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ABSTRACT 

Today’s most efficient and widely used cryptographic 

standards such as RSA rely on the difficulty of factoring 

large numbers to resist cryptanalysis.  Asymmetric 

cryptography is used in a plethora of sensitive operations 

from online bank transactions to international e-commerce, 

and the Department of Defense also uses asymmetric 

cryptography to transmit sensitive data. Quantum computers 

have the potential to render obsolete widely deployed 

asymmetric ciphers essential to the secure transfer of 

information. Despite this, alternatives are not in place. 

The goal of this study is to understand the 

alternatives to classical asymmetric cryptography that can 

be used as substitutes should quantum computers be 

realized.  This study explores quantum-resistant 

alternatives to traditional ciphers and involves 

experimenting with available implementations of ciphers 

described the post-quantum literature as well as developing 

our own implementations based on descriptions of algorithms 

in the literature.  This study provides an original 

implementation of hash-based digital signature and detailed 

instructions on its use as well as customization of the 

NTRU lattice-based cryptography suite, including the use of 

NTRU and AES together in a hybrid cryptographic protocol.  

This thesis will make recommendations on future work 

necessary to prepare for the emergence of large-scale, 

fault-tolerant quantum computers. 
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EXECUTIVE SUMMARY 

Today’s most efficient and widely used cryptographic 

standards such as RSA rely on the difficulty of factoring 

to resist cryptanalysis. Asymmetric cryptography is used in 

a plethora of sensitive operations from online bank 

transactions to international e-commerce, and the 

Department of Defense also uses asymmetric cryptology to 

transmit sensitive data. 

Quantum computers have the potential to render 

obsolete widely deployed asymmetric ciphers essential to 

the secure transfer of information.  Despite this, 

alternatives are not in place. 

This thesis recommends that the rest of the industry 

follow the lead of the Accredited Standards Committee X9 

Incorporated, Financial Industry Standards, and identify a 

suitable alternative cipher such as the NTRUEncrypt 

Cryptosystem as the primary algorithm for asymmetric 

cryptography to replace RSA if needed. Preparations should 

be made now to facilitate a smooth transition.  If the 

concern is too great that NTRU is a new algorithm, then 

this thesis at least recommends that it be added to the 

published standards as an alternative cipher implementation 

so that it is available to the industry in the event 

quantum computers abruptly come into existence. 
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I. PROBLEM INTRODUCTION 

A. INTRODUCTION 

Today’s most widely used asymmetric ciphers such as 

RSA (Rivest, Shamir, and Aldeman) rely on the difficulty of 

factoring large numbers as the mathematical basis of their 

resistance to cryptanalysis.  Asymmetric cryptography is 

used in a plethora of sensitive operations from online bank 

transactions to international e-commerce, and the 

Department of Defense also uses asymmetric cryptography to 

transmit sensitive data. 

B. PROBLEM STATEMENT 

Large-scale, fault-tolerant quantum computers have the 

potential to render obsolete traditional asymmetric ciphers 

essential to the secure transfer of information. Despite 

this, alternatives are not in place. 

C. PURPOSE STATEMENT 

The intent of this two-phase, sequential mixed methods 

study is to understand the alternatives to traditional 

asymmetric cryptography that can be used to protect 

information in the event that large-scale, fault-tolerant 

quantum computers capable of factoring large integers are 

realized.  The first phase is a qualitative exploration of 

quantum-resistant ciphers that satisfy the requirements for 

secure communication presently fulfilled by traditional 

asymmetric ciphers like RSA.  The first phase also explores 

their tradeoffs in comparison to traditional methods. This 

phase of the study also involves reading published academic 
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articles in the emerging field of post-quantum 

cryptography.  The second phase of the study involves 

experimenting with available implementations of quantum-

resistant ciphers described in the post-quantum literature.  

This phase involves compiling and executing the downloaded 

programs and measuring the performance of encryption and 

decryption.  For ciphers that have no available 

implementation, this phase also involves developing 

original implementations of post-quantum ciphers described 

in the literature. This thesis will then form conclusions 

about the impact of deploying an alternative encryption 

infrastructure based on post-quantum ciphers.  This thesis 

will make recommendations on future work necessary to 

improve the performance of these alternative ciphers and 

lessen the impact of the sudden emergence of large-scale, 

fault-tolerant quantum computers. 

D. RESEARCH QUESTIONS AND HYPOTHESES 

1. Research Questions 

What if quantum computing reduces the time to defeat 

traditional ciphers from millions of years by today’s 

supercomputers to only seconds?  What if we are already 

living in that era and unfriendly forces have such 

technology? 

How efficient are post-quantum ciphers proposed as 

alternatives to traditional ciphers like RSA and Elliptic 

Curve Cryptography (ECC)?  Do these ciphers have enough 

bandwidth to meet today's cryptographic workloads?  What is 

the performance impact of deploying an alternative 

cryptographic infrastructure based on post-quantum ciphers?   
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Could available implementations be used as a basis for 

constructing a cryptographic software library that is a 

viable alternative to classical ciphers? 

2. Hypothesis 

While alternative ciphers exist, available 

implementations do not satisfy all performance requirements 

of modern cryptographic workloads.  A cryptographic 

infrastructure that allows for ciphers to be reconfigured 

dynamically will reduce the costs of switching 

cryptographic infrastructure quickly in response to the 

development of quantum computers. 

E. RESEARCH METHOD 

Since the first phase this mixed methods study 

involves qualitative analysis, this thesis begins with an 

analysis of published literature on quantum-resistant 

ciphers.  This qualitative study also analyzes the 

tradeoffs of a dynamically reconfigurable cryptographic 

infrastructure that can rapidly deploy an updated cipher in 

the event that quantum computers compromise the strength of 

widely used, traditional asymmetric ciphers.  The second 

phase of this study involves the engineering of original 

implementations of post-quantum ciphers described in the 

literature, detailed instructions on their use, and 

quantitative analysis of their performance.  This phase 

also involves analysis of available implementations, 

demonstrating how to customize them to a particular 

purpose, and analyze their performance.  The qualitative 

phase identifies the ciphers and implementations to be 

explored in the quantitative phase. 
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II. QUANTUM COMPUTING 

A. QUANTUM COMPUTING 

1. Introduction 

Quantum computers harness the laws of quantum physics, 

i.e., the unusual properties of matter at tiny scales to 

achieve performance advantages over classical computers.  

Although rudimentary quantum computers have been built, 

they small error-prone, limited to solving small problems, 

such as factoring the integer 15 into its prime factors of 

3 and 5.  While much progress has been made in the physical 

implementation of quantum bits and gates in a variety of 

technologies as well as the development of quantum 

algorithms and quantum error correction schemes, much work 

remains to fulfill the vision of large-scale, fault-

tolerant quantum computers.  These challenges include 

increasing the reliability of physical implementations and 

lowering their cost.  

Within the field of quantum information processing, an 

important distinction exists between quantum computing, a 

technology currently in its infancy, and quantum key 

distribution, a relatively mature technology with 

commercial implementations available.  Both topics will be 

discussed below in greater detail, but this thesis will 

focus on the impact quantum computers are predicted to have 

on asymmetric cryptography.  Quantum computing is an 

active, interdisciplinary field motivated by the promise of 

vastly outperforming classical computers on certain 

problems (Perry, 2006).  One such problem is the factoring 

of integers, which has significant implications for 
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information assurance because large numbers of online 

banking transactions use asymmetric ciphers that rely in 

the difficulty of factoring to resist cryptanalysis. 

2. Digital Bit Verses Quantum Bit 

Quantum computers are similar to classical computers.  

Today’s classical computers operate on binary digits, or 

bits, that can represent either 0 or 1.  In a classical 

computer, operations are performed sequentially on these 

bits as dictated by the algorithm.  Quantum computers use 

“qubits,” or quantum bits.  Qubits also may take on a 

definite value of 0 or 1, but they also can be placed in a 

“superposition” state in which there is a certain 

probability of measuring a 0 and a certain probability of 

measuring a 1.  Once the measurement is taken, the qubit 

takes on the definite value measured.  For example, in an 

equal superposition of 0 and 1, there is a 50 percent 

chance of measuring a 0 and a 50 percent chance of 

measuring a 1.  This particular superposition can 

simultaneously represent both 0 and 1.  A quantum 

computer’s processing power grows exponentially because 

with every added qubit the number of values represented by 

the quantum register doubles.  For example, two quantum 

bits in superposition can represent four values (0, 1, 2, 

and 3).  Unlike classical computers, a single quantum gate 

applied to n qubits, all of which are in an equal 

superposition of 0 and 1, can manipulate all 2^n values 

between 0 and 2^n – 1 simultaneously.  A 250-qubit register 

can represent more numbers simultaneously (using quantum 

superposition) than there are atoms in the observable 

universe. (Perry, 2006) 
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3. Quantum Entanglement 

Quantum computers also exploit quantum entanglement.  

Measurement of one half of a pair of entangled particles 

causes the other half of the pair to take on a definite 

value that is correlated with the first particle measured.  

This phenomenon is counterintuitive, and Albert Einstein 

called quantum entanglement “spooky action at a distance.”  

Albert Einstein, Boris Podolsky, and Nathan Rosen tried to 

prove that one particle could not affect the other particle 

because of physical separation, but their study resulted in 

the now famous EPR paradox (Einstein, Boris, Podolsky 

paradox) that established that measurement of the first 

particle causes the second particle to take on a definite 

state that is correlated to the first.  Furthermore, this 

effect is instantaneous, which makes it faster than the 

speed of light.  Peter Shor determined how to harness 

entanglement and superposition to develop an algorithm for 

calculating discrete logarithms and the prime factors of an 

integer.  Shor’s algorithm can factor integers in 

polynomial time; the fastest known classical algorithm 

requires exponential time.  If a quantum computer that can 

factor large integers is built, it could defeat asymmetric 

encryption schemes such as RSA and Elliptic Curve 

Cryptography, whose strength against cryptanalysis is based 

on the difficulty of factoring integers. 

B. HOW IT WORKS (BLACK BOX) 

1. Schrodinger’s Cat Theory 

A famous thought experiment for explaining the 

counterintuitive nature of quantum superposition is 
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described in “The Code Book,” by Simon Singh. Erwin 

Schrodinger, a Nobel Prize winner for physics in 1933, 

described a hypothetical scenario in which a cat is placed 

in an opaque box with a vial of a toxic substance that can 

be broken by a hammer, releasing the toxic substance, and 

killing the cat.  The hammer is activated by a 

probabilistic event: a radioactive substance may or may not 

decay within a certain period of time.  A sensor detects 

whether or not the decay occurred; each outcome is equally 

likely.  If the sensor detects that decay has occurred, a 

hammer driven by a motor breaks the vial of poison.  At the 

end of this period of time, the cat could be thought of as 

both dead and alive because we cannot see inside the box.  

Clearly, this thought experiment is absurd since a cat is a 

macroscopic animal much too large to exhibit quantum 

phenomena, but the contraption magnifies the quantum effect 

of radioactive decay, which involves tiny particles, to the 

macroscopic scale of an animal through the mechanism of a 

hammer activated by the decay of the radioactive substance.  

2. Multiverse Theory 

Schrodinger’s thought experiment was intended as a 

critique of the Copenhagen interpretation of quantum 

mechanics; the other interpretation of quantum mechanics is 

the multiverse theory.  This theory states that at every 

decision, the universe splits into multiple copies; the 

number of copies is equal to the number of decisions at the 

junction.  This theory also states that these universes are 

connected somehow.  Therefore, photons passing through 

these multiverses interfere with each other, allowing one 

photon to be in all possible states at once. 
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C. QUANTUM COMPUTING VS. QUANTUM KEY DISTRIBUTION 

1. Theory Verses Proven Protocol 

Sometimes people confuse quantum computing and quantum 

key distribution.  While quantum computing is in its 

infancy, quantum key distribution is a relatively mature 

technology that has already been commercialized. 

2. Quantum Key Distribution 

 

Figure 1.   Structure of a Quantum Key Distribution link 
(From: SECOQC January 2007) 

Charles Bennett and Gilles Brassard invented quantum 

key distribution in 1984.  Quantum key distribution is used 

when two users want create a secure channel for electronic 

transmission of private information.  Quantum key 

distribution is a method of exchanging a symmetric key for 

use with a classical cryptosystem.  What is unique about 

quantum key distribution is that a malicious eavesdropper 

(also known as Eve) cannot eavesdrop on a quantum key 

exchange between two parties (also known as Alice and Bob) 

without detection. 
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Alice sends Bob a random element from a set of four 

polarized photons.  For each photon, Bob then decides at 

random which canonical base to use during measurement: he 

chooses either the horizontal/vertical or the left/right-

circular canonical base.  There is also a 45/135-degree 

canonical base, but this base is used only by Eve and will 

therefore not be discussed.  Bob then communicates to Alice 

over a classical channel the sequence bases he used to 

measure, and Alice tells him whether any of his decisions 

were incorrect.  Alice and Bob then discard all of the bits 

that were measured with the incorrect canonical base and 

all bits Bob failed to receive.  For all horizontal or 

left-circular photons, a value of 0 is registered, and for 

all vertical or right-circular photons, a value of 1 is 

registered.  This series of bits can then be used as a 

secret key to share information as long as they determine 

that Eve has not been listening to their channel.  This 

string of bits is known as the “raw quantum transmission.” 

(Bennet, Bessete, Brassard, Salvail, Smolin, 1991) 

In order for Eve to successfully eavesdrop on a 

quantum key distribution channel without being detected, 

assuming Eve has unlimited resources, Eve must be able to 

intercept and resend, or split photons sent from Alice to 

Bob.  If Eve attempts to intercept and resend photons, it 

is extremely hard for Eve to intercept a photon, decide the 

correct polarization to read, read the photon, and send a 

new photon with the same polarity read by Eve with the 

correct amount of photon intensity to enable Bob’s 

detectors to read Eve’s new photon.  To illustrate how hard 

it would be for Eve to intercept and retransmit a photon, 

recall that a photon can be polarized in three canonical 
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bases or pairs.  Therefore, Eve has four options from which 

to choose, giving Eve at best a 75 percent probability of 

sending the correct photon down the channel without being 

detected at a transmission rate between 1 and 10 kilobits 

per second. (Alleaume, 2007) In order to detect whether or 

not Eve has been listening, Bob must confirm a series of 

randomly selected measurement readings with Alice over the 

unsecure line.  For example, if Alice confirmed the correct 

canonical base to measure as being either horizontal or 

vertical, Bob would then tell Alice he measured horizontal.  

Alice would then confirm he had the correct or incorrect 

measurement, and they both would then discard that bit from 

their key.  If enough correct measurements were made in the 

absence of false measurements to Alice and Bob’s 

satisfaction, they would determine that the key is secure 

and use it for transmitting their secret data.  In 

contrast, if too many errors were detected, they would 

assume the Eve was eavesdropping and start the process over 

again.  Eve could also perform a photon splitting attack, 

but the technical details of this attack are beyond the 

scope of this thesis. 

The quantum key distribution methodology mentioned 

above is a very basic system.  Alice and Bob could secure 

the classical communication line using previously exchanged 

secure keys via quantum key distribution.  Therefore, every 

new successfully established key created by quantum key 

distribution could be added to a database of secure keys. 

(Bennet, Bessete, Brassard, Salvail, Smolin, 1991) 
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D. CAPABILITY/LIMITATIONS OF QUANTUM COMPUTING 

1. One Will Not Completely Replace the Other 

Although quantum computers have the potential to 

dramatically outperform classical computers, they will only 

do so for a few applications such as Shor’s Algorithm, 

Grover’s Algorithm, and the simulation of quantum physics.  

The successful construction of working quantum computers 

also has the potential to experimentally validate quantum 

theory.  The ability to efficiently factor large integers 

makes asymmetric ciphers such as RSA vulnerable to quantum 

computers. (Nielson, M. A. & Chuang, I. L. 2002)  

Therefore, Quantum computers will not replace classical 

computers except for certain problems.  To give the reader 

an idea of how much processing power quantum computers will 

have for their specific uses, it is important to understand 

that a register of 250 qubits (all in superposition) can 

represent more numbers than there are atoms in the 

universe. (Deutsch, D. & Ekert, A. 1998) Classical 

computers available today have processors with transistor 

counts approaching one billion and (DRAM) memories on the 

order of gigabytes. 

2. Secure Online Transaction Protocols Cracked 

Large-scale, fault-tolerant quantum computers will 

make any application that uses some of the most common 

cryptographic applications for online secure transactions 

vulnerable.  For example, online banking and shopping or 

any online secure transactions that use Secure Socket 

Layer, the key-lock many people look to see is active  
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before proceeding with their online transaction, will be 

compromised if measures are not put in place before quantum 

computers are realized. 

E. WHERE WE ARE TODAY WITH QUANTUM COMPUTING 

1. Quantum Discrete Log and Factoring, 1994 

In November 1994, the Foundations of Computer Science 

published Peter W. Shor’s “Quantum Computation: Discrete 

Log and Factoring” research paper at their 35th annual 

symposium.  This paper demonstrates how quantum computers 

can take discrete logarithms and factoring problems that 

become exponentially harder on classical computers as the 

numbers become larger, and reduce the computational time 

down to polynomial time on quantum computers (e.g., going 

from 1,000,000 years of computation down to 1 month). 

2. Quantum Mechanics Help in Searching, 1997 

Building on Shor’s algorithm, Lov K. Grover in 1997 

published his research paper, “Quantum Mechanics help in 

searching for a needle in a haystack.”  This paper outlined 

how quantum mechanics can speed up different search 

applications over unsorted data in contrast to classical 

computers.  This algorithm has several useful applications 

including boolean satisfiability, classical random walk 

(i.e., diffusion), and signal processing. 

3. Realization of Shor’s Algorithm, 2001 

In December 2001, Isaac L. Chuang et al. published 

their findings from their implementation of a seven-qubit 

quantum computer that could factor 15 into its prime  
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factors.  The paper is titled “Experimental realization of 

Shor’s quantum factoring algorithm using nuclear magnetic 

resonance.” 

4. Scalable Quantum Logic Array, 2005 

In September 2005, Tzvetan S. Metodi et al. published 

“A Quantum Logic Array Microarchitecture: Scalable Quantum 

Data Movement and Computation.”  This proposes a quantum 

logic array architecture for building fault-tolerant and 

scalable quantum computers. Metodi et al. apply concepts 

from classical computer architecture to the design of 

large-scale quantum computers, which will require millions 

of quantum bits and gates. 

5. Quantum Threshold Theorem 

An important factor limiting the scalability of 

quantum computers is explained by the Quantum Threshold 

Theorem.  In June 1999, Dorit Aharonov and Michael Ben-Or 

published “Fault-Tolerant Quantum Computation with Constant 

Error Rate.”  This paper states that Shor’s assumption that 

the probability for an error in a qubit or gate decays with 

the size of the computation is physically unreasonable.  

Aharonov and Ben-or show that once a specific error rate 

threshold is met, quantum computers will have overcome all 

the physical limitations preventing the realization of 

quantum computers.  They also state, “the point at which 

the physical data meets the theoretical threshold is where 

the quantum computation becomes practical.”  However, no 

team has yet built a physical implementation of a quantum 

bit or a set of universal quantum gates that satisfy the 

minimum reliability requirements of the threshold theorem.  
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Essentially, the threshold theorem states that physical 

implementations must reach a minimum threshold of 

reliability before quantum error correction schemes can be 

effective and practical.  One cannot simply use unreliable 

quantum bits that do not meet the threshold and then apply 

to them aggressive quantum error correction to compensate 

for an unreliable technology. 

F. IF QUANTUM COMPUTING FOLLOWS MOORE’S LAW 

1. Classical Moore’s Law 

Today’s computers have followed closely, but not 

exactly, a statement made by Gordon E. Moore back in the 

1970’s that the number of transistors that can be placed on 

a fixed piece of silicon doubles about every 18 months.  

Therefore, given a fixed CPU size, the computing power 

would theoretically double every 18 months because the 

processor would have twice the number of transistors.  The 

diagram (Figure 2) shows the transistor density of various 

processors over time. 
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Figure 2.   Microprocessor Transistor Counts—Moore's Law 
(From:http://en.wikipedia.org/wiki/File:Transistor

_Count_and_Moore%27s_Law_-_2011.svg)  

2. Quantum Moore’s Law 

Assume for a moment that quantum computers will follow 

Moore’s Law in a similar manner.  Specifically, assume that 

the sizes of the qubit register will double every 18 

months.  Figure 3 shows how much processing power quantum 

computers would have in relation to classical computers if 

the qubit register were to double every 18 months. 
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Figure 3.   Qubits vs. Classical Transistor Equivalents 

Keep in mind that a typical classical CPU contains on 

the order of one billion transistors. Figure 3 assumes that 

the first quantum computer that achieves the requirements 

as laid out in the Quantum Threshold Theorem has a register 

of 16 qubits, and the figure also assumes that the size of 

the qubit register will double every 18 months as per 

Moore’s Law.  Therefore, if the first quantum computer 

register has 16 qubits, after the first iteration of 

Moore’s Law, quantum computers would have the processing 

power equivalent to a 4.3 terahertz computer, and the 

processing power would continue to grow exponentially.  

Recall from the discussion above that a 250-qubit register 

could hold more numbers in superposition then there are 

atoms in the universe.  It is estimated that there are 

10^80 atoms in the known universe, and Figure 3 shows that 

after 4.5 years, if quantum computing follows Moore’s Law, 

we will have computers that can hold more numbers in 

superposition then there are atoms in the universe. 

The problem with the above argument is that it ignores 

the cost of quantum error correction, which is significant.  
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Designing an effective large-scale, fault-tolerant quantum 

computer architecture requires balancing the gains of 

quantum parallelism against the costs of quantum error 

correction.  In a “winning” design, the gains of 

parallelism exceed the costs of error correction by a big 

enough margin to make the whole enterprise worthwhile. 

Indeed, if quantum error correction were not necessary, 

then a 250-qubit register could hold in superposition more 

states than there are atoms in the universe.  Similarly, to 

factor an n-bit number would require on the order of n 

quantum bits.  However, it is speculated that to factor a 

number on the order of a thousand bits will require on the 

order of a million quantum bits and a million quantum 

gates.  This increase is the cost imposed by quantum error 

correction, which requires additional (redundant) quantum 

bits and gates. 

The above argument also ignores the fact that it is 

unknown whether progress in physical implementations of 

quantum computers will follow Moore’s Law.  …we shall see. 
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III. POST QUANTUM CRYPTOLOGY 

A. CLASSICAL CRYPTOGRAPHY 

1. Cryptography 

Originating from the Greek words “kryptos” and 

“graphia” meaning “hidden” and “writing” respectively, the 

science of keeping messages secret through encryption and 

decryption is cryptography.  Today we use different forms 

of cryptography to prohibit data from being read by 

unauthorized users, and to prohibit data from being changed 

unintentionally or maliciously.  The majority of 

cryptographic algorithms can be categorized into either 

symmetric or asymmetric cryptography.  There are also one-

way hash functions, which act like a fingerprint of the 

message. Cryptographic hash functions can be used to 

protect data integrity, but they are not used to encode and 

decode data. Hash functions are “one-way” in that given the 

output of the hash function, which is referred to as the 

hash digest; it is very hard for an adversary to determine 

the original message that was the input to the hash 

function.  Together with symmetric and asymmetric 

cryptography, one-way hash functions can be used to provide 

confidentiality and integrity; availability is the third 

aspect of data protection.  This chapter will describe the 

uses of cryptographic primitives and the hard mathematical 

problem on which their strength is based.  This chapter 

will also describe which cryptographic algorithms are 

suspected to be vulnerable to large-scale, fault-tolerant 

quantum computers and which algorithms are believed to be 

quantum computing resistant and why. 
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2. Confidentiality, Integrity, and Availability 

Before we get into the different forms of 

cryptography, we first describe the fundamental facets of 

data protection referred to as the “CIA Triad.” The CIA 

Triad covers data Confidentiality, Integrity, and 

Availability.  The Committee on National Security Systems 

defines confidentiality as assurance that information is 

not disclosed to unauthorized individuals, processes, or 

devices; integrity is a condition existing when data is 

unchanged from its source and has not been accidentally or 

maliciously modified, altered or destroyed; and 

availability is the timely and reliable access to data and 

information services for authorized users (CNSS Instruction 

No. 4009, 2010).  For the rest of this thesis, we will 

refer to the CIA Triad when discussing the protection of 

data.  In this thesis, we will consider cryptology to be 

useful for providing data confidentiality and integrity but 

not availability. 

3. Symmetric Cryptography 

Symmetric cryptography, also known as secret-key 

cryptography, uses the same key for encryption and 

decryption.  First, each user must agree to the secret key 

and find a secure location to discuss and share the key 

upon which they agree.  It is important to note that each 

user that is going to participate in the secure 

communication must also be provided the key in a secure 

manner (e.g., if there are 100 different sites that are 

going to participate in a secure video teleconference using 

only symmetric cryptography, each of the 100 sites must be 

provided the secret key securely in advance, and this could 
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be a logistical problem depending on the locations of each 

site and depending on time constraints).  This example 

illustrates a problem known as the key distribution 

problem. Once the key is distributed, then each site can 

use the secret key to encrypt outbound or decrypt inbound 

data. In general, symmetric cryptography is faster than 

asymmetric cryptography.  Depending on the implementation, 

symmetric cryptography is on the order of 1,000 to 10,000 

times faster than asymmetric cryptography. 

4. Asymmetric Cryptography 

Asymmetric cryptography, also known as public-key 

cryptography, helps to address symmetric cryptography’s key 

distribution problem.  Asymmetric cryptography can be used 

to send a file in a secure manner to a recipient that the 

sender has never met.  The sender encrypts the message with 

the receiver’s public key, and the receiver decrypts the 

message with his or her private key.  Only the receiver 

knows the private key; therefore, only the receiver can 

read the message. This protects the confidentiality of the 

message during transmission from sender to receiver. 

Asymmetric cryptography can also be used to support 

digital signatures.  The sender computes the hash of a file 

and encrypts the hash with the sender’s private key.  

Anyone can decrypt the hash value by using the sender’s 

public key.  The receiver computes the hash of the received 

file and compares this to the received hash digest once it 

has been decrypted with the sender’s public key.  This 

helps to ensure the integrity of the message during  
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transmission from sender to receiver.  Only the sender 

could have sent the message because the sender’s private 

key was used to encrypt the hash value. 

To protect both confidentiality and integrity, the 

message can be encrypted with a one-time symmetric session 

key, which the sender encrypts with the receiver’s public 

key.  This is done in conjunction with a digital signature 

where the hash of the message is encrypted with the 

sender’s private key.  The reason for using public-key 

cryptography to exchange a symmetric session-key is that 

symmetric ciphers are faster than asymmetric ciphers, in 

general.  If the same two devices wanted to create another 

secure communication channel after the termination of their 

previous session, they would exchange a new session key. 

If you are a security manager and the security policy 

for your company requires the use of asymmetric 

cryptography, your security system must be capable of using 

digital certificates.  These digital certificates are 

issued by a certificate authority, which digitally signs a 

message containing an identity and a public key in order to 

cryptographically bind them.  Since the message is signed 

with the certificate authority’s private key, anyone can 

verify the signature with the certificate authority’s 

public key.  Digital certificates make it possible to trust 

that Alice’s public key really belongs to Alice and not to 

an imposter.  If an imposter were to hack Alice’s website 

and replace Alice’s public key with the imposter’s public 

key, then someone might inadvertently send Alice a 

sensitive message encrypted with the imposter’s public key 

rather than Alice’s public key.  However, the imposter will 
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not be able to carry out this attack if Alice has a digital 

certificate, because the sender of the sensitive message 

can verify Alice’s digital certificate prior to sending the 

message.  Verification of the imposter’s public key will be 

unsuccessful. 

5. Cryptographic Hash Functions 

Cryptographic Hash Functions are used to create a 

message digest, or fingerprint, of the original message.  

If Alice were to send an unclassified message, but wanted 

to ensure that message integrity was maintained or that it 

was not tampered with in transit to Bob, she could create a 

digital signature of the message using a one-way hash 

function.  Alice then takes the fingerprint and encrypts it 

with her private-key and sends Bob an email that contains 

the original message, the encrypted fingerprint, and her 

public-key.  Bob then receives the message, runs the 

original message through the same cryptographic hash 

algorithm Alice used, and then decrypts the fingerprint 

with Alice’s public-key that was encrypted with Alice's 

private-key.  Finally, Bob compares the fingerprint Alice 

sent against the fingerprint he computed.  If the hash 

values are equal, Bob knows that the message Alice sent was 

not tampered with while in transit. 

Cryptographic hash functions differ from public-key 

and secret-key cryptography because asymmetric and 

symmetric cryptography are used to encrypt and decrypt data 

(i.e., encrypting and then decrypting a message results in 

the original message), whereas cryptographic hash functions 

are one-way functions.  It is extremely difficult to 

determine the input to a hash function given only the hash 
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digest.  The size of the hash digest depends on the 

algorithm.  For example, some of the most common hash 

algorithms are the Secure Hash Algorithms (SHA) SHA-256, 

SHA-384, and SHA-512, each algorithm outputting a digest of 

256, 384, and 512 bits respectively regardless of the input 

size. In order for a cryptographic hash function to be 

considered secure, the hash function must be able to input 

any amount of data; output a (normally) smaller fixed-

length digest defined by the algorithm; be fast to compute; 

be hard to invert; and be designed so that it is very 

difficult for an adversary to find collisions.  A hash 

collision occurs whenever two inputs produce the same 

output.  Finding a collision is impossible, but it must be 

very difficult for the adversary to do.  Among the most 

popular hash algorithms is MD5 (Message Digest 5), which 

has the smallest hash output of 120 bits, and as of 2003, 

no collisions had been discovered (Thorsteinson, P., 

Ganesh, G.G., 2003).  However, MD5 is currently considered 

“broken,” as it is now possible to find a collision in less 

than O(2^N) steps.  Another required characteristic of a 

cryptographic hash function is called the avalanche effect, 

i.e., a small change to the input results in a very large 

change to the input. 

To illustrate the avalanche effect, consider the DNA 

of identical twins.  Even if their genomes only differ by a 

single nucleotide, the cryptographic hashes of the digital 

representation of their respective genomes will be 

completely different.  To illustrate the one-way property 

of a hash-function, consider literature as an example.  

Given a 256-bit hash digest of Shakespeare’s play, Romeo 

and Juliet, to reverse the one-way property would require 
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the adversary to generate the entire play from only 256-bit 

digest.  Assuming a 96-character alphabet and given that 

the play is 138,386 characters long, the adversary would 

have to perform O(96^138386) hash computations before 

finding the string of characters that correspond to the 

play Romeo and Juliet. 

B. CIPHERS BELIEVED TO BE VULNERABLE TO QUANTUM COMPUTING 

1. Quantum Computing Capability Review 

This section will discuss algorithms believed to be 

vulnerable to quantum computers.  Each of these algorithms 

relies on the difficulty of factoring large numbers or 

computing discrete logarithms as the basis for their 

security because these are difficult problems for classical 

computers to solve in polynomial time.  Recall that Shor's 

algorithm used in conjunction with quantum computers will 

make algorithms that rely on the difficulty of factoring or 

computing discrete logarithms vulnerable.  The ciphers 

presented in Section 'C' do not rely on the difficulty of 

factoring or of computing discrete logarithms.  Their 

strength lies in the difficulty of solving different hard 

mathematical problems.  Since quantum algorithms do not 

exist for these problems, these ciphers are believed to be 

quantum computing resistant. 

2. Rivest, Shamir, and Adleman (RSA) 

Building on the Diffie and Hellman “Public-key 

Cryptosystem,” Ron Rivest, Adi Shamir, and Leonard Adleman 

created the RSA cipher in 1978 to ensure that the 

properties of the “paper mail system” were preserved in the 

email era; specifically, that the mail remained 
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confidential and could be signed. (Rivest, R.L., Shamir, 

A., Adleman, L., 1978)  Both RSA and the Diffie-Hellman 

algorithms provide key exchange, but RSA added public key 

encryption, making RSA more versatile. (Schmeh, K.)  Today, 

the RSA cipher is the most common form of public-key 

cryptology in use.  After licensing a patent from the 

Massachusetts Institute of Technology, the RSA cipher was 

offered as a commercial product in 1982. (Russell, D., 

Gangemi, G.T., 1991) 

The strength of the RSA cipher relies on the 

difficulty of factoring large numbers.  The minimum 

recommended key length for RSA is 1024-bits until they year 

2015; then 2048-bits will be recommended until the year 

2030. (www.rsa.com) 

3. Digital Signature Algorithm (DSA) 

Based on the difficulty of solving the discrete 

logarithm problem, the Digital Signature Algorithm (DSA) is 

used to electronically sign digital messages.  The DSA is a 

standard specified by the National Institute of Standards 

and Technology and was issued in May 1994.  The three 

functions of the DSA are to generate a key used to “sign” 

the message, sign the document, and verify the signature on 

the other end. (FIPS PUB 186) 

4. Elliptic Curve Cryptography 

Like the Digital Signature Algorithm, Elliptic Curve 

Cryptography relies on the difficulty of solving the 

discrete logarithm problem as the basis of its security. 

(NIST Pub 800-57)  The mathematics required for Elliptic 

curve Cryptography is well beyond the scope of this thesis.  
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An excellent tutorial including Java applets is located on 

the website of Certicom 

(http://www.certicom.com/index.php/ecc-tutorial).  Elliptic 

Curve Cryptography is a newer version of Public-Key 

Cryptology and can provide the same level of security as 

RSA, but with smaller key sizes.  This enables platforms 

with constrained resources such as handheld wireless 

devices to use strong cryptographic algorithms.  With all 

variables being equal, Elliptic Curve Cryptography can run 

more transactions per second than RSA. (Mogollon, M., 2008)  

Figure 4 is from National Institute of Standards and 

Technology Special (NIST) Publication NIST PUB 800-57, 

March 2008, Recommendation for Key Management. 

 

Figure 4.   NIST Comparable Key Strengths 
(From:NIST Publication 800-57) 

In the NIST comparable key strengths table, D-H stands 

for Diffie-Hellman, and FFC and IFC stand for Finite Field 

Cryptology and Integer Factorization Cryptology, 
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respectively.  This table clearly articulates that Elliptic 

Curve Cryptology (ECC) achieves the same level of security 

as symmetric ciphers with keys having roughly twice the 

number of bits, whereas the D-H and RSA algorithms have 

significantly larger key sizes.  A symmetric key length of 

112 bits is the standard minimum as of 2010 and will be 

until 2030.  The National Security Agency has adopted ECDSA 

(Elliptic Curve Digital Signature Algorithm) because it is 

considered to be second-generation public key cryptography 

and offers relatively smaller key sizes in contrast to the 

first generation (e.g. D-H and RSA).  The National Security 

Agency stated, “As vendors look to upgrade their systems 

they should seriously consider the elliptic curve 

alternative for the computational and bandwidth advantages 

they offer at comparable security.” 

(http://www.nsa.gov/business/programs/elliptic_curve.shtml)  

C. CIPHERS BELIEVED TO BE RESISTANT TO QUANTUM COMPUTING 

1. Hash-Based Digital Signature Schemes 

To recap, hash-based algorithms are one-way algorithms 

that take in any size of input in the form of bits and 

produce a digital signature that is a fixed size that 

depends on the algorithm.  In order for a cryptographic 

hash function to be considered secure, the hash function 

must be able to input any amount of data, output a fixed-

length digest, be fast to compute, be hard to invert, and 

produce few collisions. In other words, if Y = F(x), where 

Y is the digest, F is the hash algorithm, and x is the  
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message, if an adversary obtained Y and knew F, it would be 

“effectively impossible to compute ‘x.’” (Merkle, R. C., 

1979) 

Since hash-based algorithms are only considered secure 

if they are collision resistant, hash-based signature 

schemes are considered to be the “…most important post-

quantum signature candidate” (Bechmann, J., Dahman, E., 

Szydlo, M., 2009) because the security of these functions 

relies on their collision resistance.  The digital 

signature schemes are also useful because they can be 

implemented in hardware and software making them 

prospective alternatives to the popular RSA and elliptic-

curve digital signature schemes that are predicted to be 

vulnerable in a quantum computing era. (Bechmann, J., 

Dahman, E., Szydlo, M., 2009) 

The mathematics of the following hash-based signature 

schemes is beyond the scope of this thesis, but Bechmann, 

Dahman, and Szydlo state that the Lamport-Diffie One-Time 

Signature Scheme, Winternitz One-Time Signature Scheme, and 

Merkle Signature Scheme (Merkle’s tree) are all hash-based 

algorithms, with Merkle’s tree being the most efficient.  

The Merkle scheme is actually a multi-time signature that 

employs a version of the Lamport-Diffie signature scheme, 

but the Merkle scheme can convert any one-time signature 

scheme to create a multiple-use or multi-time signature 

scheme. (Garcia, L. C.) 

2. McElice Code-Based Encryption System 

Code-based cryptography relies on error-correcting 

codes such as the McEliece Hidden-Goppa-Code cryptosystem, 

in which the security of the algorithm relies on the 
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difficulty of decoding a general linear code in polynomial 

time. (Berlekamp, E. R., McEliece, R. J., Van Tilborg, H. 

C., 1978)  Although not as efficient as RSA, the McEliece 

Hidden-Goppa-Code cryptosystem is expected to hold up to 

quantum computers.  The current drawback to the McEliece 

cryptosystem is that the key sizes are in the millions of 

bits, whereas RSA key sizes are in the thousands of bits. 

(Bernstein, D. J., 2009) 

The McEliece cryptosystem uses three algorithms to 

create the public and private-key pair, to encrypt the 

message, and to decrypt the message.  To create the public 

key (G(prime), T(errors)) Alice selects a binary linear code 

C(linear code) capable of correcting T(errors) and creates a 

generator matrix G(generator matrix) of (N(length), K(dimension)).  The 

generator matrix is hidden using a random non-singular 

binary square substitution matrix S(substitution matrix) of 

(K(dimension) x K(dimension)) size and a random permutation matrix 

P(permutation matrix) of (N(length) x (N(length)) size. (Heyse, S., 

2009)  A permutation matrix is also a binary square matrix 

that has exactly one entry of 1 for any column and row with 

0 in all other spaces.  Figure 5 provides an example of a 

permutation matrix.  G(prime) is created by computing the 

product of G(generator matrix), S(substitution matrix), and P(permutation 

matrix).  
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Figure 5.   Permutation Matrix Example 
(From:http://en.wikipedia.org/wiki/File:Symmetric_

group_3;_Cayley_table;_matrices.svg) 

The secret key is the combined knowledge of three different 

matrices that created the public key: G(generator matrix), 

S(substitution matrix), and P(permutation matrix). (Heyse, S., 2009) 

Encryption and decryption is similar to other public-

key cryptosystems: if Bob wishes to send Alice an encrypted 

message, Bob uses Alice’s public key (G(prime), T(errors)), but 

he also introduces error into the message not to exceed the 

amount of T(errors).  To decrypt the message, Alice uses her 

secret key to produce the plaintext from the ciphertext 

provided that Bob did not introduce an error larger then 

C(linear code). (Heyse, S., 2009) 

3. NTRU Lattice-Based Cryptography 

Recall that quantum computers will excel at cracking 

algorithms that rely on the difficulty of factoring large 
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numbers or solving the discrete logarithm problem as the 

basis for their security.  Therefore, cryptologists have 

searched for a different mathematical problem to use as the 

basis of an algorithm’s security, and Lattice problems are 

one such problem. (Perlner, R. A., Cooper, D. A., 2009)  

“Lattice based systems provide a good alternative since 

they are based on a long-standing open problem for 

classical computation.”  (Hallgren, S, Vollmer, U., 2009) 

Collectively, the basis of a lattice is a set of 

vectors that can be expressed as a sum of integer multiples 

of a set of n vectors.  “(It is important to) note that 

there are an infinite number of different bases that will 

all generate the same lattice.” (Perlner, R. A., Cooper, D. 

A., 2009)  Two problems believed to be hard for classical 

and quantum computational models are solving either the 

closest vector problem or shortest vector problem of high-

dimensional lattices.  The mathematics of Lattice-Based 

Cryptography is beyond the scope of this thesis, but there 

is commercial deployment of Lattice-Based Cryptography, and 

the NTRUEncrypt Public-Key Cryptosystem “appears to be the 

most practical.”  (Perlner, R. A., Cooper, D. A., 2009) 

“The (NTRU) encryption procedure uses a mixing system 

based on polynomial algebra and reduction modulo two 

numbers p and q, while the decryption procedure uses an 

unmixing system whose validity depends on elementary 

probability theory.  The security of the NTRU public-key 

cryptosystem comes from the interaction of the polynomial 

mixing system with the independence of reduction modulo p 

and q.  Its security also relies on the (experimentally 

observed) fact that for most lattices, it is very difficult 
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to find extremely short (as opposed to moderately short) 

vectors.” (Hoffstein, J., Pipher, J., Silverman, J. H., 

1998) 

Like Elliptic Curve Cryptology, the NTRU Public-key 

cryptosystem might become an alternative algorithm for 

computing devices that require high-performance security 

but that have fewer resources then a typical PC, e.g., 

handheld devices such as tablets, cellphones, and PDAs.  

With key length requirements of 112 bits or greater, the 

NTRU cryptosystem is able sign and verify signatures, 

encrypt messages, and decrypt messages faster than Elliptic 

Curve Cryptology and therefore faster than RSA. 

 

Figure 6.   Encryption/Decryption Operations per second for 
RSA, Elliptic Curve Cryptology, and NTRU for a 32-
bit processor(From:http://tbuktu.github.com/ntru/) 
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Figure 7.   Signatures and signature verifications per second 
for Elliptic Curve Digital Signature and NTRUSign 

(From:Practical lattice-based cryptography 
NTRUEncrypt and NTRUSign, Hoffstein, J. et al) 

As evident in Figures 6 and 7, the NTRU cryptosystem 

offers higher performance than ECDSA, but unfortunately 

NTRUEncrypt did not have a formal proof of security like 

RSA, Elliptic Curve Cryptology, and other practical schemes 

until 2008. (Naslund, M. Shparlinski, I. E., Whyte, W., 

2003).  NTRU received much popular support for ten years 

until the proposed IEEE standard P1363.1 became an approved 

standard in December 2008.  Now IEEE Std 1363.1TM-2008, IEEE 

Standard Specification for Public Key Cryptographic 

Techniques Based on Hard Problems over Lattices, is an 

international standard and is starting to be adopted by 

commercial vendors. 

4. Multivariate Quadratic Public-Key Cryptography 

Although the mathematics is beyond the scope of this 

thesis, Daniel Bernstein, a leader in this field, lists 

Multivariate-Quadratic-Equations Public-Key Cryptography as 

another alternative in his book, “Introduction to Post 

Quantum Cryptography.” 
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The security of the Multivariate-Quadratic-Equations 

Public-Key Cryptography is based on the difficulty of 

solving nonlinear equations over a finite field, which is 

considered to be an NP-hard problem.  This algorithm has 

been under intensive study for the last couple of decades, 

but experts do not recommend using Multivariate-Quadratic-

Equations for protecting security-critical applications yet 

because the basis of its security is not well understood, 

and vulnerabilities are being found on a regular basis. 

(Bernstein, D. J., 2009) 

5. Advanced Encryption System (AES) - Symmetric 
(Secret-Key) Cryptography 

Throughout this thesis, references have been made to 

key-size security equivalence to symmetric cryptography 

when discussing RSA, Elliptic-Curve Cryptography, and NTRU 

Lattice-Based Cryptography.  The Advanced Encryption 

Standard (AES) is the standard cipher for symmetric 

cryptography, also known as “secret-key” cryptography.  

Recall that secret-key cryptography is the fastest and 

provides the most encryption strength per bit of key and 

that a major purpose of slower public-key cryptography is 

to help facilitate the exchange of a symmetric session key. 

In the late 1990s, the National Institute of Standards 

and Technology (NIST) held a competition to replace the 

successful symmetric algorithm DES (Data Encryption 

Standard) that was developed by IBM in the 1970s.  NIST 

reached out to the cryptographic community for those who 

were interested in submitting an algorithm to be the new 

standard.  After fifteen nominated AES candidates, the 

Rijndael algorithm, developed by two Belgians, Joan Daemen 
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and Vincent Rijmen, won the contest, and their cipher was 

announced as the winner in October 2000.  As per the 

requirements of the NIST contest for AES, the Rijndael 

algorithm supports block lengths of 128, 192, and 256-bits. 

(Schmeh, K, 2003) 

Although a brute-force attack for a key length of 128 

bits is “…out of the question for Rijnadael,” as Klaus 

Schmeh stated, there is a small concern for the reliability 

of the algorithm because it is fairly new.  However, the 

strength and usability of AES is evident by the US 

Government’s approval of its use for classified information 

processing.  Specifically, the National Security Agency 

approved all block lengths of the AES algorithm to protect 

classified information up to Secret, but only the 192- and 

256-bit block lengths are approved for Top Secret material 

as per the Security on National Security Systems Policy, 

CNSS Policy No. 15, Fact Sheet No. 1, National Policy on 

the Use of Advanced Encryption Standard (AES) to Protect 

National Security Systems and National Security 

Information, June 2003. 
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IV. APPLICATIONS OF CRYPTOGRAPHY CURRENTLY IN USE 

A CIPHERS VULNERABLE TO QUANTUM COMPUTERS 

1. Introduction 

Suppose that CNN were to report that a large-scale, 

fault-tolerant quantum computer has been developed; how 

would users of cryptography cope?  This section focuses on 

the potential impact of quantum computers on various 

parties from individual users to the world economy. 

2. Online Banking Statistics 

Since 2009, the American Bankers Association reported 

that online banking is the preferred method of performing 

banking transactions.  Figure 8 shows the online banking 

trend from 2007 to 2011 for all age groups.  In 2007, 

online banking made up roughly 23 percent of all banking 

transactions, but in 2011, online banking accounted for 

roughly 61 percent of all banking transactions.  This 

report does not include the statistics from other large 

banking spheres such as the European Union or banking 

organizations within the Asia-Pacific region. 

 



 38 

 

Figure 8.   Preferred Banking Method 2011 Report 
(From:http://www.aba.com/Press+Room/090811Consumer

PreferencesSurvey.htm) 

3. Online Shopping Statistics 

The sudden emergence of quantum computers could have a 

significant impact on the world economy if users of 

cryptography are caught unprepared.  The Nielsen Company 

reported in 2007 that 875 million consumers had shopped 

online, an increase of over 40 percent since the previous 

survey was conducted in 2005.  The survey also found that 

85 percent of all Internet users had conducted an online 

transaction.  Comparing the percentage of those who had 

Internet access and those who used the Internet to conduct 

an online transaction, the countries that had the highest 

online shopping percentages in 2007 were South Korea at 99 

percent, the United Kingdom at 97 percent, Germany at 97 

percent, Japan at 97 percent, and in eighth place, the 
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United States, where 94 percent of those who had Internet 

access used the Internet to conduct an online transaction. 

B. TECHNOLOGIES CURRENTLY IN USE FOR SECURING INTERNET 

TRANSACTIONS 

1. Introduction 

The reason why most of the transactions outlined in 

Section 'A' of this chapter are vulnerable is that they use 

the technologies discussed in this section.  The sudden 

emergence of a large-scale, fault-tolerant quantum computer 

would render the following cryptographic technologies 

ineffective. 

2. Secure Socket Layer (SSL) 

Invented by Netscape in the 1990s, the Secure Socket 

Layer (SSL) uses the Transport Control Protocol (TCP) to 

provide encryption, authentication, and integrity for HTTP, 

LDAP, and POP3 applications.  SSL is the most commonly used 

technology for securing online transactions. 

Secure Socket Layer was designed to have the server 

authenticate itself to the user.  During a SSL session, the 

user requests to setup a secure channel with the server.  

The server then sends to the user the server's public key 

so that the user can validate whether or not the server is 

using a trusted certificate authority.  A certificate 

authority is the issuer of certificates and will be 

discussed further in the Public-Key Infrastructure section 

below.  If the user confirms that the certificate authority 

is trustworthy, the client creates a session key that is 

based on a symmetric encryption algorithm and encrypts it 

with the server's public key so that only the server can 
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decrypt the session key. Once the server decrypts the 

session key, secure communication using symmetric 

cryptography can begin. 

The problem is that the Secure Socket Layer protocol 

uses RSA and Diffie-Hellman for the majority of its public-

key transactions.  SSL also can use Fortezza Cards that 

have been used by government, military, and banking 

institutions to protect sensitive data, but since Fortezza 

Cards are not common, they go beyond the scope of this 

thesis.  Therefore, unless you are required to use a 

Fortezza card for your Internet transaction, you are using 

either RSA or Diffie-Hellman as your public-key algorithm, 

and this renders your SSL session vulnerable to quantum 

computers. 

3. Secure Shell (SSH) 

As a secure alternative to Telnet for remote 

networking administration, Secure Shell (SSH) can also be 

used to secure protocols like HTTP and FTP that are used to 

transfer data from websites or files like the Secure Socket 

Layer system.  Secure Shell was originally created in 1996 

by Tatu Ylonen at the Helsinki University of Technology in 

Finland. Ylonen started his own company, SSH 

Communications, and later improved the protocol in 1998 

when he released SSH2.  After working with the Internet 

Assigned Numbers Authority, Ylonen's work was implemented 

as an Internet Standard under RFC 4250 in 2006 as the 

Secure Shell Protocol. 

Secure Shell uses RSA as its Public-Key Algorithm to 

initially set up the session key. Therefore, since RSA uses 

factoring large numbers as the basis of its security, and 
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quantum computers reduce the time to factor large numbers 

from exponential to polynomial time, Secure Shell in its 

current form will be vulnerable in a quantum computing era. 

4. Digital Certificates 

In the sections above, we have discussed how public-

key cryptography is used when Alice wants to verify that 

Bob is who he claims to be while exchanging a session key 

to conduct secure communication between Alice and Bob.  

Digital certificates, also known as certificates, enable 

this transaction to occur.  Digital certificates are used 

to certify that Alice is in fact Alice.  With public-key 

cryptography, recall that two keys are generated, one being 

the public-key that is available to the public, and the 

other being Alice’s private-key that is held securely in 

Alice’s possession.  The private-key can be held on a disk, 

programmed into a smartcard, or loaded onto Alice’s 

personal computer, with the latter being less secure.  

Digital certificates bind Alice’s identity to her public 

key.  Along with the public key, the digital certificate 

holds other information like Alice’s name, a serial number, 

the Certificate Authority who issued Alice her certificate, 

the algorithm used to generate the digital certificate, and 

the certificate’s expiration date.  With this information, 

Bob could first see that the certificate is assigned to 

Alice, verify that the certificate has not expired, 

identify whether or not the Certificate Authority itself is 

a trustworthy issuer of certificates, and then verify 

Alice’s public key. 

Digital certificates are extremely popular because 

once the digital certificates have been issued to a user, 
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iterative validation can occur, or validation that is 

pushed to individual PCs vice a central server.  If 

validation were recursive in nature and could only be 

performed by the Certificate Authority, this would make 

denial-of-service attacks easier because a successful 

denial-of-service attack on the single point of failure 

would disrupt all users who were issued certificates from 

that Certificate Authority.  Therefore, because digital 

certificate validation is iterative and decentralized by 

design, millions of secure transactions may occur without 

the threat of availability attacks on a central server.  

Unfortunately, the system is only as secure as the strength 

of algorithm that is used.  Under RFC 3279, Algorithms and 

Identifiers for the Internet X.509 Public Key 

Infrastructure Certificate and Certificate Revocation List 

Profile, the public-key algorithm used is RSA.  We have 

shown that the use of RSA as a public-key algorithm will 

make digital certificates vulnerable once large-scale, 

fault-tolerant quantum computers come into existence, if no 

suitable alternative algorithm is put in place before the 

emergence of quantum computers. 

5. Digital Signatures 

Using the private-key contained in Alice’s digital 

certificate, Alice is able to sign the messages she sends 

to Bob so that Bob recognizes the signature to be only from 

Alice.  Although digital signatures are supposed to mimic 

the actual signing of hard-copy letters, they are not 

physical signatures that are scanned and attached to 

letters because this format could easily be copied by Eve 

and used to send erroneous emails with Alice’s signature, 
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i.e., through a replay attack. In contrast to a physical 

signature, a digital signature is a combination of the 

message, the hash of the message, and a hash of the message 

encrypted with Alice’s private-key.  Alice sends her signed 

message along with her public certificate to Bob, who uses 

Alice’s public key to decrypt the hash, after first using 

Alice’s certificate to validate her public key (using the 

certificate authority’s public key to verify the 

certificate).  To protect the confidentiality of the 

message, it may be encrypted with a symmetric cipher, and 

the symmetric key is encrypted with Bob’s public key (and 

decrypted with Bob’s private key).  Bob computes the hash 

of the message and compares it with the decrypted hash 

value. 

Like digital certificates, digital signatures are only 

as good as the algorithm that makes them, and per RFC 3279, 

the two algorithms in use for digital certificates are DSA 

and ECDSA.  Like RSA, quantum computers are believed to 

make these algorithms vulnerable because of the mathematics 

these algorithms are based upon.  Therefore, unless another 

algorithm is added to RFC 3279 that is resistant to quantum 

computers as an alternate standard, quantum computers will 

make the forging of digital signatures possible. 

6. Public-Key Infrastructure 

One of the largest organizational public-key 

infrastructures in existence is the United States 

Department of Defense infrastructure, and this system will 

be used to explain the elements and processes within a 

public-key infrastructure that secures communication.  The 

process begins with the issuance of a Department of Defense 
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identification card.  A government employee, who could be 

military, government employed civilian, or government 

employed contractor, obtains an ID card by providing 

different forms of government-issued identification to the 

Department of Defense Identification office in person.  If 

sufficient identification is present, the government 

employee is issued a Common Access Card (CAC), also known 

as a CAC Card.  

A Department of Defense Common Access Card contains 

standard identification elements found on government-issued 

ID cards (e.g., driver’s license) such as photograph, name, 

birth date, issue date, and expiration date.  The CAC also 

contains a chip that holds the member’s public and private 

certificates that are issued at the time the member 

receives his or her CAC.  The ID card office receives the 

certificates securely from the Department of Defense 

Certificate Authority and installs them onto the CAC.  

After a process of about 20 minutes, the new employee can 

access websites that are secured with the Department of 

Defense’s public-key infrastructure or digitally sign 

messages with the member’s new digital certificates that 

can be verified by other members within the system. 

If the government employee is a student at the Naval 

Postgraduate School and wishes to access the school’s 

websites that are secured with the Department of Defense’s 

public-key infrastructure without receiving multiple 

security warnings from his or her Internet browser, he or 

she must install the Department of Defense’s root 

certificate onto his or her machine.  A public-key 

infrastructure is a hierarchical system where all 

certificates stem from the root certificate. The root 
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certificate is the Certificate Authority’s public key along 

with the Certificate Authority’s digital signature of its 

public key. The root certificate is the only certificate 

that is self-signed by the owner’s (Certificate 

Authority’s) private key. 

This system harnesses the strength of RSA’s public-key 

algorithm for the protection of data confidentiality and 

data integrity.  Furthermore, since public-key 

infrastructures use iterative/decentralized validation, 

where the user’s PC can validate a website’s certificates 

if the PC has the root-certificate installed, it is 

difficult for an attacker to conduct a denial-of-service 

attack on the Department of Defense’s public-key 

infrastructure, making this system highly reliable for 

sending information in a manner that protects 

confidentiality, integrity, and availability.  

Unfortunately, this system is based on the RSA algorithm, 

and if an attacker had access to large-scale, fault-

tolerant quantum computers, this infrastructure would be 

made vulnerable. 

C. APPLICATIONS BELIEVED TO BE QUANTUM COMPUTING 

RESISTANT 

1. Introduction 

The following section identifies cryptographic 

technologies believed to be quantum computing resistant.  

Therefore, assuming that large-scale, fault-tolerant 

quantum computers have not been realized yet, there is time 

to implement alternative ciphers. 
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2. Symmetric Cryptography 

Symmetric cryptography that currently protects the 

largest bulk of secure electronic communications will 

remain in a quantum-computing era because it is believed to 

be quantum computing resistant.  Given that symmetric 

cryptography is believed to be resistant to quantum 

computers, algorithms like the Advanced Encryption System 

(AES), which as mentioned earlier is cleared by the 

National Security Agency to secure Top Secret transmission, 

the United States’ most classified and sensitive 

information, will still hold strong against quantum 

computers.  Therefore, the session keys that are exchanged 

within the client/server architecture for Internet 

transactions like the end-user’s PC and his or her bank 

server will also remain secure for these transactions.  

Unfortunately, key distribution is more challenging with 

symmetric cryptography; therefore, symmetric cryptography 

must be combined with some form of asymmetric cryptography 

in order to distribute symmetric keys over the web.  

Fortunately, several quantum-resistant algorithms and 

implementations, such as the NTRUEncrypt Public-Key Crypto 

system, which uses lattice-based cryptography, are 

available to distribute the symmetric session keys, and 

NTRUEncrypt’s implementation of lattice-based cryptography 

is believed to be quantum resistant. 

3. NTRUEncrypt Public-Key Crypto System 

According to techworld.com, which announced the X9.98 

standard in April of 2011, "NTRUEncrypt, [is] the fastest 

public key algorithm you've never heard of."  In contrast 

to RSA and Elliptic Curve Cryptology (ECC), NTRUEncrypt is 
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faster, more efficient, and resistant to quantum computers 

because the cipher is lattice-based (the mathematics of 

lattice-based cryptography are beyond the scope of this 

thesis). I.e., NTRUEncrypt is able to function fully as a 

public-key algorithm like the widely used RSA algorithm, 

but does so in a more efficient manner. 

Fortunately, the techworld.com statement wasn't 100 

percent accurate because obviously if the Accredited 

Standards Committee X9 Incorporated, Financial Industry 

Standards, created the X9.98 standard for financial 

institutions to start using NTRUEncrypt to establish secure 

communications for financial service in November 2010, then 

someone has heard of NTRUEncrypt.  In fact, JAVA released 

an application programming interface, Bouncy Castle 1.47, 

containing variants that include a lightweight version of 

the NTRUEncrypt Public-Key Cryptosystem in March 2012 

(bouncycastle.org). 

 

Figure 9.   Relative Performance of LBP-PKE, RSA, and ECC 
(From:X9extra, Volume 2, Number 1, April 2011) 

Figure 9 shows the relative performance for "Lattice-

Based Polynomial Public-Key Encryption" (X9extra, Volume 2, 

Number 1, April 2011), RSA, and ECC. The reader can see via 
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the operations per second in the last three columns that 

NTRUEncrypt outperforms ECC and RSA by as much as 638:1. 

4. Kerberos 

In Greek mythology, there was the country of Kerberos 

where no one could be trusted.  The country was named after 

a three-headed dog that guarded the gate of purgatory.  

Greek legend states that in the land of Kerberos, if you 

desired to deliver any package to anyone, you and the 

package would be exposed to evil monsters and goblins that 

could take your shape and do malicious things in your name.  

Therefore, no one in the land of Kerberos could be trusted.  

Ironically, in the Information Age, the land of Kerberos 

has become reality, where evil users like Eve can take your 

identification and use it to perform malicious activities.  

Thanks to the founders of the Kerberos Authentication 

System invented at MIT, a tool is available that uses an 

authentication process similar in form to the three-headed 

dog Kerberos, as shown in Figure 10.  For more information 

on the Legend of Kerberos, please visit: 

http://www.tamacom.com/~shigio/legend/kerberos.html. 



 49 

 

Figure 10.   Simplified Kerberos authentication protocol 
(From:http://gost.isi.edu/publications/kerberos-

neuman-tso.html)  

The Kerberos application, invented at MIT, is a 

trusted third-party protocol that handles user 

authentication.  Using Figure 10 as a visual reference for 

information flow, if Alice (who is represented by 'C' for 

client) wants to talk to Bob (who is represented by 'V' for 

verifier) on a Kerberos Authentication system, Alice must 

first register her required information on the Kerberos 

Server (which is represented by 'AS' for Authentication 

Server) that includes a secret shared only between Alice 

and the Kerberos server.  Once registered, when Alice wants 

to talk to Bob, she must first authenticate herself to the 
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Kerberos server by logging onto the network.  During the 

authentication process, the workstation that Alice is using 

to log onto the network sends Alice's identification to the 

Kerberos server.  The Kerberos server responds by sending a 

session key that will later be shared with the Ticket 

Granting Server (TGS) and a ticket, both encrypted with the 

secret that Alice shares with Kerberos server.  If Alice's 

workstation can successfully decrypt the session key and 

ticket, the workstation will continue the login process 

because Alice has successfully authenticated herself. 

Once Alice has successfully logged onto the network, 

she then requests to talk to Bob via the TGS by sending the 

ticket that the Kerberos server provided her.  The ticket 

contains a copy of the session key provided to Alice and 

Alice's identity encrypted with the secret that only the 

Kerberos server and TGS share.  Once the TGS decrypts the 

ticket and verifies that Alice's identification is bound to 

the session key, the TGS knows that Alice is a trusted 

party because the Kerberos server (third-party), which the 

TGS identifies as a trusted user, provided Alice with the 

ticket encrypted with a secret that is shared between the 

TGS and Kerberos server only.  The TGS then responds to 

Alice by sending another session key to use with Bob and 

another ticket to send to Bob.  The session key and ticket 

that the TGS sends to Alice is encrypted with the session 

key shared between Alice and the TGS.  Furthermore, the 

session key that Alice and the TGS share can be used by 

Alice to request additional session keys and tickets to use 

with other entities on the network. 
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Once Alice receives the new session key to share with 

Bob and the ticket to send to Bob encrypted with the 

session key shared with the TGS and Alice, she decrypts the 

file, holds onto the session key, and sends Bob the ticket. 

The ticket Alice sends to Bob is similar to the ticket 

Alice first sent to the TGS.  It contains her 

identification and a copy of the session key that the TGS 

sent Alice, both encrypted with the session key that Bob 

and the TGS share.  Bob established his session key with 

the TGS the same way Alice established hers using the 

Kerberos server.  Once Bob decrypts the ticket and verifies 

that Alice's identification is bound to the session key, 

secure communication can begin using secret-key 

cryptography. If Bob were a fileserver for example, the TGS 

would also verify Alice's access rights to the file to 

which she is requesting access and include these privileges 

along with the name of the file Alice wishes to access for 

Bob (the fileserver) to verify prior to giving Alice read 

and/or write access. (Pfleeger, C. P. et al, 2003) 

The benefit of this authentication system is that 

authentication at every step of the process is successfully 

completed without sending any encrypted or unencrypted 

passwords over the network where attackers could capture 

Alice's identity and perform an impersonation attack.  

Furthermore, since Kerberos uses symmetric cryptography, 

Alice's identity will be safe from any new attackers that 

may appear in a quantum-computing era.  Microsoft has 

already adopted Kerberos version 5 as its Windows Sever 

2008 client/server domain logon authentication.  Kerberos 

also supports asymmetric cryptography, but this feature is  
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not covered in this thesis since the algorithm that is used 

for public-key cryptology is RSA (RFC 4556), and is 

vulnerable to quantum computing.    
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V. EXPERIMENTATAL METHODOLOGY AND IMPLEMENTATION 

A. HASH-BASED CRYPTOGRAPHY 

1. Hash-Based Cryptography Background 

Our first task was to implement hash-based 

cryptography in the C programming language.  We followed 

the description of hash-based cryptography in the 2010 

Springer book, Post-Quantum Cryptography, edited by Daniel 

J. Bernstein, Johannes Buchmann, and Erik Dahmen.  For our 

hash function, we used the MD5 implementation by Ronald 

Rivest at MIT (http://people.csail.mit.edu/rivest/Md5.c) 

Post-Quantum Cryptography describes a hash-based 

public-key signature system based on a standard 

cryptographic hash function H with a digest of length 2b 

bits. The signer’s public key consists of 4b strings y1[0], 

y1[1], y2[0], y2[1], …, y2b[0], y2b[1] of length 2b bits. The 

signer’s secret key consists of 4b random strings x1[0], 

x1[1], x2[0], x2[1], …, x2b[0], x2b[1] of length 2b bits. The 

signer generates the public key by computing y1[0] = 

H(x1[0]), y1[1] = H(x1[1]), y2[0] = H(x2[0]), y2[1] = 

H(x2[1]), …, y2b[0] = H(x2b[0]), y2b[1] = H(x2b[1]). 

A message m is signed by computing y = H(r, m), where 

r is a random string.  The signer then sends the signature, 

which consists of r followed by x1[h1], …, x2b[h2b].  The 

unused x values are discarded, and no further messages may 

be signed.  This scheme is the Lamport-Diffie one-time 

signature system [W. Diffie and M. Hellman. New Directions 

in Cryptography.  IEEE Transactions on Information Theory, 

Vol. 22, No. 6, November 1976, pages 644-654] 
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2. Hash-Based Cryptography Implementation 

Our implementation consists of two separate programs.  

The first program (separate1.c) is the signature generation 

process, and the second program (separate2.c) is the 

signature verification process. Both involve modifying 

Rivest’s Md5.c program as follows (please note that for the 

sake of brevity, only the modified functions are shown): 

 

/********** Helper Functions ***********/ 

 

static char *MDString2 (inString, outString) 

char *inString; 

char *outString; 

{ 

  int i, j, k; 

  MD5_CTX mdContext; 

  unsigned int len = strlen (inString); 

 

  MD5Init (&mdContext); 

  MD5Update (&mdContext, inString, len); 

  MD5Final (&mdContext); 

 

  k = 0; 

  for (i = 0; i < 16; i++) { 

    for (j = 0; j < 8; j++) { 

      if ((mdContext.digest[i] >> (7-j)) & 1 == 1) 

        outString[k] = '1'; 

      else 

        outString[k] = '0'; 
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      k++; 

    } 

  } 

  outString[k] = '\0'; 

} 

 
void replaceCR(char *buf, int size) 

{ 

  int i; 

  for (i = 0; i < size; i++) 

    if (buf[i] == '\n') 

      buf[i] = '\0'; 

} 

 

void clear(char *buf, int size) 

{ 

  int i; 

  for (i = 0; i < size; i++) 

    buf[i] = '\0'; 

} 

 

#define B 64 

 

int main (argc, argv) 

int argc; 

char *argv[]; 

{ 

  int i, j; 

  int b = B; 
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  char **y0, **y1, **x0, **x1; 

  unsigned int r, bit; 

  char R[32+1], message[256], concat[512], concat2[512]; 

  char buf[2 * B + 1], buf2[2 * B + 1]; 

  char buf3[2 * B + 1], output[2 * B + 1]; 

 

  // Clear out buffers before using 

  clear(R, 33); 

  clear(message, 256); 

  clear(concat, 512); 

  clear(concat2, 512); 

  clear(buf, 2 * B + 1); 

  clear(buf2, 2 * B + 1); 

  clear(buf3, 2 * B + 1); 

  clear(output, 2 * B + 1); 

 

  // Generate random number r 

  srand(time(0)); 

  r = (unsigned int)random(); 

   

  // Convert r into a string 

  clear(R, 33); 

  for (i = 0; i < 32; i++) { 

    bit = (r >> i) & 0x1; 

    R[i] = '0' + bit; 

  } 

  printf(“%s\n”, R); 

 

  // Read user-generated message to be signed 
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  clear(message, 256); 

  fgets(message, 256, stdin); 

  replaceCR(message, 256); 

  printf(“%s\n”, message); 

 

  // Concatenate the two strings: message and R 

  clear(concat, 512); 

  clear(concat2, 512); 

  strcpy(concat,R); 

  strcat(concat,message); 

 

  // Compute the MD5 hash of the concatenation 

  MDString2(concat,concat2); 

 

  clear(output, 2 * b + 1); 

  strncpy(output,concat2,2 * b); 

  output[2 * b] = '\0'; 

 

  // Allocate space for the private key 

  x0 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!x0) { 

    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 

  x1 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!x1) { 

    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 
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  // Generate the private key 

  for (i = 0; i < 2 * b; i ++) { 

    x0[i] = (char *)malloc((2 * b + 1)* sizeof(char)); 

    if (!x0[i]) { 

      fprintf(stderr, "malloc returned null!"); 

      return -1; 

    } 

    for (j = 0; j < 2 * b; j++) { 

      x0[i][j] = (((unsigned int)random()) % 2) + '0'; 

    } 

    x0[i][j] = '\0'; 

  } 

 

  for (i = 0; i < 2 * b; i ++) { 

    x1[i] = (char *)malloc((2 * b + 1) * sizeof(char)); 

    if (!x1[i]) { 

      fprintf(stderr, "malloc returned null!"); 

      return -1; 

    } 

    for (j = 0; j < 2 * b; j++) { 

      x1[i][j] = (((unsigned int)random()) % 2) + '0'; 

    } 

    x1[i][j] = '\0'; 

  } 

 

  // Allocate space for the public key 

  y0 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!y0) { 
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    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 

  y1 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!y1) { 

    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 

 

  // Generate the public key 

  for (i = 0; i < 2 * b; i ++) { 

    y0[i] = (char *)malloc((2 * b + 1) * sizeof(char)); 

    if (!y0[i]) { 

      fprintf(stderr, "malloc returned null!"); 

      return -1; 

    } 

    clear(buf, 2 * b + 1); 

    clear(buf2, 2 * b + 1); 

    strncpy(buf,x0[i],2 * b); 

    MDString2(buf,buf2); 

    clear(y0[i], 2 * b + 1); 

    strncpy(y0[i],buf2, 2 * b); 

    y0[i][2 * b] = '\0'; 

    printf("%s\n", y0[i]); 

  } 

  for (i = 0; i < 2 * b; i ++) { 

    y1[i] = (char *)malloc((2 * b + 1) * sizeof(char)); 

    if (!y1[i]) { 

      fprintf(stderr, "malloc returned null!"); 
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      return -1; 

    } 

    clear(buf, 2 * b + 1); 

    clear(buf2, 2 * b + 1); 

    strncpy(buf,x1[i],2 * b); 

    MDString2(buf,buf2); 

    clear(y1[i], 2 * b + 1); 

    strncpy(y1[i],buf2,2 * b); 

    y1[i][2 * b] = '\0'; 

    printf("%s\n", y1[i]); 

  } 

 

  // Signature generation 

  for (i = 0; i < 2 * b; i++) { 

    if (output[i] == '0') { 

      printf("%s\n",x0[i]); 

    } else if (output[i] == '1') { 

      printf("%s\n",x1[i]); 

    } else { 

      fprintf(stderr, "fatal error\n"); 

      return; 

    } 

  } 

  fprintf(stderr, "Signature generation suceeded\n"); 

  return 0; 

} 

 

Signature verification (separate2.c) is accomplished by 

modifying Md5.c as follows (note that for the sake of 
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brevity, only the modified functions are shown, and the 

helper functions MDString2(), replaceCR(), and clear() 

already shown above are not shown here): 

 
#define B 64 

 

int main (argc, argv) 

int argc; 

char *argv[]; 

{ 

  int i, j; 

  int b = B; 

  char **y0, **y1, **x0, **x1;; 

  unsigned int r, bit; 

  char R[256], message[256], concat[512], concat2[512]; 

  char buf[2 * B + 2], buf2[2 * B + 2]; 

  char buf3[2 * B + 2], buf4[256], output[2 * B + 2]; 

 

  // Clear out buffers before using 

  clear(R, 256); clear(message, 256); clear(concat, 512); 

  clear(concat2, 512); clear(buf, 2 * B + 2); 

  clear(buf2, 2 * B + 2); clear(buf3, 2 * B + 2); 

  clear(buf4, 256); clear(output, 2 * B + 2); 

 

  // Read in random string R 

  clear(R, 256); 

  fgets(R, 256, stdin); 

  replaceCR(R, 256); 
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  // Read in the message 

  clear(message, 256); 

  fgets(message, 256, stdin); 

  replaceCR(message, 256); 

  clear(concat, 512); 

  clear(concat2, 512); 

  strcpy(concat,R); 

  strcat(concat,message); 

  MDString2(concat,concat2); 

  clear(output, 2 * B + 2); 

  strncpy(output,concat2,2*b); 

  replaceCR(output, 2 * B + 2); 

 

  // Allocate space for the public key 

  y0 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!y0) { 

    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 

  y1 = (char **)malloc(2 * b * sizeof(char *)); 

  if (!y1) { 

    fprintf(stderr, "malloc returned null!"); 

    return -1; 

  } 

  

 // Read in the public key 

  for (i = 0; i < 2 * b; i++) { 

    y0[i] = (char *)malloc((2 * b + 2) * sizeof(char)); 

    if (!y0[i]) { 
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      fprintf(stderr, "malloc returned null!"); 

      return -1; 

    } 

    clear(y0[i], 2 * b + 2); 

    fgets(y0[i], 2 * b + 2, stdin); 

    replaceCR(y0[i], 2 * b + 2); 

  } 

 

  for (i = 0; i < 2 * b; i++) { 

    y1[i] = (char *)malloc((2 * b + 2) * sizeof(char)); 

    if (!y1[i]) { 

      fprintf(stderr, "malloc returned null!"); 

      return -1; 

    } 

    fgets(y1[i], 2 * b + 2, stdin); 

    replaceCR(y1[i], 2 * b + 2); 

  } 

 

  // Signature verification 

  for (i = 0; i < 2 * b; i++) { 

    if (output[i] == '0') { 

      clear(buf, 2 * b + 2); 

      // Read in part of the signature 

      fgets(buf, 2 * b + 2, stdin); 

      replaceCR(buf, 2 * b + 2); 

      // Is H(buf) the same as y0[i]? 

      MDString2(buf,buf2); 

      clear(buf3, 2 * b + 2); 

      for (j = 0; j < 2 * b; j++) { 
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        buf3[j] = y0[i][j]; 

      } 

      if (strncmp(buf2, buf3, 2 * b) != 0) { 

        fprintf(stderr, "Signature verification failed\n"); 

        return -1; 

      } 

    } else if (output[i] == '1') { 

      clear(buf, 2 * b + 2); 

      // Read in part of the signature 

      fgets(buf, 2 * b + 2, stdin); 

      replaceCR(buf, 2 * b + 2); 

      // Is H(buf) the same as y1[i]? 

      MDString2(buf,buf2); 

      clear(buf3, 2 * b + 2); 

      for (j = 0; j < 2 * b; j++) { 

        buf3[j] = y1[i][j]; 

      } 

      if (strncmp(buf2, buf3, 2 * b) != 0) { 

        fprintf(stderr, "Signature verification failed\n"); 

        return -1; 

      } 

    } else { 

      fprintf(stderr, "fatal error\n"); 

      return; 

    } 

  } 

  fprintf(stderr,"Signature verification succeeded\n"); 

  return 0; 

} 
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The user follows the following steps to compile the 

above code: 

 
% gcc –o separate1 separate1.c 

% gcc –o separate2 separate2.c 

 

Next, the user generates the signature: 

 

% echo “Post-quantum cryptography is fun.” > message 

% ./separate1 < message > signature 

 

The user should see the following output: 

 

Sender: Signature generation succeeded 

 

Next, the user verifies the signature: 

 

% ./separate2 < signature 

 

The user should see the following output: 

 

Signature verification succeeded 

 

The file signature should be similar to the following: 

 

11100110101000101101000111010110 

Post-quantum cryptography is fun. 
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00010101001010101111000000011010001010110010111101011110010

11100101111000010111110010100001010101111011100111000001100

1100100010 

01111100000011011110010110110000111011100110010101010101011

00010000110100110011011101011100001111101010000110101011100

0000100110 

00011101001001000001010000010101110111001010101110010011100

01111011001001110000110100010111111111100000010010111101101

1110001010 

00100010111010111000010010000001000101001111110011111111101

00111110000001011010010110111010010001000011000101101011010

1111010100 

11110111110000010001110101011000111110101100111101001010000

00010000100101110000001011100011111010011000100010110100110

0100111110 

10111101110111001000011110111011111000000000011110001011010

01100000110001101010011111011011111101011100001111011010010

1000110000 

… 

B. MCELIECE CRPTOSYSTEM 

1. McEliece Cryptosystem Background 

We found an implementation of a variant of the 

McEliece code-based cryptosystem implemented by Bhaskar 

Biswas and Nicolas Sendrier of the French National 

Institute for Research in Computer Science and Control 

(Institut national de recherché en informatique et en 

automatique, INRIA) in Rocquencourt, France.  The source 

code is distributed as part of the SUPERCOP toolkit 
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developed by the VAMPIRE lab for measuring the performance 

of cryptographic software 

[http://bench.cr.yp.to/supercop.html]. SUPERCOP stands for 

System for Unified Performance Evaluation Related to 

Cryptographic Operations and Primitives.  VAMPIRE stands 

for Virtual Applications and Implementations Research Lab, 

the third lab of ECRYPT, the European Network of Excellence 

in Cryptology II. 

2. McEliece Cryptosystem Implementation 

SUPERCOP measures a variety of cryptographic 

primitives. Anyone can contribute computer time to this 

benchmarking effort by downloading, unpacking, and running 

SUPERCOP on a Unix computer: 

 
% wget http://hyperelliptic.org/ebats/supercop-20120316.tar.bz2 

% bunzip2 < supercop-20120316.tar.bz2 | tar -xf - 

% cd supercop-20120316 

% nohup sh do & 

 
The do script compiles the source code of the 

cryptographic software and generates a file, which the user 

posts to the web and then sends the URL to a mailing list. 

The code compiles and runs on our system, but the 

comments, variable names, and function names are all in 

French. 

Data on the performance of this cryptosystem on a 

variety of machines is available at 

http://bench.cr.yp.to/results-encrypt.html. 
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C. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM 

1. NTRUEncrypt Public-Key Crypto System Background 

An open-source implementation of NTRU 

(http://tbuktu.github.com/ntru/) is available. NTRU is an 

example of lattice-based cryptography.  It has both a 

public-key encryption scheme (NTRUEncrypt) and a digital 

signature scheme (NTRUSign). 

We were able to download and compile the source code 

for NTRU.  We were also able to write our own programs that 

use NTRU in order to encrypt files, decrypt files, sign 

files, and verify signatures. 

2. NTRUEncrypt Public-Key Crypto System 
Implementation 

First, we downloaded the NTRU source code and unpacked 

it on a Unix machine.  Then, we navigated to the demo 

folder: 

 

% jar xvf ntru-1.0-src.jar 

% cd src/main/java/net/sf/ntru/demo 

 

This folder contains an example program that 

demonstrates both encryption and digital signature using 

NTRU. We modified this SimpleExample.java program to open 

the plaintext as a file and store the ciphertext as a file.  

In addition, our modified program saves the public and 

private keys to a file.  Without our modifications, the 

example program generates an EncryptionKeyPair, encrypts a 

hard-coded string with the public key, decrypts the 

ciphertext (stored in a byte array that is a local variable 
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of the function), and then prints the decrypted string. 

With our modifications, it is possible to transfer the 

ciphertext to a different machine for decryption, which we 

successfully tested.  The following is the code of 

Encrypt.java, our first of two encryption programs: 

 
package net.sf.ntru.demo; 

import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 

import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 

 

public class Encrypt { 

     

    public static void main(String[] args) { 

        encrypt(); 

    } 

 

    private static void encrypt() { 

        // create an instance of NtruEncrypt 

        NtruEncrypt ntru = new NtruEncrypt( 

                               EncryptionParameters 

                               .APR2011_439_FAST); 

        // create an encryption key pair 
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        EncryptionKeyPair kp = ntru.generateKeyPair(); 

        byte[] enc = {}; 

        byte[] buf = new byte[64]; 

        File f; 

        FileOutputStream fos; 

        FileInputStream fis; 

        try { 

            // Load the plaintext from disk 

            f = new File("plaintext"); 

            fis = new FileInputStream(f); 

            fis.read(buf); 

            fis.close(); 

            // encrypt the message with the public key 

            enc = ntru.encrypt(buf, kp.getPublic()); 

             

            // Store the public key to disk 

            f = new File("public_key"); 

            fos = new FileOutputStream(f); 

            kp.getPublic().writeTo(fos); 

            fos.close(); 

            // Store the private key to disk 

            f = new File("private_key"); 

            fos = new FileOutputStream(f); 

            kp.getPrivate().writeTo(fos); 

            fos.close(); 

            // Store the ciphertext to disk 

            f = new File("ciphertext"); 

            fos = new FileOutputStream(f); 

            fos.write(enc); 
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            fos.close(); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        } 

    } 

} 

 

To compile and run this program, the user creates a 

plaintext file called plaintext and then types the 

following commands: 

 
% javac -classpath ../../../.. Encrypt.java 

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt 

 

Next, we created another encryption program 

Encrypt2.java that does not create a key pair but instead 

uses an existing key pair stored in a file: 

 
package net.sf.ntru.demo; 

import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 

import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 
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public class Encrypt2 { 

     

    public static void main(String[] args) { 

        encrypt(); 

    } 

 

    private static void encrypt() { 

        // create an instance of NtruEncrypt 

        NtruEncrypt ntru = new NtruEncrypt( 

                               EncryptionParameters 

                               .APR2011_439_FAST); 

 

        byte[] enc = {}; 

        byte[] buf = new byte[64]; 

        File f; 

        FileOutputStream fos; 

        FileInputStream fis; 

        EncryptionPrivateKey pri; 

        EncryptionPublicKey pub; 

        try { 

            // Load the public key from disk 

            f = new File("public_key"); 

            fis = new FileInputStream(f); 

            pub = new EncryptionPublicKey(fis, 

                      EncryptionParameters 

                      .APR2011_439_FAST); 

            fis.close(); 

            // Load the plaintext from disk 

            f = new File("plaintext"); 
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            fis = new FileInputStream(f); 

            fis.read(buf); 

            fis.close(); 

            // Encrypt the message with the public key 

            enc = ntru.encrypt(buf, pub); 

            // Store the ciphertext to a file 

            f = new File("ciphertext"); 

            fos = new FileOutputStream(f); 

            fos.write(enc); 

            fos.close(); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        } 

    } 

} 

 

To compile and run this program, the user must already 

have an existing public_key file.  The user creates a 

plaintext file called plaintext and then types the 

following commands: 

 
% javac -classpath ../../../.. Encrypt2.java 

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt2 

 

Next, we created a decryption program Decrypt.java that 

requires existing public_key, private_key, and ciphertext 

files: 

 
package net.sf.ntru.demo; 
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import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 

import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 

 

public class Decrypt { 

     

    public static void main(String[] args) { 

        decrypt(); 

    } 

 

    private static void decrypt() { 

        // create an instance of NtruEncrypt 

        NtruEncrypt ntru = new NtruEncrypt( 

                               EncryptionParameters 

                               .APR2011_439_FAST); 

        byte[] dec = {}; 

        byte[] buf = new byte[1024]; 

        File f; 

        FileOutputStream fos; 

        FileInputStream fis; 

        EncryptionPrivateKey pri; 

        EncryptionPublicKey pub; 

        EncryptionKeyPair pair; 
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        try { 

            // Load the public key from disk 

            f = new File("public_key"); 

            fis = new FileInputStream(f); 

            pub = new EncryptionPublicKey(fis, 

                      EncryptionParameters 

                      .APR2011_439_FAST); 

            fis.close(); 

            // Load the private key from disk 

            f = new File("private_key"); 

            fis = new FileInputStream(f); 

            pri = new EncryptionPrivateKey(fis, 

                      EncryptionParameters 

                      .APR2011_439_FAST); 

            pair = new EncryptionKeyPair(pri, pub); 

            // Load the ciphertext from disk 

            f = new File("ciphertext"); 

            fis = new FileInputStream(f); 

            fis.read(buf); 

            System.out.println(buf); 

            dec = ntru.decrypt(buf, pair); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        } 

        // Print the decrypted message 

        System.out.println("Message:  " + new String(dec)); 

    } 

} 
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To compile and run this program, the user must already 

have existing ciphertext, public_key and private_key files.  

The user types the following commands: 

 
% javac -classpath ../../../.. Decrypt.java 

% java -classpath ../../../.. net.sf.ntru.demo.Decrypt 

 

Next, we created a program Sign.java to sign a file 

(modified from the example program to read the message from 

the file message and to write the public_signing_key, 

private_signing_key, and signature to disk): 

 
package net.sf.ntru.demo; 

import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 

import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignaturePublicKey; 

import net.sf.ntru.sign.SignaturePrivateKey; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 

 

public class Sign { 

     

    public static void main(String[] args) { 

        sign(); 
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    } 

 

    private static void sign() { 

        // create an instance of NtruSign 

        NtruSign ntru = new NtruSign( 

                            SignatureParameters.TEST157); 

        // create an signature key pair 

        SignatureKeyPair kp = ntru.generateKeyPair(); 

        byte[] buf = new byte[64]; 

        File f; 

        FileOutputStream fos; 

        FileInputStream fis; 

        try { 

            // Read the message from disk 

            f = new File("message"); 

            fis = new FileInputStream(f); 

            fis.read(buf); 

            fis.close(); 

            // Sign the message with the private key 

            byte[] sig = ntru.sign(buf, kp); 

            // Write the public signing key to disk 

            f = new File("public_signing_key"); 

            fos = new FileOutputStream(f); 

            kp.getPublic().writeTo(fos); 

            fos.close(); 

            // Write the private signing key to disk 

            f = new File("private_signing_key"); 

            fos = new FileOutputStream(f); 

            kp.getPrivate().writeTo(fos); 
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            fos.close(); 

            // Write the signature to disk 

            f = new File("signature"); 

            fos = new FileOutputStream(f); 

            fos.write(sig); 

            fos.close(); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        }         

    } 

} 

 

To compile and run this program, the user creates a 

message file and then types the following commands: 

 
% javac -classpath ../../../.. Sign.java 

% java -classpath ../../../.. net.sf.ntru.demo.Sign 

 
Next, we created Sign2.java, a signature program that 

uses an existing public_signing_key and 

private_signing_key: 

 

package net.sf.ntru.demo; 

import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 
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import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignaturePublicKey; 

import net.sf.ntru.sign.SignaturePrivateKey; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 

 

public class Sign2 { 

     

    public static void main(String[] args) { 

        sign(); 

    } 

 

    private static void sign() { 

        // Create an instance of NtruSign 

        NtruSign ntru = new NtruSign( 

                            SignatureParameters.TEST157); 

        SignatureKeyPair kp; 

        byte[] buf = new byte[64]; 

        byte[] sig = {}; 

        File f; 

        FileOutputStream fos; 

        FileInputStream fis; 

        SignaturePrivateKey pri; 

        SignaturePublicKey pub; 

        try { 

            // Read public signing key from disk 

            f = new File("public_signing_key"); 

            fis = new FileInputStream(f); 

            pub = new SignaturePublicKey(fis, 
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                      SignatureParameters.TEST157); 

            fis.close(); 

            // Read private signing key from disk 

            f = new File("private_signing_key"); 

            fis = new FileInputStream(f); 

            pri = new SignaturePrivateKey(fis, 

                      SignatureParameters.TEST157); 

            fis.close(); 

            kp = new SignatureKeyPair(pri, pub); 

            // Read message from disk 

            f = new File("message"); 

            fis = new FileInputStream(f); 

            fis.read(buf); 

            fis.close(); 

            // Sign the message with the key pair 

            sig = ntru.sign(buf, kp); 

            // Write signature to disk 

            f = new File("signature"); 

            fos = new FileOutputStream(f); 

            fos.write(sig); 

            fos.close(); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        } 

    } 

} 

 

To compile and run this program, the user must have an 

existing public_signing_key and private_signing_key.  The 
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user creates a message file and then types the following 

commands: 

 

% javac -classpath ../../../.. Sign2.java 

% java -classpath ../../../.. net.sf.ntru.demo.Sign2 

 

Next, we created a program Verify.java to verify the 

signature.  This program requires the following files: 

public_signing_key, message, and signature: 

 

package net.sf.ntru.demo; 

 

import net.sf.ntru.encrypt.EncryptionPrivateKey; 

import net.sf.ntru.encrypt.EncryptionPublicKey; 

import net.sf.ntru.encrypt.EncryptionKeyPair; 

import net.sf.ntru.encrypt.EncryptionParameters; 

import net.sf.ntru.encrypt.NtruEncrypt; 

import net.sf.ntru.sign.NtruSign; 

import net.sf.ntru.sign.SignatureKeyPair; 

import net.sf.ntru.sign.SignaturePublicKey; 

import net.sf.ntru.sign.SignaturePrivateKey; 

import net.sf.ntru.sign.SignatureParameters; 

import java.io.*; 

 

public class Verify { 

     

    public static void main(String[] args) { 

        verify(); 

    } 
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    private static void verify() { 

        // Create an instance of NtruSign. 

        NtruSign ntru = new NtruSign( 

                            SignatureParameters.TEST157);  

        byte[] buf = new byte[64]; 

        byte[] sig = new byte[1024]; 

        File f; 

        FileInputStream fis; 

        SignaturePrivateKey pri; 

        SignaturePublicKey pub; 

        try { 

            // Read the public signing key from disk 

            f = new File("public_signing_key"); 

            fis = new FileInputStream(f); 

            pub = new SignaturePublicKey(fis,  

                      SignatureParameters.TEST157); 

            fis.close(); 

            // Read the message from disk 

            f = new File("message"); 

            fis = new FileInputStream(f); 

            fis.read(buf); 

            fis.close(); 

            // Read the signature from disk 

            f = new File("signature"); 

            fis = new FileInputStream(f); 

            int nbytes = fis.read(sig); 

            fis.close(); 

            byte[] sig2 = new byte[nbytes]; 
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            for (int i = 0; i < nbytes; i++) 

                sig2[i] = sig[i]; 

            // Verify the signature 

            boolean valid = ntru.verify(buf, sig2, pub); 

            System.out.println("Valid? " + valid); 

        } catch (Exception e) { 

            System.err.println("Exception! " + e); 

        } 

    } 

} 

 

To compile and run this program, the user must have an 

existing public_signing_key, message, and signature.  The 

user types the following commands: 

 

% javac -classpath ../../../.. Verify.java 

% java -classpath ../../../.. net.sf.ntru.demo.Verify 
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VI. EXPERIMENTAL RESULTS 

A. HASH-BASED CRYPTOLOGY 

After implementing the hash-based cryptography scheme 

in C, we evaluated it both on a Mac OS X system as well as 

in Ubuntu.  We established two Ubuntu Virtual Machine (VM) 

environments, one for the sender, and another for the 

receiver.  We validated the correct operation of the 

signature generation process in the sender’s environment, 

transferred the signature to the receiver’s environment, 

and validated the correct operation of the signature 

verification process in the receiver’s environment.  We 

then made a small change to the message to validate that 

the signature verification process failed. 

We also attempted to generate the signature on the Mac 

OS X system and verify the signature on the Ubuntu system.  

However, signature verification failed on the Ubuntu system 

because of a subtle implementation issue with the MD5 code 

we downloaded from Ronald Rivest’s website at MIT.  We 

discovered that this MD5 code produces a different hash 

value on the Mac than in the Ubuntu VM.  To fix this 

problem will require finding the source code of a 

cryptographic hash function that produces the same hash 

value for the same message on a Mac and in the Ubuntu 

environment. 

Currently, only messages with a maximum length of 256 

bytes are supported.  Future work will involve making a 

small change to the code to support messages of arbitrary  
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size.  This is a simple fix. The time required to sign a 

message consisting of 34 characters is less than one 

hundredth of a second. 

B. NTRUENCRYPT PUBLIC-KEY CRYPTO SYSTEM 

After implementing our modifications to the NTRU 

source code in Java, we evaluated the programs on both a 

Mac OS X system as well as in an Ubuntu VM environment.  We 

established two Ubuntu environments, one for the sender, 

and another for the receiver.  We validated the correct 

operation of the encryption program in the sender’s 

environment.  Then, we transferred the public_key, 

private_key, and ciphertext files to the receiver’s 

environment and validated the correct operation of the 

decryption program. 

Note that there are two encryption programs: one that 

generates a new encryption key pair and stores it to disk, 

and another that uses an existing encryption key pair, 

loading the public_key file from disk.  We validated the 

correct operation of both encryption programs. 

Also, we validated the correct operation of the 

signature generation process in the sender’s environment.  

Then, we transferred the public_signing_key, message, and 

signature to the receiver’s environment and validated the 

correct operation of the signature verification program. 

Note that there are two signature generation programs: 

one that generates a new signing key pair and stores it to 

disk, and another that uses an existing signing key pair, 

loading it from disk.  We validated the correct operation 

of both signature generation programs. 
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The time to encrypt a 37-byte message is less than one 

half of a second.  We are currently limited to messages 

with a maximum length of 64 characters.  A simple fix will 

allow messages of arbitrary length (below we describe a 

hybrid encryption scheme that already supports messages of 

any length).  The time to decrypt the message is less than 

0.3 seconds. 

The time to sign a 37-byte message is approximately 

one second.  We are currently limited to messages with a 

maximum length of 64 bytes.  A simple fix will allow 

messages of arbitrary length.  The time to verify the 

signature is approximately 0.3 seconds. 

C. OPENSSL 

Symmetric encryption is not vulnerable to quantum 

computers. To demonstrate how easy it is for anyone to use 

symmetric encryption, we show the following examples of 

using OpenSSL, which is installed on many systems, 

including Mac OS X and Ubuntu Linux. 

To encrypt a file plain.txt, all one must do is type 

the following at the command prompt: 

 

% openssl enc -aes-128-cbc -e -in plain.txt -out cipher.txt 

-K bead1234 -iv feed4321 

 

This will produce a file cipher.txt containing the 

ciphertext encrypted under key 0xbead1234 and 

initialization vector of 0xfeed4321 using the AES cipher 

with a key size of 128 bits and the cipher-block chaining 
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(CBC) mode of operation.  It takes less than one hundredth 

of a second to encipher a file containing 37 characters. 

To decrypt the file, the user types the following at 

the command prompt: 

 

% openssl enc -aes-128-cbc -d -in cipher.txt -out 

decrypted.txt -K bead1234 -iv feed4321 

 

Deciphering the 37-character file also takes less than 

one hundredth of a second.  Note that the key and the 

initialization vector must be the same for encryption and 

decryption.  Otherwise, the file will not decrypt properly. 

Also, the output file decrypted.txt has a different 

filename than the original plaintext file plain.txt so that 

it is possible to compare the two rather than overwriting 

the original plaintext file.  When using a 128-bit key, the 

user may specify up to 128 hexadecimal digits of the key.  

In the above example, they key only has 8 hexadecimal 

digits, or 32 bits. 

D. NTRU + OPENSSL 

We now demonstrate a hybrid encryption protocol 

combining the quantum-resistant asymmetric cipher NTRU 

together with the quantum-resistant symmetric cipher AES 

implemented by OpenSSL. 

1) First, we generate a 128-bit key.  Suppose that 

this key is the hexadecimal value 

25c16a7af74b53d421754fadc0f1b531.  We create a text file 

plaintext containing these hexadecimal characters in ASCII 

format.  We place this file in the sender’s directory. Note 
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that you may also encrypt the initialization vector iv if 

you wish as a separate step. 

2) Next, we encrypt a file plain.txt containing the 

(long) message using AES as implemented by OpenSSL: 

 

% openssl enc -aes-128-cbc -e -in plain.txt -out cipher.txt 

-K 25c16a7af74b53d421754fadc0f1b531 -iv feed4321 

 

3) Next, we run the NTRU encryption program on the 

sender’s machine.  Either encryption program Encrypt.java 

or Encrypt2.java is acceptable depending on your 

requirements. 

 

% cd src/main/java/net/sf/ntru/demo 

% javac -classpath ../../../.. Encrypt.java 

% java -classpath ../../../.. net.sf.ntru.demo.Encrypt 

 

4) Next, we transfer the files public_key, private_key, 

ciphertext (the key encrypted with NTRU), and cipher.txt 

(the message encrypted with AES) to the receiver’s machine 

and run the NTRU decryption program on the receiver’s 

machine. 

 

% javac -classpath ../../../.. Decrypt.java 

% java -classpath ../../../.. net.sf.ntru.demo.Decrypt 

 

5) We note the hexadecimal characters printed to the 

screen as a result of the decryption operation and use them 

as the decryption key as follows: 
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% openssl enc -aes-128-cbc -d -in cipher.txt -out 

decrypted.txt -K 25c16a7af74b53d421754fadc0f1b531 -iv 

feed4321 

 

6) The file decrypted.txt on the receiver’s machine 

should be identical to the file plain.txt on the sender’s 

machine. 
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VII. QUALITATIVE MANAGEMENT ANALYSIS 

A. BACKGROUND 

1. Algorithms are Broken Eventually 

This thesis has covered how large-scale, fault-

tolerant quantum computers have the potential to render 

vulnerable algorithms like RSA, Elliptic Curve 

Cryptography, Diffie-Hellman, and others that use factoring 

of large numbers or computing discrete logarithms as the 

basis of their security.  In general, ciphers are 

eventually broken over time, as shown by the trend for hash 

algorithms depicted in Figure 11.  The growth of computing 

power as described by Moore's Law, new ways of harnessing 

computing power like daisy-chaining the processing power of 

multiple XBOX 360s, or new breakthroughs in mathematics all 

contribute to rendering vulnerable (i.e., breaking) 

algorithms considered strong today. 
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Figure 11.   Life cycles of popular cryptographic hashes 
(From:http://valerieaurora.org/monkey.html) 

It is the continuous life-cycle of algorithms being 

invented and broken that motivates the field of cryptology 

to continuously invent new algorithms that are hardened 

through peer-review.  In security and cryptography, there 

are no silver-bullets today or in a quantum-computing era, 

and a defense-in-depth approach ranging from cipher design 

to cryptosystem implementation is essential whenever 

sensitive information is stored or distributed via an 

electronic medium. 

2. Protection of the CIA Triad in a Quantum Era  

For those who choose to store and transfer sensitive 

information via electronic means to have a complete system 

that protects our data with respect to all facets of the 

CIA Triad (Confidentiality, Integrity, and Availability) in 

a quantum-computing era, we must replace algorithms 

believed to be vulnerable with those believed to be quantum 

computing resistant to prepare for the emergence of large-

scale, fault-tolerant quantum computers.  Therefore, we 
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must have an algorithm to create digital fingerprints of 

our messages, and it is essential for our system to have a 

secret-key algorithm to encrypt and decrypt the bulk of our 

secure communication.  We also need to be able to digitally 

sign our messages as we would hard-copy messages.  Finally, 

we require a secure method of distributing symmetric 

session keys. 

B. ASSESSMENT OF OUR QUANTUM COMPUTING READINESS 

1. Introduction 

The following figure depicts the authors’ assessment 

of the world's quantum computing readiness. 

 

Figure 12.   Quantum Computing Readiness 
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2. Digital Signatures 

Modern cryptographic hash functions provide one method 

for creating digital signatures.  Since a hash function 

must accept a variable-size input, output a fixed-length 

digest, be fast to compute, difficult to invert, and 

produce few collisions, these requirements of a secure hash 

algorithm also make hash functions quantum-resistant.  

Therefore, we are already capable of producing digital 

signatures for a quantum-computing era, and that is why the 

block is labeled green for digital fingerprints under 

Cryptographic Hash-Functions. 

3. Symmetric (Secret-Key) Cryptology 

Another algorithm already in wide use that will be 

quantum-resistant is the Advanced Encryption Standard 

(AES).  This symmetric algorithm is cleared to protect the 

United States Government's most sensitive material when 

using AES key sizes of 192 bits or greater.  There will be 

no change required to the symmetric cryptography system 

when quantum computers come into existence, and this is why 

the block is labeled green for symmetric cryptography under 

AES. The NTRUEncrypt and Kerberos columns are also labeled 

green for symmetric cryptography because both systems 

support the AES algorithm as part of their secret-key 

algorithm. 

4. Digital Signatures 

One viable and efficient system we have available 

today for creating digital signatures in a quantum-

computing era is the NTRUEncrypt Cryptosystem.  This block 

is labeled yellow because even though NTRU Encrypt is 
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capable of creating digital signatures and is even more 

efficient at digital signatures than algorithms currently 

in wide use, NTRU is not widely accepted yet, and RSA 

reigns as the most common algorithm used for digital 

signatures. 

5. Session-Key Distribution 

NTRUEncrypt and Kerberos both provide secure methods 

for session key distribution, but they are labeled yellow 

in the figure for two separate reasons.  First, NTRU is 

able to distribute session keys in a public-key 

infrastructure just like the popular RSA algorithm does 

today.  As discussed above, NTRUEncrypt is more efficient 

than RSA.  The reason why NTRU is shown in the figure in 

yellow for session-key distribution is for the same reason 

provided for digital signatures: NTRUEncrypt is not yet 

widely accepted and has not been added to the list of 

possible public-key algorithms for many RFC standards as an 

alternative algorithm for public-key cryptography. 

On the other hand, Kerberos could be considered widely 

accepted because Microsoft has been using Kerberos since 

Microsoft Server 2000, and with the latest version, 

Kerberos is an extremely secure system that assumes the 

network it operates in is untrusted and requires user 

authentication whenever the user is trying to perform any 

function outside of his or her workstation.  The drawback 

to Kerberos, and the reason that it is labeled yellow in 

the figure, is that Kerberos authentication is recursive in 

nature.  All users must be authenticated with a single 

server prior to being provided access to the ticket 

granting server, which then provides the user subsequent 
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access to other services like file and print servers.  This 

authentication system would be fine for a closed and 

trusted intranet like multiple University intranets 

connected to one another, but this single point of 

authentication, and the fact that every user must 

physically register with a Kerberos server prior to logging 

onto a Kerberos network, makes a Kerberos system unsuitable 

for Internet scalability. 

C. SCENARIO-BASED PREPARATION; IF QUANTUM COMPUTERS WERE 

INVENTED 

1. Tomorrow 

Yogi Berra once said that prediction is difficult, 

especially about the future.  This statement is applicable 

to quantum computing: it is difficult to know when or if 

large-scale, fault-tolerant quantum computers will become 

available.  Nevertheless, this section offers some 

speculation, a glimpse into the future, with educated 

guesses based on the analysis presented in this thesis.  If 

quantum computers suddenly become available to attackers, 

no one may know this fact until after an attack has already 

occurred.  Attackers/adversaries could be terrorist 

organizations or governments with the ability to fund the 

development of quantum computers.  A successful program to 

develop a quantum computer would likely want to keep its 

success a secret in order to maximize the amount of 

eavesdropping.  Disclosure of the successful development 

would weaken the effectiveness of the tool since 

countermeasures would likely be put into place upon 

disclosure. 
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Assuming that quantum computers have not been 

invented, and that the inventor(s) of the large-scale, 

fault-tolerant quantum computer would benefit (e.g., 

financially or in terms of status) from publicizing the 

invention of a quantum computer immediately, then there 

would be a large push for the rapid implementation of 

alternative public-key cryptosystems to replace the popular 

RSA algorithm.  It is likely that leading Internet browser 

companies would work around the clock until their browsers 

supported the quantum-resistant alternatives, and most 

browsers would be able to support the alternatives in a 

short period of time.  A large-scale boycott of the 

Internet is unlikely because most users are ignorant of 

basic computer security.  The hasty implementation of 

changes could itself result in bugs, which would need to be 

addressed by software patches.  While software changes can 

be made relatively easily (e.g., by downloading a patch), 

changes to hardware are more expensive.  For example, ASIC 

implementations of cryptosystems would need to be 

redesigned and fabricated, which is extremely expensive and 

time-consuming.  Programmable hardware (e.g., field-

programmable gate arrays, or FPGAs) can be more easily 

updated with new cryptographic hardware designs, but 

engineering of the new designs must take place whether ASIC 

or FPGA is used. 

Enumerating the various cryptosystems that use 

special-purpose hardware is beyond the scope of this 

thesis, but in general, organizations that use custom, 

dedicated hardware to implement cryptography do so in order 

to keep up with large volumes of data, i.e., high 

bandwidth/throughput.  A company that uses custom, 
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dedicated hardware could either switch over to a software 

implementation temporarily as a coping mechanism and later 

to FPGA and finally to ASIC.  A company that is already 

using FPGAs could reprogram the FPGAs with the new custom 

design when it is available.  In the worst case, unless 

that company feels that costs of shutting the system down 

is more costly than keeping the system up and running in a 

potentially unsecure environment, all aspects of operation 

that depend on that piece of hardware will be down until a 

company can replace it.  Even after replacement hardware is 

fabricated, the laws of supply and demand will cause prices 

to skyrocket, and the organizations that have the most 

money will pay top dollar to receive the first available 

replacement products, while other smaller companies would 

have to wait. 

If quantum computers suddenly become available, this 

could have a serious impact on some organizations.  

Fortunately, a large institution like the Accredited 

Standards Committee X9 Incorporated, Financial Industry 

Standards, has taken heed to the warnings of quantum 

computers, has noted the efficiency of the NTRUEncrypt 

Public-Key Cryptosystem, and has already made the 

transition to NTRU from RSA.  Therefore, it is encouraging 

to see steps being taken in a positive direction, but these 

are not enough.  Even though our financial institutions are 

able to communicate securely among themselves using 

alternatives such as NTRU, ordinary users are unable to 

communicate securely with our financial institutions using 

alternatives such as NTRU. Therefore, our sensitive  



 99 

financial data will be vulnerable in a quantum-computing 

era during transit between our Internet browsers and our 

banks' web servers unless changes are implemented. 

2. A Year from Today 

If quantum computers become available a year from 

today, we have time to manage the change without causing 

too much chaos for those organization that are predicted to 

be impacted the most.  IT organizations that publish 

software and/or hardware implementations that perform 

digital signatures or support public-key infrastructures 

could begin the transition tomorrow.  The software aspect 

of this problem can likely be remedied the fastest because 

the Internet can be used to publish the updates and patches 

as required.  The hardware aspect of this problem is likely 

to require the most time since after a prototype has been 

created and tested, manufacturing plants must produce the 

new hardware.  After the hardware has begun mass 

production, it must be shipped to the customer via means 

that are typically no faster than 24 hours.  Then, once the 

product has arrived, it must be installed and tested. 

Assuming installation occurs with zero problems (one could 

easily argue that this assumption is unrealistic) 

installation of the hardware implementation takes longer 

than a software implementation, in general. 

It is worthwhile to consider the question, "are IT 

companies at least working towards adding alternatives such 

as NTRUEncrypt to the list of possible implementations?"  

If not, we will more likely find ourselves in the first 

scenario, where quantum computers come into existence 

tomorrow, and we are totally unprepared for their arrival. 
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3. Beyond a Year, but Sometime in the Near Future 

If quantum computers become available more than a year 

from now, but sometime in the near future, we could 

potentially benefit from all of the remedies described in 

the section where quantum computers were invented a year 

from today and more.  In fact, this scenario would look 

very similar to the Y2K problem the world faced in the 

1990s, the main difference being that the world knew that 

by 01/01/01, all systems must be made Y2K-compliant.  

Unfortunately, the quantum computing cryptology management 

problem does not know exactly when someone will invent 

fault-tolerant quantum computers.  Assuming we have 

multiple years to prepare for the quantum-computing era 

(i.e., the quantum singularity), we could use methodologies 

learned from Y2K to transition into a quantum-computing 

era, such as the publishing of best practices.  With the 

Accredited Standards Committee X9 Incorporated, Financial 

Industry Standards, being one of the first if not the first 

large industry to change over to alternatives such as NTRU, 

they could publish their lessons learned for others to 

follow.  Organizations could designate a Quantum Computer 

Transition Coordinator who is a senior IT manager to assess 

the organization's vulnerability to quantum computers and 

the impact they will have, identify the optimal solution, 

and then take the time to refine the solution while 

providing scheduled updates to the senior executives. 

Even the companies that have critical hardware 

implementations of algorithms that are predicted to be 

vulnerable to quantum computing could start soliciting IT 

hardware companies to fabricate an alternative.  If 
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predictions indicated the lack of an available alternative 

hardware implementation within a year, the organization 

could consider installing a software backup running on more 

machines, or even leverage field-programmable gate-arrays 

(FPGAs) that are the hybrid of software and hardware 

implementations.  FPGAs are faster than software for 

certain high-throughput applications, but they are not 

dedicated hardware and therefore are not as fast as pure 

hardware implementations (e.g., Application-Specific 

Integrated Circuits, or ASICs).  Another benefit of FPGAs 

is that they are reprogrammable like software 

implementations, whereas dedicated hardware requires 

complete replacement, and this is more costly than updating 

software or FPGA implementations. 

In conclusion, if we have a few years to manage the 

cryptography transition from RSA to NTRU, there would be 

minimal to no rush in the transition; we could learn from 

published best-practices or lessons-learned of how to best 

manage the transition; organizations could make full 

assessments of the vulnerabilities and what courses of 

action are best to take for each vulnerability; and 

finally, new systems could be tested while still having the 

strong and popular RSA algorithm on standby just in case 

the organization had a problem with the new system.  Once 

quantum computers come into existence, RSA will not be 

available to use as training wheels. 

D. ANALYSIS CONCLUSION 

This thesis recommends that the rest of the industry 

follow the lead of the Accredited Standards Committee X9 
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Incorporated, Financial Industry Standards, and identify a 

suitable alternative cipher such as the NTRUEncrypt 

Cryptosystem as the primary algorithm for asymmetric 

cryptography to replace RSA if needed.  Preparations should 

be made to facilitate a smooth transition if it becomes 

necessary.  If the concern is too great that NTRU is a new 

algorithm, then this thesis at least recommends that it be 

added to the published standards as an alternative cipher 

implementation so that it is available to the industry in 

the event quantum computers abruptly come into existence. 
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VIII. CONCLUSION 

A. HYPOTHESIS QUESTIONS REVIEWED 

What if quantum computing reduces the time to defeat 

traditional ciphers from millions of years by today’s 

supercomputers to only seconds? What if we are already 

living in that era, and unfriendly forces have such 

technology? 

How efficient are post-quantum ciphers proposed as 

alternatives to traditional ciphers like RSA and Elliptic 

Curve Cryptography (ECC)?  Do these ciphers have enough 

bandwidth to meet today's cryptographic workloads?  What is 

the performance impact of deploying an alternative 

cryptographic infrastructure based on post-quantum ciphers?  

Could available implementations be used as a basis for 

constructing a cryptographic software library that is a 

viable alternative to classical ciphers? 

B. HYPOTHESIS 

While alternative ciphers exist, available 

implementations do not satisfy all performance requirements 

of modern cryptographic workloads.  A cryptographic 

infrastructure that allows for ciphers to be reconfigured 

dynamically will reduce the costs of switching 

cryptographic infrastructure quickly in response to the 

development of quantum computers. 

C. HYPOTHESIS VALIDATION 

This research validates the hypothesis that 

alternative ciphers exist, and implementations of some 
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quantum-resistant ciphers are available.  This research 

validated the feasibility of developing an original 

implementation of a quantum-resistant cipher, specifically 

hash-based digital signature, based on a description of the 

algorithm in the post-quantum cryptography literature. This 

implementation was used to send a digitally signed message 

from the sender’s machine to the receiver’s machine, where 

the signed message was verified successfully.  This thesis 

also validated the feasibility of adapting and customizing 

existing implementations of quantum-resistant ciphers, 

showing how to modify the source code of the NTRU 

cryptosystem to send an encrypted message from the sender’s 

machine to the receiver’s machine, where it was 

successfully decrypted.  This thesis also showed how to 

modify the source code of NTRU to send a digitally signed 

message from the sender’s machine to the receiver’s 

machine, where it was successfully verified.  This thesis 

also showed how to use NTRU and AES together as part of a 

hybrid encryption protocol.  Specifically, NTRU was used as 

a quantum-resistant asymmetric cipher to exchange a 

symmetric session key.  The quantum-resistant symmetric 

cipher AES, implemented by OpenSSL, was used to encrypt a 

long message.  Future work is needed to ensure that 

implementations of quantum-resistant ciphers are free of 

implementation flaws and that the ciphers themselves (i.e., 

the algorithms) have been exposed to rigorous peer review 

to ensure that the algorithms are mathematically sound and 

provably secure.  

The research shows that the phrase of the hypothesis 

that states “available implementations do not satisfy all 

performance requirements of modern cryptographic workloads” 
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is partially incorrect, at least with respect to one 

implementation of lattice-based cryptography.  

Specifically, existing studies of the NTRUEncrypt Public-

Key Crypto System have demonstrated that NTRU outperforms 

RSA, today’s leading public-key algorithm.  According to 

the published literature, since NTRU is a new system, it 

has not yet gained industry acceptance. 

Qualitative analysis shows the usefulness of a 

flexible, configurable design approach to cryptosystems and 

large-scale cryptographic infrastructure.  Future work is 

needed to measure the costs of developing and deploying an 

alternative infrastructure that is more configurable than 

the existing infrastructure.  While such an effort would be 

extremely costly, so too would be the impact of the sudden 

emergence of large-scale, fault-tolerant quantum computers 

requiring the shutting down of critical systems until 

software patches and even expensive and time-consuming 

hardware changes are completed.  The decision to use 

infrastructure that allows for ciphers to be reconfigured 

dynamically involves performance considerations and 

tradeoffs.  For example, a software implementation is more 

general, flexible, and configurable than a custom hardware 

like Application-Specific Integrated Circuit (ASIC) 

implementation, but this generality often comes at the cost 

of performance for high-throughput workloads.  On the other 

hand, while an ASIC may provide higher throughput for 

certain high-bandwidth cryptographic workloads in 

comparison with software implementations, ASICs are 

expensive to design and manufacture, and they are difficult 

to quickly replace should a cipher be broken.  Future work 

is needed to compare the tradeoffs of CPU/software, FPGA, 
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and ASIC implementations of cryptosystems for use in a 

cryptographic infrastructure that is adaptable to the 

possibility of a sudden shift to a quantum-computing era. 

D. MANAGEMENT RECOMMENDATIONS 

This thesis recommends that industry follow the lead 

of the Accredited Standards Committee X9 Incorporated, 

Financial Industry Standards, and identify a suitable 

alternative cipher such as the NTRUEncrypt Cryptosystem as 

the primary algorithm for asymmetric cryptography to 

replace RSA if needed.  Preparations should be made to 

facilitate a smooth transition if it becomes necessary.  If 

the concern is too great that NTRU is a new algorithm, then 

this thesis at least recommends that it be added to the 

published standards as an alternative cipher implementation 

so that it is available to the industry in the event 

quantum computers abruptly come into existence. 

E. RECOMMENDATIONS EXPLAINED 

The author recommends the continued development of 

quantum-resistant ciphers and the refinement of existing 

quantum-resistant ciphers such as the NTRUEncrypt Public-

Key Cryptosystem as alternatives to traditional public-key 

algorithms.  Peer review is essential to ensure that the 

ciphers are mathematically sound and that their 

implementations are free of exploitable implementation 

flaws.  Once quantum computers are realized, we will no 

longer have RSA to fall back upon in the event we find NTRU 

is not mathematically sound or has exploitable 

implementation flaws. 
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F. RECOMMENDATIONS FOR FUTURE WORK 

With published studies showing that the NTRUEncrypt 

Public-Key Crypto System is more efficient than RSA, future 

work is needed to consider how NTRU would compare to 

Kerberos, a system that is solely based on symmetric 

cryptography, which is also quantum-resistant. 

Further testing of implementations of post-quantum 

ciphers such as the NTRUEncrypt Public-Key Cryptosystem is 

recommended to validate the implementation.  Peer review of 

the algorithm itself should continue to ensure the security 

of the cipher. 

Research on the use of Field Program Gate Arrays 

(FPGAs) as part of a strategy to provide a reconfigurable 

cryptographic infrastructure that is adaptable to the 

sudden emergence of a quantum-computing era is needed.  

Such research should explore the performance and cost 

tradeoffs with respect to software/CPU and custom ASIC 

implementations.  An adaptable infrastructure is one that 

can easily transition from using ciphers that are 

vulnerable to quantum computers to using those ciphers that 

are quantum-resistant instead.  
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