local background.  The results are shown in Figure 9.  The robot is designed to be as practical and realistic as 
possible.  For example, the bezel of a real display panel is modeled as a gap between the virtual panels (gray patches in 
left image).  For effective maneuverability in rough terrain, the robot is given tracks that are shrouded by display panels 
as much as possible without compromising mobility.  Finally, the camera is placed inside an articulated arm to allow 
observation from higher vantage points, which is also beneficial for taking images of the local surroundings for 
camouflaging purposes.  The camouflage patterns in Figure 9 were generated using the color-texture-synthesis process 
described in this paper.  The input image was taken by raising the arm and pointing the camera down, as illustrated in the 
left image. 



 

 

 
Figure 9.  A virtual ISR robot using the AEC system in various simulated environments.  An image is taken of the 
local environment (as illustrated in the left image) and supplied as the input image to the real color-texture-
synthesis process to generate the camouflage pattern displayed on the exterior surface of the robot. 

5. FUTURE DEVELOPMENT 
The color-texture-synthesis process described in this paper has been shown to produce a texture that is similar in 
appearance to its corresponding input image.  Texture similarity is critical in developing a convincing camouflage 
pattern for ISR robots and leave-behind sensors, and thus an important component of a future AEC system.  Texture 
synthesis from a single input image, however, may be insufficient to capture the appearance of a particular local 
environment.  Future work will consist of using multiple input images taken from various regions of a local area and 
combining them to produce a more convincing and comprehensive camouflage pattern.  Ultimately, this approach must 
be tested on display panels that are suitable for use, but with the understanding of their brightness and color-gamut-range 
limitations. 

For purely reflective displays like e-paper, the brightness-level will be limited by the material and design of the display.  
The limited color-saturation levels resulting from the limited color-gamut-range of the display will cause noticeable 
color mismatches between the environment and the displayed image.  To address these limitations, it may be necessary 
to develop display-panels with enhanced brightness and color-saturation with a slight tradeoff in resolution.  Color-
correction methods may also be necessary to optimally match the displayed colors to those of the local environment.  
Finally, specular reflectance under sunlight may draw undesired attention to the camouflaged object.  An outer-coating 
covering the display that can diffuse and scatter the light may be required.  These limitations will be addressed as display 
technologies improve, helping to make the proposed camouflaging method more effective. 
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