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Effects of stencil width on surface ocean geostrophic velocity 
and vorticity estimation from gridded satellite altimeter data 

Brian K. Arbic,1 Robert B. Scott,2'3 Dudley B. Chelton,4 James G. Richman,5 

and Jay F. Shriver5 

Received 7 June 2011; revised 20 January 2012; accepted 23 January 2012; published 17 March 2012. 

[i]   This paper examines the effect of "stencil width" on surface ocean geostrophic velocity 
and vorticity estimated from differentiating gridded satellite altimeter sea surface height 
products. In oceanographic applications, the value of the first derivative at a central 
grid point is generally obtained by differencing the sea surface heights at adjacent grid 
points. This is called a "three-point stencil centered difference". Here the stencil width 
is increased from three to five, seven, and nine points, using well-known formulae from 
the numerical analysis literature. The discrepancies between velocities computed with 
successive stencils decreases with increasing stencil width, suggesting that wide stencil 
results are more reliable. Significant speed-dependent biases (up to 10-20%) are 
found between results computed from three-point stencils versus those computed from 
wider stencils. The geostrophic velocity, and the variance of geostrophic velocity, are 
underestimated with thin stencils. Similar results are seen in geostrophic velocities 
computed from high-resolution model output. In contrast to the case when three-point 
stencils are used, wider stencils yield estimates of the anisotropy of velocity variance that are 
insensitive to the differences in grid spacing between two widely used altimeter products. 
Three-point stencils yield incorrect anisotropies on the 1/4° anisotropic AVISO grid; 
we recommend the use of 7-point stencils. Despite the demonstrated inadequacies of the 
three-point stencils, the conclusions of earlier studies based on them, that the zonally 
averaged midlatitude eddy kinetic energy field is nearly isotropic, are found to pertain 
also with wider stencils. Finally, the paper also examines the strengths and limitations 
of applying noise-suppressing differentiators, versus classic centered differences, 
to altimeter data. 

Citation:   Arbic, B. K., R. B. Scott, D. B. Chelton, J. G. Richman, and J. F. Shriver (2012), Effects of stencil width on surface 
ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data, J. Geophys. Res., 117, C03029, 
doi: 10.1029/2011JC007367. 

1.    Introduction oceanic flows [Scott and Wang, 2005], and document the 
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J      ,   „                ™nn  u               1 *■         J    1-    •   1 20111. A recent brief review of applications of altimeter data 

[Fu and Cazenave,  2001]  have revolutionized physical •       u   c   «   «   1nmm 1                 ,           .,-..• is given by Scott et al. [20101. 
oceanography, enabling and enhancing numerous avenues r,n T      •        .    .       ,    .     f    . ....     ,.•     .     . . 
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J'            t

b.                    6    ..                   ... [3] Two important products of satellite altimeter data are 
of study. To name just three of many applications, satellite ^ ^^ surface ve|od    ^ mnici    fie,d   extracted vja 

altimetiy data has been utilized to estimate sea surface height    me       ,    hic re,ations Geostrophic v'e|ocities m obtained 
and kinetic energy spectra [Stammer, 1997; Xu and Fu,     -.   ° r   . IT •    ..        c.u 

vr.     ,   . . . 
O/M 11 1 .L   • ■»     ■ J     c    -c from first denvatives of the sea surface height 77: 
2011], reveal the inverse kinetic energy cascade of surface ° 
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coordinate, and y is the meridional spatial coordinate. Geo- 
strophic vorticity £ is obtained from first derivatives of the 
velocity field, and therefore second derivatives of sea surface 
height: 

C = — - — = I f^H + d2^ _iä?n 
^~dx    dy~/{dx2     dy2)     p dy' (3) 

where ß = df/dy is the planetary vorticity gradient. The ratio 
of the last term on the right-hand side in (3) to the second 
derivative terms scales as ßLIf, where L is a typical horizontal 
length scale. Under the traditional "beta plane approxima- 
tion", this ratio is small in midlatirudes [e.g., Pedlosky, 1987; 
Vallis, 2006]. 

[4] Here we examine the effects of "stencil width" on the 
estimation of geostrophic velocities and vorticities from 
gridded altimeter sea surface height products. By "stencil 
width" we mean the number of grid points utilized to estimate 
the finite difference approximation to the derivative on a grid. 
As we will discuss, varying the stencil width is another way 
of varying the accuracy of the derivative estimate. Our focus 
will be on the velocity fields, but we will include a brief 
discussion of the vorticity field. In the vast majority of 
oceanographic applications, geostrophic velocities are esti- 
mated from a "three-point stencil centered difference", in 
which sea surface height values at adjacent grid points are 
differenced to determine velocities at a central grid point. 
However, inspection of the substantial literature on numeri- 
cal methods [e.g., Strikwerda, 2004; Mathews and Fink, 
2004] reveals well-known formulae for computing first 
derivatives of fields via centered differences taken with wider 
stencils, for instance, 5-point, 7-point, and 9-point stencils. 
(We also found the following websites helpful: http:// 
www.holoborodko.com/pavel/numerical_methods/numerical- 
derivative/, which was especially helpful and is herein- 
after referred to as Holoborodko (2011); http://en.wikipedia. 
org/wiki/Five-pointstencil; http://reference.wolfram.com/ 
mathematica/tutorial/NDSolvePDE.html#c:4.) It is of inter- 
est to determine whether usage of wider stencils would alter 
the velocity and vorticity estimates. As we shall see from 
the numerical analysis literature, derivatives estimated with 
wider stencils feature reduced errors over those computed 
with 3-point stencils. 

[5] Since the errors in derivative estimates are a function 
of grid spacing, it is also of interest to determine how stencil 
width affects velocity estimates computed on grids of dif- 
fering grid spacings. For example, we will examine deriva- 
tives computed on the widely-used isotropic 1/3° Mercator 
grid reference product distributed by the Archiving, Valida- 
tion, and Interpretation of Satellite Oceanographic (AVISO) 
gridded altimeter data [Le Traon et al, 1998; Ducet et al, 
2000], versus derivatives computed on the (also widely used) 
anisotropic 1/4° latitude-longitude grid reference product put 
out by AVISO. By "isotropic grid", we mean a grid in which 
the spacing in kilometers is the same in the east-west and 
north-south directions. This is the case for the 1/3° Mercator 
AVISO grid, in which the zonal grid spacing is fixed in 
degrees of longitude and the meridional grid spacing 
decreases in degrees of latitude with the cosine of latitude 
so as to match the zonal grid spacing in kilometers. On 
an "anisotropic grid", such as the 1/4° AVISO latitude- 
longitude grid, the grid spacing in the north-south direction 

is the same across the entire grid, while grid spacing in the 
east-west direction is fixed in degrees of longitude but 
decreases in kilometers with the cosine of latitude. Since the 
1/4° product is simply a bi-linear interpolation of the 1/3° 
product, we might expect that derivatives calculated on the 
two grids should yield very similar results. We will show that 
this is the case only if wide stencils are utilized. Since the 
derivative in the zonal direction yields meridional velocity 
while the derivative in the meridional direction yields zonal 
velocity, this discussion will be useful for the estimation of 
anisotropy in the oceanic kinetic energy field [Ducet et al, 
2000; Scott et al, 2008; Scharffenberg and Stammer, 2010]. 

[6] We will also test whether the behaviors seen when 
differentiating sea surface heights in altimetric data sets are 
seen as well when differentiating sea surface heights in high- 
resolution numerical models. Models and altimetric data sets 
exhibit different types of errors, hence a consistency in 
results obtained from the two sources would demonstrate that 
the impact of stencil width is not simply an artifact of the 
particular nature of gridded altimeter products. Here we uti- 
lize results from NLOM, the Naval Research Laboratory 
Layered Ocean Model [Hurlburt and Thompson, 1980; 
Wallcraft et al, 2003]. NLOM is run as a data-assimilative 
nowcast/forecast model by the United States Navy [Shriver 
et al, 2007]. Here for simplicity we utilize a snapshot from 
a forward (non-assimilative) run of NLOM. Since the model 
is on a much higher horizontal resolution grid than is the 
altimeter data, we can use either subsampled or smoothed 
versions of the model to further test the effect of stencil 
widths for differing horizontal grid resolutions. 

[7] Most of the paper is about "classic" centered differ- 
ences, which operate well on noiseless data or on numerical 
models. Later in the paper we will examine the impact of data 
noise on velocity estimates. We will also discuss application 
of noise-suppressing differentiators, which have been widely 
discussed in the chemical and signal processing literature 
[Savitzky and Golay, 1964; Steiner et al, 1972; Gorry, 1990; 
Luo et al, 2005; Holoborodko, 2011], to altimeter data. 

[8] This paper is organized as follows. In section 2, we list 
the formulae for first and second derivatives computed as 3-, 
5-, 7-, and 9-point stencil "classic" centered differences, 
taken from standard references in the numerical finite dif- 
ference literature. We also list the leading order error terms 
associated with the derivative estimates. In section 3, we 
show the results of a "von Neumann analysis" [LeVeque, 
2007], which demonstrates that the deviations of classic 
centered-difference estimates of derivatives from estimates 
made by an "ideal differentiator" (to be explained in 
section 3) decrease as stencil width increases. We utilize 
results from an idealized quasi-geostrophic turbulence model, 
in this exercise. Since these deviations depend on length 
scale, we include and discuss a wave number spectrum of the 
AVISO data in section 3. We then show, in section 4, that the 
differences between geostrophic velocities computed with 
successively wider stencils decreases with increasing stencil 
width. Section 4 utilizes fields of sea surface height taken 
from the weekly 1/3° and 1/4° AVISO products as well as 
from NLOM. Section 5 presents a brief discussion of the 
alterations to the classic centered difference formulae when 
non-uniform grid spacing is taken into account. This is a 
small but measurable effect, relevant for zonal velocities 
computed on the 1/3° AVISO grid. In section 6, we present a 
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Table I. Formulae for Classic Centered Differences 

Na 
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5 

7 

9 
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7 

Formulae 

First Derivative0 

»Kr+3A)-9Trir+2A)-Ht5rKr+A)-45trtr--A)+»K'--2A)-'K',-3*) 
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-3TKr+4»)+32TKr+3*)-l68THrH-2*)-t^727(r+»)-672T/(r-A)-H6«rKr-2*)-32T7(r-}*)+3tKr-4») 

Second Derivative0 

V(r+k)-2vtr)+ftr-h) 

-V(r+2*)-H6rKr-t-*)-30t;(r)+l6tKr-*)-rK'--2*) 

2tKr+3*)-27tKr+2*)4-27Of?(r+*)-49OT?(r)+270tKr-*)-27tKr-2A)+2t?(r-3») 

-9t;(r+4<i)+128rKr+3*)-1008^r4-2*)+8064^/--)-*)-l4350t;(r) + S064v|r-A)-l008v(r   2*)+l28y(r-3*)-9tKr-4A) 

-^ 
560 

3150 

"Value of JV, the width of the stencil. 
bLcading-ordcr error term E in estimate. 
cFormulae for N-point classic centered difference estimate of First derivative of sea-surface elevation r/. 
dFormulae for /V-point classic centered difference estimate of second derivative of sea-surface elevation i 

brief discussion of geostrophic vorticity computed from 
AVISO data with classic centered differences. This dis- 
cussion continues to demonstrate the advantages of wider 
stencils. In section 7, we present a stochastic model which 
qualitatively explains some of the "speed-dependent biases" 
seen in the three-point stencil results of section 4. In 
section 8, we show that consistent estimates of the anistropy 
of kinetic energy variance on anisotropically versus isotrop- 
ically gridded altimeter products can be obtained if and only 
if wide stencils are utilized. Section 9 examines the impact of 
noise on the derivative estimates, and introduces some noise- 
suppressing differentiators taken from Holoborodko (2011). 
We argue that for current-generation altimeter data (AVISO), 
the merits of suppressing noise at small scales are out- 
weighed by the need to retain near "ideal differentiation" at 
larger scales, which the wider stencil classic centered differ- 
ences provide. In section 10 we present a brief summary and 
discussion of our results. 

2.    Formulae for N-Point Stencil Classic Centered 
Differences 

[9] For geostrophic velocity and vorticity estimation, we 
need to compute partial first and second derivatives of the sea 
surface height 77 with respect to the east-west coordinate x 
and north-south coordinate y. Let r be a generic coordinate, 
representing either x or y. Suppose further that we take the 
grid spacing of an altimeter product to be h. For the moment 
we assume uniform grid spacing. The 3-, 5-, 7-, and 9-point 
stencil estimates of the first derivative utilize 1, 2, 3, and 
4 grid points, respectively, on either side of the grid point at 
which the derivative is required. For instance, the 3-point 
stencil utilizes the value of 77 at r + h and r-h to estimate the 
first derivative at r, the 5-point stencil utilizes the value of 77 
at r + 2/i, r + h, r-h, and r-2h to estimate this derivative, and 
so on. Table 1 gives the formulae for the first and second 
partial derivatives of 77 computed as classic centered differ- 
ences on the 3-, 5-, 7-, and 9-point stencils, as well as the 
leading-order error term E in the estimate [e.g., Strikwerda, 
2004; Mathews and Fink, 2004] (http://www.holoborodko. 
com/pavel/numericalmethods/numerical-derivative/, http://en. 
wikipedia.org/wiki/Five-point stencil, http://reference.wolfram. 

com/mathematica/tutorial/NDSolvePDE.html#c:4). Note that 
superscripts in parentheses denote order of derivative. Thus, 
for example, 77( \r) denotes the ninth derivative of rj(r). Note 
also that the denominator in the error term increases 
with stencil width. Therefore we expect the differences in 
estimates made with successive stencils to decrease as the 
stencil widens. 

[10] For the benefit of readers not familiar with the 
numerical finite difference methods literature, the derivation 
of the first derivative and error formulae is sketched out 
below. (For more detail, the reader can consult the numerical 
analysis references listed above, or Cushman-Roisin and 
Beckers [2010, chapter 1].) Using the 9-point stencil com- 
putation as an example, we write the derivative of sea surface 
height at a given grid point as a linear combination of sea 
surface heights at the four nearest grid points on each side, 

ö?7^1. 

dr-h^CnTl{r+nh)' « = -4,-3,-2,-1,1,2,3,4.    (4) 

For each value of n, we write a Taylor series 

^r^n^^^^inhW^r)^^^ 

t (n*)V>(r)     | (*A)V'>(r) 
3! 9! 

(5) 

where we truncate the series at the ninth-derivative term. 
Inserting the Taylor series into (4) yields 

|s f^2W+Fl(^i)(r)+f.wW2)(r) +... 

+ F9(cn)hW9)(r), (6) 

where F0(cn), F\(c„), ... F9(c„) are simple linear combi- 
nations of the coefficients cn. In order that only the first 
derivative is retained in the right-hand side of (6), we want 
F\{cn) to be unity, and F„ for n ^ 1 to be zero for as many n 
as possible. For a 9-point stencil we are able to set the F„ to 
zero for n ^ 1, all the way up to F8. Setting F0(cn) = F2(c„) = 
F4,(c„) = F6(c„) - 0 yields c_„ = - cn for n = 1, 2, 3, 4. This 
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2.5* r 
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(cycles per degree longitude) 
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Figure 1. The zonal wave number spectra of sea surface height (left) from the AVISO 1/3° Mercator 
gridded product and (right) from the AVISO 1/4° product. See text for discussion of normalization. The 
vertical dashed and dotted lines correspond to wavelengths of 3° and 2°, respectively. 

implies in turn that F8(c„) also equals zero. We are then left 
with 

^«Fi (cn)vW(r) + ft(*)A|P>(r) + F5(cH)hW5) (r) 

+ F7(cn)hW\r)+F9(cn)hW9)(r), (7) 

where now each Fn depends only on the four constants c\, c2, 
c3, and c4, since we have written c_„ in terms of c„ for n = 1, 
2, 3, 4. Setting Fx{cn) = 1 and F3(cn) = F5(cn) = F7(cn) = 0 
provides four equations which can be solved for the four 
constants c„, n = 1, 2, 3, 4 as shown in Table 1. We are then 
left with F9(cn)h*rf9\r) as the leading-order error term. The 
formulae for second derivatives are obtained in like manner, 
the main difference being that the value of 77 at the central grid 
point r is utilized: 

^^Hc^r + nh^    « = "4,-3,-2,-1,0,1,2,3,4.  (8) 

3.    The von Neumann Analysis and Spectral 
Content of AVISO Data 

[11] We can anticipate some of the results of using wider 
stencils by following the "von Neumann analysis" given in 
section 9.6 of LeVeque [2007]. This analysis allows us to 
examine how accurate the stencil approximations for deri- 
vatives are, as a function of the differing length scales (wave 
numbers) contained in the spatially varying sea surface 
height, r](r). We focus on the first derivative in this section. 

[12] Because of the importance of the wave number con- 
tent of the AVISO signal to the von Neumann analysis, we 
display in Figure 1 the wave number spectrum of AVISO. 
The figure displays the zonal wave number spectrum of sea 
surface height for wave number in units of cycles per degree 
of longitude, computed along 15 zonal sections in the North 
and South Pacific [see Chelton et al, 2011, Figure A2]. 
Spectra from both the 1/3° Mercator grid AVISO product, 
and the 1/4° AVISO product, are shown. The spectra have 

been normalized so that each spectrum has the same variance 
integrated over wavelengths shorter than 3° (wave numbers 
higher than 0.333 cycles per degree of longitude). As dis- 
cussed by Chelton et al. [2011], while spectra for wave- 
lengths larger than 2°-3° display substantial variance from 
one section to the next (note the scatter of the different curves 
in the left-hand side of both Figures 1 (left) and 1 (right)), 
spectra for the different sections over wavelengths shorter 
than 2°-3° lie almost on top of each other. Chelton et al. 
[2011] argue that this demonstrates that the filtering inher- 
ent in the creation of AVISO products removes most of the 
variance in wavelengths shorter than 2°-3°. We will refer 
to the 2°-3° scale as the wavelength resolution limit. The 
bi-linear interpolation introduces a sidelobe with peak at 
1.333 cycles per degree into the zonal wave number spectrum 
of kinetic energy on the 1/4° grid (compare Figure 1 (right) to 
Figure 1 (left)). The sidelobe is absent in spectra computed 
on the 1/3° grid [Chelton et al., 2011] and is therefore an 
artifact introduced by interpolation. 

[13]  Since the sea surface height field 77 on a grid r can be 
written as a Fourier sum 

V(r) = £ r)(*)A (9) 

where i = v7—T, it suffices to examine the derivative of 
the function e'kr. This function is an eigenfunction of the 
"ideal differentiator" ^, with eigenvalue A = ik, since ^e'*r = 
ifceikr. Let us now examine the stencil approximation for the 
derivative of 77 = elk{r + nh\ the discretized equivalent of elkr. 
As before, n is the index of the grid point number relative 
to the central grid point r, and h is the grid point spacing. 
The wave number k = H~, where A is wavelength. Let A be 
the 2m + 1 point stencil centered difference operator. Then 
we have 

Ar7(r)=-£ c„V(r + nh)    (n&), (10) 
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or, since c_„ = — c„ 

10-4 (a) 1/3° AVISO grid 
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x10-4     (b) NLOM grid 
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Figure 2. Response of an ideal differentiator and of 3-, 5-, 
7-, and 9-point stencils, as a function of wave number, on 
(a) 1/3° AVISO grid and (b) NLOM grid. The grid spacings 
used for Figures 2a and 2b are 37 and 4.9 km, respectively, 
and the response is the absolute value \A\ of the eigenvalue 
of the von Neumann analysis. See text for more details. 
Vertical lines are drawn at the wave number (40 km)-1, 
corresponding approximately to the 2-3° wavelength resolu- 
tion limitation of the AVISO sea surface height fields. 

ArKr) = \£ c» [eik{r+nh) ~ eik(r~"h)} ■ (») 

Therefore 

A77(r)=-e'"£cn[2/sin(*A*)]. (12) 

Therefore e'rk is an "eigengridfunction" of the operator A, 
with eigenvalue 

2/ 
A = — 22 c„s'm(nhk). (13) 

For example, for a 3-point stencil, m = 1, cx = j, and A = 

{ s\n(hk). For small hk we can write A« { U*-J {hk)3 + ...1 ~ 

ik11 - \{hk)2 + ... . This agrees with the eigenvalue ik of 

| to order (hk)2. 
[u] In Figure 2 we plot the results of the von Neumann 

analysis for classic centered differences. We plot the 
"response" I Al for the 3-point, 5-point, 7-point, and 9-point 
stencils, as a function of wave number k. We also plot k, the 
value of IAl for the ideal differentiator £, The "response", 
represented by the vertical axis in figures like this, is some- 
times referred to as the "Filter transfer function" in the signal 
processing literature. In Figure 2a we set h = 37 km, the 
equatorial grid spacing in the x- and y-directions on the 1/3° 
AVISO grid. In Figure 2b we set h = 4.9 km, the equatorial 
grid spacing in the x-direction on the NLOM grid. As a result, 
note that the x-axes in Figures 2a and 2b differ from each 
other. In both plots we draw in (40 km) ', the approximate 
wave number corresponding to the ~2° - 3° wavelength 
resolution limitation of the AVISO sea surface height fields 
(Figure 1) [Chelton et al., 2011], as a vertical line. Figure 2a 
shows that for wave numbers just below (length scales just 
above) the resolution limitation, the 3-point stencil deviates 
significantly from the ideal response. This implies that an 
important part of the signal is lost when 3-point stencils are 
used. The wider stencils do not deviate from the ideal dif- 
ferentiator until larger wave numbers (smaller scales) are 
reached. From this we anticipate that there will be substantial 
differences between derivatives computed using 3-point 
versus wider stencils on the 1/3° AVISO grid (and on the 1/4° 
AVISO grid, since the grid spacings are comparable). In 
Figure 2b, because of the smaller grid spacing, the wave 
number (40 km)-1 lies far below the wave numbers where 
the 3-point stencil and other stencils deviate from the ideal 
differentiator. For features with length scales larger than 
about 40 km, we therefore expect stencil width to make less 
of a difference on the high-resolution NLOM grid than on the 
coarser AVISO grid. 

[15] To illustrate the implications of the von Neumann 
analysis, we utilized results from the idealized two-layer 
doubly periodic pseudo-spectral quasi-geostrophic turbulence 
simulations of Arbic and Flierl [2004]. Here we used the 
snapshot in their Figure 8d. The advantage of using the 
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Figure 3. Differences between zonal velocity component u computed using 3-point, 5-point, 7-point, and 
9-point stencils, and u computed using an "ideal differentiator" spectral technique (see text). Velocities 
are computed from a snapshot of the upper layer stream function in an idealized doubly periodic quasi- 
geostrophic turbulence model. The y-axis of the scatterplot is the difference between u computed on 
stencils and u computed from the ideal differentiator, while the x-axis represents u computed from the ideal 
differentiator. Red, green, black, and magenta dots represent differences computed using 3-point, 5-point, 
7-point, and 9-point stencils, respectively. Both axes are normalized by the imposed time-mean flow in the 
idealized model, which was taken to be 1 cms"1 in the work of Arbic and Flierl [2004]. 

idealized model in this illustration is that velocities are 
computed in this model via the "ideal differentiator" of the 
von Neumann analysis. (Indeed, this property is one reason 
pseudo-spectral models have enjoyed a long usage.) In 
pseudo-spectral models, the model stream function is Fourier 
transformed, multiplied by -il or ik, and then inverse trans- 
formed to obtain u and v, respectively, where / is the merid- 
ional wave number and k is the zonal wave number. Since 
the idealized model is doubly periodic, no tapering near the 
edges is required to perform this computation, in contrast 
to spectral computations done in more realistic domains. 

[i6] Figure 3 displays scatterplots of the differences 
uMcnci - "ffvtt between zonal velocity ustencU computed from 
the idealized model using 3-point, 5-point, 7-point, and 
9-point stencils, and uideai computed using the "ideal differ- 
entiator" spectral technique actually employed in the ideal- 
ized model. The differences ustencil - uideai are plotted on the 
y-axis of Figure 3, while the x-axis displays uideal computed 
from the ideal differentiator. The differences decrease as 
stencil width increases, consistent with the von Neumann 
analysis discussed above. Because the dynamics in this par- 
ticular simulation of the idealized model are nearly isotropic, 
and because the grid is also isotropic, results for the meridi- 
onal velocity v are nearly identical to those in Figure 3, 
and are not shown for the sake of brevity. Because veloc- 
ities computed from the 9-point stencil lie closer to velocities 
computed from the ideal differentiator than do velocities 
computed from narrower stencils, we will take the 9-point 
stencil results as our standard in what follows. Ideally, we 

will expect 7-point stencil results to lie closer to 9-point 
stencil results than 5-point stencil results do, and 5-point 
stencil results to lie closer to 9-point stencil results than 
3-point stencil results do. 

4.    Effect of Stencil Width on Geostrophic Velocity 
Estimates From Altimeter Data and Realistic 
Models 

[n] In this section we examine the impact of stencil width 
on geostrophic velocity estimates computed using classic 
centered differences from a single snapshot of sea surface 
height. We utilize the AVISO weekly reference (two satel- 
lite) product for November 5, 2008. Both zonal and meridi- 
onal velocity components are computed, and results from 
differentiating on both the 1/3° and 1/4° AVISO grids are 
shown. The 1/3° AVISO grid has 915 by 1080 grid points in 
the north-south and east-west directions, respectively, while 
the 1/4° AVISO grid has 721 by 1440 grid points. We also 
utilize the February 15, 2002 snapshot of sea surface height 
from NLOM, which has 4384 by 8192 grid points on a near- 
global domain (72°S to 65°N). The NLOM grid point spac- 
ing is 1/32° in the north-south direction and 45/1024° in the 
east-west direction. In this and succeeding results sections, 
we choose to emphasize the deep ocean, in both the AVISO 
and NLOM calculations. To do so, we display only velocities 
computed at grid points for which the seafloor depth exceeds 
1000 m. Furthermore, where comparisons are made between 
u and v or between velocity components computed from 
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(a) u, 1/3 degree (b) v, 1/3 degree 

u from 9 point stencil (cm s ) 
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v from 9 point stencil (cm s"1) 

(c) u, 1/4 degree (d) v, 1/4 degree 
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u from 9 point stencil (cm s"1) 
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Figure 4. Scatterplots of velocity components computed from 3-point, 5-point, and 7-point stencils minus 
components computed from 9-point stencils (y-axis), plotted versus components computed from 9-point 
stencils (x-axis). Red, green, and black dots denote results with 3-point, 5-point, and 7-point stencils, 
respectively, (a) Zonal velocity u computed on the 1/3° Mercator grid reference AVISO product for 
November 5,2008. (b) As in Figure 4a but for meridional velocity v. (c) As in Figure 4a but for zonal veloc- 
ity u computed on the 1/4° latitude-longitude grid reference AVISO product for November 5, 2008. (d) As 
in Figure 4c but for meridional velocity v. 

different stencil widths, we only display points for which all 
relevant velocity components are defined. For wider stencils, 
we will lose points near boundaries, where a full span of the 
stencil does not exist because of land. 

[is] Figure 4 shows scatterplots of geostrophic velocity 
components computed from the aforementioned AVISO 
products. In like manner to Figure 3, we plot unarrow — u9pt 

versus u9pt and vnarrow - v9p, versus v9p„ where the "9pr" 
subscript denotes a 9-point stencil difference and "narrow" 
denotes either a 3-point, 5-point, or 7-point stencil difference. 
As anticipated in the previous section, whereas the differ- 
ences between 7-point and 9-point stencil results (black dots) 
lie close to zero for all grid points, the differences between 
3-point and 9-point stencil results (red dots) lie farther from 
zero (display much more scatter). The scatter is not distrib- 
uted around zero evenly, but rather reveals what we will call 

a "speed-dependent bias". By this we mean that where the 
9-point stencil results are negative, the 3-point minus 9-point 
stencil results are positive, and vice versa. The difference 
between 5-point and 9-point stencil results (green dots) 
displays less speed-dependent bias than the 3-point minus 
9-point results but more speed-dependent bias than the 
7-point minus 9-point results. The speed-dependent bias at 
individual grid points can be as large as 10% or more. These 
behaviors are seen for both the u and v components of 
velocity, and for both velocities computed on the 1/3° 
AVISO grid and the 1/4° AVISO grid. A stochastic model for 
the speed-dependent bias will be presented in section 7. 

[19] Figure 5 demonstrates that similar behaviors are seen 
in geostrophic velocities computed through differentiation of 
the sea surface heights in NLOM. Here we compute geo- 
strophic velocities on both the native 4384 by 8192 NLOM 
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(a) u, native NLOM grid (b) v, native NLOM grid 

-200 0 200 

u from 9 point stencil (cm s"1) 

-200 0 200 

v from 9 point stencil (cm s'1) 

(c) u, NLOM grid decimated by 8      (d) v, NLOM grid decimated by 8 
301 ■— ™. -— 
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Figure 5. As in Figure 4, but using February 15, 2002 output from the Naval Research Laboratory 
Layered Ocean Model (NLOM) rather than gridded altimeter data, (a) Zonal velocity u and (b) meridional 
velocity v computed on NLOM output on the native 4384 by 8192 grid, (c) Zonal velocity u and 
(d) meridional velocity v computed on NLOM output decimated by a factor of 8 in both directions to a 548 
by 1024 grid. 

grid and on a grid that is decimated by a factor of 8 in 
both directions, to a 548 by 1024 grid that is comparable in 
resolution (1/4° in the north-south direction, 0.35° in the 
east-west direction) to the AVISO grids. In the case of the 
decimated grid only the subsampled grid points are used in 
the calculation, so that the grid spacing is 8 times larger than 
on the original grid. The 3-point stencil differences are sig- 
nificantly different from 7-point and 9-point differences, and 
display a speed-dependent bias, on the high resolution grid as 
well as on the decimated grid. At some grid points the dif- 
ference between 3-point and 9-point estimates are as large as 
10%. Results from the stochastic model in section 7 are 
consistent with this suggestion of a speed-dependent bias in 
3-point stencil results even in the limit of high resolution. The 
smaller scatter (i.e. the smaller discrepancies seen between 
narrow stencil results and 9-point stencil results) seen in 
Figure 4 relative to Figure 5 is consistent with the weak 
signal in the AVISO data at scales smaller than the 2-3° 
wavelength resolution limitation (Figure 1) [Chelton et al, 
2011]. 

[20] In Figure 6 we display the zonally averaged dis- 
crepancies between the squares of zonal velocity components 
computed from AVISO using stencils of differing width: 

^   mimm>       **9pf 
Uu = 

«9pf 

(14) 

where [] represents a zonal average operator. We also display 

D, 
I Harrow       ^p'l 

(15) 

the analogous quantity for v (meridional velocity). In all 
cases we find that the D values lie much closer to zero for 
7-point stencil results than for 3-point stencil results, with 
5-point stencil results lying in between these extremes. This 
demonstrates a "convergence" in the calculation of velocities 
as stencil width increases. For both u and v and on both the 
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Figure 6. Values of Du and Dv, the zonally averaged discre- 
pancies between the squared velocity components computed 
from 3-, 5-, and 7-point stencils and those computed from 
9-point stencils, (a) Du values computed on the 1/3° Mercator 
grid reference AVISO product for November 5, 2008. (b) As 
in Figure 6a but for Dv. (c) As in Figure 6a but for 1/4° latitude- 
longitude grid reference AVISO product for November 5, 
2008. (d) As in Figure 6c but for Dv. 

1/3° and 1/4° grids, the 3- and 5-point stencils yield velocity 
variances that are too weak with respect to the 9-point sten- 
cils, over most latitudes, consistent with the speed-dependent 
biases seen in Figure 4. On the isotropic 1/3° Mercator 
grid, the values of Du and Dv are comparable, with typical 
values of -0.1 for the 3-point stencil. On the anisotropic 1/4° 
latitude-longitude grid, the 3-point stencil Du values are as 
low as —0.2 to —0.3 in mid- and high-latitudes, whereas Dv 

values seldom drop below —0.1. This is consistent with the 
fact that the y-spacing on the anisotropic grid remains rela- 
tively wide at high latitudes, unlike the x-spacing at high 
latitudes on the anisotropic grid, or the spacing in either 
direction at high latitudes on the isotropic grid (recall that the 
error estimates increase with increasing grid spacing). On the 
anisotropic 1/4° grid, increasing the stencil width reduces not 
only the D values, but also the difference between values of 
Du versus Dv. 

[21] It should be noted that some of the differences 
between results on the 1/4° versus 1/3° AVISO grid may be 
due to the bi-linear interpolation from the latter to the former, 
as well as to the differences in the two grid spacings. As 

noted earlier, the bi-linear interpolation introduces an artifi- 
cial sidelobe into the zonal wave number spectrum of kinetic 
energy on the 1/4° grid. To investigate the effects of inter- 
polation further, we have interpolated the idealized model 
snapshot discussed in section 3 to coarser grids, and we find 
that the difference between narrow and wide stencil estimates 
increases over that found on the original higher resolution 
grid. Interpolation of the idealized model output to a coarser 
grid which anisotropic (more widely spaced in one direction 
than the other) yields a greater sensitivity to stencil width for 
derivatives computed in the widely spaced direction than for 
derivatives computed in the other (better-resolved) direction. 
All of this is consistent with the results in Figure 6. 

[22] Figures 7 and 8 display Du and Dv values computed 
from NLOM. We show results computed on the original 
4384 by 8192 grid as well as on this grid decimated by factors 
of 2, 4, and 8 in both horizontal directions. As in the AVISO 
results, the difference between narrow stencil results and 
9-point stencil results decreases rapidly as the stencil width 
increases, for both velocity components. The disparity 
between 3-point stencil results and wider stencil results 
increases as the grid spacing increases. The results for both 
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Figure 7. As in Figure 6, but using February 15, 2002 
NLOM output rather than gridded altimeter data. Values 
of Du and Dv, the zonally averaged discrepancies between 
the squared velocity components computed from 3-, 5-, and 
7-point stencils and those computed from 9-point stencils, 
(a) Du and (b) Dv computed from NLOM output on a 4384 
by 8192 grid, (c) Du and (d) Dv computed on NLOM output 
decimated by a factor of 2 in both directions. 
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Figure 8. As in Figure 7, but for (a and b) NLOM grids 
decimated by a factor of 4 in both directions, and for (c and d) 
decimation by a factor of 8 in both directions. 

Du and Dv on the coarsest grid shown (decimation by factor 
of 8; Figures 8c and 8d) are remarkably similar to the results 
on the AVISO grids, especially the AVISO 1/4° grid. In all 
of the latter cases, the 3-point stencil Du and Dv values can 
reach as low as -0.1 to —0.3. Results very similar to those 
in Figures 8c and 8d are obtained by smoothing the high- 
resolution NLOM results onto a grid with eight times lower 
resolution, rather than by subsampling (decimation). For the 
sake of brevity the smoothed results are not shown here. 
Having used the high-resolution model to demonstrate that 
sensitivity to stencil width is not merely an artifact of the 
data processing inherent in the creation of gridded altimeter 
products, we focus only on analysis of altimeter data in the 
remainder of the paper. 

5.    Effects of Non-uniform Grid Spacing 

[23] The formulae in section 2 have assumed that the grid 
spacing as measured in kilometers is uniform along a par- 
ticular direction of interest, though it may vary between the 
x- and y-directions. However, on the 1/3° AVISO grid, the 
grid spacing as measured in kilometers in the y-direction is 
non-uniform. Here we will describe a method which accounts 
for non-uniform grid spacing such as this in computations 
using classic centered differences. 

[24] Suppose we are interested in a 2w + 1 point stencil 
on a non-uniform grid. As in section 2, let the central 
point, where the derivative is to be estimated, be r. Let the 

2! 

and 

rj(r - A_„) = V(r) - h_Hrj^(r) + hli^l + ... 

(16) 

(17) 

We want to find coefficients cn such that 

CmV(r + hm) + Cm-\T](r + hm-\) + ... + C\Tj(r + A|) 

+ c0T/(r) + c_,77(r -/»_,) + ...+ c_(m_x)r](r - A_(m_,)) 

+ c_«iKr-A-)*i/l>(r), (18) 

to as high an order as the stencil width allows. For example, 
for a 3-point stencil, solving the matrix equation 

(19) 

or 

(20) 

yields the solution 

c\ = 
h , 

*i(Ai+A-i)' 

Ä-i(Ai+A_i)' 

(21) 

with leading order error term *'*-'? (r). These formulae col- 
lapse to the uniform grid formulae in the case hx = A_j. In the 
y-direction on the 1/3° AVISO grid, where h\ and A_i are 
slightly unequal, c0 will be small but not zero, and C\ and c_ 1 
will be nearly equal but not exactly so. For a 5-point stencil 
on a non-uniform grid the coefficients cn are given by 

(*\ /111     1 1    \ 
c\ h2    h\    0    -h^i -A-2 
CO = h\    h]    0     A2_, *2-7 

c-\ h\   h\    0    -A3, -A3_? 

V-i) \h\    h\    0     Al, V-i) 

0 
0 

W 

(22) 

The 7- and 9-point stencil coefficients on a non-uniform grid 
are solved for in like manner. 

[25] We have computed 3-, 5-, 7-, and 9-point stencil 
derivatives for 1/3° AVISO data using these formulae for a 
non-uniform grid. The results are not shown for the sake of 
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Figure 9. Effects of stencil width on estimates of geostrophic vorticity £ computed on the 1/4° latitude- 
longitude grid reference AVISO product for November 5,2008. (a) Scatterplot of £ computed from 3-point, 
5-point, and 7-point stencils minus £ computed from 9-point stencils (y-axis), plotted versus £ computed 
from 9-point stencils (x-axis). Red, green, and black dots denote results obtained from 3-point, 5-point, 
and 7-point stencils, respectively, (b) Values of D^, the zonally averaged discrepancies between squared 
vorticities, computed from 3-, 5-, and 7-point stencils and those computed from 9-point stencils. 

brevity. The differences between the zonal velocity compo- 
nent u computed using the non-uniform grid procedure above 
versus that computed from uniform grid formulae are mea- 
surable but significantly smaller than the differences arising 
from different stencil widths. The equivalents of Du and Dv, 
for example, computed from differences between results 
using the non-uniform grid versus uniform grid formulae, are 
of order 1% for the AVISO 1/3° Mercator grid, rather than 
of order 10-20% as seen with differing stencil widths. This 
result will differ for more rapidly changing grid spacing. For 
the sake of simplicity we will continue to use the uniform 
grid spacing formulae in the remainder of the paper. 

6.    Effect of Stencil Width on Vorticity Estimates 

[26]  In this section we briefly discuss the effects of stencil 
width on estimates of vorticity C, computed using classic 

centered differences from the 1/4° grid AVISO sea surface 
height reference product for November 5, 2008. In Figure 9a 
we show a scatterplot of Cnan-ow — C,9Pt plotted versus Q9ph 

where again "narrow" denotes either a 3-point, 5-point, or 7- 
point stencil and "9pf" denotes a 9-point stencil. As in the 
scatterplots of velocity (Figures 4 and 5), the 7-point stencil 
result lies closer to the 9-point result than does the 5-point 
stencil result, and much closer than does the 3-point stencil 
result. In Figure 9b we display 

\c2      - C2 1 IS narrow       S9p/J 
(23) 

where Cnarrow is computed on the narrower 3-, 5-, and 7-point 
stencils, and £9pl is computed on the 9-point stencil. As in 
the plots of Du and Dv (Figures 6-8), we see a decrease to 
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near-zero D values with increasing stencil width. Note that 
omitting the ß term (the last term on the right-hand side of 
(3)) in the estimate of £ yields results that look virtually 
unchanged from those shown in Figure 9. Thus, as expected, 
the ß term does not play a first-order role in the computation 
ofvorticity. 

7.    A Stochastic Model for the Speed-Dependent 
Bias in Derivative Estimates 

[27] In Figures 4 and 5, we saw that the difference between 
"narrow" stencil and 9-point stencil estimates of geostrophic 
velocity is generally positive for negative values of u or v, 
and negative for positive values. We referred to this in 
section 4 as a "speed-dependent bias". Figures 6-8 demon- 
strate that, as a result, values of Du and Dv are generally 
negative, by an order of 10% for a stencil width of three 
points. Figure 9 demonstrates that the same principles hold 
for geostrophic vorticity estimates. 

[28] Here we construct a stochastic model which qualita- 
tively captures these biases in the narrow-stencil estimates 
made using classic centered differences. For simplicity, 
we discuss here only the first-derivative (velocity) results. 
We also consider the grid spacing h to be constant since the 
results of section 5 show that the errors from the effects of the 
small latitudinal variation of grid spacing in the y-direction 
for isotropic grids are much smaller than the effects arising 
from the coarseness of the grid spacing. Our stochastic model 
is a simple first order auto-regressive model (AR1). We 
represent 77 as 

where 

r](r + h) = <trq(r) + w{r + h), (24) 

where w(r + h) is a value taken from a purely random process 
W, also called a "Gaussian white-noise-in-space stochastic 
process". That is, to each point in space r we associate a 
stochastic process W giving values w(r) that are completely 
uncorrelated with w(r + 6) at a neighboring point r + 6 where 
6 £ 0. The parameter 0 < 0 < 1 determines the spatial auto- 
correlation of rj{r) and in the limit 0 —► 0 we see that 77 
approaches the Gaussian white-noise-in-space stochastic pro- 
cess. A similar equation to (24) applies at other points. In 
particular, assuming homogeneous statistics, we can write 

rj(r-h) = (lnj(r) + w(r-h) (25) 

77(r + 2A) = Mr + h) + w{r + 2A) (26) 

rj(r - 2A) = Mr ~ h) + w{r - 2k). (27) 

Substituting these AR1 models into the formulae in Table 1, 
we find the following relation between the first derivatives 
computed with a 3-point stencil (subscript N = 3 below) and a 
5-point stencil (subscript N ■ 5): 

,(1)   (r)--n(l)   (r)     V(r + 2h) - V(r - 2h) 
%=5t 12A 

_8   („ 4>[n(r + h)-n(r-h)] 
- 6%=3(r) " 6 2Ä 

[w(r + 2A) - w(r - 2h)\ 
12Ä 

(28) 

, Hr + 2h)-w(r-2h)}     V2W W 
\2h 12  h hy    ] W = - 

Here we have used the fact that w(r + 2h) and w(r — 2h) are 
uncorrelated, so that their sum is another random function 
with a magnitude obtained from quadrature (i.e., taking the 
square root of the sum of the squares). Inspection of this 
relationship reveals that the 5-point stencil estimate is equal 
to a constant ^ times the 3-point stencil estimate, plus a 
purely random process W. It is important to note that W' is 
uncorrelated with the 3-point stencil estimate since it is the 
linear combination of w from points outside the 3-point 
stencil. Since ^ exceeds one, the N = 3 derivative displays 
a speed-dependent bias relative to the more accurate N = 5 
stencil; when the derivative is positive the discrepancy is 
negative and vice versa. 

[29] Similar manipulations yield 

„O  M--r,(l)   (r)      9 l(r + 2h)-Ttr-2h) 
%=7^-30%=3( r)     30 lh 

1   rj(r + 3A) - r]{r - 3A) + 
30 2A 

,2\ (45-90-M2)   (1) 
 3(j %=3(r) + w > (30) 

and 

(i)  / v     672  ()) 168 77(r + 2A)-7?(r-2A) 
420"v=jV/    420 2A 

32 T7(r + 3A)-T7(r-3A) 
+ 420 2A 

3   r)(r + 4A) - 7/(r - 4A) 
~ 420 2A 
(672-1680+ 3202-303)(l) 
 — %=3(r; + ^ , (31) 

where 

W" = - 

+ 

9 [w(r + 2A) - w(r - 2A)] 
60 A 

1 [w{r + 3A) - w(r - 3A)] 

60 A 

^^=0.2134^, 
160   A A ' 

(32) 

and 

Wm = - 

+ 

168 [w(r + 2A) - w(r - 2A)] 
840 A 
32 [w(r + 3A) - w{r - 3A)] 

840 A 
3 [w(r + 4A) - w(r - 4A)] 

840 A 

-^-—-—— =0.2880 — . 
840     A A 

(33) 
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(a) 3 point 

(b) 9 point 

(c) 9 point with 7, 5, and 3 point fill-ins 

-50 
Latitude (degrees) 

Figure 10. Normalized difference of time- and zonally- 
averaged zonal and meridional velocity variance, [< u2 - v2 >]/ 
[< u2 + v2 >], where [] is the zonal average operator and < > 
is a time-averaging operator, computed from 16 years of 
AVISO products (December 30, 1992 through December 
31, 2008). Both the isotropic 1/3° Mercator grid reference 
AVISO product and the anisotropic 1/4° latitude-longitude 
grid reference AVISO product are used. Values of time- 
averaged u and v are removed from the u and v fields before 
the difference is computed. Differences are computed using 
(a) 3-point stencils, (b) 9-point stencils, and (c) a blended 
product, in which first the 9-point stencil is used, then a 
7-point stencil is used to fill in missing points along bound- 
aries, followed by usage of a 5-point stencil, and finally a 
3-point stencil. 

[30] We are interested in the speed-dependent bias in the 
derivative estimate resulting from the 3-point stencil relative 
to the 9-point stencil, so we write (31) in the form 

«ß*M " ÄfW = **fe W - Z *m> (34) 

where the relative bias RB = ~ and c is the coefficient in 
frontof7/SJL3(r)in(31): 

672- 1680 + 3202-3<ft3 

420 
(35) 

The relative bias is a negative and increasing function on the 
interval (f> e [0, 1). The bias with the smallest magnitude 
occurs in the limit of very strong autocorrelation 0 —► 1. In 
this limit, we have (ignoring the random parts) 

fcw-|to 
(36) 

which yields, for the differences between narrower stencil 
derivatives and the 9-point stencil derivative (again ignoring 
the random parts), 

„(') „o 113 l\).M- 113 ,(') few - few = -^feW = -sinBUW, 
JÜ.W - feW = ~f&Ur) = 4to     ^ 
(i) ( \      (0 / \ 15   (i)  t s 15   (i)   . . 

feW - r^i9(r) = -TxxfeW - -T^feW- 

420 

420 

533 
15 

533' 

[31] It is important to note that the random parts are cor- 
related with the discrepancy between the 3-point and 9-point 
stencil estimate because it is the linear combination of the 
white-noise contribution w to 77 from points inside the 9-point 
stencil. Thus we do not expect the stochastic model to give 
quantitative predictions of the speed-dependent bias. Indeed, 
the stochastic model prediction that the 3-point stencil results 
will be biased with respect to the 9-point stencils by about 
21%, is an over-estimate. Least-squares fits to the plots in 
Figure 4 (based on altimetry data) yield speed-dependent 
biases in the range 4-7%, and least squares fits to the plots in 
Figures 5c and 5d (NLOM decimated by a factor of eight) 
yield speed-dependent biases in the range 7-10%. The speed- 
dependent bias indicated by the least squares fit to Figures 5a 
and 5b (NLOM on its native high-resolution grid) is much 
smaller (1-2%). Note that in this regard the appearance of the 
plots in Figure 5 is deceptive. There are many more points 
plotted in Figures 5a and 5b than in Figures 5c and 5d. Hence 
there are a greater number of points with large misfits in 
Figures 5a and 5b; however the percentage of points having a 
large misfit is much smaller. The smaller bias on the higher 
resolution grid is consistent with the discussion of the von 
Neumann analysis in section 3. Clearly, in all of the plots in 
Figures 4 and 5, discrepancies between narrow stencil esti- 
mates and 9-point stencil estimates at individual grid points 
can be much larger than the least-squares slopes quoted 
above. The stochastic model appears to qualitatively explain 
the speed-dependent bias seen earlier in the paper, though the 
quantitative estimate of the bias is too large. The stochastic 
model indicates that this speed-dependent bias will be seen 
even if derivatives are taken at very small grid spacing. This 
explains why a speed-dependent bias was seen even on the 
native high-resolution NLOM grid. 

8.    Effect of Stencil Width on Estimates 
of Anisotropy in Kinetic Energy 

[32] One of our motivations for investigating the effects of 
stencil width on velocity estimation is to determine whether 
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Table 2. Formulae for Noise-Suppressing Differentiators* 

N* Formulae 

Low-Noise Lanczos Differentiator* 
5 2„(r+2A)+„(r+A)-,rir-A)-2r,(r-2*) 

? 3rtr+3*H2*Kr+2A)+7(r+A)-v(r-*)-2v(r-2A)-3'rir-3A) 
' 28/i 

O 4t;(r+4A)+3tKr+3A)+2ty(r+2*)+T;(r+*)-v(r-*)-2v()-2*)-3tK'--3*)-4>Kr-4A) 
60* 

Super Lanczos Low-Noise Differentiator0 

j -22rKr+3/r)+67tKr+2A)+58TKr+*)-58^r-*)-67T?(r-2*)-l-22tKr-3*) 

q -86rKr+4*)+l42r?(r+3*)+l93>?(r+2/t)+126>K'-+*)-l267(>--»)-193v(r-2*)-l42TK'--3*)+86v(r-4A) 

Smooth Noise-Robust (n = 2^ Differentiator0 

y irir+3A)-M7rir+2A)+5rrtr+A)-5y(r-ft)-4fKr-2A)-T?(r-3A) 

Q rKr-M*)+6fKr+3*)4-l4iKr+2*)+l4y(r+Ai)--l4v(r-A)-l4tKr-2*)-6Ty(r-3*)-fKr-4*) 

Smooth Noise-Robust (n = 4) Differentiator0 

7 -5y(r+3A)+12>?(r+2A)H-39T?(r-f*)-39t;(r-A)-l2TK>--2*)+Sr;(r-3/.) 
' 96A 

O -2r?(r+4*)-7(r+3*)H-l6TKr+2*)+27fKr+A)-27rKr-*)-l6rKr-2*)+v(r-3*)-l-2tKr-4*) 
* 96A  

"Source: Holoborodko (2011). 
''Value of N, the width of the stencil. 
Tormulac for first derivative. 

this had any impact on the estimation of the anisotropy of 
time- and zonally-averaged surface ocean velocity variance 
fields by Scott et al. [2008]. In this section especially it is of 
interest to examine results computed from both anisotropi- 
cally and isotropically gridded altimeter products. In this as 
in earlier sections we continue to focus on derivative esti- 
mates made with classic centered differences. As in the work 
of Scott et al. [2008] (see their Figure 9b), we compute the 
quantity 

Mz2 = 
[< u2 - v2 >] 

[< U2 + V2 >1 ' 
(38) 

where <> is a time-averaging operator. See also Ducet et al. 
[2000] and Scharffenberg and Stammer [2010], who per- 
formed similar computations on altimeter data. As in the 
work of Scott et al. [2008], for this calculation we remove 
time averages from u and v before computing Mz2. Here we 
compute Mz2 over 16 years of satellite altimetry data, from 
December 30, 1992 through December 31, 2008. Figure 10a 
reveals that 3-point stencil computations of Mz2 yield dif- 
ferent results in mid-to-high latitudes on the 1/4° grid than on 
the 1/3° grid, despite the fact that the 1/4° grid AVISO 
product is derived from the 1/3° product by simple bi-linear 
interpolation. The discrepancy between results on the two 
different grids is expected based on the discussion in the 
previous sections. On the 1/4° grid, the bias toward smaller 
values of kinetic energy in the 3-point stencil computation is 
especially pronounced for u at mid-to-high latitudes (com- 
pare Figure 6c to Figures 6a, 6b, and 6d). At these latitudes, 
the AVISO regridding from the original Mercator 1/3° iso- 
tropic grid to the 1/4° anisotropic grid apparently degrades u 
more than v. Again, this is because u is based on derivatives 
in>>, and at high latitudes the>> spacing is coarser on the 1/4° 
anisotropic grid than on the Mercator 1/3° isotropic grid. 

Since the jc-spacing is always less on the 1/4° anisotropic grid 
than on the Mercator 1/3° isotropic grid, v does not suffer 
from this degradation. 

[33] Consistent with earlier discussions, Figure 10b 
demonstrates that Mz2 computed with 9-point stencils yields 
very similar results when computed on the 1 /4° grid as on the 
1/3° grid. However, a disadvantage of utilizing wider stencils 
is that more information is lost along the boundaries where 
a full span of the stencil does not exist because of land. To 
alleviate this problem, we have also created a blended 
velocity estimate, which begins with velocities computed 
using 9-point stencils, then where possible fills in missing 
velocities computed using 7-point stencils, followed by those 
computed from 5-point stencils, and finally by those com- 
puted from 3-point stencils. This blended estimate has the 
disadvantage that the "quality" of derivatives is not uniform 
across all grid points, and the advantage that the number of 
grid points for which a velocity estimate is available is as 
large as in the 3-point estimates. In Figure 10c we show Mz2 

computed from the blended estimate. As in Figure 10b, the 
differences between Mz2 values computed on the 1/3° versus 
1/4° AVISO grids are much smaller than seen in Figure 10a 
(3-point stencil computation). Discrepancies between 1/3° 
and 1/4° results, and between pure 9-point stencil results and 
results from the blended product, are largest at high southern 
and northern latitudes. 

[34] Scott et al. [2008] and Scharffenberg and Stammer 
[2010] both found near isotropy in the mid- and high- 
latitude zonally averaged values of the difference between 
zonal and meridional velocity variances. Scott et al. [2008] 
utilized the Mercator 1/3° isotropic grid AVISO product 
while Scharffenberg and Stammer [2010] utilized data from 
the tandem phase of the JASON/TOPEX missions. Figure 10 
shows that near-isotropy (small values of Mz2) is also seen 
when wider stencils are used. We thus conclude that the 
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Figure 11. Response of an ideal differentiator and of 5-, 7-, 
and 9-point stencils, as a function of wave number, on 1/3° 
AVISO grid, for (a) Low-noise Lanczos (LNL) differentiator 
and (b) smooth noise-robust (SNR; n = 2) differentiator. The 
grid spacings used are 37 km, and the response is the absolute 
value Ml of the eigenvalue of the von Neumann analysis. 
See text for more details. Vertical lines are drawn at the wave 
number (40 km)1, corresponding approximately to the 2-3° 
wavelength resolution limitation of the AVISO sea surface 
height fields. 

inference of Scott et al. [2008] and Scharffenberg and 
Stammer [2010], that the zonally averaged oceanic kinetic 
energy is nearly isotropic at midlatitudes, is not an artifact of 
the three-point stencil used to compute derivatives in these 
studies. 

9.    Effects of Noise 

[35] As stated by Holoborodko (2011), in many applica- 
tions, ideal differentiators, and classic centered differences 
which closely approximate ideal differentiators over a wide 
range of scales, are problematic. This is because in many 
applications there is significant noise at high frequencies 
(or wave numbers), and the high frequency noise should be 
suppressed if one wants reasonable estimates of the deriva- 
tive at low frequencies. A common procedure for doing this 
is to first smooth the data with a least-squares polynomial fit 
and to then estimate the derivative using this polynomial. An 
extensive literature on smoothing and differentiation through 
least-squares fitting exists in the chemical and signal pro- 
cessing community [Savitzky and Golay, 1964; Steiner et al., 
1972; Gorry, 1990; Luo et al, 2005]. We found the discus- 
sion of Holoborodko (2011) especially useful. 

[36] Following the discussion of Holoborodko (2011), 
we considered a particular class of Savitzky-Golay filters, 
known as "low-noise Lanczos" and "super Lanczos low- 
noise" differentiators, as well as a class of filter designed by 
Holoborodko (2011) and known as a "smooth noise-robust" 
differentiator. Table 2 lists the first-derivative formulae for 
some of these filters. As a check, we derived these formulae 
for ourselves, and obtained the same answers as Holoborodko 
(2011). 

[37] In Figure 11, we display results of the von Neumann 
analysis for the low-noise Lanczos and smooth noise-robust 
(n = 2) differentiators. See Holoborodko (2011) for a full 
exposition and derivation, which includes an explanation of 
the meaning of/? in the smooth noise-robust differentiators. 
As shown in the figure, and as described by Holoborodko 
(2011), these differentiators are designed to suppress noise 
at high wave numbers, while remaining close to the ideal- 
differentiator behavior at low wave numbers. However, a 
problem for these low-noise differentiators is that they devi- 
ate significantly from the ideal differentiator response over 
about half of the range of wave numbers lower than the 2-3° 
wavelength resolution limitation of the AVISO sea surface 
height fields. Thus, these low-noise differentiators suppress 
much of the signal as well as the noise. The spectra shown 
in Figure 1 demonstrate that there is little variance in the 
AVISO data in wave numbers higher than those representing 
the resolution limitation. Thus, for the applications relevant 
to this paper, noise suppression at high wave numbers may 
be less important than retaining near-ideal differentiation at 
low wave numbers. 

[38] To test this further, we looked at differences between 
5-point, 7-point, and 9-point stencil results with these low- 
noise differentiators applied to a snapshot of the 1/3° AVISO 
data set (Figure 12). The discrepancies between derivatives 
computed with narrow and wide stencils is much greater 
using these low-noise differentiators than when using classic 
centered differences. We obtained similar, though some- 
what less extreme, results using the "super Lanczos low- 
noise" differentiators and the "smooth-noise robust (n = 4)" 
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Figure 12. Difference between zonal velocity u computed with 5-point and 9-point stencils (green dots), 
and with 7-point and 9-point stencil results (black dots), for (a) classic centered difference formulae used 
elsewhere in the text, (b) low-noise Lanczos differentiators, and (c) smooth noise-robust (n = 2) differentia- 
tors. Differences are computed for the November 5, 2008 snapshot of the 1/3° AVISO data set. 

differentiators (results not shown). If we accept "conver- 
gence" with increasing stencil width as an important crite- 
rion, we conclude that the low-noise differentiators are not as 
well-suited as classic centered differences for computing 
derivatives on current-generation altimeter data. For next 
generation wide-swath satellite altimeter data [Fu and 
Ferrari, 2008], the noise characteristics of the signals are as 
yet unknown. Although the instrument is expected to per- 
form some amount of averaging over the raw measurements, 
the amount of smoothing will be much less than that used in 
the construction of current-generation gridded satellite 
altimeter data. As a result, noise-suppressing differentiators 
are likely to become more necessary and important with the 
coming of high resolution wide-swath data. 

[39] We also investigated the extent to which derivative 
estimates made with classic centered differences are affected 
by noise in the altimeter data. For this purpose we have 
constructed three types of random noise fields on the 1/3° 
AVISO grid. The first is simply a noise field which is random 
from one point to another. The second and third versions are 

produced from Blackman filtering applied to the random 
noise. The second version utilizes a Blackman filter which 
goes to zero at a distance of 2°, while the third goes to zero at 
3°. Each of the three fields is multiplied by constants, such 
that we end up with fields having RMS values of 0.1,0.5, and 
1 cm. This yields 9 random noise fields in all. In Figure 13 we 
display differences in zonal velocity estimated with 9 point 
stencils, with and without the RMS 1 cm amplitude, 3° fil- 
tered noise. We compare these differences (black dots) to the 
differences between zonal velocity estimated using 3 point 
versus 9 point stencils (red dots, no extra noise included). 
The noise adds an uncertainty in the velocity estimates which 
is comparable in magnitude to the differences one sees in 
estimates made with narrower stencils. Obviously, the size of 
the noise-induced error decreases with decreasing RMS 
amplitude. The error increases with decreasing horizontal 
scale; the error with 2° noise is larger than with 3° noise, and 
the error with random spatial noise is larger still (results not 
shown). However, in contrast to the speed-dependent bias 
one sees with narrower stencils, the uncertainty added by 
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Figure 13. Difference between zonal velocity u computed from the November 5, 2008 snapshot of the 
1/3° AVISO data set with 3-point minus 9-point stencils (red dots), and between u computed with 9-point 
stencils with 1 cm RMS random noise filtered to 3° added to AVISO, minus u computed without the 
added noise (black dots). 

these noise fields is not biased in an obvious way. Instead it 
appears to be distributed evenly around zero, with larger 
excursions occurring at smaller velocities. In addition, the 
effects of the noise are just as large with 3-point stencils as 
with 9-point stencils (not shown). Therefore the wider sten- 
cils are not a disadvantage in this exercise. The differences in 
estimates of the derivatives of the noise fields decrease with 
increasing stencil width, just as differences in the derivative 
estimates of the AVISO signals do (not shown). 

10.    Summary and Discussion 

[40] Drawing on the well-developed numerical methods 
literature, we have shown that classic centered-difference 
estimates of geostrophic velocities and vorticities from grid- 
ded products of satellite altimeter-derived sea surface height 
lie closer to results obtained with an "ideal differentiator" as 
stencil width increases. This is especially true for mid-to-high 
latitude velocities computed on the 1/4° AVISO grid, which 
is anisotropic (has different grid spacings in the east-west 
versus north-south directions). Similar computations using 
NLOM, a high-resolution numerical model, demonstrate that 
the impact of stencil width on geostrophic velocity estimation 
is not an artifact of the particular procedures and errors 
involved in creating gridded satellite altimeter products. A 
stochastic model developed here qualitatively explains the 
speed-dependent biases seen in velocity estimates made with 
narrow (3-point) stencils. 

[41] This study was inspired in part by our earlier study of 
the anisotropy of ocean surface velocity variances [Scott 
et al., 2008], which utilized the traditional thin (3-point) 
stencils on the 1/3° Mercator AVISO grid. We have shown 
here that usage of the 3-point stencils which are widely used 
in the oceanographic literature gives incorrect estimates of 

the anisotropy of velocity variance on the 1 /4° anisotropic 
AVISO grid; we recommend the use of 7-point stencils 
instead. Although the analyses in sections 2-7 show clearly 
that applications that require precise geostrophic velocity 
estimates should utilize wider stencils, the results of section 
8 show that the general conclusions of Scott et al. [2008] 
and Scharffenberg and Stammer [2010] that zonally aver- 
aged velocity variance in midlatitudes is nearly isotropic still 
pertain when the derivatives are computed more accurately 
with wider stencils. Our study also has relevance to the pro- 
posed future wide-swath satellite altimeter mission [Fu and 
Ferrari, 2008], which is expected to map sea surface 
heights at resolutions about 20-30 times higher than the 
AVISO sea surface height fields. Consistent with predictions 
from our stochastic model, our analysis of high resolution 
NLOM output indicates that even at high horizontal resolu- 
tion (small grid spacing) there are significant differences 
at individual grid points between velocities computed via 
3-point stencils and wider stencils. Thus wider stencils 
should be of interest for future satellite altimeter missions as 
well as for present ones. In future altimeter missions, the data 
may begin to approach what is the norm in many other fields, 
that is, a well resolved low-wavelength signal with sig- 
nificant noise at higher wavelengths. In this case, noise- 
suppressing differentiators such as those used extensively in 
the chemical and signal processing communities will become 
of greater interest to oceanographers. 
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