

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

CRYPTOLOGY MANAGEMENT IN A QUANTUM COMPUTING
ERA

by

Nathanial Owen Rosenberg

June 2012

Thesis Advisor: Theodore Huffmire
Second Reader: James Luscombe
Third Reader: Albert Barreto

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for reviewing instruction, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington headquarters Services, Directorate
for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Cryptology Management in a
Quantum Computing Era

5. FUNDING NUMBERS

6. AUTHOR(S) Nathanial Owen Rosenberg
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and
do not reflect the official policy or position of the Department of Defense or the U.S.
Government. IRB Protocol number ______N/A__________.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
Today’s most efficient and widely used cryptographic standards such as RSA
rely on the difficulty of factoring large numbers to resist cryptanalysis.
Asymmetric cryptography is used in a plethora of sensitive operations from
online bank transactions to international e-commerce, and the Department of
Defense also uses asymmetric cryptography to transmit sensitive data. Quantum
computers have the potential to render obsolete widely deployed asymmetric
ciphers essential to the secure transfer of information. Despite this,
alternatives are not in place.

The goal of this study is to understand the alternatives to classical
asymmetric cryptography that can be used as substitutes should quantum
computers be realized. This study explores quantum-resistant alternatives to
traditional ciphers and involves experimenting with available implementations
of ciphers described the post-quantum literature as well as developing our own
implementations based on descriptions of algorithms in the literature. This
study provides an original implementation of hash-based digital signature and
detailed instructions on its use as well as customization of the NTRU lattice-
based cryptography suite, including the use of NTRU and AES together in a
hybrid cryptographic protocol. This thesis will make recommendations on
future work necessary to prepare for the emergence of large-scale, fault-
tolerant quantum computers.
14. SUBJECT TERMS Type Keywords Here
Quantum Computing, Quantum Key Distribution, Cryptology, RSA,
NTRUEncrypt, NTRU, ECCDSA, Elliptic Curve Cryptology, Public Key
Cryptography, Symmetric Cryptography, Kerberos

15. NUMBER OF
PAGES

135
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

CRYPTOLOGY MANAGEMENT IN A QUANTUM COMPUTING ERA

Nathanial O. Rosenberg
Lieutenant, United States Navy

B.S., University of Maryland University College, 2005

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
June 2012

Author: Nathanial O. Rosenberg

Approved by: Theodore Huffmire
Thesis Advisor

James Luscombe
Second Reader

Albert Barreto
Third Reader

Dan Boger
Chair, Department of Information Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

Today’s most efficient and widely used cryptographic

standards such as RSA rely on the difficulty of factoring

large numbers to resist cryptanalysis. Asymmetric

cryptography is used in a plethora of sensitive operations

from online bank transactions to international e-commerce,

and the Department of Defense also uses asymmetric

cryptography to transmit sensitive data. Quantum computers

have the potential to render obsolete widely deployed

asymmetric ciphers essential to the secure transfer of

information. Despite this, alternatives are not in place.

The goal of this study is to understand the

alternatives to classical asymmetric cryptography that can

be used as substitutes should quantum computers be

realized. This study explores quantum-resistant

alternatives to traditional ciphers and involves

experimenting with available implementations of ciphers

described the post-quantum literature as well as developing

our own implementations based on descriptions of algorithms

in the literature. This study provides an original

implementation of hash-based digital signature and detailed

instructions on its use as well as customization of the

NTRU lattice-based cryptography suite, including the use of

NTRU and AES together in a hybrid cryptographic protocol.

This thesis will make recommendations on future work

necessary to prepare for the emergence of large-scale,

fault-tolerant quantum computers.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. PROBLEM INTRODUCTION1
A. INTRODUCTION1
B. PROBLEM STATEMENT1
C. PURPOSE STATEMENT1
D. RESEARCH QUESTIONS AND HYPOTHESES2

1. Research Questions2
2. Hypothesis3

E. RESEARCH METHOD3

II. QUANTUM COMPUTING5
A. QUANTUM COMPUTING5

1. Introduction5
2. Digital Bit Verses Quantum Bit6
3. Quantum Entanglement7

B. HOW IT WORKS (BLACK BOX)7
1. Schrodinger’s Cat Theory7
2. Multiverse Theory8

C. QUANTUM COMPUTING VS. QUANTUM KEY DISTRIBUTION9
1. Theory Verses Proven Protocol9
2. Quantum Key Distribution9

D. CAPABILITY/LIMITATIONS OF QUANTUM COMPUTING12
1. One Will Not Completely Replace the Other12
2. Secure Online Transaction Protocols Cracked ..12

E. WHERE WE ARE TODAY WITH QUANTUM COMPUTING13
1. Quantum Discrete Log and Factoring, 199413
2. Quantum Mechanics Help in Searching, 199713
3. Realization of Shor’s Algorithm, 200113
4. Scalable Quantum Logic Array, 200514
5. Quantum Threshold Theorem14

F. IF QUANTUM COMPUTING FOLLOWS MOORE’S LAW15
1. Classical Moore’s Law15
2. Quantum Moore’s Law16

III. POST QUANTUM CRYPTOLOGY19
A. CLASSICAL CRYPTOGRAPHY19

1. Cryptography19
2. Confidentiality, Integrity, and Availability .20
3. Symmetric Cryptography20
4. Asymmetric Cryptography21
5. Cryptographic Hash Functions23

B. CIPHERS BELIEVED TO BE VULNERABLE TO QUANTUM
COMPUTING ...25
1. Quantum Computing Capability Review25
2. Rivest, Shamir, and Adleman (RSA)25

 viii

3. Digital Signature Algorithm (DSA)26
4. Elliptic Curve Cryptography26

C. CIPHERS BELIEVED TO BE RESISTANT TO QUANTUM
COMPUTING ...28
1. Hash-Based Digital Signature Schemes28
2. McElice Code-Based Encryption System29
3. NTRU Lattice-Based Cryptography31
4. Multivariate Quadratic Public-Key

Cryptography34
5. Advanced Encryption System (AES) - Symmetric

(Secret-Key) Cryptography35

IV. APPLICATIONS OF CRYPTOGRAPHY CURRENTLY IN USE37
A CIPHERS VULNERABLE TO QUANTUM COMPUTERS37

1. Introduction37
2. Online Banking Statistics37
3. Online Shopping Statistics38

B. TECHNOLOGIES CURRENTLY IN USE FOR SECURING
INTERNET TRANSACTIONS39
1. Introduction39
2. Secure Socket Layer (SSL)39
3. Secure Shell (SSH)40
4. Digital Certificates41
5. Digital Signatures42
6. Public-Key Infrastructure43

C. APPLICATIONS BELIEVED TO BE QUANTUM COMPUTING
RESISTANT ...45
1. Introduction45
2. Symmetric Cryptography46
3. NTRUEncrypt Public-Key Crypto System46
4. Kerberos48

V. EXPERIMENTATAL METHODOLOGY AND IMPLEMENTATION53
A. HASH-BASED CRYPTOGRAPHY53

1. Hash-Based Cryptography Background53
2. Hash-Based Cryptography Implementation54

B. MCELIECE CRPTOSYSTEM66
1. McEliece Cryptosystem Background66
2. McEliece Cryptosystem Implementation67

C. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM68
1. NTRUEncrypt Public-Key Crypto System

Background68
2. NTRUEncrypt Public-Key Crypto System

Implementation68

VI. EXPERIMENTAL RESULTS85
A. HASH-BASED CRYPTOLOGY85
B. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM86

 ix

C. OPENSSL ...87
D. NTRU + OPENSSL88

VII. QUALITATIVE MANAGEMENT ANALYSIS91
A. BACKGROUND ..91

1. Algorithms are Broken Eventually91
2. Protection of the CIA Triad in a Quantum Era .92

B. ASSESSMENT OF OUR QUANTUM COMPUTING READINESS93
1. Introduction93
2. Digital Signatures94
3. Symmetric (Secret-Key) Cryptology94
4. Digital Signatures94
5. Session-Key Distribution95

C. SCENARIO-BASED PREPARATION; IF QUANTUM COMPUTERS
WERE INVENTED96
1. Tomorrow96
2. A Year from Today99
3. Beyond a Year, but Sometime in the Near

Future100
D. ANALYSIS CONCLUSION101

VIII. CONCLUSION ...103
A. HYPOTHESIS QUESTIONS REVIEWED103
B. HYPOTHESIS103
C. HYPOTHESIS VALIDATION103
D. MANAGEMENT RECOMMENDATIONS106
E. RECOMMENDATIONS EXPLAINED106
F. RECOMMENDATIONS FOR FUTURE WORK107

LIST OF REFERENCES ...109

INITIAL DISTRIBUTION LIST115

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Structure of a Quantum Key Distribution link
(From: SECOQC January 2007)......................9

Figure 2. Microprocessor Transistor Counts—Moore's Law
(From:http://en.wikipedia.org/wiki/File:Transis
tor_Count_and_Moore%27s_Law_-_2011.svg).........16

Figure 3. Qubits vs. Classical Transistor Equivalents.....17
Figure 4. NIST Comparable Key Strengths (From:NIST

Publication 800-57).............................27
Figure 5. Permutation Matrix Example

(From:http://en.wikipedia.org/wiki/File:Symmetr
ic_group_3;_Cayley_table;_matrices.svg).........31

Figure 6. Encryption/Decryption Operations per second for
RSA, Elliptic Curve Cryptology, and NTRU for a
32-bit
processor(From:http://tbuktu.github.com/ntru/)..33

Figure 7. Signatures and signature verifications per
second for Elliptic Curve Digital Signature and
NTRUSign (From:Practical lattice-based
cryptography NTRUEncrypt and NTRUSign,
Hoffstein, J. et al)............................34

Figure 8. Preferred Banking Method 2011 Report
(From:http://www.aba.com/Press+Room/090811Consu
merPreferencesSurvey.htm).......................38

Figure 9. Relative Performance of LBP-PKE, RSA, and ECC
(From:X9extra, Volume 2, Number 1, April 2011)..47

Figure 10. Simplified Kerberos authentication protocol
(From:http://gost.isi.edu/publications/kerberos
-neuman-tso.html)...............................49

Figure 11. Life cycles of popular cryptographic hashes
(From:http://valerieaurora.org/monkey.html).....92

Figure 12. Quantum Computing Readiness.....................93

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

AES Advanced Encryption System

ASIC Application-Specific Integrated Circuit

CAC Common Access Card

CIA Triad Confidentiality, Integrity, and
 Availability Triad

CNSS Instruction Committee on National Security Systems
 Instruction

CPU Central Processing Unit

D-H Diffie-Hellman

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature
 Algorithm

EPR Paradox Einstein, Boris, Podolsky Paradox

FCC Finite Field Cryptology

FIPS Pub Federal Information Processing
 Standards Publication

IEEE Institute of Electrical and Electronics
 Engineers

IFC Integer Factorization Cryptology

MD5 Message Digest 5

MIT Massachusetts Institute of Technology

NIST Pub National Institute of Standards and
 Technology Publication

NTRU NTRUEncrypt Public-Key Crypto System

Qubits Quantum Bits

 xiv

RFC Request for Comments

RSA Algorithm Rivest, Shamir, Adleman Algorithm

SHA Secure Hash Algorithm

SSH Secure Shell

SSL Secure Socket Layer

TGS Ticket Granting System

VM Virtual Machine

 xv

EXECUTIVE SUMMARY

Today’s most efficient and widely used cryptographic

standards such as RSA rely on the difficulty of factoring

to resist cryptanalysis. Asymmetric cryptography is used in

a plethora of sensitive operations from online bank

transactions to international e-commerce, and the

Department of Defense also uses asymmetric cryptology to

transmit sensitive data.

Quantum computers have the potential to render

obsolete widely deployed asymmetric ciphers essential to

the secure transfer of information. Despite this,

alternatives are not in place.

This thesis recommends that the rest of the industry

follow the lead of the Accredited Standards Committee X9

Incorporated, Financial Industry Standards, and identify a

suitable alternative cipher such as the NTRUEncrypt

Cryptosystem as the primary algorithm for asymmetric

cryptography to replace RSA if needed. Preparations should

be made now to facilitate a smooth transition. If the

concern is too great that NTRU is a new algorithm, then

this thesis at least recommends that it be added to the

published standards as an alternative cipher implementation

so that it is available to the industry in the event

quantum computers abruptly come into existence.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

First and foremost, a huge and heartfelt thank you to

my primary thesis advisor Dr. Theodore ‘Ted’ Huffmire. I

will always be extremely grateful for the patience and

mentoring through topics I had nearly no training in prior

to my arrival at the Naval Post Graduate School. I have

utmost respect towards Professor Huffmire for the knowledge

and discipline he displayed within this field and advanced

computer know-how… I truly feel fortunate that I was able

to have Professor Huffmire as my primary thesis advisor,

thank you Sir.

0Thank you also to the leaders within the field of

cryptology who either provided me direct assistance like

Dr. Dorothy Denning, and to the names I recognized

frequently in my research of available literature like Dr.

Daniel J. Bernstein, Dr. Isaac Chuang, Dr. Gilles Brassard,

and Dr. Charles H. Bennett to name ONLY a few.

Although I send this thank you last, the most

important thank you goes to who supported me through this

thesis process and graduate school in general… this special

thank you goes to my wife Delia. Gracias y Te amo mi amor.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. PROBLEM INTRODUCTION

A. INTRODUCTION

Today’s most widely used asymmetric ciphers such as

RSA (Rivest, Shamir, and Aldeman) rely on the difficulty of

factoring large numbers as the mathematical basis of their

resistance to cryptanalysis. Asymmetric cryptography is

used in a plethora of sensitive operations from online bank

transactions to international e-commerce, and the

Department of Defense also uses asymmetric cryptography to

transmit sensitive data.

B. PROBLEM STATEMENT

Large-scale, fault-tolerant quantum computers have the

potential to render obsolete traditional asymmetric ciphers

essential to the secure transfer of information. Despite

this, alternatives are not in place.

C. PURPOSE STATEMENT

The intent of this two-phase, sequential mixed methods

study is to understand the alternatives to traditional

asymmetric cryptography that can be used to protect

information in the event that large-scale, fault-tolerant

quantum computers capable of factoring large integers are

realized. The first phase is a qualitative exploration of

quantum-resistant ciphers that satisfy the requirements for

secure communication presently fulfilled by traditional

asymmetric ciphers like RSA. The first phase also explores

their tradeoffs in comparison to traditional methods. This

phase of the study also involves reading published academic

 2

articles in the emerging field of post-quantum

cryptography. The second phase of the study involves

experimenting with available implementations of quantum-

resistant ciphers described in the post-quantum literature.

This phase involves compiling and executing the downloaded

programs and measuring the performance of encryption and

decryption. For ciphers that have no available

implementation, this phase also involves developing

original implementations of post-quantum ciphers described

in the literature. This thesis will then form conclusions

about the impact of deploying an alternative encryption

infrastructure based on post-quantum ciphers. This thesis

will make recommendations on future work necessary to

improve the performance of these alternative ciphers and

lessen the impact of the sudden emergence of large-scale,

fault-tolerant quantum computers.

D. RESEARCH QUESTIONS AND HYPOTHESES

1. Research Questions

What if quantum computing reduces the time to defeat

traditional ciphers from millions of years by today’s

supercomputers to only seconds? What if we are already

living in that era and unfriendly forces have such

technology?

How efficient are post-quantum ciphers proposed as

alternatives to traditional ciphers like RSA and Elliptic

Curve Cryptography (ECC)? Do these ciphers have enough

bandwidth to meet today's cryptographic workloads? What is

the performance impact of deploying an alternative

cryptographic infrastructure based on post-quantum ciphers?

 3

Could available implementations be used as a basis for

constructing a cryptographic software library that is a

viable alternative to classical ciphers?

2. Hypothesis

While alternative ciphers exist, available

implementations do not satisfy all performance requirements

of modern cryptographic workloads. A cryptographic

infrastructure that allows for ciphers to be reconfigured

dynamically will reduce the costs of switching

cryptographic infrastructure quickly in response to the

development of quantum computers.

E. RESEARCH METHOD

Since the first phase this mixed methods study

involves qualitative analysis, this thesis begins with an

analysis of published literature on quantum-resistant

ciphers. This qualitative study also analyzes the

tradeoffs of a dynamically reconfigurable cryptographic

infrastructure that can rapidly deploy an updated cipher in

the event that quantum computers compromise the strength of

widely used, traditional asymmetric ciphers. The second

phase of this study involves the engineering of original

implementations of post-quantum ciphers described in the

literature, detailed instructions on their use, and

quantitative analysis of their performance. This phase

also involves analysis of available implementations,

demonstrating how to customize them to a particular

purpose, and analyze their performance. The qualitative

phase identifies the ciphers and implementations to be

explored in the quantitative phase.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. QUANTUM COMPUTING

A. QUANTUM COMPUTING

1. Introduction

Quantum computers harness the laws of quantum physics,

i.e., the unusual properties of matter at tiny scales to

achieve performance advantages over classical computers.

Although rudimentary quantum computers have been built,

they small error-prone, limited to solving small problems,

such as factoring the integer 15 into its prime factors of

3 and 5. While much progress has been made in the physical

implementation of quantum bits and gates in a variety of

technologies as well as the development of quantum

algorithms and quantum error correction schemes, much work

remains to fulfill the vision of large-scale, fault-

tolerant quantum computers. These challenges include

increasing the reliability of physical implementations and

lowering their cost.

Within the field of quantum information processing, an

important distinction exists between quantum computing, a

technology currently in its infancy, and quantum key

distribution, a relatively mature technology with

commercial implementations available. Both topics will be

discussed below in greater detail, but this thesis will

focus on the impact quantum computers are predicted to have

on asymmetric cryptography. Quantum computing is an

active, interdisciplinary field motivated by the promise of

vastly outperforming classical computers on certain

problems (Perry, 2006). One such problem is the factoring

of integers, which has significant implications for

 6

information assurance because large numbers of online

banking transactions use asymmetric ciphers that rely in

the difficulty of factoring to resist cryptanalysis.

2. Digital Bit Verses Quantum Bit

Quantum computers are similar to classical computers.

Today’s classical computers operate on binary digits, or

bits, that can represent either 0 or 1. In a classical

computer, operations are performed sequentially on these

bits as dictated by the algorithm. Quantum computers use

“qubits,” or quantum bits. Qubits also may take on a

definite value of 0 or 1, but they also can be placed in a

“superposition” state in which there is a certain

probability of measuring a 0 and a certain probability of

measuring a 1. Once the measurement is taken, the qubit

takes on the definite value measured. For example, in an

equal superposition of 0 and 1, there is a 50 percent

chance of measuring a 0 and a 50 percent chance of

measuring a 1. This particular superposition can

simultaneously represent both 0 and 1. A quantum

computer’s processing power grows exponentially because

with every added qubit the number of values represented by

the quantum register doubles. For example, two quantum

bits in superposition can represent four values (0, 1, 2,

and 3). Unlike classical computers, a single quantum gate

applied to n qubits, all of which are in an equal

superposition of 0 and 1, can manipulate all 2^n values

between 0 and 2^n – 1 simultaneously. A 250-qubit register

can represent more numbers simultaneously (using quantum

superposition) than there are atoms in the observable

universe. (Perry, 2006)

 7

3. Quantum Entanglement

Quantum computers also exploit quantum entanglement.

Measurement of one half of a pair of entangled particles

causes the other half of the pair to take on a definite

value that is correlated with the first particle measured.

This phenomenon is counterintuitive, and Albert Einstein

called quantum entanglement “spooky action at a distance.”

Albert Einstein, Boris Podolsky, and Nathan Rosen tried to

prove that one particle could not affect the other particle

because of physical separation, but their study resulted in

the now famous EPR paradox (Einstein, Boris, Podolsky

paradox) that established that measurement of the first

particle causes the second particle to take on a definite

state that is correlated to the first. Furthermore, this

effect is instantaneous, which makes it faster than the

speed of light. Peter Shor determined how to harness

entanglement and superposition to develop an algorithm for

calculating discrete logarithms and the prime factors of an

integer. Shor’s algorithm can factor integers in

polynomial time; the fastest known classical algorithm

requires exponential time. If a quantum computer that can

factor large integers is built, it could defeat asymmetric

encryption schemes such as RSA and Elliptic Curve

Cryptography, whose strength against cryptanalysis is based

on the difficulty of factoring integers.

B. HOW IT WORKS (BLACK BOX)

1. Schrodinger’s Cat Theory

A famous thought experiment for explaining the

counterintuitive nature of quantum superposition is

 8

described in “The Code Book,” by Simon Singh. Erwin

Schrodinger, a Nobel Prize winner for physics in 1933,

described a hypothetical scenario in which a cat is placed

in an opaque box with a vial of a toxic substance that can

be broken by a hammer, releasing the toxic substance, and

killing the cat. The hammer is activated by a

probabilistic event: a radioactive substance may or may not

decay within a certain period of time. A sensor detects

whether or not the decay occurred; each outcome is equally

likely. If the sensor detects that decay has occurred, a

hammer driven by a motor breaks the vial of poison. At the

end of this period of time, the cat could be thought of as

both dead and alive because we cannot see inside the box.

Clearly, this thought experiment is absurd since a cat is a

macroscopic animal much too large to exhibit quantum

phenomena, but the contraption magnifies the quantum effect

of radioactive decay, which involves tiny particles, to the

macroscopic scale of an animal through the mechanism of a

hammer activated by the decay of the radioactive substance.

2. Multiverse Theory

Schrodinger’s thought experiment was intended as a

critique of the Copenhagen interpretation of quantum

mechanics; the other interpretation of quantum mechanics is

the multiverse theory. This theory states that at every

decision, the universe splits into multiple copies; the

number of copies is equal to the number of decisions at the

junction. This theory also states that these universes are

connected somehow. Therefore, photons passing through

these multiverses interfere with each other, allowing one

photon to be in all possible states at once.

 9

C. QUANTUM COMPUTING VS. QUANTUM KEY DISTRIBUTION

1. Theory Verses Proven Protocol

Sometimes people confuse quantum computing and quantum

key distribution. While quantum computing is in its

infancy, quantum key distribution is a relatively mature

technology that has already been commercialized.

2. Quantum Key Distribution

Figure 1. Structure of a Quantum Key Distribution link
(From: SECOQC January 2007)

Charles Bennett and Gilles Brassard invented quantum

key distribution in 1984. Quantum key distribution is used

when two users want create a secure channel for electronic

transmission of private information. Quantum key

distribution is a method of exchanging a symmetric key for

use with a classical cryptosystem. What is unique about

quantum key distribution is that a malicious eavesdropper

(also known as Eve) cannot eavesdrop on a quantum key

exchange between two parties (also known as Alice and Bob)

without detection.

 10

Alice sends Bob a random element from a set of four

polarized photons. For each photon, Bob then decides at

random which canonical base to use during measurement: he

chooses either the horizontal/vertical or the left/right-

circular canonical base. There is also a 45/135-degree

canonical base, but this base is used only by Eve and will

therefore not be discussed. Bob then communicates to Alice

over a classical channel the sequence bases he used to

measure, and Alice tells him whether any of his decisions

were incorrect. Alice and Bob then discard all of the bits

that were measured with the incorrect canonical base and

all bits Bob failed to receive. For all horizontal or

left-circular photons, a value of 0 is registered, and for

all vertical or right-circular photons, a value of 1 is

registered. This series of bits can then be used as a

secret key to share information as long as they determine

that Eve has not been listening to their channel. This

string of bits is known as the “raw quantum transmission.”

(Bennet, Bessete, Brassard, Salvail, Smolin, 1991)

In order for Eve to successfully eavesdrop on a

quantum key distribution channel without being detected,

assuming Eve has unlimited resources, Eve must be able to

intercept and resend, or split photons sent from Alice to

Bob. If Eve attempts to intercept and resend photons, it

is extremely hard for Eve to intercept a photon, decide the

correct polarization to read, read the photon, and send a

new photon with the same polarity read by Eve with the

correct amount of photon intensity to enable Bob’s

detectors to read Eve’s new photon. To illustrate how hard

it would be for Eve to intercept and retransmit a photon,

recall that a photon can be polarized in three canonical

 11

bases or pairs. Therefore, Eve has four options from which

to choose, giving Eve at best a 75 percent probability of

sending the correct photon down the channel without being

detected at a transmission rate between 1 and 10 kilobits

per second. (Alleaume, 2007) In order to detect whether or

not Eve has been listening, Bob must confirm a series of

randomly selected measurement readings with Alice over the

unsecure line. For example, if Alice confirmed the correct

canonical base to measure as being either horizontal or

vertical, Bob would then tell Alice he measured horizontal.

Alice would then confirm he had the correct or incorrect

measurement, and they both would then discard that bit from

their key. If enough correct measurements were made in the

absence of false measurements to Alice and Bob’s

satisfaction, they would determine that the key is secure

and use it for transmitting their secret data. In

contrast, if too many errors were detected, they would

assume the Eve was eavesdropping and start the process over

again. Eve could also perform a photon splitting attack,

but the technical details of this attack are beyond the

scope of this thesis.

The quantum key distribution methodology mentioned

above is a very basic system. Alice and Bob could secure

the classical communication line using previously exchanged

secure keys via quantum key distribution. Therefore, every

new successfully established key created by quantum key

distribution could be added to a database of secure keys.

(Bennet, Bessete, Brassard, Salvail, Smolin, 1991)

 12

D. CAPABILITY/LIMITATIONS OF QUANTUM COMPUTING

1. One Will Not Completely Replace the Other

Although quantum computers have the potential to

dramatically outperform classical computers, they will only

do so for a few applications such as Shor’s Algorithm,

Grover’s Algorithm, and the simulation of quantum physics.

The successful construction of working quantum computers

also has the potential to experimentally validate quantum

theory. The ability to efficiently factor large integers

makes asymmetric ciphers such as RSA vulnerable to quantum

computers. (Nielson, M. A. & Chuang, I. L. 2002)

Therefore, Quantum computers will not replace classical

computers except for certain problems. To give the reader

an idea of how much processing power quantum computers will

have for their specific uses, it is important to understand

that a register of 250 qubits (all in superposition) can

represent more numbers than there are atoms in the

universe. (Deutsch, D. & Ekert, A. 1998) Classical

computers available today have processors with transistor

counts approaching one billion and (DRAM) memories on the

order of gigabytes.

2. Secure Online Transaction Protocols Cracked

Large-scale, fault-tolerant quantum computers will

make any application that uses some of the most common

cryptographic applications for online secure transactions

vulnerable. For example, online banking and shopping or

any online secure transactions that use Secure Socket

Layer, the key-lock many people look to see is active

 13

before proceeding with their online transaction, will be

compromised if measures are not put in place before quantum

computers are realized.

E. WHERE WE ARE TODAY WITH QUANTUM COMPUTING

1. Quantum Discrete Log and Factoring, 1994

In November 1994, the Foundations of Computer Science

published Peter W. Shor’s “Quantum Computation: Discrete

Log and Factoring” research paper at their 35th annual

symposium. This paper demonstrates how quantum computers

can take discrete logarithms and factoring problems that

become exponentially harder on classical computers as the

numbers become larger, and reduce the computational time

down to polynomial time on quantum computers (e.g., going

from 1,000,000 years of computation down to 1 month).

2. Quantum Mechanics Help in Searching, 1997

Building on Shor’s algorithm, Lov K. Grover in 1997

published his research paper, “Quantum Mechanics help in

searching for a needle in a haystack.” This paper outlined

how quantum mechanics can speed up different search

applications over unsorted data in contrast to classical

computers. This algorithm has several useful applications

including boolean satisfiability, classical random walk

(i.e., diffusion), and signal processing.

3. Realization of Shor’s Algorithm, 2001

In December 2001, Isaac L. Chuang et al. published

their findings from their implementation of a seven-qubit

quantum computer that could factor 15 into its prime

 14

factors. The paper is titled “Experimental realization of

Shor’s quantum factoring algorithm using nuclear magnetic

resonance.”

4. Scalable Quantum Logic Array, 2005

In September 2005, Tzvetan S. Metodi et al. published

“A Quantum Logic Array Microarchitecture: Scalable Quantum

Data Movement and Computation.” This proposes a quantum

logic array architecture for building fault-tolerant and

scalable quantum computers. Metodi et al. apply concepts

from classical computer architecture to the design of

large-scale quantum computers, which will require millions

of quantum bits and gates.

5. Quantum Threshold Theorem

An important factor limiting the scalability of

quantum computers is explained by the Quantum Threshold

Theorem. In June 1999, Dorit Aharonov and Michael Ben-Or

published “Fault-Tolerant Quantum Computation with Constant

Error Rate.” This paper states that Shor’s assumption that

the probability for an error in a qubit or gate decays with

the size of the computation is physically unreasonable.

Aharonov and Ben-or show that once a specific error rate

threshold is met, quantum computers will have overcome all

the physical limitations preventing the realization of

quantum computers. They also state, “the point at which

the physical data meets the theoretical threshold is where

the quantum computation becomes practical.” However, no

team has yet built a physical implementation of a quantum

bit or a set of universal quantum gates that satisfy the

minimum reliability requirements of the threshold theorem.

 15

Essentially, the threshold theorem states that physical

implementations must reach a minimum threshold of

reliability before quantum error correction schemes can be

effective and practical. One cannot simply use unreliable

quantum bits that do not meet the threshold and then apply

to them aggressive quantum error correction to compensate

for an unreliable technology.

F. IF QUANTUM COMPUTING FOLLOWS MOORE’S LAW

1. Classical Moore’s Law

Today’s computers have followed closely, but not

exactly, a statement made by Gordon E. Moore back in the

1970’s that the number of transistors that can be placed on

a fixed piece of silicon doubles about every 18 months.

Therefore, given a fixed CPU size, the computing power

would theoretically double every 18 months because the

processor would have twice the number of transistors. The

diagram (Figure 2) shows the transistor density of various

processors over time.

 16

Figure 2. Microprocessor Transistor Counts—Moore's Law
(From:http://en.wikipedia.org/wiki/File:Transistor

_Count_and_Moore%27s_Law_-_2011.svg)

2. Quantum Moore’s Law

Assume for a moment that quantum computers will follow

Moore’s Law in a similar manner. Specifically, assume that

the sizes of the qubit register will double every 18

months. Figure 3 shows how much processing power quantum

computers would have in relation to classical computers if

the qubit register were to double every 18 months.

 17

Figure 3. Qubits vs. Classical Transistor Equivalents

Keep in mind that a typical classical CPU contains on

the order of one billion transistors. Figure 3 assumes that

the first quantum computer that achieves the requirements

as laid out in the Quantum Threshold Theorem has a register

of 16 qubits, and the figure also assumes that the size of

the qubit register will double every 18 months as per

Moore’s Law. Therefore, if the first quantum computer

register has 16 qubits, after the first iteration of

Moore’s Law, quantum computers would have the processing

power equivalent to a 4.3 terahertz computer, and the

processing power would continue to grow exponentially.

Recall from the discussion above that a 250-qubit register

could hold more numbers in superposition then there are

atoms in the universe. It is estimated that there are

10^80 atoms in the known universe, and Figure 3 shows that

after 4.5 years, if quantum computing follows Moore’s Law,

we will have computers that can hold more numbers in

superposition then there are atoms in the universe.

The problem with the above argument is that it ignores

the cost of quantum error correction, which is significant.

1 2 3 4 5 6
Qubits 16 32 64 128 256 512
Transistor Equivalent

(2^qubits) 65,536 4,294,967, 1.84467E+193.40282E+381.15792E+771.3408E+154

0
2E+153
4E+153
6E+153
8E+153
1E+154

1.2E+154
1.4E+154
1.6E+154

Tr
an

si
st

or
 E

qu
iv

al
en

t

Qubits vs Classical Transistors

 18

Designing an effective large-scale, fault-tolerant quantum

computer architecture requires balancing the gains of

quantum parallelism against the costs of quantum error

correction. In a “winning” design, the gains of

parallelism exceed the costs of error correction by a big

enough margin to make the whole enterprise worthwhile.

Indeed, if quantum error correction were not necessary,

then a 250-qubit register could hold in superposition more

states than there are atoms in the universe. Similarly, to

factor an n-bit number would require on the order of n

quantum bits. However, it is speculated that to factor a

number on the order of a thousand bits will require on the

order of a million quantum bits and a million quantum

gates. This increase is the cost imposed by quantum error

correction, which requires additional (redundant) quantum

bits and gates.

The above argument also ignores the fact that it is

unknown whether progress in physical implementations of

quantum computers will follow Moore’s Law. …we shall see.

 19

III. POST QUANTUM CRYPTOLOGY

A. CLASSICAL CRYPTOGRAPHY

1. Cryptography

Originating from the Greek words “kryptos” and

“graphia” meaning “hidden” and “writing” respectively, the

science of keeping messages secret through encryption and

decryption is cryptography. Today we use different forms

of cryptography to prohibit data from being read by

unauthorized users, and to prohibit data from being changed

unintentionally or maliciously. The majority of

cryptographic algorithms can be categorized into either

symmetric or asymmetric cryptography. There are also one-

way hash functions, which act like a fingerprint of the

message. Cryptographic hash functions can be used to

protect data integrity, but they are not used to encode and

decode data. Hash functions are “one-way” in that given the

output of the hash function, which is referred to as the

hash digest; it is very hard for an adversary to determine

the original message that was the input to the hash

function. Together with symmetric and asymmetric

cryptography, one-way hash functions can be used to provide

confidentiality and integrity; availability is the third

aspect of data protection. This chapter will describe the

uses of cryptographic primitives and the hard mathematical

problem on which their strength is based. This chapter

will also describe which cryptographic algorithms are

suspected to be vulnerable to large-scale, fault-tolerant

quantum computers and which algorithms are believed to be

quantum computing resistant and why.

 20

2. Confidentiality, Integrity, and Availability

Before we get into the different forms of

cryptography, we first describe the fundamental facets of

data protection referred to as the “CIA Triad.” The CIA

Triad covers data Confidentiality, Integrity, and

Availability. The Committee on National Security Systems

defines confidentiality as assurance that information is

not disclosed to unauthorized individuals, processes, or

devices; integrity is a condition existing when data is

unchanged from its source and has not been accidentally or

maliciously modified, altered or destroyed; and

availability is the timely and reliable access to data and

information services for authorized users (CNSS Instruction

No. 4009, 2010). For the rest of this thesis, we will

refer to the CIA Triad when discussing the protection of

data. In this thesis, we will consider cryptology to be

useful for providing data confidentiality and integrity but

not availability.

3. Symmetric Cryptography

Symmetric cryptography, also known as secret-key

cryptography, uses the same key for encryption and

decryption. First, each user must agree to the secret key

and find a secure location to discuss and share the key

upon which they agree. It is important to note that each

user that is going to participate in the secure

communication must also be provided the key in a secure

manner (e.g., if there are 100 different sites that are

going to participate in a secure video teleconference using

only symmetric cryptography, each of the 100 sites must be

provided the secret key securely in advance, and this could

 21

be a logistical problem depending on the locations of each

site and depending on time constraints). This example

illustrates a problem known as the key distribution

problem. Once the key is distributed, then each site can

use the secret key to encrypt outbound or decrypt inbound

data. In general, symmetric cryptography is faster than

asymmetric cryptography. Depending on the implementation,

symmetric cryptography is on the order of 1,000 to 10,000

times faster than asymmetric cryptography.

4. Asymmetric Cryptography

Asymmetric cryptography, also known as public-key

cryptography, helps to address symmetric cryptography’s key

distribution problem. Asymmetric cryptography can be used

to send a file in a secure manner to a recipient that the

sender has never met. The sender encrypts the message with

the receiver’s public key, and the receiver decrypts the

message with his or her private key. Only the receiver

knows the private key; therefore, only the receiver can

read the message. This protects the confidentiality of the

message during transmission from sender to receiver.

Asymmetric cryptography can also be used to support

digital signatures. The sender computes the hash of a file

and encrypts the hash with the sender’s private key.

Anyone can decrypt the hash value by using the sender’s

public key. The receiver computes the hash of the received

file and compares this to the received hash digest once it

has been decrypted with the sender’s public key. This

helps to ensure the integrity of the message during

 22

transmission from sender to receiver. Only the sender

could have sent the message because the sender’s private

key was used to encrypt the hash value.

To protect both confidentiality and integrity, the

message can be encrypted with a one-time symmetric session

key, which the sender encrypts with the receiver’s public

key. This is done in conjunction with a digital signature

where the hash of the message is encrypted with the

sender’s private key. The reason for using public-key

cryptography to exchange a symmetric session-key is that

symmetric ciphers are faster than asymmetric ciphers, in

general. If the same two devices wanted to create another

secure communication channel after the termination of their

previous session, they would exchange a new session key.

If you are a security manager and the security policy

for your company requires the use of asymmetric

cryptography, your security system must be capable of using

digital certificates. These digital certificates are

issued by a certificate authority, which digitally signs a

message containing an identity and a public key in order to

cryptographically bind them. Since the message is signed

with the certificate authority’s private key, anyone can

verify the signature with the certificate authority’s

public key. Digital certificates make it possible to trust

that Alice’s public key really belongs to Alice and not to

an imposter. If an imposter were to hack Alice’s website

and replace Alice’s public key with the imposter’s public

key, then someone might inadvertently send Alice a

sensitive message encrypted with the imposter’s public key

rather than Alice’s public key. However, the imposter will

 23

not be able to carry out this attack if Alice has a digital

certificate, because the sender of the sensitive message

can verify Alice’s digital certificate prior to sending the

message. Verification of the imposter’s public key will be

unsuccessful.

5. Cryptographic Hash Functions

Cryptographic Hash Functions are used to create a

message digest, or fingerprint, of the original message.

If Alice were to send an unclassified message, but wanted

to ensure that message integrity was maintained or that it

was not tampered with in transit to Bob, she could create a

digital signature of the message using a one-way hash

function. Alice then takes the fingerprint and encrypts it

with her private-key and sends Bob an email that contains

the original message, the encrypted fingerprint, and her

public-key. Bob then receives the message, runs the

original message through the same cryptographic hash

algorithm Alice used, and then decrypts the fingerprint

with Alice’s public-key that was encrypted with Alice's

private-key. Finally, Bob compares the fingerprint Alice

sent against the fingerprint he computed. If the hash

values are equal, Bob knows that the message Alice sent was

not tampered with while in transit.

Cryptographic hash functions differ from public-key

and secret-key cryptography because asymmetric and

symmetric cryptography are used to encrypt and decrypt data

(i.e., encrypting and then decrypting a message results in

the original message), whereas cryptographic hash functions

are one-way functions. It is extremely difficult to

determine the input to a hash function given only the hash

 24

digest. The size of the hash digest depends on the

algorithm. For example, some of the most common hash

algorithms are the Secure Hash Algorithms (SHA) SHA-256,

SHA-384, and SHA-512, each algorithm outputting a digest of

256, 384, and 512 bits respectively regardless of the input

size. In order for a cryptographic hash function to be

considered secure, the hash function must be able to input

any amount of data; output a (normally) smaller fixed-

length digest defined by the algorithm; be fast to compute;

be hard to invert; and be designed so that it is very

difficult for an adversary to find collisions. A hash

collision occurs whenever two inputs produce the same

output. Finding a collision is impossible, but it must be

very difficult for the adversary to do. Among the most

popular hash algorithms is MD5 (Message Digest 5), which

has the smallest hash output of 120 bits, and as of 2003,

no collisions had been discovered (Thorsteinson, P.,

Ganesh, G.G., 2003). However, MD5 is currently considered

“broken,” as it is now possible to find a collision in less

than O(2^N) steps. Another required characteristic of a

cryptographic hash function is called the avalanche effect,

i.e., a small change to the input results in a very large

change to the input.

To illustrate the avalanche effect, consider the DNA

of identical twins. Even if their genomes only differ by a

single nucleotide, the cryptographic hashes of the digital

representation of their respective genomes will be

completely different. To illustrate the one-way property

of a hash-function, consider literature as an example.

Given a 256-bit hash digest of Shakespeare’s play, Romeo

and Juliet, to reverse the one-way property would require

 25

the adversary to generate the entire play from only 256-bit

digest. Assuming a 96-character alphabet and given that

the play is 138,386 characters long, the adversary would

have to perform O(96^138386) hash computations before

finding the string of characters that correspond to the

play Romeo and Juliet.

B. CIPHERS BELIEVED TO BE VULNERABLE TO QUANTUM COMPUTING

1. Quantum Computing Capability Review

This section will discuss algorithms believed to be

vulnerable to quantum computers. Each of these algorithms

relies on the difficulty of factoring large numbers or

computing discrete logarithms as the basis for their

security because these are difficult problems for classical

computers to solve in polynomial time. Recall that Shor's

algorithm used in conjunction with quantum computers will

make algorithms that rely on the difficulty of factoring or

computing discrete logarithms vulnerable. The ciphers

presented in Section 'C' do not rely on the difficulty of

factoring or of computing discrete logarithms. Their

strength lies in the difficulty of solving different hard

mathematical problems. Since quantum algorithms do not

exist for these problems, these ciphers are believed to be

quantum computing resistant.

2. Rivest, Shamir, and Adleman (RSA)

Building on the Diffie and Hellman “Public-key

Cryptosystem,” Ron Rivest, Adi Shamir, and Leonard Adleman

created the RSA cipher in 1978 to ensure that the

properties of the “paper mail system” were preserved in the

email era; specifically, that the mail remained

 26

confidential and could be signed. (Rivest, R.L., Shamir,

A., Adleman, L., 1978) Both RSA and the Diffie-Hellman

algorithms provide key exchange, but RSA added public key

encryption, making RSA more versatile. (Schmeh, K.) Today,

the RSA cipher is the most common form of public-key

cryptology in use. After licensing a patent from the

Massachusetts Institute of Technology, the RSA cipher was

offered as a commercial product in 1982. (Russell, D.,

Gangemi, G.T., 1991)

The strength of the RSA cipher relies on the

difficulty of factoring large numbers. The minimum

recommended key length for RSA is 1024-bits until they year

2015; then 2048-bits will be recommended until the year

2030. (www.rsa.com)

3. Digital Signature Algorithm (DSA)

Based on the difficulty of solving the discrete

logarithm problem, the Digital Signature Algorithm (DSA) is

used to electronically sign digital messages. The DSA is a

standard specified by the National Institute of Standards

and Technology and was issued in May 1994. The three

functions of the DSA are to generate a key used to “sign”

the message, sign the document, and verify the signature on

the other end. (FIPS PUB 186)

4. Elliptic Curve Cryptography

Like the Digital Signature Algorithm, Elliptic Curve

Cryptography relies on the difficulty of solving the

discrete logarithm problem as the basis of its security.

(NIST Pub 800-57) The mathematics required for Elliptic

curve Cryptography is well beyond the scope of this thesis.

 27

An excellent tutorial including Java applets is located on

the website of Certicom

(http://www.certicom.com/index.php/ecc-tutorial). Elliptic

Curve Cryptography is a newer version of Public-Key

Cryptology and can provide the same level of security as

RSA, but with smaller key sizes. This enables platforms

with constrained resources such as handheld wireless

devices to use strong cryptographic algorithms. With all

variables being equal, Elliptic Curve Cryptography can run

more transactions per second than RSA. (Mogollon, M., 2008)

Figure 4 is from National Institute of Standards and

Technology Special (NIST) Publication NIST PUB 800-57,

March 2008, Recommendation for Key Management.

Figure 4. NIST Comparable Key Strengths
(From:NIST Publication 800-57)

In the NIST comparable key strengths table, D-H stands

for Diffie-Hellman, and FFC and IFC stand for Finite Field

Cryptology and Integer Factorization Cryptology,

 28

respectively. This table clearly articulates that Elliptic

Curve Cryptology (ECC) achieves the same level of security

as symmetric ciphers with keys having roughly twice the

number of bits, whereas the D-H and RSA algorithms have

significantly larger key sizes. A symmetric key length of

112 bits is the standard minimum as of 2010 and will be

until 2030. The National Security Agency has adopted ECDSA

(Elliptic Curve Digital Signature Algorithm) because it is

considered to be second-generation public key cryptography

and offers relatively smaller key sizes in contrast to the

first generation (e.g. D-H and RSA). The National Security

Agency stated, “As vendors look to upgrade their systems

they should seriously consider the elliptic curve

alternative for the computational and bandwidth advantages

they offer at comparable security.”

(http://www.nsa.gov/business/programs/elliptic_curve.shtml)

C. CIPHERS BELIEVED TO BE RESISTANT TO QUANTUM COMPUTING

1. Hash-Based Digital Signature Schemes

To recap, hash-based algorithms are one-way algorithms

that take in any size of input in the form of bits and

produce a digital signature that is a fixed size that

depends on the algorithm. In order for a cryptographic

hash function to be considered secure, the hash function

must be able to input any amount of data, output a fixed-

length digest, be fast to compute, be hard to invert, and

produce few collisions. In other words, if Y = F(x), where

Y is the digest, F is the hash algorithm, and x is the

 29

message, if an adversary obtained Y and knew F, it would be

“effectively impossible to compute ‘x.’” (Merkle, R. C.,

1979)

Since hash-based algorithms are only considered secure

if they are collision resistant, hash-based signature

schemes are considered to be the “…most important post-

quantum signature candidate” (Bechmann, J., Dahman, E.,

Szydlo, M., 2009) because the security of these functions

relies on their collision resistance. The digital

signature schemes are also useful because they can be

implemented in hardware and software making them

prospective alternatives to the popular RSA and elliptic-

curve digital signature schemes that are predicted to be

vulnerable in a quantum computing era. (Bechmann, J.,

Dahman, E., Szydlo, M., 2009)

The mathematics of the following hash-based signature

schemes is beyond the scope of this thesis, but Bechmann,

Dahman, and Szydlo state that the Lamport-Diffie One-Time

Signature Scheme, Winternitz One-Time Signature Scheme, and

Merkle Signature Scheme (Merkle’s tree) are all hash-based

algorithms, with Merkle’s tree being the most efficient.

The Merkle scheme is actually a multi-time signature that

employs a version of the Lamport-Diffie signature scheme,

but the Merkle scheme can convert any one-time signature

scheme to create a multiple-use or multi-time signature

scheme. (Garcia, L. C.)

2. McElice Code-Based Encryption System

Code-based cryptography relies on error-correcting

codes such as the McEliece Hidden-Goppa-Code cryptosystem,

in which the security of the algorithm relies on the

 30

difficulty of decoding a general linear code in polynomial

time. (Berlekamp, E. R., McEliece, R. J., Van Tilborg, H.

C., 1978) Although not as efficient as RSA, the McEliece

Hidden-Goppa-Code cryptosystem is expected to hold up to

quantum computers. The current drawback to the McEliece

cryptosystem is that the key sizes are in the millions of

bits, whereas RSA key sizes are in the thousands of bits.

(Bernstein, D. J., 2009)

The McEliece cryptosystem uses three algorithms to

create the public and private-key pair, to encrypt the

message, and to decrypt the message. To create the public

key (G(prime), T(errors)) Alice selects a binary linear code

C(linear code) capable of correcting T(errors) and creates a

generator matrix G(generator matrix) of (N(length), K(dimension)). The

generator matrix is hidden using a random non-singular

binary square substitution matrix S(substitution matrix) of

(K(dimension) x K(dimension)) size and a random permutation matrix

P(permutation matrix) of (N(length) x (N(length)) size. (Heyse, S.,

2009) A permutation matrix is also a binary square matrix

that has exactly one entry of 1 for any column and row with

0 in all other spaces. Figure 5 provides an example of a

permutation matrix. G(prime) is created by computing the

product of G(generator matrix), S(substitution matrix), and P(permutation

matrix).

 31

Figure 5. Permutation Matrix Example
(From:http://en.wikipedia.org/wiki/File:Symmetric_

group_3;_Cayley_table;_matrices.svg)

The secret key is the combined knowledge of three different

matrices that created the public key: G(generator matrix),

S(substitution matrix), and P(permutation matrix). (Heyse, S., 2009)

Encryption and decryption is similar to other public-

key cryptosystems: if Bob wishes to send Alice an encrypted

message, Bob uses Alice’s public key (G(prime), T(errors)), but

he also introduces error into the message not to exceed the

amount of T(errors). To decrypt the message, Alice uses her

secret key to produce the plaintext from the ciphertext

provided that Bob did not introduce an error larger then

C(linear code). (Heyse, S., 2009)

3. NTRU Lattice-Based Cryptography

Recall that quantum computers will excel at cracking

algorithms that rely on the difficulty of factoring large

 32

numbers or solving the discrete logarithm problem as the

basis for their security. Therefore, cryptologists have

searched for a different mathematical problem to use as the

basis of an algorithm’s security, and Lattice problems are

one such problem. (Perlner, R. A., Cooper, D. A., 2009)

“Lattice based systems provide a good alternative since

they are based on a long-standing open problem for

classical computation.” (Hallgren, S, Vollmer, U., 2009)

Collectively, the basis of a lattice is a set of

vectors that can be expressed as a sum of integer multiples

of a set of n vectors. “(It is important to) note that

there are an infinite number of different bases that will

all generate the same lattice.” (Perlner, R. A., Cooper, D.

A., 2009) Two problems believed to be hard for classical

and quantum computational models are solving either the

closest vector problem or shortest vector problem of high-

dimensional lattices. The mathematics of Lattice-Based

Cryptography is beyond the scope of this thesis, but there

is commercial deployment of Lattice-Based Cryptography, and

the NTRUEncrypt Public-Key Cryptosystem “appears to be the

most practical.” (Perlner, R. A., Cooper, D. A., 2009)

“The (NTRU) encryption procedure uses a mixing system

based on polynomial algebra and reduction modulo two

numbers p and q, while the decryption procedure uses an

unmixing system whose validity depends on elementary

probability theory. The security of the NTRU public-key

cryptosystem comes from the interaction of the polynomial

mixing system with the independence of reduction modulo p

and q. Its security also relies on the (experimentally

observed) fact that for most lattices, it is very difficult

 33

to find extremely short (as opposed to moderately short)

vectors.” (Hoffstein, J., Pipher, J., Silverman, J. H.,

1998)

Like Elliptic Curve Cryptology, the NTRU Public-key

cryptosystem might become an alternative algorithm for

computing devices that require high-performance security

but that have fewer resources then a typical PC, e.g.,

handheld devices such as tablets, cellphones, and PDAs.

With key length requirements of 112 bits or greater, the

NTRU cryptosystem is able sign and verify signatures,

encrypt messages, and decrypt messages faster than Elliptic

Curve Cryptology and therefore faster than RSA.

Figure 6. Encryption/Decryption Operations per second for
RSA, Elliptic Curve Cryptology, and NTRU for a 32-
bit processor(From:http://tbuktu.github.com/ntru/)

 34

Figure 7. Signatures and signature verifications per second
for Elliptic Curve Digital Signature and NTRUSign

(From:Practical lattice-based cryptography
NTRUEncrypt and NTRUSign, Hoffstein, J. et al)

As evident in Figures 6 and 7, the NTRU cryptosystem

offers higher performance than ECDSA, but unfortunately

NTRUEncrypt did not have a formal proof of security like

RSA, Elliptic Curve Cryptology, and other practical schemes

until 2008. (Naslund, M. Shparlinski, I. E., Whyte, W.,

2003). NTRU received much popular support for ten years

until the proposed IEEE standard P1363.1 became an approved

standard in December 2008. Now IEEE Std 1363.1TM-2008, IEEE

Standard Specification for Public Key Cryptographic

Techniques Based on Hard Problems over Lattices, is an

international standard and is starting to be adopted by

commercial vendors.

4. Multivariate Quadratic Public-Key Cryptography

Although the mathematics is beyond the scope of this

thesis, Daniel Bernstein, a leader in this field, lists

Multivariate-Quadratic-Equations Public-Key Cryptography as

another alternative in his book, “Introduction to Post

Quantum Cryptography.”

 35

The security of the Multivariate-Quadratic-Equations

Public-Key Cryptography is based on the difficulty of

solving nonlinear equations over a finite field, which is

considered to be an NP-hard problem. This algorithm has

been under intensive study for the last couple of decades,

but experts do not recommend using Multivariate-Quadratic-

Equations for protecting security-critical applications yet

because the basis of its security is not well understood,

and vulnerabilities are being found on a regular basis.

(Bernstein, D. J., 2009)

5. Advanced Encryption System (AES) - Symmetric
(Secret-Key) Cryptography

Throughout this thesis, references have been made to

key-size security equivalence to symmetric cryptography

when discussing RSA, Elliptic-Curve Cryptography, and NTRU

Lattice-Based Cryptography. The Advanced Encryption

Standard (AES) is the standard cipher for symmetric

cryptography, also known as “secret-key” cryptography.

Recall that secret-key cryptography is the fastest and

provides the most encryption strength per bit of key and

that a major purpose of slower public-key cryptography is

to help facilitate the exchange of a symmetric session key.

In the late 1990s, the National Institute of Standards

and Technology (NIST) held a competition to replace the

successful symmetric algorithm DES (Data Encryption

Standard) that was developed by IBM in the 1970s. NIST

reached out to the cryptographic community for those who

were interested in submitting an algorithm to be the new

standard. After fifteen nominated AES candidates, the

Rijndael algorithm, developed by two Belgians, Joan Daemen

 36

and Vincent Rijmen, won the contest, and their cipher was

announced as the winner in October 2000. As per the

requirements of the NIST contest for AES, the Rijndael

algorithm supports block lengths of 128, 192, and 256-bits.

(Schmeh, K, 2003)

Although a brute-force attack for a key length of 128

bits is “…out of the question for Rijnadael,” as Klaus

Schmeh stated, there is a small concern for the reliability

of the algorithm because it is fairly new. However, the

strength and usability of AES is evident by the US

Government’s approval of its use for classified information

processing. Specifically, the National Security Agency

approved all block lengths of the AES algorithm to protect

classified information up to Secret, but only the 192- and

256-bit block lengths are approved for Top Secret material

as per the Security on National Security Systems Policy,

CNSS Policy No. 15, Fact Sheet No. 1, National Policy on

the Use of Advanced Encryption Standard (AES) to Protect

National Security Systems and National Security

Information, June 2003.

 37

IV. APPLICATIONS OF CRYPTOGRAPHY CURRENTLY IN USE

A CIPHERS VULNERABLE TO QUANTUM COMPUTERS

1. Introduction

Suppose that CNN were to report that a large-scale,

fault-tolerant quantum computer has been developed; how

would users of cryptography cope? This section focuses on

the potential impact of quantum computers on various

parties from individual users to the world economy.

2. Online Banking Statistics

Since 2009, the American Bankers Association reported

that online banking is the preferred method of performing

banking transactions. Figure 8 shows the online banking

trend from 2007 to 2011 for all age groups. In 2007,

online banking made up roughly 23 percent of all banking

transactions, but in 2011, online banking accounted for

roughly 61 percent of all banking transactions. This

report does not include the statistics from other large

banking spheres such as the European Union or banking

organizations within the Asia-Pacific region.

 38

Figure 8. Preferred Banking Method 2011 Report
(From:http://www.aba.com/Press+Room/090811Consumer

PreferencesSurvey.htm)

3. Online Shopping Statistics

The sudden emergence of quantum computers could have a

significant impact on the world economy if users of

cryptography are caught unprepared. The Nielsen Company

reported in 2007 that 875 million consumers had shopped

online, an increase of over 40 percent since the previous

survey was conducted in 2005. The survey also found that

85 percent of all Internet users had conducted an online

transaction. Comparing the percentage of those who had

Internet access and those who used the Internet to conduct

an online transaction, the countries that had the highest

online shopping percentages in 2007 were South Korea at 99

percent, the United Kingdom at 97 percent, Germany at 97

percent, Japan at 97 percent, and in eighth place, the

 39

United States, where 94 percent of those who had Internet

access used the Internet to conduct an online transaction.

B. TECHNOLOGIES CURRENTLY IN USE FOR SECURING INTERNET

TRANSACTIONS

1. Introduction

The reason why most of the transactions outlined in

Section 'A' of this chapter are vulnerable is that they use

the technologies discussed in this section. The sudden

emergence of a large-scale, fault-tolerant quantum computer

would render the following cryptographic technologies

ineffective.

2. Secure Socket Layer (SSL)

Invented by Netscape in the 1990s, the Secure Socket

Layer (SSL) uses the Transport Control Protocol (TCP) to

provide encryption, authentication, and integrity for HTTP,

LDAP, and POP3 applications. SSL is the most commonly used

technology for securing online transactions.

Secure Socket Layer was designed to have the server

authenticate itself to the user. During a SSL session, the

user requests to setup a secure channel with the server.

The server then sends to the user the server's public key

so that the user can validate whether or not the server is

using a trusted certificate authority. A certificate

authority is the issuer of certificates and will be

discussed further in the Public-Key Infrastructure section

below. If the user confirms that the certificate authority

is trustworthy, the client creates a session key that is

based on a symmetric encryption algorithm and encrypts it

with the server's public key so that only the server can

 40

decrypt the session key. Once the server decrypts the

session key, secure communication using symmetric

cryptography can begin.

The problem is that the Secure Socket Layer protocol

uses RSA and Diffie-Hellman for the majority of its public-

key transactions. SSL also can use Fortezza Cards that

have been used by government, military, and banking

institutions to protect sensitive data, but since Fortezza

Cards are not common, they go beyond the scope of this

thesis. Therefore, unless you are required to use a

Fortezza card for your Internet transaction, you are using

either RSA or Diffie-Hellman as your public-key algorithm,

and this renders your SSL session vulnerable to quantum

computers.

3. Secure Shell (SSH)

As a secure alternative to Telnet for remote

networking administration, Secure Shell (SSH) can also be

used to secure protocols like HTTP and FTP that are used to

transfer data from websites or files like the Secure Socket

Layer system. Secure Shell was originally created in 1996

by Tatu Ylonen at the Helsinki University of Technology in

Finland. Ylonen started his own company, SSH

Communications, and later improved the protocol in 1998

when he released SSH2. After working with the Internet

Assigned Numbers Authority, Ylonen's work was implemented

as an Internet Standard under RFC 4250 in 2006 as the

Secure Shell Protocol.

Secure Shell uses RSA as its Public-Key Algorithm to

initially set up the session key. Therefore, since RSA uses

factoring large numbers as the basis of its security, and

 41

quantum computers reduce the time to factor large numbers

from exponential to polynomial time, Secure Shell in its

current form will be vulnerable in a quantum computing era.

4. Digital Certificates

In the sections above, we have discussed how public-

key cryptography is used when Alice wants to verify that

Bob is who he claims to be while exchanging a session key

to conduct secure communication between Alice and Bob.

Digital certificates, also known as certificates, enable

this transaction to occur. Digital certificates are used

to certify that Alice is in fact Alice. With public-key

cryptography, recall that two keys are generated, one being

the public-key that is available to the public, and the

other being Alice’s private-key that is held securely in

Alice’s possession. The private-key can be held on a disk,

programmed into a smartcard, or loaded onto Alice’s

personal computer, with the latter being less secure.

Digital certificates bind Alice’s identity to her public

key. Along with the public key, the digital certificate

holds other information like Alice’s name, a serial number,

the Certificate Authority who issued Alice her certificate,

the algorithm used to generate the digital certificate, and

the certificate’s expiration date. With this information,

Bob could first see that the certificate is assigned to

Alice, verify that the certificate has not expired,

identify whether or not the Certificate Authority itself is

a trustworthy issuer of certificates, and then verify

Alice’s public key.

Digital certificates are extremely popular because

once the digital certificates have been issued to a user,

 42

iterative validation can occur, or validation that is

pushed to individual PCs vice a central server. If

validation were recursive in nature and could only be

performed by the Certificate Authority, this would make

denial-of-service attacks easier because a successful

denial-of-service attack on the single point of failure

would disrupt all users who were issued certificates from

that Certificate Authority. Therefore, because digital

certificate validation is iterative and decentralized by

design, millions of secure transactions may occur without

the threat of availability attacks on a central server.

Unfortunately, the system is only as secure as the strength

of algorithm that is used. Under RFC 3279, Algorithms and

Identifiers for the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation List

Profile, the public-key algorithm used is RSA. We have

shown that the use of RSA as a public-key algorithm will

make digital certificates vulnerable once large-scale,

fault-tolerant quantum computers come into existence, if no

suitable alternative algorithm is put in place before the

emergence of quantum computers.

5. Digital Signatures

Using the private-key contained in Alice’s digital

certificate, Alice is able to sign the messages she sends

to Bob so that Bob recognizes the signature to be only from

Alice. Although digital signatures are supposed to mimic

the actual signing of hard-copy letters, they are not

physical signatures that are scanned and attached to

letters because this format could easily be copied by Eve

and used to send erroneous emails with Alice’s signature,

 43

i.e., through a replay attack. In contrast to a physical

signature, a digital signature is a combination of the

message, the hash of the message, and a hash of the message

encrypted with Alice’s private-key. Alice sends her signed

message along with her public certificate to Bob, who uses

Alice’s public key to decrypt the hash, after first using

Alice’s certificate to validate her public key (using the

certificate authority’s public key to verify the

certificate). To protect the confidentiality of the

message, it may be encrypted with a symmetric cipher, and

the symmetric key is encrypted with Bob’s public key (and

decrypted with Bob’s private key). Bob computes the hash

of the message and compares it with the decrypted hash

value.

Like digital certificates, digital signatures are only

as good as the algorithm that makes them, and per RFC 3279,

the two algorithms in use for digital certificates are DSA

and ECDSA. Like RSA, quantum computers are believed to

make these algorithms vulnerable because of the mathematics

these algorithms are based upon. Therefore, unless another

algorithm is added to RFC 3279 that is resistant to quantum

computers as an alternate standard, quantum computers will

make the forging of digital signatures possible.

6. Public-Key Infrastructure

One of the largest organizational public-key

infrastructures in existence is the United States

Department of Defense infrastructure, and this system will

be used to explain the elements and processes within a

public-key infrastructure that secures communication. The

process begins with the issuance of a Department of Defense

 44

identification card. A government employee, who could be

military, government employed civilian, or government

employed contractor, obtains an ID card by providing

different forms of government-issued identification to the

Department of Defense Identification office in person. If

sufficient identification is present, the government

employee is issued a Common Access Card (CAC), also known

as a CAC Card.

A Department of Defense Common Access Card contains

standard identification elements found on government-issued

ID cards (e.g., driver’s license) such as photograph, name,

birth date, issue date, and expiration date. The CAC also

contains a chip that holds the member’s public and private

certificates that are issued at the time the member

receives his or her CAC. The ID card office receives the

certificates securely from the Department of Defense

Certificate Authority and installs them onto the CAC.

After a process of about 20 minutes, the new employee can

access websites that are secured with the Department of

Defense’s public-key infrastructure or digitally sign

messages with the member’s new digital certificates that

can be verified by other members within the system.

If the government employee is a student at the Naval

Postgraduate School and wishes to access the school’s

websites that are secured with the Department of Defense’s

public-key infrastructure without receiving multiple

security warnings from his or her Internet browser, he or

she must install the Department of Defense’s root

certificate onto his or her machine. A public-key

infrastructure is a hierarchical system where all

certificates stem from the root certificate. The root

 45

certificate is the Certificate Authority’s public key along

with the Certificate Authority’s digital signature of its

public key. The root certificate is the only certificate

that is self-signed by the owner’s (Certificate

Authority’s) private key.

This system harnesses the strength of RSA’s public-key

algorithm for the protection of data confidentiality and

data integrity. Furthermore, since public-key

infrastructures use iterative/decentralized validation,

where the user’s PC can validate a website’s certificates

if the PC has the root-certificate installed, it is

difficult for an attacker to conduct a denial-of-service

attack on the Department of Defense’s public-key

infrastructure, making this system highly reliable for

sending information in a manner that protects

confidentiality, integrity, and availability.

Unfortunately, this system is based on the RSA algorithm,

and if an attacker had access to large-scale, fault-

tolerant quantum computers, this infrastructure would be

made vulnerable.

C. APPLICATIONS BELIEVED TO BE QUANTUM COMPUTING

RESISTANT

1. Introduction

The following section identifies cryptographic

technologies believed to be quantum computing resistant.

Therefore, assuming that large-scale, fault-tolerant

quantum computers have not been realized yet, there is time

to implement alternative ciphers.

 46

2. Symmetric Cryptography

Symmetric cryptography that currently protects the

largest bulk of secure electronic communications will

remain in a quantum-computing era because it is believed to

be quantum computing resistant. Given that symmetric

cryptography is believed to be resistant to quantum

computers, algorithms like the Advanced Encryption System

(AES), which as mentioned earlier is cleared by the

National Security Agency to secure Top Secret transmission,

the United States’ most classified and sensitive

information, will still hold strong against quantum

computers. Therefore, the session keys that are exchanged

within the client/server architecture for Internet

transactions like the end-user’s PC and his or her bank

server will also remain secure for these transactions.

Unfortunately, key distribution is more challenging with

symmetric cryptography; therefore, symmetric cryptography

must be combined with some form of asymmetric cryptography

in order to distribute symmetric keys over the web.

Fortunately, several quantum-resistant algorithms and

implementations, such as the NTRUEncrypt Public-Key Crypto

system, which uses lattice-based cryptography, are

available to distribute the symmetric session keys, and

NTRUEncrypt’s implementation of lattice-based cryptography

is believed to be quantum resistant.

3. NTRUEncrypt Public-Key Crypto System

According to techworld.com, which announced the X9.98

standard in April of 2011, "NTRUEncrypt, [is] the fastest

public key algorithm you've never heard of." In contrast

to RSA and Elliptic Curve Cryptology (ECC), NTRUEncrypt is

 47

faster, more efficient, and resistant to quantum computers

because the cipher is lattice-based (the mathematics of

lattice-based cryptography are beyond the scope of this

thesis). I.e., NTRUEncrypt is able to function fully as a

public-key algorithm like the widely used RSA algorithm,

but does so in a more efficient manner.

Fortunately, the techworld.com statement wasn't 100

percent accurate because obviously if the Accredited

Standards Committee X9 Incorporated, Financial Industry

Standards, created the X9.98 standard for financial

institutions to start using NTRUEncrypt to establish secure

communications for financial service in November 2010, then

someone has heard of NTRUEncrypt. In fact, JAVA released

an application programming interface, Bouncy Castle 1.47,

containing variants that include a lightweight version of

the NTRUEncrypt Public-Key Cryptosystem in March 2012

(bouncycastle.org).

Figure 9. Relative Performance of LBP-PKE, RSA, and ECC
(From:X9extra, Volume 2, Number 1, April 2011)

Figure 9 shows the relative performance for "Lattice-

Based Polynomial Public-Key Encryption" (X9extra, Volume 2,

Number 1, April 2011), RSA, and ECC. The reader can see via

 48

the operations per second in the last three columns that

NTRUEncrypt outperforms ECC and RSA by as much as 638:1.

4. Kerberos

In Greek mythology, there was the country of Kerberos

where no one could be trusted. The country was named after

a three-headed dog that guarded the gate of purgatory.

Greek legend states that in the land of Kerberos, if you

desired to deliver any package to anyone, you and the

package would be exposed to evil monsters and goblins that

could take your shape and do malicious things in your name.

Therefore, no one in the land of Kerberos could be trusted.

Ironically, in the Information Age, the land of Kerberos

has become reality, where evil users like Eve can take your

identification and use it to perform malicious activities.

Thanks to the founders of the Kerberos Authentication

System invented at MIT, a tool is available that uses an

authentication process similar in form to the three-headed

dog Kerberos, as shown in Figure 10. For more information

on the Legend of Kerberos, please visit:

http://www.tamacom.com/~shigio/legend/kerberos.html.

 49

Figure 10. Simplified Kerberos authentication protocol
(From:http://gost.isi.edu/publications/kerberos-

neuman-tso.html)

The Kerberos application, invented at MIT, is a

trusted third-party protocol that handles user

authentication. Using Figure 10 as a visual reference for

information flow, if Alice (who is represented by 'C' for

client) wants to talk to Bob (who is represented by 'V' for

verifier) on a Kerberos Authentication system, Alice must

first register her required information on the Kerberos

Server (which is represented by 'AS' for Authentication

Server) that includes a secret shared only between Alice

and the Kerberos server. Once registered, when Alice wants

to talk to Bob, she must first authenticate herself to the

 50

Kerberos server by logging onto the network. During the

authentication process, the workstation that Alice is using

to log onto the network sends Alice's identification to the

Kerberos server. The Kerberos server responds by sending a

session key that will later be shared with the Ticket

Granting Server (TGS) and a ticket, both encrypted with the

secret that Alice shares with Kerberos server. If Alice's

workstation can successfully decrypt the session key and

ticket, the workstation will continue the login process

because Alice has successfully authenticated herself.

Once Alice has successfully logged onto the network,

she then requests to talk to Bob via the TGS by sending the

ticket that the Kerberos server provided her. The ticket

contains a copy of the session key provided to Alice and

Alice's identity encrypted with the secret that only the

Kerberos server and TGS share. Once the TGS decrypts the

ticket and verifies that Alice's identification is bound to

the session key, the TGS knows that Alice is a trusted

party because the Kerberos server (third-party), which the

TGS identifies as a trusted user, provided Alice with the

ticket encrypted with a secret that is shared between the

TGS and Kerberos server only. The TGS then responds to

Alice by sending another session key to use with Bob and

another ticket to send to Bob. The session key and ticket

that the TGS sends to Alice is encrypted with the session

key shared between Alice and the TGS. Furthermore, the

session key that Alice and the TGS share can be used by

Alice to request additional session keys and tickets to use

with other entities on the network.

 51

Once Alice receives the new session key to share with

Bob and the ticket to send to Bob encrypted with the

session key shared with the TGS and Alice, she decrypts the

file, holds onto the session key, and sends Bob the ticket.

The ticket Alice sends to Bob is similar to the ticket

Alice first sent to the TGS. It contains her

identification and a copy of the session key that the TGS

sent Alice, both encrypted with the session key that Bob

and the TGS share. Bob established his session key with

the TGS the same way Alice established hers using the

Kerberos server. Once Bob decrypts the ticket and verifies

that Alice's identification is bound to the session key,

secure communication can begin using secret-key

cryptography. If Bob were a fileserver for example, the TGS

would also verify Alice's access rights to the file to

which she is requesting access and include these privileges

along with the name of the file Alice wishes to access for

Bob (the fileserver) to verify prior to giving Alice read

and/or write access. (Pfleeger, C. P. et al, 2003)

The benefit of this authentication system is that

authentication at every step of the process is successfully

completed without sending any encrypted or unencrypted

passwords over the network where attackers could capture

Alice's identity and perform an impersonation attack.

Furthermore, since Kerberos uses symmetric cryptography,

Alice's identity will be safe from any new attackers that

may appear in a quantum-computing era. Microsoft has

already adopted Kerberos version 5 as its Windows Sever

2008 client/server domain logon authentication. Kerberos

also supports asymmetric cryptography, but this feature is

 52

not covered in this thesis since the algorithm that is used

for public-key cryptology is RSA (RFC 4556), and is

vulnerable to quantum computing.

 53

V. EXPERIMENTATAL METHODOLOGY AND IMPLEMENTATION

A. HASH-BASED CRYPTOGRAPHY

1. Hash-Based Cryptography Background

Our first task was to implement hash-based

cryptography in the C programming language. We followed

the description of hash-based cryptography in the 2010

Springer book, Post-Quantum Cryptography, edited by Daniel

J. Bernstein, Johannes Buchmann, and Erik Dahmen. For our

hash function, we used the MD5 implementation by Ronald

Rivest at MIT (http://people.csail.mit.edu/rivest/Md5.c)

Post-Quantum Cryptography describes a hash-based

public-key signature system based on a standard

cryptographic hash function H with a digest of length 2b

bits. The signer’s public key consists of 4b strings y1[0],

y1[1], y2[0], y2[1], …, y2b[0], y2b[1] of length 2b bits. The

signer’s secret key consists of 4b random strings x1[0],

x1[1], x2[0], x2[1], …, x2b[0], x2b[1] of length 2b bits. The

signer generates the public key by computing y1[0] =

H(x1[0]), y1[1] = H(x1[1]), y2[0] = H(x2[0]), y2[1] =

H(x2[1]), …, y2b[0] = H(x2b[0]), y2b[1] = H(x2b[1]).

A message m is signed by computing y = H(r, m), where

r is a random string. The signer then sends the signature,

which consists of r followed by x1[h1], …, x2b[h2b]. The

unused x values are discarded, and no further messages may

be signed. This scheme is the Lamport-Diffie one-time

signature system [W. Diffie and M. Hellman. New Directions

in Cryptography. IEEE Transactions on Information Theory,

Vol. 22, No. 6, November 1976, pages 644-654]

 54

2. Hash-Based Cryptography Implementation

Our implementation consists of two separate programs.

The first program (separate1.c) is the signature generation

process, and the second program (separate2.c) is the

signature verification process. Both involve modifying

Rivest’s Md5.c program as follows (please note that for the

sake of brevity, only the modified functions are shown):

/********** Helper Functions ***********/

static char *MDString2 (inString, outString)

char *inString;

char *outString;

{

 int i, j, k;

 MD5_CTX mdContext;

 unsigned int len = strlen (inString);

 MD5Init (&mdContext);

 MD5Update (&mdContext, inString, len);

 MD5Final (&mdContext);

 k = 0;

 for (i = 0; i < 16; i++) {

 for (j = 0; j < 8; j++) {

 if ((mdContext.digest[i] >> (7-j)) & 1 == 1)

 outString[k] = '1';

 else

 outString[k] = '0';

 55

 k++;

 }

 }

 outString[k] = '\0';

}

void replaceCR(char *buf, int size)

{

 int i;

 for (i = 0; i < size; i++)

 if (buf[i] == '\n')

 buf[i] = '\0';

}

void clear(char *buf, int size)

{

 int i;

 for (i = 0; i < size; i++)

 buf[i] = '\0';

}

#define B 64

int main (argc, argv)

int argc;

char *argv[];

{

 int i, j;

 int b = B;

 56

 char **y0, **y1, **x0, **x1;

 unsigned int r, bit;

 char R[32+1], message[256], concat[512], concat2[512];

 char buf[2 * B + 1], buf2[2 * B + 1];

 char buf3[2 * B + 1], output[2 * B + 1];

 // Clear out buffers before using

 clear(R, 33);

 clear(message, 256);

 clear(concat, 512);

 clear(concat2, 512);

 clear(buf, 2 * B + 1);

 clear(buf2, 2 * B + 1);

 clear(buf3, 2 * B + 1);

 clear(output, 2 * B + 1);

 // Generate random number r

 srand(time(0));

 r = (unsigned int)random();

 // Convert r into a string

 clear(R, 33);

 for (i = 0; i < 32; i++) {

 bit = (r >> i) & 0x1;

 R[i] = '0' + bit;

 }

 printf(“%s\n”, R);

 // Read user-generated message to be signed

 57

 clear(message, 256);

 fgets(message, 256, stdin);

 replaceCR(message, 256);

 printf(“%s\n”, message);

 // Concatenate the two strings: message and R

 clear(concat, 512);

 clear(concat2, 512);

 strcpy(concat,R);

 strcat(concat,message);

 // Compute the MD5 hash of the concatenation

 MDString2(concat,concat2);

 clear(output, 2 * b + 1);

 strncpy(output,concat2,2 * b);

 output[2 * b] = '\0';

 // Allocate space for the private key

 x0 = (char **)malloc(2 * b * sizeof(char *));

 if (!x0) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 x1 = (char **)malloc(2 * b * sizeof(char *));

 if (!x1) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 58

 // Generate the private key

 for (i = 0; i < 2 * b; i ++) {

 x0[i] = (char *)malloc((2 * b + 1)* sizeof(char));

 if (!x0[i]) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 for (j = 0; j < 2 * b; j++) {

 x0[i][j] = (((unsigned int)random()) % 2) + '0';

 }

 x0[i][j] = '\0';

 }

 for (i = 0; i < 2 * b; i ++) {

 x1[i] = (char *)malloc((2 * b + 1) * sizeof(char));

 if (!x1[i]) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 for (j = 0; j < 2 * b; j++) {

 x1[i][j] = (((unsigned int)random()) % 2) + '0';

 }

 x1[i][j] = '\0';

 }

 // Allocate space for the public key

 y0 = (char **)malloc(2 * b * sizeof(char *));

 if (!y0) {

 59

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 y1 = (char **)malloc(2 * b * sizeof(char *));

 if (!y1) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 // Generate the public key

 for (i = 0; i < 2 * b; i ++) {

 y0[i] = (char *)malloc((2 * b + 1) * sizeof(char));

 if (!y0[i]) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 clear(buf, 2 * b + 1);

 clear(buf2, 2 * b + 1);

 strncpy(buf,x0[i],2 * b);

 MDString2(buf,buf2);

 clear(y0[i], 2 * b + 1);

 strncpy(y0[i],buf2, 2 * b);

 y0[i][2 * b] = '\0';

 printf("%s\n", y0[i]);

 }

 for (i = 0; i < 2 * b; i ++) {

 y1[i] = (char *)malloc((2 * b + 1) * sizeof(char));

 if (!y1[i]) {

 fprintf(stderr, "malloc returned null!");

 60

 return -1;

 }

 clear(buf, 2 * b + 1);

 clear(buf2, 2 * b + 1);

 strncpy(buf,x1[i],2 * b);

 MDString2(buf,buf2);

 clear(y1[i], 2 * b + 1);

 strncpy(y1[i],buf2,2 * b);

 y1[i][2 * b] = '\0';

 printf("%s\n", y1[i]);

 }

 // Signature generation

 for (i = 0; i < 2 * b; i++) {

 if (output[i] == '0') {

 printf("%s\n",x0[i]);

 } else if (output[i] == '1') {

 printf("%s\n",x1[i]);

 } else {

 fprintf(stderr, "fatal error\n");

 return;

 }

 }

 fprintf(stderr, "Signature generation suceeded\n");

 return 0;

}

Signature verification (separate2.c) is accomplished by

modifying Md5.c as follows (note that for the sake of

 61

brevity, only the modified functions are shown, and the

helper functions MDString2(), replaceCR(), and clear()

already shown above are not shown here):

#define B 64

int main (argc, argv)

int argc;

char *argv[];

{

 int i, j;

 int b = B;

 char **y0, **y1, **x0, **x1;;

 unsigned int r, bit;

 char R[256], message[256], concat[512], concat2[512];

 char buf[2 * B + 2], buf2[2 * B + 2];

 char buf3[2 * B + 2], buf4[256], output[2 * B + 2];

 // Clear out buffers before using

 clear(R, 256); clear(message, 256); clear(concat, 512);

 clear(concat2, 512); clear(buf, 2 * B + 2);

 clear(buf2, 2 * B + 2); clear(buf3, 2 * B + 2);

 clear(buf4, 256); clear(output, 2 * B + 2);

 // Read in random string R

 clear(R, 256);

 fgets(R, 256, stdin);

 replaceCR(R, 256);

 62

 // Read in the message

 clear(message, 256);

 fgets(message, 256, stdin);

 replaceCR(message, 256);

 clear(concat, 512);

 clear(concat2, 512);

 strcpy(concat,R);

 strcat(concat,message);

 MDString2(concat,concat2);

 clear(output, 2 * B + 2);

 strncpy(output,concat2,2*b);

 replaceCR(output, 2 * B + 2);

 // Allocate space for the public key

 y0 = (char **)malloc(2 * b * sizeof(char *));

 if (!y0) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 y1 = (char **)malloc(2 * b * sizeof(char *));

 if (!y1) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 // Read in the public key

 for (i = 0; i < 2 * b; i++) {

 y0[i] = (char *)malloc((2 * b + 2) * sizeof(char));

 if (!y0[i]) {

 63

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 clear(y0[i], 2 * b + 2);

 fgets(y0[i], 2 * b + 2, stdin);

 replaceCR(y0[i], 2 * b + 2);

 }

 for (i = 0; i < 2 * b; i++) {

 y1[i] = (char *)malloc((2 * b + 2) * sizeof(char));

 if (!y1[i]) {

 fprintf(stderr, "malloc returned null!");

 return -1;

 }

 fgets(y1[i], 2 * b + 2, stdin);

 replaceCR(y1[i], 2 * b + 2);

 }

 // Signature verification

 for (i = 0; i < 2 * b; i++) {

 if (output[i] == '0') {

 clear(buf, 2 * b + 2);

 // Read in part of the signature

 fgets(buf, 2 * b + 2, stdin);

 replaceCR(buf, 2 * b + 2);

 // Is H(buf) the same as y0[i]?

 MDString2(buf,buf2);

 clear(buf3, 2 * b + 2);

 for (j = 0; j < 2 * b; j++) {

 64

 buf3[j] = y0[i][j];

 }

 if (strncmp(buf2, buf3, 2 * b) != 0) {

 fprintf(stderr, "Signature verification failed\n");

 return -1;

 }

 } else if (output[i] == '1') {

 clear(buf, 2 * b + 2);

 // Read in part of the signature

 fgets(buf, 2 * b + 2, stdin);

 replaceCR(buf, 2 * b + 2);

 // Is H(buf) the same as y1[i]?

 MDString2(buf,buf2);

 clear(buf3, 2 * b + 2);

 for (j = 0; j < 2 * b; j++) {

 buf3[j] = y1[i][j];

 }

 if (strncmp(buf2, buf3, 2 * b) != 0) {

 fprintf(stderr, "Signature verification failed\n");

 return -1;

 }

 } else {

 fprintf(stderr, "fatal error\n");

 return;

 }

 }

 fprintf(stderr,"Signature verification succeeded\n");

 return 0;

}

 65

The user follows the following steps to compile the

above code:

% gcc –o separate1 separate1.c

% gcc –o separate2 separate2.c

Next, the user generates the signature:

% echo “Post-quantum cryptography is fun.” > message

% ./separate1 < message > signature

The user should see the following output:

Sender: Signature generation succeeded

Next, the user verifies the signature:

% ./separate2 < signature

The user should see the following output:

Signature verification succeeded

The file signature should be similar to the following:

11100110101000101101000111010110

Post-quantum cryptography is fun.

 66

00010101001010101111000000011010001010110010111101011110010

11100101111000010111110010100001010101111011100111000001100

1100100010

01111100000011011110010110110000111011100110010101010101011

00010000110100110011011101011100001111101010000110101011100

0000100110

00011101001001000001010000010101110111001010101110010011100

01111011001001110000110100010111111111100000010010111101101

1110001010

00100010111010111000010010000001000101001111110011111111101

00111110000001011010010110111010010001000011000101101011010

1111010100

11110111110000010001110101011000111110101100111101001010000

00010000100101110000001011100011111010011000100010110100110

0100111110

10111101110111001000011110111011111000000000011110001011010

01100000110001101010011111011011111101011100001111011010010

1000110000

…

B. MCELIECE CRPTOSYSTEM

1. McEliece Cryptosystem Background

We found an implementation of a variant of the

McEliece code-based cryptosystem implemented by Bhaskar

Biswas and Nicolas Sendrier of the French National

Institute for Research in Computer Science and Control

(Institut national de recherché en informatique et en

automatique, INRIA) in Rocquencourt, France. The source

code is distributed as part of the SUPERCOP toolkit

 67

developed by the VAMPIRE lab for measuring the performance

of cryptographic software

[http://bench.cr.yp.to/supercop.html]. SUPERCOP stands for

System for Unified Performance Evaluation Related to

Cryptographic Operations and Primitives. VAMPIRE stands

for Virtual Applications and Implementations Research Lab,

the third lab of ECRYPT, the European Network of Excellence

in Cryptology II.

2. McEliece Cryptosystem Implementation

SUPERCOP measures a variety of cryptographic

primitives. Anyone can contribute computer time to this

benchmarking effort by downloading, unpacking, and running

SUPERCOP on a Unix computer:

% wget http://hyperelliptic.org/ebats/supercop-20120316.tar.bz2

% bunzip2 < supercop-20120316.tar.bz2 | tar -xf -

% cd supercop-20120316

% nohup sh do &

The do script compiles the source code of the

cryptographic software and generates a file, which the user

posts to the web and then sends the URL to a mailing list.

The code compiles and runs on our system, but the

comments, variable names, and function names are all in

French.

Data on the performance of this cryptosystem on a

variety of machines is available at

http://bench.cr.yp.to/results-encrypt.html.

 68

C. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM

1. NTRUEncrypt Public-Key Crypto System Background

An open-source implementation of NTRU

(http://tbuktu.github.com/ntru/) is available. NTRU is an

example of lattice-based cryptography. It has both a

public-key encryption scheme (NTRUEncrypt) and a digital

signature scheme (NTRUSign).

We were able to download and compile the source code

for NTRU. We were also able to write our own programs that

use NTRU in order to encrypt files, decrypt files, sign

files, and verify signatures.

2. NTRUEncrypt Public-Key Crypto System
Implementation

First, we downloaded the NTRU source code and unpacked

it on a Unix machine. Then, we navigated to the demo

folder:

% jar xvf ntru-1.0-src.jar

% cd src/main/java/net/sf/ntru/demo

This folder contains an example program that

demonstrates both encryption and digital signature using

NTRU. We modified this SimpleExample.java program to open

the plaintext as a file and store the ciphertext as a file.

In addition, our modified program saves the public and

private keys to a file. Without our modifications, the

example program generates an EncryptionKeyPair, encrypts a

hard-coded string with the public key, decrypts the

ciphertext (stored in a byte array that is a local variable

 69

of the function), and then prints the decrypted string.

With our modifications, it is possible to transfer the

ciphertext to a different machine for decryption, which we

successfully tested. The following is the code of

Encrypt.java, our first of two encryption programs:

package net.sf.ntru.demo;

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

public class Encrypt {

 public static void main(String[] args) {

 encrypt();

 }

 private static void encrypt() {

 // create an instance of NtruEncrypt

 NtruEncrypt ntru = new NtruEncrypt(

 EncryptionParameters

 .APR2011_439_FAST);

 // create an encryption key pair

 70

 EncryptionKeyPair kp = ntru.generateKeyPair();

 byte[] enc = {};

 byte[] buf = new byte[64];

 File f;

 FileOutputStream fos;

 FileInputStream fis;

 try {

 // Load the plaintext from disk

 f = new File("plaintext");

 fis = new FileInputStream(f);

 fis.read(buf);

 fis.close();

 // encrypt the message with the public key

 enc = ntru.encrypt(buf, kp.getPublic());

 // Store the public key to disk

 f = new File("public_key");

 fos = new FileOutputStream(f);

 kp.getPublic().writeTo(fos);

 fos.close();

 // Store the private key to disk

 f = new File("private_key");

 fos = new FileOutputStream(f);

 kp.getPrivate().writeTo(fos);

 fos.close();

 // Store the ciphertext to disk

 f = new File("ciphertext");

 fos = new FileOutputStream(f);

 fos.write(enc);

 71

 fos.close();

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 }

}

To compile and run this program, the user creates a

plaintext file called plaintext and then types the

following commands:

% javac -classpath ../../../.. Encrypt.java

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt

Next, we created another encryption program

Encrypt2.java that does not create a key pair but instead

uses an existing key pair stored in a file:

package net.sf.ntru.demo;

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

 72

public class Encrypt2 {

 public static void main(String[] args) {

 encrypt();

 }

 private static void encrypt() {

 // create an instance of NtruEncrypt

 NtruEncrypt ntru = new NtruEncrypt(

 EncryptionParameters

 .APR2011_439_FAST);

 byte[] enc = {};

 byte[] buf = new byte[64];

 File f;

 FileOutputStream fos;

 FileInputStream fis;

 EncryptionPrivateKey pri;

 EncryptionPublicKey pub;

 try {

 // Load the public key from disk

 f = new File("public_key");

 fis = new FileInputStream(f);

 pub = new EncryptionPublicKey(fis,

 EncryptionParameters

 .APR2011_439_FAST);

 fis.close();

 // Load the plaintext from disk

 f = new File("plaintext");

 73

 fis = new FileInputStream(f);

 fis.read(buf);

 fis.close();

 // Encrypt the message with the public key

 enc = ntru.encrypt(buf, pub);

 // Store the ciphertext to a file

 f = new File("ciphertext");

 fos = new FileOutputStream(f);

 fos.write(enc);

 fos.close();

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 }

}

To compile and run this program, the user must already

have an existing public_key file. The user creates a

plaintext file called plaintext and then types the

following commands:

% javac -classpath ../../../.. Encrypt2.java

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt2

Next, we created a decryption program Decrypt.java that

requires existing public_key, private_key, and ciphertext

files:

package net.sf.ntru.demo;

 74

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

public class Decrypt {

 public static void main(String[] args) {

 decrypt();

 }

 private static void decrypt() {

 // create an instance of NtruEncrypt

 NtruEncrypt ntru = new NtruEncrypt(

 EncryptionParameters

 .APR2011_439_FAST);

 byte[] dec = {};

 byte[] buf = new byte[1024];

 File f;

 FileOutputStream fos;

 FileInputStream fis;

 EncryptionPrivateKey pri;

 EncryptionPublicKey pub;

 EncryptionKeyPair pair;

 75

 try {

 // Load the public key from disk

 f = new File("public_key");

 fis = new FileInputStream(f);

 pub = new EncryptionPublicKey(fis,

 EncryptionParameters

 .APR2011_439_FAST);

 fis.close();

 // Load the private key from disk

 f = new File("private_key");

 fis = new FileInputStream(f);

 pri = new EncryptionPrivateKey(fis,

 EncryptionParameters

 .APR2011_439_FAST);

 pair = new EncryptionKeyPair(pri, pub);

 // Load the ciphertext from disk

 f = new File("ciphertext");

 fis = new FileInputStream(f);

 fis.read(buf);

 System.out.println(buf);

 dec = ntru.decrypt(buf, pair);

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 // Print the decrypted message

 System.out.println("Message: " + new String(dec));

 }

}

 76

To compile and run this program, the user must already

have existing ciphertext, public_key and private_key files.

The user types the following commands:

% javac -classpath ../../../.. Decrypt.java

% java -classpath ../../../.. net.sf.ntru.demo.Decrypt

Next, we created a program Sign.java to sign a file

(modified from the example program to read the message from

the file message and to write the public_signing_key,

private_signing_key, and signature to disk):

package net.sf.ntru.demo;

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignaturePublicKey;

import net.sf.ntru.sign.SignaturePrivateKey;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

public class Sign {

 public static void main(String[] args) {

 sign();

 77

 }

 private static void sign() {

 // create an instance of NtruSign

 NtruSign ntru = new NtruSign(

 SignatureParameters.TEST157);

 // create an signature key pair

 SignatureKeyPair kp = ntru.generateKeyPair();

 byte[] buf = new byte[64];

 File f;

 FileOutputStream fos;

 FileInputStream fis;

 try {

 // Read the message from disk

 f = new File("message");

 fis = new FileInputStream(f);

 fis.read(buf);

 fis.close();

 // Sign the message with the private key

 byte[] sig = ntru.sign(buf, kp);

 // Write the public signing key to disk

 f = new File("public_signing_key");

 fos = new FileOutputStream(f);

 kp.getPublic().writeTo(fos);

 fos.close();

 // Write the private signing key to disk

 f = new File("private_signing_key");

 fos = new FileOutputStream(f);

 kp.getPrivate().writeTo(fos);

 78

 fos.close();

 // Write the signature to disk

 f = new File("signature");

 fos = new FileOutputStream(f);

 fos.write(sig);

 fos.close();

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 }

}

To compile and run this program, the user creates a

message file and then types the following commands:

% javac -classpath ../../../.. Sign.java

% java -classpath ../../../.. net.sf.ntru.demo.Sign

Next, we created Sign2.java, a signature program that

uses an existing public_signing_key and

private_signing_key:

package net.sf.ntru.demo;

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

 79

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignaturePublicKey;

import net.sf.ntru.sign.SignaturePrivateKey;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

public class Sign2 {

 public static void main(String[] args) {

 sign();

 }

 private static void sign() {

 // Create an instance of NtruSign

 NtruSign ntru = new NtruSign(

 SignatureParameters.TEST157);

 SignatureKeyPair kp;

 byte[] buf = new byte[64];

 byte[] sig = {};

 File f;

 FileOutputStream fos;

 FileInputStream fis;

 SignaturePrivateKey pri;

 SignaturePublicKey pub;

 try {

 // Read public signing key from disk

 f = new File("public_signing_key");

 fis = new FileInputStream(f);

 pub = new SignaturePublicKey(fis,

 80

 SignatureParameters.TEST157);

 fis.close();

 // Read private signing key from disk

 f = new File("private_signing_key");

 fis = new FileInputStream(f);

 pri = new SignaturePrivateKey(fis,

 SignatureParameters.TEST157);

 fis.close();

 kp = new SignatureKeyPair(pri, pub);

 // Read message from disk

 f = new File("message");

 fis = new FileInputStream(f);

 fis.read(buf);

 fis.close();

 // Sign the message with the key pair

 sig = ntru.sign(buf, kp);

 // Write signature to disk

 f = new File("signature");

 fos = new FileOutputStream(f);

 fos.write(sig);

 fos.close();

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 }

}

To compile and run this program, the user must have an

existing public_signing_key and private_signing_key. The

 81

user creates a message file and then types the following

commands:

% javac -classpath ../../../.. Sign2.java

% java -classpath ../../../.. net.sf.ntru.demo.Sign2

Next, we created a program Verify.java to verify the

signature. This program requires the following files:

public_signing_key, message, and signature:

package net.sf.ntru.demo;

import net.sf.ntru.encrypt.EncryptionPrivateKey;

import net.sf.ntru.encrypt.EncryptionPublicKey;

import net.sf.ntru.encrypt.EncryptionKeyPair;

import net.sf.ntru.encrypt.EncryptionParameters;

import net.sf.ntru.encrypt.NtruEncrypt;

import net.sf.ntru.sign.NtruSign;

import net.sf.ntru.sign.SignatureKeyPair;

import net.sf.ntru.sign.SignaturePublicKey;

import net.sf.ntru.sign.SignaturePrivateKey;

import net.sf.ntru.sign.SignatureParameters;

import java.io.*;

public class Verify {

 public static void main(String[] args) {

 verify();

 }

 82

 private static void verify() {

 // Create an instance of NtruSign.

 NtruSign ntru = new NtruSign(

 SignatureParameters.TEST157);

 byte[] buf = new byte[64];

 byte[] sig = new byte[1024];

 File f;

 FileInputStream fis;

 SignaturePrivateKey pri;

 SignaturePublicKey pub;

 try {

 // Read the public signing key from disk

 f = new File("public_signing_key");

 fis = new FileInputStream(f);

 pub = new SignaturePublicKey(fis,

 SignatureParameters.TEST157);

 fis.close();

 // Read the message from disk

 f = new File("message");

 fis = new FileInputStream(f);

 fis.read(buf);

 fis.close();

 // Read the signature from disk

 f = new File("signature");

 fis = new FileInputStream(f);

 int nbytes = fis.read(sig);

 fis.close();

 byte[] sig2 = new byte[nbytes];

 83

 for (int i = 0; i < nbytes; i++)

 sig2[i] = sig[i];

 // Verify the signature

 boolean valid = ntru.verify(buf, sig2, pub);

 System.out.println("Valid? " + valid);

 } catch (Exception e) {

 System.err.println("Exception! " + e);

 }

 }

}

To compile and run this program, the user must have an

existing public_signing_key, message, and signature. The

user types the following commands:

% javac -classpath ../../../.. Verify.java

% java -classpath ../../../.. net.sf.ntru.demo.Verify

 84

THIS PAGE INTENTIONALLY LEFT BLANK

 85

VI. EXPERIMENTAL RESULTS

A. HASH-BASED CRYPTOLOGY

After implementing the hash-based cryptography scheme

in C, we evaluated it both on a Mac OS X system as well as

in Ubuntu. We established two Ubuntu Virtual Machine (VM)

environments, one for the sender, and another for the

receiver. We validated the correct operation of the

signature generation process in the sender’s environment,

transferred the signature to the receiver’s environment,

and validated the correct operation of the signature

verification process in the receiver’s environment. We

then made a small change to the message to validate that

the signature verification process failed.

We also attempted to generate the signature on the Mac

OS X system and verify the signature on the Ubuntu system.

However, signature verification failed on the Ubuntu system

because of a subtle implementation issue with the MD5 code

we downloaded from Ronald Rivest’s website at MIT. We

discovered that this MD5 code produces a different hash

value on the Mac than in the Ubuntu VM. To fix this

problem will require finding the source code of a

cryptographic hash function that produces the same hash

value for the same message on a Mac and in the Ubuntu

environment.

Currently, only messages with a maximum length of 256

bytes are supported. Future work will involve making a

small change to the code to support messages of arbitrary

 86

size. This is a simple fix. The time required to sign a

message consisting of 34 characters is less than one

hundredth of a second.

B. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM

After implementing our modifications to the NTRU

source code in Java, we evaluated the programs on both a

Mac OS X system as well as in an Ubuntu VM environment. We

established two Ubuntu environments, one for the sender,

and another for the receiver. We validated the correct

operation of the encryption program in the sender’s

environment. Then, we transferred the public_key,

private_key, and ciphertext files to the receiver’s

environment and validated the correct operation of the

decryption program.

Note that there are two encryption programs: one that

generates a new encryption key pair and stores it to disk,

and another that uses an existing encryption key pair,

loading the public_key file from disk. We validated the

correct operation of both encryption programs.

Also, we validated the correct operation of the

signature generation process in the sender’s environment.

Then, we transferred the public_signing_key, message, and

signature to the receiver’s environment and validated the

correct operation of the signature verification program.

Note that there are two signature generation programs:

one that generates a new signing key pair and stores it to

disk, and another that uses an existing signing key pair,

loading it from disk. We validated the correct operation

of both signature generation programs.

 87

The time to encrypt a 37-byte message is less than one

half of a second. We are currently limited to messages

with a maximum length of 64 characters. A simple fix will

allow messages of arbitrary length (below we describe a

hybrid encryption scheme that already supports messages of

any length). The time to decrypt the message is less than

0.3 seconds.

The time to sign a 37-byte message is approximately

one second. We are currently limited to messages with a

maximum length of 64 bytes. A simple fix will allow

messages of arbitrary length. The time to verify the

signature is approximately 0.3 seconds.

C. OPENSSL

Symmetric encryption is not vulnerable to quantum

computers. To demonstrate how easy it is for anyone to use

symmetric encryption, we show the following examples of

using OpenSSL, which is installed on many systems,

including Mac OS X and Ubuntu Linux.

To encrypt a file plain.txt, all one must do is type

the following at the command prompt:

% openssl enc -aes-128-cbc -e -in plain.txt -out cipher.txt

-K bead1234 -iv feed4321

This will produce a file cipher.txt containing the

ciphertext encrypted under key 0xbead1234 and

initialization vector of 0xfeed4321 using the AES cipher

with a key size of 128 bits and the cipher-block chaining

 88

(CBC) mode of operation. It takes less than one hundredth

of a second to encipher a file containing 37 characters.

To decrypt the file, the user types the following at

the command prompt:

% openssl enc -aes-128-cbc -d -in cipher.txt -out

decrypted.txt -K bead1234 -iv feed4321

Deciphering the 37-character file also takes less than

one hundredth of a second. Note that the key and the

initialization vector must be the same for encryption and

decryption. Otherwise, the file will not decrypt properly.

Also, the output file decrypted.txt has a different

filename than the original plaintext file plain.txt so that

it is possible to compare the two rather than overwriting

the original plaintext file. When using a 128-bit key, the

user may specify up to 128 hexadecimal digits of the key.

In the above example, they key only has 8 hexadecimal

digits, or 32 bits.

D. NTRU + OPENSSL

We now demonstrate a hybrid encryption protocol

combining the quantum-resistant asymmetric cipher NTRU

together with the quantum-resistant symmetric cipher AES

implemented by OpenSSL.

1) First, we generate a 128-bit key. Suppose that

this key is the hexadecimal value

25c16a7af74b53d421754fadc0f1b531. We create a text file

plaintext containing these hexadecimal characters in ASCII

format. We place this file in the sender’s directory. Note

 89

that you may also encrypt the initialization vector iv if

you wish as a separate step.

2) Next, we encrypt a file plain.txt containing the

(long) message using AES as implemented by OpenSSL:

% openssl enc -aes-128-cbc -e -in plain.txt -out cipher.txt

-K 25c16a7af74b53d421754fadc0f1b531 -iv feed4321

3) Next, we run the NTRU encryption program on the

sender’s machine. Either encryption program Encrypt.java

or Encrypt2.java is acceptable depending on your

requirements.

% cd src/main/java/net/sf/ntru/demo

% javac -classpath ../../../.. Encrypt.java

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt

4) Next, we transfer the files public_key, private_key,

ciphertext (the key encrypted with NTRU), and cipher.txt

(the message encrypted with AES) to the receiver’s machine

and run the NTRU decryption program on the receiver’s

machine.

% javac -classpath ../../../.. Decrypt.java

% java -classpath ../../../.. net.sf.ntru.demo.Decrypt

5) We note the hexadecimal characters printed to the

screen as a result of the decryption operation and use them

as the decryption key as follows:

 90

% openssl enc -aes-128-cbc -d -in cipher.txt -out

decrypted.txt -K 25c16a7af74b53d421754fadc0f1b531 -iv

feed4321

6) The file decrypted.txt on the receiver’s machine

should be identical to the file plain.txt on the sender’s

machine.

 91

VII. QUALITATIVE MANAGEMENT ANALYSIS

A. BACKGROUND

1. Algorithms are Broken Eventually

This thesis has covered how large-scale, fault-

tolerant quantum computers have the potential to render

vulnerable algorithms like RSA, Elliptic Curve

Cryptography, Diffie-Hellman, and others that use factoring

of large numbers or computing discrete logarithms as the

basis of their security. In general, ciphers are

eventually broken over time, as shown by the trend for hash

algorithms depicted in Figure 11. The growth of computing

power as described by Moore's Law, new ways of harnessing

computing power like daisy-chaining the processing power of

multiple XBOX 360s, or new breakthroughs in mathematics all

contribute to rendering vulnerable (i.e., breaking)

algorithms considered strong today.

 92

Figure 11. Life cycles of popular cryptographic hashes
(From:http://valerieaurora.org/monkey.html)

It is the continuous life-cycle of algorithms being

invented and broken that motivates the field of cryptology

to continuously invent new algorithms that are hardened

through peer-review. In security and cryptography, there

are no silver-bullets today or in a quantum-computing era,

and a defense-in-depth approach ranging from cipher design

to cryptosystem implementation is essential whenever

sensitive information is stored or distributed via an

electronic medium.

2. Protection of the CIA Triad in a Quantum Era

For those who choose to store and transfer sensitive

information via electronic means to have a complete system

that protects our data with respect to all facets of the

CIA Triad (Confidentiality, Integrity, and Availability) in

a quantum-computing era, we must replace algorithms

believed to be vulnerable with those believed to be quantum

computing resistant to prepare for the emergence of large-

scale, fault-tolerant quantum computers. Therefore, we

 93

must have an algorithm to create digital fingerprints of

our messages, and it is essential for our system to have a

secret-key algorithm to encrypt and decrypt the bulk of our

secure communication. We also need to be able to digitally

sign our messages as we would hard-copy messages. Finally,

we require a secure method of distributing symmetric

session keys.

B. ASSESSMENT OF OUR QUANTUM COMPUTING READINESS

1. Introduction

The following figure depicts the authors’ assessment

of the world's quantum computing readiness.

Figure 12. Quantum Computing Readiness

 94

2. Digital Signatures

Modern cryptographic hash functions provide one method

for creating digital signatures. Since a hash function

must accept a variable-size input, output a fixed-length

digest, be fast to compute, difficult to invert, and

produce few collisions, these requirements of a secure hash

algorithm also make hash functions quantum-resistant.

Therefore, we are already capable of producing digital

signatures for a quantum-computing era, and that is why the

block is labeled green for digital fingerprints under

Cryptographic Hash-Functions.

3. Symmetric (Secret-Key) Cryptology

Another algorithm already in wide use that will be

quantum-resistant is the Advanced Encryption Standard

(AES). This symmetric algorithm is cleared to protect the

United States Government's most sensitive material when

using AES key sizes of 192 bits or greater. There will be

no change required to the symmetric cryptography system

when quantum computers come into existence, and this is why

the block is labeled green for symmetric cryptography under

AES. The NTRUEncrypt and Kerberos columns are also labeled

green for symmetric cryptography because both systems

support the AES algorithm as part of their secret-key

algorithm.

4. Digital Signatures

One viable and efficient system we have available

today for creating digital signatures in a quantum-

computing era is the NTRUEncrypt Cryptosystem. This block

is labeled yellow because even though NTRU Encrypt is

 95

capable of creating digital signatures and is even more

efficient at digital signatures than algorithms currently

in wide use, NTRU is not widely accepted yet, and RSA

reigns as the most common algorithm used for digital

signatures.

5. Session-Key Distribution

NTRUEncrypt and Kerberos both provide secure methods

for session key distribution, but they are labeled yellow

in the figure for two separate reasons. First, NTRU is

able to distribute session keys in a public-key

infrastructure just like the popular RSA algorithm does

today. As discussed above, NTRUEncrypt is more efficient

than RSA. The reason why NTRU is shown in the figure in

yellow for session-key distribution is for the same reason

provided for digital signatures: NTRUEncrypt is not yet

widely accepted and has not been added to the list of

possible public-key algorithms for many RFC standards as an

alternative algorithm for public-key cryptography.

On the other hand, Kerberos could be considered widely

accepted because Microsoft has been using Kerberos since

Microsoft Server 2000, and with the latest version,

Kerberos is an extremely secure system that assumes the

network it operates in is untrusted and requires user

authentication whenever the user is trying to perform any

function outside of his or her workstation. The drawback

to Kerberos, and the reason that it is labeled yellow in

the figure, is that Kerberos authentication is recursive in

nature. All users must be authenticated with a single

server prior to being provided access to the ticket

granting server, which then provides the user subsequent

 96

access to other services like file and print servers. This

authentication system would be fine for a closed and

trusted intranet like multiple University intranets

connected to one another, but this single point of

authentication, and the fact that every user must

physically register with a Kerberos server prior to logging

onto a Kerberos network, makes a Kerberos system unsuitable

for Internet scalability.

C. SCENARIO-BASED PREPARATION; IF QUANTUM COMPUTERS WERE

INVENTED

1. Tomorrow

Yogi Berra once said that prediction is difficult,

especially about the future. This statement is applicable

to quantum computing: it is difficult to know when or if

large-scale, fault-tolerant quantum computers will become

available. Nevertheless, this section offers some

speculation, a glimpse into the future, with educated

guesses based on the analysis presented in this thesis. If

quantum computers suddenly become available to attackers,

no one may know this fact until after an attack has already

occurred. Attackers/adversaries could be terrorist

organizations or governments with the ability to fund the

development of quantum computers. A successful program to

develop a quantum computer would likely want to keep its

success a secret in order to maximize the amount of

eavesdropping. Disclosure of the successful development

would weaken the effectiveness of the tool since

countermeasures would likely be put into place upon

disclosure.

 97

Assuming that quantum computers have not been

invented, and that the inventor(s) of the large-scale,

fault-tolerant quantum computer would benefit (e.g.,

financially or in terms of status) from publicizing the

invention of a quantum computer immediately, then there

would be a large push for the rapid implementation of

alternative public-key cryptosystems to replace the popular

RSA algorithm. It is likely that leading Internet browser

companies would work around the clock until their browsers

supported the quantum-resistant alternatives, and most

browsers would be able to support the alternatives in a

short period of time. A large-scale boycott of the

Internet is unlikely because most users are ignorant of

basic computer security. The hasty implementation of

changes could itself result in bugs, which would need to be

addressed by software patches. While software changes can

be made relatively easily (e.g., by downloading a patch),

changes to hardware are more expensive. For example, ASIC

implementations of cryptosystems would need to be

redesigned and fabricated, which is extremely expensive and

time-consuming. Programmable hardware (e.g., field-

programmable gate arrays, or FPGAs) can be more easily

updated with new cryptographic hardware designs, but

engineering of the new designs must take place whether ASIC

or FPGA is used.

Enumerating the various cryptosystems that use

special-purpose hardware is beyond the scope of this

thesis, but in general, organizations that use custom,

dedicated hardware to implement cryptography do so in order

to keep up with large volumes of data, i.e., high

bandwidth/throughput. A company that uses custom,

 98

dedicated hardware could either switch over to a software

implementation temporarily as a coping mechanism and later

to FPGA and finally to ASIC. A company that is already

using FPGAs could reprogram the FPGAs with the new custom

design when it is available. In the worst case, unless

that company feels that costs of shutting the system down

is more costly than keeping the system up and running in a

potentially unsecure environment, all aspects of operation

that depend on that piece of hardware will be down until a

company can replace it. Even after replacement hardware is

fabricated, the laws of supply and demand will cause prices

to skyrocket, and the organizations that have the most

money will pay top dollar to receive the first available

replacement products, while other smaller companies would

have to wait.

If quantum computers suddenly become available, this

could have a serious impact on some organizations.

Fortunately, a large institution like the Accredited

Standards Committee X9 Incorporated, Financial Industry

Standards, has taken heed to the warnings of quantum

computers, has noted the efficiency of the NTRUEncrypt

Public-Key Cryptosystem, and has already made the

transition to NTRU from RSA. Therefore, it is encouraging

to see steps being taken in a positive direction, but these

are not enough. Even though our financial institutions are

able to communicate securely among themselves using

alternatives such as NTRU, ordinary users are unable to

communicate securely with our financial institutions using

alternatives such as NTRU. Therefore, our sensitive

 99

financial data will be vulnerable in a quantum-computing

era during transit between our Internet browsers and our

banks' web servers unless changes are implemented.

2. A Year from Today

If quantum computers become available a year from

today, we have time to manage the change without causing

too much chaos for those organization that are predicted to

be impacted the most. IT organizations that publish

software and/or hardware implementations that perform

digital signatures or support public-key infrastructures

could begin the transition tomorrow. The software aspect

of this problem can likely be remedied the fastest because

the Internet can be used to publish the updates and patches

as required. The hardware aspect of this problem is likely

to require the most time since after a prototype has been

created and tested, manufacturing plants must produce the

new hardware. After the hardware has begun mass

production, it must be shipped to the customer via means

that are typically no faster than 24 hours. Then, once the

product has arrived, it must be installed and tested.

Assuming installation occurs with zero problems (one could

easily argue that this assumption is unrealistic)

installation of the hardware implementation takes longer

than a software implementation, in general.

It is worthwhile to consider the question, "are IT

companies at least working towards adding alternatives such

as NTRUEncrypt to the list of possible implementations?"

If not, we will more likely find ourselves in the first

scenario, where quantum computers come into existence

tomorrow, and we are totally unprepared for their arrival.

 100

3. Beyond a Year, but Sometime in the Near Future

If quantum computers become available more than a year

from now, but sometime in the near future, we could

potentially benefit from all of the remedies described in

the section where quantum computers were invented a year

from today and more. In fact, this scenario would look

very similar to the Y2K problem the world faced in the

1990s, the main difference being that the world knew that

by 01/01/01, all systems must be made Y2K-compliant.

Unfortunately, the quantum computing cryptology management

problem does not know exactly when someone will invent

fault-tolerant quantum computers. Assuming we have

multiple years to prepare for the quantum-computing era

(i.e., the quantum singularity), we could use methodologies

learned from Y2K to transition into a quantum-computing

era, such as the publishing of best practices. With the

Accredited Standards Committee X9 Incorporated, Financial

Industry Standards, being one of the first if not the first

large industry to change over to alternatives such as NTRU,

they could publish their lessons learned for others to

follow. Organizations could designate a Quantum Computer

Transition Coordinator who is a senior IT manager to assess

the organization's vulnerability to quantum computers and

the impact they will have, identify the optimal solution,

and then take the time to refine the solution while

providing scheduled updates to the senior executives.

Even the companies that have critical hardware

implementations of algorithms that are predicted to be

vulnerable to quantum computing could start soliciting IT

hardware companies to fabricate an alternative. If

 101

predictions indicated the lack of an available alternative

hardware implementation within a year, the organization

could consider installing a software backup running on more

machines, or even leverage field-programmable gate-arrays

(FPGAs) that are the hybrid of software and hardware

implementations. FPGAs are faster than software for

certain high-throughput applications, but they are not

dedicated hardware and therefore are not as fast as pure

hardware implementations (e.g., Application-Specific

Integrated Circuits, or ASICs). Another benefit of FPGAs

is that they are reprogrammable like software

implementations, whereas dedicated hardware requires

complete replacement, and this is more costly than updating

software or FPGA implementations.

In conclusion, if we have a few years to manage the

cryptography transition from RSA to NTRU, there would be

minimal to no rush in the transition; we could learn from

published best-practices or lessons-learned of how to best

manage the transition; organizations could make full

assessments of the vulnerabilities and what courses of

action are best to take for each vulnerability; and

finally, new systems could be tested while still having the

strong and popular RSA algorithm on standby just in case

the organization had a problem with the new system. Once

quantum computers come into existence, RSA will not be

available to use as training wheels.

D. ANALYSIS CONCLUSION

This thesis recommends that the rest of the industry

follow the lead of the Accredited Standards Committee X9

 102

Incorporated, Financial Industry Standards, and identify a

suitable alternative cipher such as the NTRUEncrypt

Cryptosystem as the primary algorithm for asymmetric

cryptography to replace RSA if needed. Preparations should

be made to facilitate a smooth transition if it becomes

necessary. If the concern is too great that NTRU is a new

algorithm, then this thesis at least recommends that it be

added to the published standards as an alternative cipher

implementation so that it is available to the industry in

the event quantum computers abruptly come into existence.

 103

VIII. CONCLUSION

A. HYPOTHESIS QUESTIONS REVIEWED

What if quantum computing reduces the time to defeat

traditional ciphers from millions of years by today’s

supercomputers to only seconds? What if we are already

living in that era, and unfriendly forces have such

technology?

How efficient are post-quantum ciphers proposed as

alternatives to traditional ciphers like RSA and Elliptic

Curve Cryptography (ECC)? Do these ciphers have enough

bandwidth to meet today's cryptographic workloads? What is

the performance impact of deploying an alternative

cryptographic infrastructure based on post-quantum ciphers?

Could available implementations be used as a basis for

constructing a cryptographic software library that is a

viable alternative to classical ciphers?

B. HYPOTHESIS

While alternative ciphers exist, available

implementations do not satisfy all performance requirements

of modern cryptographic workloads. A cryptographic

infrastructure that allows for ciphers to be reconfigured

dynamically will reduce the costs of switching

cryptographic infrastructure quickly in response to the

development of quantum computers.

C. HYPOTHESIS VALIDATION

This research validates the hypothesis that

alternative ciphers exist, and implementations of some

 104

quantum-resistant ciphers are available. This research

validated the feasibility of developing an original

implementation of a quantum-resistant cipher, specifically

hash-based digital signature, based on a description of the

algorithm in the post-quantum cryptography literature. This

implementation was used to send a digitally signed message

from the sender’s machine to the receiver’s machine, where

the signed message was verified successfully. This thesis

also validated the feasibility of adapting and customizing

existing implementations of quantum-resistant ciphers,

showing how to modify the source code of the NTRU

cryptosystem to send an encrypted message from the sender’s

machine to the receiver’s machine, where it was

successfully decrypted. This thesis also showed how to

modify the source code of NTRU to send a digitally signed

message from the sender’s machine to the receiver’s

machine, where it was successfully verified. This thesis

also showed how to use NTRU and AES together as part of a

hybrid encryption protocol. Specifically, NTRU was used as

a quantum-resistant asymmetric cipher to exchange a

symmetric session key. The quantum-resistant symmetric

cipher AES, implemented by OpenSSL, was used to encrypt a

long message. Future work is needed to ensure that

implementations of quantum-resistant ciphers are free of

implementation flaws and that the ciphers themselves (i.e.,

the algorithms) have been exposed to rigorous peer review

to ensure that the algorithms are mathematically sound and

provably secure.

The research shows that the phrase of the hypothesis

that states “available implementations do not satisfy all

performance requirements of modern cryptographic workloads”

 105

is partially incorrect, at least with respect to one

implementation of lattice-based cryptography.

Specifically, existing studies of the NTRUEncrypt Public-

Key Crypto System have demonstrated that NTRU outperforms

RSA, today’s leading public-key algorithm. According to

the published literature, since NTRU is a new system, it

has not yet gained industry acceptance.

Qualitative analysis shows the usefulness of a

flexible, configurable design approach to cryptosystems and

large-scale cryptographic infrastructure. Future work is

needed to measure the costs of developing and deploying an

alternative infrastructure that is more configurable than

the existing infrastructure. While such an effort would be

extremely costly, so too would be the impact of the sudden

emergence of large-scale, fault-tolerant quantum computers

requiring the shutting down of critical systems until

software patches and even expensive and time-consuming

hardware changes are completed. The decision to use

infrastructure that allows for ciphers to be reconfigured

dynamically involves performance considerations and

tradeoffs. For example, a software implementation is more

general, flexible, and configurable than a custom hardware

like Application-Specific Integrated Circuit (ASIC)

implementation, but this generality often comes at the cost

of performance for high-throughput workloads. On the other

hand, while an ASIC may provide higher throughput for

certain high-bandwidth cryptographic workloads in

comparison with software implementations, ASICs are

expensive to design and manufacture, and they are difficult

to quickly replace should a cipher be broken. Future work

is needed to compare the tradeoffs of CPU/software, FPGA,

 106

and ASIC implementations of cryptosystems for use in a

cryptographic infrastructure that is adaptable to the

possibility of a sudden shift to a quantum-computing era.

D. MANAGEMENT RECOMMENDATIONS

This thesis recommends that industry follow the lead

of the Accredited Standards Committee X9 Incorporated,

Financial Industry Standards, and identify a suitable

alternative cipher such as the NTRUEncrypt Cryptosystem as

the primary algorithm for asymmetric cryptography to

replace RSA if needed. Preparations should be made to

facilitate a smooth transition if it becomes necessary. If

the concern is too great that NTRU is a new algorithm, then

this thesis at least recommends that it be added to the

published standards as an alternative cipher implementation

so that it is available to the industry in the event

quantum computers abruptly come into existence.

E. RECOMMENDATIONS EXPLAINED

The author recommends the continued development of

quantum-resistant ciphers and the refinement of existing

quantum-resistant ciphers such as the NTRUEncrypt Public-

Key Cryptosystem as alternatives to traditional public-key

algorithms. Peer review is essential to ensure that the

ciphers are mathematically sound and that their

implementations are free of exploitable implementation

flaws. Once quantum computers are realized, we will no

longer have RSA to fall back upon in the event we find NTRU

is not mathematically sound or has exploitable

implementation flaws.

 107

F. RECOMMENDATIONS FOR FUTURE WORK

With published studies showing that the NTRUEncrypt

Public-Key Crypto System is more efficient than RSA, future

work is needed to consider how NTRU would compare to

Kerberos, a system that is solely based on symmetric

cryptography, which is also quantum-resistant.

Further testing of implementations of post-quantum

ciphers such as the NTRUEncrypt Public-Key Cryptosystem is

recommended to validate the implementation. Peer review of

the algorithm itself should continue to ensure the security

of the cipher.

Research on the use of Field Program Gate Arrays

(FPGAs) as part of a strategy to provide a reconfigurable

cryptographic infrastructure that is adaptable to the

sudden emergence of a quantum-computing era is needed.

Such research should explore the performance and cost

tradeoffs with respect to software/CPU and custom ASIC

implementations. An adaptable infrastructure is one that

can easily transition from using ciphers that are

vulnerable to quantum computers to using those ciphers that

are quantum-resistant instead.

 108

THIS PAGE INTENTIONALLY LEFT BLANK

 109

LIST OF REFERENCES

Aaronson, S. (2008). The Limits of Quantum. Scientific
American, Inc, March 2008, 62-69

Accredited Standards Committee X9 Inc., (2011, April).
Cryptographic Security for Financial Services.
X9extra, 2(1). Retrieved from
https://www.x9.org/home/X9_Extra_April_2011.pdf

Aharonov, D. * Ben-or, M. (1997). Fault-Tolerant Quantum
Computation with Constant Error Rate. Retrieved from
http://arxiv.org/pdf/quant-ph/9906129.pdf

Barker, E., Barker, W., Burr, W., Polk, W., & Miles, S.
(2007). Recommendation for Key Management – Part 1:
General (Revised). National Institute of Standards and
Technology. doi: NIST Special Publication 800-57

Bennett, C. H., Bernstein, E., Brassard, G., & Vazirani, U.
(1996). Strengths and Weaknesses of Quantum Computing.
Retrieved from http://arxiv.org/pdf/quant-
ph/9701001.pdf

Berlekamp, E. R., McEliece, R. J., & Van-Tilborg, H. C. A.
(1978). On the Inherent Intractability of Certain
Coding Problems. IEEE Transactions on Information
Theory, IT-24(3), 384-386. doi: 0018-9448/78/0500-0386

Bernstein, D. J. (2010). Grover vs. McEliece. National
Science Foundation. doi:
e2bbcdd82c3e967c7e3487dc945f3e87

Bernstein, D. J., Buchmann, J., & Dahmen, E. (2009). Post-
Quantum Cryptography. New York, NY: Srpinger.

Bernstein, D. J., Lange, T., & Peters, C. (2008). Attacking
and defending the McEliece cryptosystem. National
Science Foundation. doi:
7868533f20f51f8d769be2aa464647c9

Bhiogade, M. S. (2002). Secure Socket Layer. Informing
Science, 85-90. Retrieved from:
http://www.informingscience.org/proceedings/IS2002Proc
eedings/papers/Bhiog058Secur.pdf

 110

Brassard, G., Chuang, I., Lloyd, S., * Monroe, C. (1998).
Quantum Computing. The National Academy of Sciences,
95, 11,032-11,033. doi: 0027-8424/98/9511032-3

Buckmann, J., Dahmen, E., Ereth, S., Hulsing, A., &
Ruckert, M. (2011). On the Security of the Winternitz
One-Time Signature Scheme. Retrieved from
http://www.springerlink.com/content/a7167435r6587811/f
ulltext.pdf

Chen, W. ISRC Future Topic Brief: Quantum Computing, Bauer
College of Business Administration, University of
Texas. Retrieved from
http://www.bauer.uh.edu/uhisrc/FTB/Quantum/QuantumComp
uting.pdf

CNSS. (2003, June). National Policy on the Use of the
Advanced Encryption Standard (AES) to Protect National
Security and National Security Information. CNSS
Policy No. 15, Fact Sheet No. 1

CNSS. (2010, April 26). National Information Assurance (IA)
Glossary. CNSS Instruction No. 4009

CyberTech Publishing. (2008). Elliptic Curve Cryptography.
Retrieved from http://www.irma-
international.org/viewtitle/7306/

Ding, J., Gower, J. E., & Schmidt, D. S. (2006). Springer
Science+Business Media, LLC. Multivariate Public Key
Cryptosystems. (pp. xv-xviii) New York, NY: Springer.

Elgamal, T. & Kipp, E. B. (1998) United States Patent:
Secure Socket Layer Application Program Apparatus and
Method. United States Patent Number 5,825,890

Experimental Quantum Cryptography. (1991, September).
Retrived from
http://www.hit.bme.hu/~gyongyosi/quantum/cikkek/BBBSS9
2.pdf

FIPS. (2009). Digital Signature Standard (DSS). National
Institute of Standards and Technology. FIPS Pub 186-3

 111

Gama, N., Howgrave-Graham, N., & Nguyen, P. Q. (2006).
Symplectic Lattice Reduction and NTRU. Lecture Notes
in Computer Science, 4004/2006, 233-253. doi:
10.1007/11761679_15

Garcia, L. C. C. (2005). On the security and the efficiency
of the Merkle signature scheme. Technical University
Darmstadt. Retrieved from
http://eprint.iacr.org/2005/192

Gershenfeld, N., & Chuang, I. L. (1998) Quantum Computing
with Molecules. Scientific American, Inc. Retrieved
from
http://www.mat.ucm.es/catedramdeguzman/drupal/sites/de
fault/files/mguzman/01historias/haciaelfuturo/Burgos09
0900/quantumcomputingSciAmer/0698gershenfeld.html

Grover, L. K. (1996) Quantum Mechanics help in searching
for a needle in a haystack. Physical Review Letters,
79(2), 325-328. doi: 0031-9007/97/79(2)/325(4)

Heyse, S. (2009). Code-based Cryptography: Implementing the
McEliece Scheme on Reconfigurable Hardware. Diploma
Thesis of the Ruhr-University Bochum. Retrieved from
http://www.emsec.rub.de/media/crypto/attachments/files
/2010/04/da_heyse.pdf

Hoffstein, J. Pipher, J. & Silverman, J. H. (1998). NTRU: A
Ring-Based Public Key Cryptosystem. Lecture Notes in
Computer Science, 1423/1998, 267-288. doi:
10.1007/BFb0054868

Hoffstein, J., Howgrave-Graham, N., Pipher, J., & Whyte, W.
(2010). Practical lattice-based cryptography:
NTRUEncrypt and NTRUSign. Information Security and
Cryptography, 349-390. doi: 10.1007/978-3-642-02295-
1_11

IEEE. (2008). IEEE Standard Specification for Public Key
Cryptographic Techniques Based on Hard Problems over
Lattices. IEEE Std 1363.1-2008

Isaac, C. (2004). Quantum Information: Joining the
Foundations of Physics and Computer Science. MIT
Physics Annual, 2004, 26-45

 112

Lamport, L. (1979). Constructing Digital Signatures from a
One Way Function. Computer Science Laboratory SRI
International. Retrieved from
http://research.microsoft.com/en-
us/um/people/lamport/pubs/dig-sig.pdf

Lehtinen, S. & Lonvick, C. (2006). The Secure Shell (SSH)
Protocol Assigned Numbers. RFC 4250

Lo, H. K., & Chau, H. F. (2008). Unconditional Security of
Quantum Key Distribution Over Arbitrarily Long
Distances. Retrieved from http://arxiv.org/pdf/quant-
ph/9803006v5.pdf

Maxim, M. & Pollino, D. (2002). Wireless Security. New
York, NY: McGraw-Hill Professional

McEliece, R. J. (1978). A Public-Key Cryptosystem Based on
Algebraic Coding Theory. DSN Progress Report 42-44.
Retrieved from
http://www.cs.colorado.edu/~jrblack/class/csci7000/f03
/papers/mceliece.pdf

Merkle, R. C. (1979). Secrecy, Authentication, and Public
Key System. Student Dissertation of Stanford
University. Retrieved from
http://www.merkle.com/papers/Thesis1979.pdf

Metodi, T. S., Thaker, D. D., Cross, A. W., Chong, F. T., &
Chuang, I. L., (2005). A Quantum Logic Array
Microarchitecture: Scalable Quantum Data Movement and
Computation. Retrieved from
http://arxiv.org/pdf/quant-ph/0509051.pdf

Naslund, M., Shparlinski, I. E., & Whyte, W. (2002). On the
Bit Security of NTRUEncrypt. Lecture Notes in Computer
Science, 2567/2002, 62-70. doi: 10.1007/3-540-36288-
6_5

Nielsen, M. A., & Chuang, I. L. (2002) Quantum Computation
and Quantum Information. Retrieved from
http://n.ethz.ch/~ddukaric/zusammenfassungen/Buecher/Q
uantum%20Computation%20and%20Quantum%20Information.pdf

NIST. (2007). Recommendation for Key Management – Part 1:
General (Revised). National Institute of Standards and
Technology. NIST Special Publication 800-57.

 113

Onyszko, T. (2002). Secure Socket Layer. Retrieved from:
http://scholar.googleusercontent.com/scholar?q=cache:R
i17ndmlX6IJ:scholar.google.com/+secure+socket+layer+on
yszko&hl=en&as_sdt=0,5

Perlner, R. A., & Cooper, D. A. (2009). Quantum Resistant
Public Key Cryptography: A Survey. National Institute
of Standards and Technology. Retrieved from
http://delivery.acm.org/10.1145/1530000/1527028/p85-
perlner.pdf?ip=205.155.65.226&acc=ACTIVE%20SERVICE&CFI
D=83946916&CFTOKEN=17805596&__acm__=1337632583_487c439
bf2f39f96658ad849e5690cba

Perry, R. T. (2006, April 29). The Temple of Quantum
Computing. Retrieved from
http://scholar.googleusercontent.com/scholar?q=cache:l
wFPe6br5dwJ:scholar.google.com/+The+Temple+of+Quantum+
Computing&hl=en&as_sdt=0,5

Pfleeger, C. P. & Pfleeger, S. L. (2003). Security in
Computing Upper Saddle River, NJ: Pearson Education,
Inc.

Rivest, R. L., Shamir, A., & Adleman, L. (1978). A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystem. Retrieved from
http://people.csail.mit.edu/rivest/Rsapaper.pdf

Russell, D. & Gangemi, G. T. (2006). Computer Security
Basics, 2nd ed. Sebastopol, CA: O'Reilly

Schmeh, K. (2003). Cryptography and Public Key
Infrastructure on the Internet. West Sussex, England:
Wiley

Schneier, B. (1996). Applied Crytography. West Sussex,
England: Wiley

SECOQC. (2007, January 22). SECOQC White Paper on Quantum
Key Distribution and Cryptography. Retrieved from
http://arxiv.org/pdf/quant-ph/0701168v1.pdf

Seroussi, G. (1999). Elliptic curve cryptography. ITW 1999,
Metsovo, Greece, June 27-July 1. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00
814351

 114

Shor, P. W., (1994). Algorithms for Quantum Computation:
Discrete Log and Factoring. Retrieved from
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumbe
r=365700

Steane, A. M. (1995). Error Correcting Codes in Quantum
Theory. Physical Review Letters, 77(5), 793-797. doi:
0031-9007/96/77(5)/793(5)

Thorsteinson, G. & Ganesh, G. A. (2003) .Net Security and
Cryptography. Upper Saddle River, NJ: Prentice Hall

Vandersypen, L. M. K., Steffen, M., Breyta, G., Yannoni, C.
S., Sherwood, M. H., & Chuang, I. L. (2001).
Experimental realization of Shor's quantum factoring
algorithm using nuclear magnetic resonance. Retrieved
from http://arxiv.org/pdf/quant-ph/0112176v1.pdf

Walther, P., Resch, K. J., Rudolph, T., Weinfurter, H.,
Vedral, V., Aspelmeyer, M., & Zeilinger, A., (2005)
Experimental One-Way Quantum Computing. Nature, 7030,
169-176.

 115

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Dan Boger
Department of Information Science
Naval Postgraduate School
Monterey, California

	I. PROBLEM INTRODUCTION
	A. INTRODUCTION
	B. PROBLEM STATEMENT
	C. PURPOSE STATEMENT
	D. RESEARCH QUESTIONS AND HYPOTHESES
	1. Research Questions
	2. Hypothesis

	E. RESEARCH METHOD

	II. QUANTUM COMPUTING
	A. QUANTUM COMPUTING
	1. Introduction
	2. Digital Bit Verses Quantum Bit
	3. Quantum Entanglement

	B. HOW IT WORKS (BLACK BOX)
	1. Schrodinger’s Cat Theory
	2. Multiverse Theory

	C. QUANTUM COMPUTING VS. QUANTUM KEY DISTRIBUTION
	1. Theory Verses Proven Protocol
	2. Quantum Key Distribution

	D. CAPABILITY/LIMITATIONS OF QUANTUM COMPUTING
	1. One Will Not Completely Replace the Other
	2. Secure Online Transaction Protocols Cracked

	E. WHERE WE ARE TODAY WITH QUANTUM COMPUTING
	1. Quantum Discrete Log and Factoring, 1994
	2. Quantum Mechanics Help in Searching, 1997
	3. Realization of Shor’s Algorithm, 2001
	4. Scalable Quantum Logic Array, 2005
	5. Quantum Threshold Theorem

	F. IF QUANTUM COMPUTING FOLLOWS MOORE’S LAW
	1. Classical Moore’s Law
	2. Quantum Moore’s Law

	III. POST QUANTUM CRYPTOLOGY
	A. CLASSICAL CRYPTOGRAPHY
	1. Cryptography
	2. Confidentiality, Integrity, and Availability
	3. Symmetric Cryptography
	4. Asymmetric Cryptography
	5. Cryptographic Hash Functions

	B. CIPHERS BELIEVED TO BE VULNERABLE TO QUANTUM COMPUTING
	1. Quantum Computing Capability Review
	2. Rivest, Shamir, and Adleman (RSA)
	3. Digital Signature Algorithm (DSA)
	4. Elliptic Curve Cryptography

	C. CIPHERS BELIEVED TO BE RESISTANT TO QUANTUM COMPUTING
	1. Hash-Based Digital Signature Schemes
	2. McElice Code-Based Encryption System
	3. NTRU Lattice-Based Cryptography
	4. Multivariate Quadratic Public-Key Cryptography
	5. Advanced Encryption System (AES) - Symmetric (Secret-Key) Cryptography

	IV. APPLICATIONS OF CRYPTOGRAPHY CURRENTLY IN USE
	A CIPHERS VULNERABLE TO QUANTUM COMPUTERS
	1. Introduction
	2. Online Banking Statistics
	3. Online Shopping Statistics

	B. TECHNOLOGIES CURRENTLY IN USE FOR SECURING INTERNET TRANSACTIONS
	1. Introduction
	2. Secure Socket Layer (SSL)
	3. Secure Shell (SSH)
	4. Digital Certificates
	5. Digital Signatures
	6. Public-Key Infrastructure

	C. APPLICATIONS BELIEVED TO BE QUANTUM COMPUTING RESISTANT
	1. Introduction
	2. Symmetric Cryptography
	3. NTRUEncrypt Public-Key Crypto System
	4. Kerberos

	V. EXPERIMENTATAL METHODOLOGY AND IMPLEMENTATION
	A. HASH-BASED CRYPTOGRAPHY
	1. Hash-Based Cryptography Background
	2. Hash-Based Cryptography Implementation

	B. MCELIECE CRPTOSYSTEM
	1. McEliece Cryptosystem Background
	2. McEliece Cryptosystem Implementation

	C. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM
	1. NTRUEncrypt Public-Key Crypto System Background
	2. NTRUEncrypt Public-Key Crypto System Implementation

	VI. EXPERIMENTAL RESULTS
	A. HASH-BASED CRYPTOLOGY
	B. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM
	C. OPENSSL
	D. NTRU + OPENSSL

	VII. QUALITATIVE MANAGEMENT ANALYSIS
	A. BACKGROUND
	1. Algorithms are Broken Eventually
	2. Protection of the CIA Triad in a Quantum Era

	B. ASSESSMENT OF OUR QUANTUM COMPUTING READINESS
	1. Introduction
	2. Digital Signatures
	3. Symmetric (Secret-Key) Cryptology
	4. Digital Signatures
	5. Session-Key Distribution

	C. SCENARIO-BASED PREPARATION; IF QUANTUM COMPUTERS WERE INVENTED
	1. Tomorrow
	2. A Year from Today
	3. Beyond a Year, but Sometime in the Near Future

	D. ANALYSIS CONCLUSION

	VIII. CONCLUSION
	A. HYPOTHESIS QUESTIONS REVIEWED
	B. HYPOTHESIS
	C. HYPOTHESIS VALIDATION
	D. MANAGEMENT RECOMMENDATIONS
	E. RECOMMENDATIONS EXPLAINED
	F. RECOMMENDATIONS FOR FUTURE WORK

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

