

FORENSIC MEMORY ANALYSIS FOR APPLE OS X

THESIS

Andrew F. Hay

AFIT/GCO/ENG/12-17

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the United States Government
and is not subject to copyright protection in the United States.

AFIT/GCO/ENG/12-17

FORENSIC MEMORY ANALYSIS FOR APPLE OS X

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Andrew F. Hay, BS

June 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/12-17

FORENSIC MEMORY ANALYSIS FOR APPLE OS X

Andrew F. Hay, BS

Approved:

iv

AFIT/GCO/ENG/12-17

Abstract

Analysis of raw memory dumps has become a critical capability in digital forensics
because it gives insight into the state of a system that cannot be fully represented through
traditional disk analysis. Interest in memory forensics has grown steadily in recent years,
with a focus on the Microsoft Windows operating systems. However, similar capabilities
for Linux and Apple OS X have lagged by comparison. The volafox open source project
has begun work on structured memory analysis for OS X. The tool currently supports a
limited set of kernel structures to parse hardware information, system build number,
process listing, loaded kernel modules, syscall table, and socket connections. This
research addresses one memory analysis deficiency on OS X by introducing a new
volafox module for parsing file handles. When open files are mapped to a process, an
examiner can learn which resources the process is accessing on disk. This listing is useful
for determining what information may have been the target for exfilitration or
modification on a compromised system. Comparing output of the developed module and
the UNIX lsof (list open files) command on two version of OS X and two kernel
architectures validates the methodology used to extract file handle information.

v

Acknowledgments

I would like to thank my research advisor, Dr. Gilbert Peterson, for sharing his

extensive knowledge throughout this process and always freely offering advice when I

needed it most. Without his support for my eccentric research interests this work would

not have been possible.

 Andrew F. Hay

vi

Table of Contents

Page

Abstract .. iv	

Acknowledgments ..v	

List of Figures .. viii	

List of Tables ... ix	

I. Introduction ..1	

1.1 Research Objectives and Assumptions ...3	
1.2 Methodological Approach ..4	
1.3 Research Implications ..5	

II. Literature Review ..7	

2.1 Digital Forensics ...7	
2.2 Incident Response ...9	
2.3 Memory Forensics ..13	
2.4 Mac Memory Acquisition ...18	
2.5 Structured Memory Analysis ..21	
2.6 Summary ...30	

III. Methodology ...31	

3.1 System Design ..32	
3.2 Key Kernel Structures ..36	
3.3 Project Volafox ...44	
3.4 File Handle Module Implementation ..48	
3.5 Open Issues ...64	
3.6 Summary ...71	

IV. Results and Analysis ..72	

4.1 Module Evaluation Methodology ...72	
4.2 Results ..83	
4.3 Summary ...95

vii

V. Conclusions and Recommendations ..96	

5.1 Research Conclusions ...96	
5.2 Significance of Research ..99	
5.3 Recommendations for Future Research ..100	
5.4 Summary ...102	

Appendix A. Regular Builds OS X 10.4.4 – 10.7.3 ...103	

Appendix B. Full Structure Diagram ...105	

Appendix C. Python struct Library ..106	

Appendix D. Full UML Diagram ...108	

Appendix E. Full Test Results ...109	

Appendix F. Hardware Capture Summary ...123	

Appendix G. Complete Source Code: lsof.py ..124	

Bibliography ..150	

viii

List of Figures

Page

Figure 1. mach_kernel executable. .. 27	
Figure 2. Volatility linux_list_open_files output (Cohen & Collett, 2008). 32	
Figure 3. UNIX list open files (lsof) command. ... 33	
Figure 4. C struct relationship overview. .. 36	
Figure 5. Symbol table and process list. ... 37	
Figure 6. Memory-mapped files (txt). .. 38	
Figure 7. File descriptor table. .. 39	
Figure 8. Virtual node (vnode). .. 41	
Figure 9. struct proc. .. 43	
Figure 10. Abstraction crossover. ... 44	
Figure 11. volafox package diagram. .. 45	
Figure 12. UML 1 – process list and file descriptors. ... 50	
Figure 13. UML 2 – vnode interface and memory-mapped files. 51	
Figure 14. struct proc template, 10.6 x86. ... 53	
Figure 15. Simplified abstract class Struct (no error handling). 54	
Figure 16. Concrete class Devnode. ... 55	
Figure 17. Template generation function. ... 56	
Figure 18. 10.7 x64 template for struct ubc_info. ... 58	
Figure 19. Manual offset calculation for 64-bit struct ubc_info (annotated). 58	
Figure 20. Template output from printstructs.py. .. 60	
Figure 21. Template testing. ... 61	
Figure 22. volafox usage statement. ... 62	
Figure 23. volafox lsof command branch. .. 63	
Figure 24. lsof method stub added to class volafox. ... 63	
Figure 25. volafox user output. ... 64	
Figure 26. lsof user output. .. 64	
Figure 27. volafox proc_info output. .. 65	
Figure 28. Suiche process list output (2010). ... 66	
Figure 29. ps name keywords. ... 67	
Figure 30. launchd name keywords. ... 67	
Figure 31. ps session keywords. .. 68	
Figure 32. class Session testing modification. .. 68	
Figure 33. struct session address. ... 68	
Figure 34. /dev directory size. .. 70	
Figure 35. volafox open files listing. .. 71	
Figure 36. lsof handle duplication. .. 81	
Figure 37. Simplified lsof.py unpacktype() function. 106	

ix

List of Tables

Page

Table 1. volafox modules and their Volatility equivalents. .. 25	
Table 2. volafox commands with associated symbols and kernel structures. 29	
Table 3. UNIX lsof output fields. .. 34	
Table 4. Open file data locations. ... 42	
Table 5. Template interface fields. ... 53	
Table 6. Manual hex sizing. .. 59	
Table 7. Field differences versus file type. ... 79	
Table 8. OS X 10.6.8 x86 test case summary. .. 86	
Table 9. OS X 10.6.0 Server x64 test case summary. ... 87	
Table 10. OS X 10.7.3 x86 test case summary. .. 88	
Table 11. OS X 10.7.0 x64 test case summary. .. 89	
Table 12. OS X 10.6.8 combined real-world results (8 samples). 91	
Table 13. OS X 10.7.x combined real-world results (2 samples). 93	
Table 14. struct.unpack format characters. ... 107	
Table 15. OS X 10.6.8 x86 controlled test case results (1 sample). 109	
Table 16. OS X 10.6.0 Server x64 controlled test case results (1 sample). 110	
Table 17. OS X 10.7.3 x86 controlled test case results (1 sample). 111	
Table 18. OS X 10.7.0 x64 controlled test case results (1 sample). 112	
Table 19. OS X 10.6.8, model X6A real-world results (1 sample). 113	
Table 20. OS X 10.6.8, model DR2 real-world results (1 sample). 114	
Table 21. OS X 10.6.8, model VUW real-world results (1 sample). 115	
Table 22. OS X 10.6.8, model AGU real-world results (1 sample). 116	
Table 23. OS X 10.6.8, model U35 real-world results (1 sample). 117	
Table 24. OS X 10.6.8, model X8A real-world results (1 sample). 118	
Table 25. OS X 10.6.8, model DB5 real-world results (1 sample). 119	
Table 26. OS X 10.6.8, model ATM real-world results (1 sample). 120	
Table 27. OS X 10.7.0, model 0P2 real-world results (1 sample). 121	
Table 28. OS X 10.7.2, model 18X real-world results (1 sample). 122	

1

FORENSIC MEMORY ANALYSIS FOR APPLE OS X

I. Introduction

Desktop and mobile computing platforms are central to many law enforcement

and enterprise investigations due to their enormous capacity for digital evidence.

Identification, individualization, association, and reconstruction of such evidence are all

steps of the forensic process (Inman & Rudin, 2002). Professionals rely on both technical

expertise and appropriate tools when applying these steps to digital sources. Because an

examiner cannot always anticipate the platforms encountered during the course of an

investigation, he or she must be prepared to deal with any of them. Tools for data

acquisition and analysis are therefore required across a breadth of common endpoint

devices in order to assure needed flexibility, Apple’s OS X among them.

Apple currently holds the number three position in PC manufacturing (Schonfeld,

2012), with its OS X operating system representing about 10% domestic market share

(Donnini, 2012) and 6% globally (Net Applications, 2012). While this accounts for a

small minority when compared with Microsoft Windows, OS X has become the operating

system of preference for many individuals. As a result, it cannot be ignored as a possible

target during forensic investigation.

Forensic memory analysis has become a critical capability in digital forensics

because it allows insight into the state of a system that cannot be fully represented

through traditional disk analysis. From an investigative standpoint, computer memory

may be the only source of data capable of revealing the use or misuse of computer at time

2

of seizure. Additionally, it may hold the sole evidence of malware or other compromise

influencing the conclusions of the examiner. Interest in memory forensics has grown

steadily in recent years, with a focus on the Microsoft Windows operating systems

(Cohen & Collett, 2008). However, similar capabilities for platforms such as OS X have

lagged by comparison.

Memory analysis depends on capabilities for RAM acquisition and tools for

abstracting information from raw memory. Though tools exist to capture memory on OS

X (Section 2.4), the sole project focusing on structured data analysis (Lee, 2011) is

immature by comparison to its counterpart for Windows and Linux (Volatile Systems,

2012). This leaves primarily context-free options available to the forensic examiner, such

as string searches and file carving. The challenge is to perform better than context-free

memory analysis so ultimately tools can be developed to replace more invasive incident

response methods for determining the state of a running system. This research addresses

one component in the suite of data collected during live response: a list of file handles

associated with running processes.

When open files are mapped to a process, an examiner can learn which resources

the process is accessing on disk. This listing is useful in determining what information

may have been the target for exfilitration or modification on a compromised system.

Handles may also help identify a suspicious process when unexpected file access or

modifications are observed. For example, malware masquerading as an innocuous

executable while editing log files to its cover tracks. Because open files can help

characterize process activity and highlight misuse of a computer during an investigation,

it is desirable to recover this information from a memory capture.

3

1.1 Research Objectives and Assumptions

The goal of this research is to implement and document a capability for parsing

file handles from raw memory captured on OS X. Two objectives are derived to support

this goal. First, perform design recovery of the kernel data structures responsible for

handling open files. Second, develop a flexible process for programmatically handling

structures defined for different kernel architectures and operating system versions. This

necessitates extensible software design resilient to changes in future versions of OS X.

Assumptions related to achieving the research goal include:

1. A method already exists for copying physical memory to file in a forensically
sound manner.

2. Because analysis is always performed on a forensic duplicate of imaged memory,
the tool developed is not guaranteed nor required to ensure data integrity.

3. Prior work can determine the addresses associated with key kernel symbols and
perform virtual to physical address translation.

4. Direct validation of tool output is not possible and must therefore be compared

with approximate data, the acquisition of which alters the state of memory.

5. Code defining the parsed kernel data structures is open source.

6. The set of architectures under consideration is limited to Intel i386 and x86_64.

7. The set of OS X operating systems under consideration is limited to 10.6.x Snow
Leopard and 10.7.x Lion.

8. The set of handle types supported by the implementation is not comprehensive.

The first two assumptions leverage existing work described in Sections 2.4 and 2.5.2

respectively. Validation challenges are addressed in Section 4.1. Design assumptions and

emergent research limitations are discussed throughout Chapter 3 and formally classified

in Section 4.1.2.

4

1.2 Methodological Approach

The open source volafox project (Lee, 2011) has begun the work of analyzing raw

memory dumped on OS X with modules for parsing hardware information, system build

number, process listing, loaded kernel modules, syscall table, and socket connections.

One omission in the existing volafox feature set is an ability to list file handles. This

research presents the memory analysis methodology required to extract file handles in use

by each process, and demonstrates its application through a new volafox module. The

research module outputs handle information corresponding to process name, PID, file

descriptor, access mode, handle type, size/offset, catalog node ID, and name. Supported

handles include regular files, directories, symbolic links, character special files, memory-

mapped files associated with the process executable and its current working directory.

Chapter 3 describes methodology for implementing the new file handles module.

Software design requirements and constraints are listed along with a format specification

for the information displayed to the user. Next, design recovery of key kernel data

structures is presented. The relevant members and relationships of 36 xnu kernel

structures are used to parse the required handle information. Package organization, key

objects, and functions from the existing volafox source code are then described. Object-

oriented design of the new file handles module is depicted using UML and a description

of the data structure template development process is presented. Chapter 3 closes with a

discussion of outstanding implementation issues. Results of the new module are validated

against the UNIX command-line tool lsof (list open files) in Chapter 4. Versions 10.6

Snow Leopard and 10.7 Lion of the OS X operating system for both 32 and 64-bit kernels

are the tested configurations.

5

1.3 Research Implications

 Design recovery of the OS X kernel data structures related to process file handles

in Section 3.2 and summarized in Appendix B is a primary implication of the research.

Development of the new volafox module for parsing handle information exists in part to

demonstrate this part of the methodology in a practical form. While core UNIX

technologies lead to many similarities with other systems, OS X’s unique design

architecture makes it distinct from other platforms. The research is novel because kernel

structures parsed by the tool differ from those considered in the literature for Linux and

Windows.

The research module also demonstrates a process developed for dynamically

handling data structure layout in memory across multiple architecture and operating

system versions. The process is broken down in three parts. Section 3.4.2 first describes

how C struct templates are built to an interface specification for each OS and architecture

configuration. Next, a solution is given for selecting the correct template at runtime using

an abstract object initializer. Finally, Section 3.4.3 presents an external C program for

generating template syntax using the kernel header files defining key structures. The

process itself adds value because it simplifies program logic and readability of the

resulting source code. Though unverified, the process is extensible by design and

therefore may also support future versions of OS X and additional kernel structures

outside the immediate research scope.

Finally, the new volafox module for listing open files is validated in Chapter 4

and found to reasonably approximate output from the UNIX lsof command. After

addressing outstanding constraints and deficiencies, work based on this tool could one

6

day replace at least one required executable from an incident response toolkit. This result

directly addresses the problem statement and therefore implies a successful research

outcome.

7

II. Literature Review

Digital evidence is integral to modern forensic investigation because of its

pervasiveness in the consumer, enterprise, and government domains. Practitioners require

tools to simplify the collection and analysis of such evidence across the breadth of

endpoint devices encountered in the field. An investigator may employ tools from a

variety of open-source, commercial, and underground sources in pursuit of needed

capabilities. The work presented in this thesis evolves an existing open-source project for

analyzing the memory of Apple’s OS X desktop operating system.

This chapter introduces digital forensics and the related process of incident

response, with specific focus on memory analysis. Strategies for capturing memory on

OS X are discussed as a component of incident response, and necessary precursor to

analysis. A review of existing work for analyzing raw memory drumped on Linux serves

as a baseline for higher-abstraction analytic capabilities. Finally, the volafox tool being

extended for this research is presented, along with its methodology for acquiring kernel

symbols and parsing key data structures.

2.1 Digital Forensics

The National Institute of Justice (NIJ) describes digital evidence as “[i]nformation

stored in binary form that may be introduced and relied on in court” (2008, p. 52). In

order to meet the latter half of this definition, evidence must be handled in a manner

8

consistent with accepted forensic practice. Generally accepted standards include at

minimum (NIJ, 2008):

• A process for ensuring evidence remains unchanged.

• Assuring technical expertise of personnel responsible for analysis.

• Detailed documentation of all actions affecting the evidence.

A similar definition by the National Institute of Standards and Technology (NIST)

describes computer forensics as the “practice of gathering, retaining, and analyzing

computer-related data for investigative purposes in a manner that maintains the integrity

of the data” (2008, p. D-1). Digital forensics is therefore a process characterized by the

preparation for, and execution of, the following activities (NIST, 2006):

1. Data collection – identifying and preserving useful data from all possible sources
of digital evidence according to a standardized subprocess.

2. Examination and analysis – a methodical approach to correlating evidence from
various sources to determine the characteristics and impact of an event.

3. Reporting – a procedural log and analysis summary used to demonstrate the
integrity of the process overall and present its findings.

Given the wide array of platforms and environments capable of supporting digital

evidence, these definitions describe what the digital forensic process requires rather than

how to accomplish it.

 The implementation described in Chapter 3 is specific to the evidence analysis

component of the three-part process above. However, in order to understand the input for

analysis, the collection of digital evidence is discussed here.

9

2.2 Incident Response

Motivation for applying the digital forensic process is known as an incident,

“violation or imminent threat of violation of computer security policies, acceptable use

policies, or standard security practices” (NIST, 2008, p. D2). Organizations with a

mission involving digital forensics need an established policy for handling such events

that describes recommended practices for mitigating the effects. Performing the actions

prescribed in such a policy is defined as incident response, an organizational standard

describing how the process of digital forensics is to be applied within a specific context.

An incident response almost always incorporates components of data collection and

reporting as specified by the digital forensics process. Depending on mission needs of the

affected systems, analysis may take place on site, be deferred, or a combination of the

two. Deferred analysis may be necessary when it requires technical skills beyond that of

incident responder, tools unavailable at the scene, or is expected to take more time than

can be reasonably allocated.

The tool implemented in Chapter 3 could operate as a component of incident

response but is more likely to be employed during deferred analysis. Data used as input to

the tool is volatile and therefore its capture must be conducted as part of an incident

response policy in order to make analysis possible.

2.2.1 Volatile Data.

Volatile data describes digital evidence of a dynamic or transient nature that is

sensitive to time, system state, or power. It is contrasted with nonvolatile data such as that

stored on a magnetic hard drive, smart card, or flash memory (NIJ, 2008). While sources

of nonvolatile data may be collected directly as hardware or imaged during incident

10

response, volatile data is fragile and therefore has distinct collection and analysis needs

(NIST, 2006). This section motivates the collection of volatile data during incident

response as a compliment to traditional disk analysis, and provides an overview of the

process. Note that system characteristics and the collection process described focus on

Linux systems due to similarity with OS X.

 Several arguments for seizing and analyzing volatile data exist. First, no usage

snapshot is complete without a record of what the machine was doing before shutdown.

This action is usually a prerequisite to imaging a system for deferred disk analysis (NIST,

2006). Valuable evidence such as running processes, network connections, and currently

open files may all be irretrievably lost as soon as the target is powered off (NIST, 2008).

Critical systems may also be unavailable for imaging because the downtime would

adversely affect user experience or services, making traditional disk analysis infeasible.

The so-called Trojan Defense is also a concern. One classic example is Aaron Caffrey’s

acquittal following a defense which could have been disproven using evidence in volatile

data (Leyden, 2003). Modern malware is specifically engineered to avoid the disk as a

means of preventing detection. This means volatile data may be the only source of

evidence available to prove its presence or absence. Dolan-Gavitt (2008a) demonstrates

how a cached version of the Windows registry can be exploited without leaving any

evidence on the disk.

The slow but progressive adoption of full-disk encryption offers what may be the

single best argument for integrating volatile data collection into any reasonable incident

response (Casey, Fellows, Geiger, & Stellatos, 2011). Data on disk may be essentially

worthless to the investigator once the target is powered off if its contents become fully

11

encrypted. Full disk encryption became a standard feature on OS X when FileVault 2 was

included with the release of 10.7 Lion. Tools for breaking FileVault 2 encryption via

memory exploit are now available both open source and commercially (Kessler, 2012;

Maartmann-Moe, 2012). However, none of the known attacks work after the target is

turned off.

2.2.2 Volatile Collection Process.

Recovering volatile data from a Linux target typically involves a toolkit

consisting of trusted executables needed to dump specific operating system information,

exfiltrate output, and maintain integrity of evidence (Mandia, Prosise, & Pepe, 2003). On

UNIX systems and their derivatives, the toolkit can be built using commands available on

the platform, compiled as static binaries verified using the ldd tool on Linux (Burdach,

2004), or otool on the Mac (Webb, 2010). The volatile data of interest and some of the

Linux commands associated with its collection are summarized below (Burdach, 2004;

Carvey, 2009; Mandia et al., 2003):

• date – system date and time
• w – login sessions
• ls – directory listing including MAC times
• netstat – network connections and open ports with associated applications
• ps – process list
• arp, route – arp and routing cache tables
• cat /proc/modules – loaded kernel modules
• lsof – process-to-file mappings
• cat /proc/version – OS version
• cat /proc/sys/kernel/name – host name
• cat /proc/sys/kernel/domainame – domain name
• cat /proc/cpuinfo – hardware info
• cat /proc/swaps – swap partitions
• cat /proc/partitions – local file systems
• cat /proc/self/mounts – mounted file systems

12

• cat /proc/uptime – uptime
• Physical memory image (kernel-specific)
• Clipboard contents (distribution-specific)
• Command-line history (shell-specific)

The toolkit is typically delivered to the target via read-only media to protect its integrity,

and its output usually stored to external media or piped over a network connection. After

constructing such a toolkit, commands for collecting, naming, and storing the evidence

collected are scripted for the native command-line interface. The command order should

give consideration to the perishability of the data (NIST, 2006):

1. Network connections
2. Login sessions
3. Contents of memory
4. Running processes
5. Open files
6. Network configuration
7. Operating system time

Webb offers details on toolkit compilation and scripting for incident response on OS X

which roughly approximates the aforementioned process (2010).

A possible alternative to this incident response methodology by Choi, Savoldi,

Gubian, and Lee (2008) integrates both collection and analysis. The Linux Evidence

Collection Tool (LECT) is a framework for live evidence collection aimed at server

investigations. It consists of a console-based collection tool and graphical analysis

environment. The tool emphasizes collection of log files and other disk-borne data for

offline analysis and correlation with volatile data. Because of this hybrid approach, LECT

is not well aligned with the research goals of this thesis.

The preceding exploration of volatile collection strategies for Linux serves to

characterize the kinds of information that are most critical to the investigator. In the

13

following section, an alternative methodology is proposed to replace many of the

commands mentioned with a tool for parsing this information from an image of physical

memory. Use of a volatile collection toolkit as described in this section establishes a

baseline against which memory forensics can be measured in terms of both analytic

power and system impact.

2.3 Memory Forensics

This section describes background needed to understand the sub-field of digital

forensics concerned with analyzing the contents of raw memory. Random-access memory

(RAM), physical memory, or main memory are all terms used interchangeably to

describe the first backing store for the operating system’s virtual memory manager

(Gorman, 2004). Physical memory is of interest to the forensic examiner because it stores

current and recent data being acted on by the CPU and various memory-mapped I/O.

Suiche (2010) asserts that on UNIX systems the term physical memory is synonymous

with /dev/mem, the character device used to abstract the hardware implementation.

A variety of hardware and software solutions exist to copy the contents of

physical memory to file for offline analysis. Output of such a tool is commonly referred

to as an image or memory dump. The sophistication of memory analysis varies, but by

one definition represents an “attempt to use memory management structures in computers

as maps to extract files and executables resident in a computer’s physical memory”

(Urrea, 2006, p. 2). The more specific definition required by this research classifies

structured memory analysis as the examination of kernel structures present in an image to

partially characterize the state of a computer at time of capture. The two-part process of

14

analyzing physical memory generally involves the capture of RAM during incident

response in a manner consistent with forensic principles, and subsequent examination of

its contents using tools capable of parsing kernel structures or other useful patterns from

the resulting file.

In its simplest form, the value of memory introspection will be familiar to any

programmer who has used a debugger to analyze a core dump. Exploit developers use

many of the same tools for analyzing the state of RAM during execution to craft payloads

for corrupting memory in order to achieve a desired effect (Miller & Zovi, 2009).

Analysts on both sides of the ethical divide observe memory in action to reverse engineer

systems, applications, or malware. From a forensic standpoint, the state of a system can

be most comprehensively recorded by capturing the raw contents of RAM. However,

modern computers guarantee this information alone is incomplete and fragmented due to

virtual memory and other architectural mechanisms. Further complicating its analysis are

operating system protection schemes such as Address Space Layout Randomization

(ASLR), which seek to obfuscate the location and structure of memory as a means of

safeguarding information.

2.3.1 Advantages of Memory Analysis.

Despite the challenges, there are several compelling reasons to prefer structured

memory analysis over the techniques for investigating volatile data described in Section

2.2.1. First, because memory contains both in-use and recently-used data, it is possible to

reconstruct a limited timeline of system usage. Recently used memory segments may

provide information not represented in the log files and other incident response toolkit

output because, like free disk space, these segments are marked for recycling by the

15

operating system. Solomon, Huebner, Bem, and Szezynska assert that “[d]espite the fast

decay of user pages in free memory, it is still a worthwhile source of forensic data”

(2007, p. 71). The most recent work on Linux even suggests that it may be possible to go

about such reconstruction in a coherent and organized fashion (Case, Marziale, Neckar,

& Richard, 2010).

A second advantage of structured memory analysis is its resilience to system

tampering when compared with other strategies for reconstruction using disk analysis or

incident response toolkit output. Syscall hooking, log manipulation, and other anti-

forensic measures are common features of modern malware (Ligh, Adair, Hartstein, &

Richard, 2011; SANS Institute, 2008). These exploitation tactics can lead to missed

evidence and incorrect conclusions if the results of other analysis are not compared

against evidence in memory (Hay & Nance, 2009). Even when employing static

executables, memory analysis may be the only way to reveal running malware when

faced with a sophisticated kernel rootkit. Dolan-Gavitt (2008a) also demonstrates how

physical memory may contain the only evidence of registry tampering on Windows.

The third benefit is that physical memory may contain evidence that is never

saved to disk and would otherwise be lost. Consider that one reason for performing hard

power-off of a system prior to imaging is to preserve the temporary files that might be

overwritten in a graceful shutdown operation (NIST, 2006). This action also results in the

unfortunate loss of any files that have not been saved because they exist only in memory

at the time of shutdown. If memory is imaged during the incident response, these files are

preserved and “sections of memory can have more traditional forensic procedures applied

16

to them such as file carving and hashing” (Case, Cristina, Marziale, G. G. Richard, &

Roussev, 2008, p. S70).

Finally, volatile data collection using a scripted response toolkit has an inherent

disadvantage: changes to the system state which occur as a result of collection. Dumping

information in a forensically sound manner means “[s]ome of the response tools may

even substantially alter the digital environment of the original system” (Law, Chow,

Kwan, & Lai, 2007, p. 137). A trusted tool must overwrite existing memory on the target

system when both the executable and all its static libraries are copied from disk in order

to preserve the forensic integrity of the output. Next, a series of I/O operations are needed

to support the exfiltration of the output. The process is then repeated for each distinct

piece of volatile data sought. This leads to a situation where “[t]he credibility of the

acquired data relies solely on the reliability of the tool and the expertise of the user” (Law

et al., 2009, p. 1). By contrast, capturing physical memory for deferred analysis has the

potential to be much less invasive. Some techniques, such as FireWire acquisition, do not

require any execution on the target system. Similarly, suspending a virtual machine

allows memory capture on the guest with minimal impact.

The lack of investigator-friendly methods for analyzing memory images provides

the facing argument to the use of structured memory analysis outlined in the preceding

paragraphs. When deciding between an imperfect incident response toolkit and an

indecipherable collection of bits, it is clear that a potentially corrupt dataset is preferable

to no information at all. A dump of raw memory is only as useful as the tools available to

abstract information for human analysis. Therefore the acquisition and analysis

capabilities for this method are equally important.

17

2.3.2 Memory Forensics Process.

Analysis of raw memory is procedurally similar to many types of digital evidence,

generally following the steps of capture, analysis, and reporting. Carvey (2009) provides

a description of the memory forensics process, with a focus on Windows since it is the

only platform where this type of analysis has matured.

The first step is to choose a method of capture based on the hardware, operating

system, state of the target, and context of the investigation. Next, a delivery method is

selected. Most common today is a USB device that acts as both capture toolkit and

storage for the resulting memory image. The toolkit hash is documented prior to use, and

appropriate physical and policy measures taken to prevent altering the contents of the

device before incident response. When the tool is executed on a target, system time and

hash value of the output are documented in the incident response log. Carvey (2009)

argues the hash should be recorded once memory dump is complete due to changes that

occur during the capture process. After memory is captured, measures must again be

taken to avoid changes to the storage media. Analysis occurs only on copies of the

original image file, the integrity of which can be verified using the recorded hash. This is

done using a write-blocker on a forensic workstation capable of copying the storage

media without changing it. Analysis then proceeds on the copy according to the needs of

the investigation and the tools available. The process for parsing any results is

documented in detail such that it can be reproduced, and the conclusions of the examiner

are summarized in a written report. Since the reporting aspect is largely determined by

organization policy or legal requirements it is not discussed further, but the details of

capture and analysis for OS X and similar platforms are now presented.

18

2.4 Mac Memory Acquisition

This section focuses on physical memory capture for the platform under research

consideration: OS X running on Intel architecture. While this thesis addresses primarily

the analysis component of the memory forensics process, acquisition of RAM is a

prerequisite to making such research worthwhile and is therefore discussed first.

2.4.1 FireWire, Cold-boot, and VM Extraction.

The IEEE 1394 or FireWire interface is susceptible to direct memory access

(DMA) on OS X as well as Windows. Its vulnerability, the underlying PCIe bus, is

shared by a variety of I/O on the Mac including ExpressCard, SD slot, and the new Intel

Thunderbolt port (Graham, 2011). Using this interface to reliably capture RAM on the

Mac was first demonstrated by the pyfw attack (Becher, Dornseif, & Klein, 2005).

While useful, the project is not explicitly designed as a forensic tool (Hermann, 2008).

Numerous forensic implementations have emerged since, including Goldfish (Gladyshev

& Almansoori, 2010, 2011), and libforensic1394 (Witherden, 2010).

There are several shortcomings to DMA capture. First, the vulnerability is limited

to the first 4GB of system memory (Gladyshev & Almansoori, 2010). Kubasiak and

Morrissey further characterize the method as “somewhat invasive and involves tricking

the system into thinking an iPod is being connected” (2009, p. 528). Finally, the attack is

easily mitigated using the lock screen if user switching is disabled (Garrison, 2011).

The alternative Kubasiak and Morrissey suggest to FireWire exploitation is

msramdump (2009, p. 528; McGrew, 2008). This technique calls for cold boot

extraction, where the target system is forcibly shutdown and then quickly booted from

external media before the contents in memory are fully wiped by momentary loss of

19

power. This tool builds on earlier research where the hardware DIMMS were physically

cooled and removed from the target so the contents could be read externally. The risk of

evidence loss appears to be high with this strategy and the authors suggest it only as a

method of last resort for extracting the decryption key of a Mac using FileVault.

Another option is to copy the memory backup file maintained by the host system

of an OS X virtual machine (VM) during suspension. Ligh, Adair, Hartstein and Richard

list the location of such files for various virtualization products and describe how they

can be used with Volatility for Windows analysis (2011). This represents perhaps the

least invasive method available, however there are two caveats. First, until the release of

OS X 10.7 Apple’s software license agreement only permitted virtualization of its server

operating system. Second, due to tight hardware-software integration on the Mac it would

be rare to encounter such an installation in the field, thereby limiting its usefulness to the

forensic examiner. Possible exceptions include enterprise installations of OS X Server or

VMs used for research, software development, or reverse code engineering.

2.4.2 Kernel Module Capture.

Classic methods for extracting memory from UNIX systems involved reading

directly from the /dev/mem or /dev/kmem character device using dd. This ability has

been disabled in the Linux kernel for some time and when OS X transitioned to Intel

architecture it became similarly depreciated on the Mac. Singh (2006a) describes the

problem and makes several suggestions for implementing a custom version of

/dev/kmem to read from kernel memory directly. This approach was demonstrated by

Suiche (2010) with an emulation of /dev/mem used to dump RAM on a Mac. The

20

presentation also describes how critical symbols retrieved from the mach_kernel

executable can be used to build a kernel memory manager capable of virtual to physical

address translation. Such translation is required to fully browse kernel address space and

copy its contents. This capability did not become publically available until the release of

Mac Memory Reader (Architecture Technology Corporation [ATC], 2011), a free

component of the commercial Mac Marshal product. Technical limitations and design

decisions lead to several details worth nothing about the tool’s output (ATC, 2011; Inoue,

Adelstein, & Joyce, 2011; Leat, 2011):

• Output file format is a Mach-O, equivalent to Linux ELF (Apple Inc., 2009).

• The -H option prints MD5, SHA-1, SHA-256, or SHA-512 hash to stderr.

• Using ‘-‘ for the output filename prints to stdout for command piping.

• Physical memory map used is the same format as the showbootermemory
macro in the Apple Kernel Debug Kit.

• Only addressable pages can be copied from physical memory, excluding a small

number of pages missing from the memory map.

• Memory segmentation is maintained along with offsets in the file using a header
listing, the results of which can be interpreted with Apple’s otool.

• Memory-mapped I/O device segments and memory ports are not captured.

• Memory allocated to a virtual machine hypervisor is not captured.

There are several disadvantages to this form of acquisition. First, Mac Memory

Reader requires administrator privileges to load the needed kernel module. While this

may limit its use during some investigations, in many cases a cooperative administrator

may be available to provide the password. Second, output from such a tool could be

corrupted by the presence of memory forensic countermeasures (Haruyama & Suzuki,

21

2012) or advent of a rootkit explicitly designed to subvert collection. “Fortunately, unless

the subversion mechanism is very deeply embedded in the OS, a substantial amount of

overhead may be incurred to prevent acquisition, potentially revealing the presence of a

malicious agent” (Case et al., 2008, p. 2). Finally, because a kernel module must be

loaded into the memory in order to perform the capture, its use alters the target system.

The problem is addressed by the Mac Memory Reader README text (ATC, 2011):

Pieces of the MacMemoryReader executable code and data will certainly
appear within the RAM snapshot, simply because MacMemoryReader is
running in the same memory space being acquired. This is a known
"footprint" and aspect of live analysis.

While this represents a violation of the first forensic principle outlined in section 2.1, it is

likely to be no worse than the other practical methods discussed (VM analysis

notwithstanding). This method of capture also has the advantage of being self-

documenting, in that its usage is represented within the resulting output. Despite the

challenges, availability of this robust acquisition capability for the Mac encourages

additional research and emphasis on analytic capabilities for the platform.

2.5 Structured Memory Analysis

Most literature and web references to memory analysis on OS X discuss context-

free techniques such as string searches, manual hex examination, file carving and the like.

Valenzuela (2011) writes about these rudimentary methods in a blog post responding to

the release of Mac Memory Reader. Malard (2011) expands these approaches to include

session information and password extraction in a paper discussing hacking tactics for OS

X. One early effort to achieve systematic analysis of raw memory on the Mac is a tool for

22

automatically extracting login credentials using the FireWire exploit cited previously

(Makinen, 2008). The attack iterates over all pages in memory searching for a string flag

known to occur at a particular offset and then performs a keyword search for ‘username’

and ‘password’ within that page to reveal the target information. This tool is valuable for

decrypting disks with FileVault enabled but is only effective against OS X 10.4 Tiger.

Unfortunately, all context-free methods for memory analysis are inherently limited,

imprecise, and inefficient.

2.5.1 Linux Memory Analysis.

This section offers a review of existing work concerning higher-abstraction

memory analysis, presented as a timeline. Linux is chosen as a reasonable analog upon

which to model research for OS X because it is the most similar platform to have

received attention in the literature with regard to forensic memory analysis. However,

note that Linux diverges significantly in terms of the kernel structures used to reconstruct

information (Singh, 2006b).

An early paper on memory analysis for Linux proposes tools to aid embedded

developers with identifying misused or wasted system memory (Movall, Nelson, &

Wetzstein, 2005). While not well suited for forensic application, this work demonstrates

how memory forensics follows as a natural extension of dynamic debugging. Burdach

demonstrates this concept in a 2004 blog post on live forensic analysis for Linux systems.

The blog notes acquisition of /proc/kcore should be favored over /dev/mem

because its ELF core format allows for introspection using gbd. By comparing the

addresses in Symbol.map with those from /proc/kcore, the author demonstrates

how memory analysis can be used to perform rootkit detection. There is also a

23

description of how /proc/kcore can yield keyword searches with the UNIX strings

command and regular expressions.

Moving beyond keyword searches and file carving techniques requires an

understanding of operating system internals to determine how the kernel organizes

information in what would otherwise be an incoherent block of data. Urrea (2006) began

this work by enumerating many of the Linux structures relevant to forensic examination

and shows how they might be extracted using a set of ridged Perl scripts. Burdach (2006)

continued to enhance the analytic potential on the platform when he released a proof-of-

concept toolkit called IDETECT to simplify introspection on memory, again using gdb.

The same year FATKit framework (Petroni, Walters, Fraser, & Arbaugh, 2006) emerged

as a major step forward by offering a modular approach to abstracting and visualizing

forensic evidence from raw memory. Tool design is general and extensible enough that

even in early releases FATKit featured modules for both Windows and Linux.

Case, Cristina, Marziale, Richard, and Roussev developed RAMPARSER to

address “the lack of available memory parsing tools for Linux” (2008, p. S67).

RAMPARSER can list running processes and perform introspection on specific ones to

detail open files and socket information. Case, Marziale and Richard (2010) later extend

RAMPARSER to make it “substantially less brittle with respect to kernel versions”. This

paper frames one of the major challenges to forensic memory analysis: most tools are

specific to a particular platform version and must be reworked when even minor updates

to an operating system occur. The constraint is especially dire for Linux distributions,

where there is a great deal of kernel fragmentation. This same challenge is also the

motivation for Foriana (Petroni, Walters, Fraser, & Arbaugh, 2006), a research tool

24

designed to explore solutions for memory analysis when the exact target OS version is

not known. The tool has support for multiple architectures and operating systems,

including BSD (from which Apple’s UNIX foundation derives). Vidas (2011) suggests an

open corpus for memory analysis to build support across a breadth of kernel versions.

While most of the work discussed exists primarily in the research domain, tools

for Linux memory analysis are also represented commercially (Pikewerks Corporation,

2011). However, the open source forensics community has been slow to support Linux

with tools built for users when compared to the capabilities available for Windows. In

2008 serious work began on this deficiency when the Digital Forensics Research

Workshop (DFRWS) sought to develop tools specifically for Linux memory analysis.

This emphasis resulted in several Linux extensions for the open source Volatility

framework (Cohen & Collett, 2008). Case (2011a, b, c) writes extensively about

subsequent work leading to the Linux branch available in beta from the Volatility project

website. Integrated Linux support is anticipated for the 3.0 release of the project (M.

Cohen, Volatility developer mailing list, March 26, 2012). In addition to the Linux

commands shown in Table 1, Volatility has additional modules for analyzing network

configuration, kmem cache, dmesg buffer, and auxiliary process details.

2.5.2 Volafox Project.

The first effort to provide higher-abstraction analytic capabilities for raw memory

dumped on the Mac began with the open source release of volafox, a Google Code

project described as a “Memory Analyzer for Mac OS X” (Lee, 2011). This text-based

tool is implemented in Python 2.5 and borrows heavily from the Volatility source code.

Volafox is operable on flat memory images captured from OS X 10.6-7 with 32 or 64-bit

25

architecture. Table 1 summarizes the volafox parsing modules and offers a comparison

with those available for the Linux support branch of Volatility and tools built-in to the

OS X command line. Little has been written about the usage of volafox, but Shuster

(2011) describes its basic functionality in his blog.

 Revision 52 of volafox, the version extended in Chapter 3, does not natively

support the Mac Memory Reader (MMR) output format. Leat (2011) and ATC developer

Hajime Inoue contributed to experimental support for MMR which is operational in

revisions 23-38 on the project website. The feature was later removed with the

introduction of 64-bit addressing support due to compatibility problems. A stand-alone

flatten.py utility authored by Inoue is still available to convert MMR files to a linear

format, but only works for 32-bit kernel installations.

An alpha feature is also implemented in volafox to analyze network information,

the output of which appears to be a simplified version of the UNIX netstat command.

While difficult to ascertain the state of this module given the lack documentation, in

Table 1. volafox modules and their Volatility equivalents.

volafox OS X
Terminal

Volatility
(Linux branch) Description

os_version sw_vers OS X build version
machine_info sysctl linux_cpuinfo kernel version, CPU, and

memory specifications
mount_info mount linux_mount mounted filesystems
kext_info kextstat linux_lsmod kernel extension (KEXT) list
-m KEXT dump
proc_info ps linux_task_list_ps process list
-x vmmap linux_proc_maps process dump
syscall_info syscall table with hooking

detection
net_info netstat linux_netstat network socket list
See Chapter 3 lsof linux_list_open_files open files list

26

limited testing the feature only appears to support IPv4 TCP and UDP protocols. It is also

unknown which kernel structures the module parses because this methodology is not

included in the work by Suiche as with the others.

2.5.3 Symbol Table Construction.

In order to perform meaningful analysis of raw memory, an understanding of the

composition and location of key kernel structures is required. Because Darwin (Apple’s

open source core for OS X) is freely available, the composition of kernel structures can

be determined from the header files they are defined in. Locating the structures in

memory requires a mapping of identifiers and offsets, or a kernel symbol table. Suiche

notes “[s]ymbols are a key element of volatile memory forensics without them an

advanced analysis is impossible” (2010). The KPCR structure can be used in Windows to

get the symbols directly from memory, conveniently this structure is located at a static

offset (Dolan-Gavitt, 2008b). Unfortunately, the same approach cannot be used on OS X

because “kernel sections are destroyed as soon as the kernel (mach_kernel) is loaded by

removeKernelLinker() function” [slides] (Suiche, 2010). A solution to the

equivalent problem in Linux is addressed by Volatility, which maintains a database of

overlay files containing the requisite symbol tables for select distributions and kernel

versions (Case, 2011a). In both Linux and OS X therefore, the “easiest way to retrieve

kernel symbols is to extract them from the kernel executable of the hard-drive” (Suiche,

2010, p. 4).

Figure 1 shows key features of the mach_kernel executable file, located at the

root directory of the OS X file system. Using the SYMTAB load command structure, a

kernel symbol table can be constructed mapping the strings pointed to by

27

symtab_command.stroff with the static addresses stored in nlist.n_value.

Such a table is valid for any installation sharing the same build version as the

mach_kernel file used to derive it. This works because while the majority of physical

memory is devoted to dynamic allocation for use by running processes, a portion of the

layout is reserved for the kernel and its static data structures (Bovet & Cesati, 2006).

Figure 1. mach_kernel executable.

nfat_archFAT_MAGIC

fat_arch:
0..nfat_arch

char[strsize]

CPU_TYPE_I386 cpusubtype offset

align

size

mach_header
MH_MAGIC cputype cpusubtype filetype

ncmds sizeofcmds flags

cmd cmdsize

load_command:
0..ncmds

cputype cpusubtype offset

align

size

LC_SYMTAB cmdsize symoff nsyms

stroff strsize

n_strx n_value

command-specific

nlist:
0..nsyms

_kernproc\0

n_strx n_value

n_strx 0x004EB008

… \0… \0

fat_header

28

In revisions 25 and older, volafox built the symbol table directly from

mach_kernel each the tool was executed. This was inefficient and also led to an

undesirable dependency on the kernel executable. In practice, mach_kernel would

therefore need to be copied from a target when performing memory acquisition. Leat

provided a patch to the source, bringing the overlay functionality available in the Linux

branch of Volatility to the volafox project (Leat, 2011; Lee, 2011). The current build (r52

at time of writing) includes an overlay_generator.py utility allowing symbol

table generation for unsupported builds of OS X. A selection of overlay files is also being

distributed with the project. However, since Apple does not publish a comprehensive list

of OS X build numbers it is difficult to know whether this database is complete. A list of

known builds is provided in Appendix A, but it is recommended that mach_kernel

still be copied at time of memory acquisition to guarantee functionality.

2.5.4 Useful Structures.

The symbol table provides memory locations for a number of kernel structures

useful in a forensic examination. The composition of these C structures (members and

their types) can be determined via examination of the Darwin source code in which they

are defined. Suiche (2010) describes several useful symbols and their associated

structures as summarized in Table 2. This work mirrors core functionality of the volafox

project so its equivalent module commands are also listed (Lee, 2011). Note the proc

structure contains many additional members of interest to be explored in Chapter 3.

29

Table 2. volafox commands with associated symbols and kernel structures.
volafox Command os_version

Kernel Symbol version
struct Name none (points to 100-byte string)

Source Definition /xnu/osfmk/i386/lowmem_vectors.s
Useful Members operating system, kernel version, date and username of compilation

volafox Command machine_info

Kernel Symbol machine_info
struct Name machine_info

Source Definition xnu/osfmk/mach/machine.h

Useful Members

integer_t major_version;
integer_t minor_version;
uint64_t max_mem;
uint32_t physical_cpu;
int32_t logical_cpu;

// major kernel version
// minor kernel version
// size of physical memory
// number of CPU cores
// number of threads

volafox Command mount_info

Kernel Symbol mountlist
struct Name mount

Source Definition xnu/bsd/sys/mount_internal.h

Useful Members TAILQ_ENTRY(mount) mnt_list; // linked-list of mounts
struct vfsstatfs mnt_vfsstat;

struct Name vfsstatsf

Source Definition xnu/bsd/sys/mount.h

Useful Members
char f_fstypename;
char f_mntonname;
char f_mntfromname;

// file system type
// directory mounted at
// mounted name

volafox Command kext_info

Kernel Symbol kmod
struct Name kmod_info

Source Definition xnu/osfmk/mach/kmod.h

Useful Members

struct kmod_info *next;
int id;
char name[KMOD_MAX_NAME];
char version[KMOD_MAX_NAME];
int reference_count;
vm_address_t address;
vm_size_t size;

// next linked module

// refs to this module
// starting address
// total size

volafox Command syscall_info

Kernel Symbol nsysent
struct Name none (points to an int)

Source Definition unknown

Useful Members OS-dependent arithmetic required to find sysent based on the address of
nsysent. Suiche (2010) provides details for OS X 10.5 and 10.6.

struct Name sysent

Source Definition xnu/bsd/sys/sysent.h
Useful Members sy_call_t *sy_call; // implementing function

30

volafox Command proc_info
Kernel Symbol kernproc
struct Name proc

Source Definition xnu/bsd/sys/proc_internal.h

Useful Members

LIST_ENTRY(proc) p_list;
pid_t p_pid;
pid_t ppid;
char p_comm[MAXCOMLEN+1];
struct pgrp *p_pgrp

// linked-list of procs
// process identifier
// parent pid
// process name

struct Name pgrp

Source Definition xnu/bsd/sys/proc_internal.h
Useful Members struct session * pg_session;
struct Name session

Source Definition xnu/bsd/sys/proc_internal.h
Useful Members char s_login[MAXLOGNAME]; // process username

The syscall table is potentially valuable for identifying hooked functions. Each

system call addresses should match those stored on-file in mach_kernel, any

discrepancies in the comparison could be evidence of tampering (Wowie, 2009).

Location of the sysent structure in memory changes between versions of OS X,

making the feature difficult to maintain. At present, the syscall_info command is

broken in volafox for 10.7 captures due to this difficulty.

2.6 Summary

This chapter defined key terms and presented the processes for digital forensics,

incident response, and memory analysis. Options available for capturing RAM on Intel

Macs running OS X were discussed along with development and limitations of the Mac

Memory Reader tool. A review of existing work in Linux memory analysis was then

followed by a description of the volafox project being extended for this research.

Technical details required in constructing a kernel symbol table on OS X and several

useful kernel structures were also introduced.

31

III. Methodology

This chapter describes the implementation of a new forensic capability for parsing

open file information from OS X memory captures. When open files are mapped to a

process, the forensic examiner learns which resources the process is accessing on disk.

This listing is useful in determining what information may have been the target for

exfilitration or modification on a compromised system. File handles may also help

identify a suspicious process when unexpected file access or modifications are observed.

Carvey further describes how a list of open files can compliment disk analysis to “get an

understanding of files you should be concerned with during an investigation” (2009, p.

132). Because open files can help characterize process activity and highlight misuse of a

computer, it is highly desirable to recover this information from memory.

A number of factors influence the decision to implement the feature selected.

First, an open files listing is the first to-do item on the volafox project wiki. Second, this

functionality is already represented in the Linux branch for Volatility (Table 1). Third, as

described in Section 2.2.2, capturing this information is a recommended practice during

incident response. Listing network connections was also considered due to the high

forensic value of this information. However, because volafox already includes this as an

alpha module, file handles were determined to have the greater research impact.

The chapter begins with the design goals of the system. Kernel structures

responsible for the target information are then discussed. Organization of the volafox

source is reviewed. Next, implementation of the new volafox module is described along

with modifications to the exiting project source. Finally, the outstanding issues are listed.

32

3.1 System Design

 The developed system consists of software for extracting the open files associated

with processes from a raw memory image on OS X. Implementation extends the existing

volafox tool to parse a variety of kernel structures not previously described in the

literature. Object-oriented design provides a solution that is flexible with respect to both

kernel architecture and operating system version.

3.1.2. Target Functionality.

The desired process-to-file handle information is an approximation of output from

the commands lsof for UNIX and OS X (Apple Inc., 2011), or the Sysinternals

equivalent handle (Russinovich, 2011) for Windows. Common to these tools is the

process associated with each handle, a type classification, and unique identifier. The

Linux branch of Volatility offers a possible format for this information as shown in

Figure 2. Important to note in the output are the handle types for resources other than

files on-disk, such as pipes used for inter-process communication (IPC) and network

sockets.

PID: 2095 TASK: d1970550 CPU: 0 COMMAND: "gdm-binary"
ROOT: / CWD: /var/gdm
 FD FILE DENTRY INODE TYPE PATH
 0 d184b300 d14b9dd8 d19b90a0 CHR /dev/null
 1 d14c4380 d14b9dd8 d19b90a0 CHR /dev/null
 2 d0d0e500 d14b9dd8 d19b90a0 CHR /dev/null
 3 d1520500 cf410338 d07ff9a8 SOCK socket:/[6645]
 4 cca45f00 cbdfcb30 ccc025d8 PIPE
 5 d14c4ec0 cf422228 cf74bb28 PIPE
 6 d1407540 d150d800 d150ee40 CHR /dev/console
 7 d1bd7380 cd59cf70 cf74b9d4 PIPE
 8 d14eb500 cf12add8 d0e83884 REG /home/stevev/.xsession-errors
 9 d14ece40 cf12a888 cc0c821c PIPE
 11 d150bd80 cbdfcb30 ccc025d8 PIPE

Figure 2. Volatility linux_list_open_files output (Cohen & Collett, 2008).

33

A second consideration in deciding on an output format is the resource available

for validating the results. Because the lsof (list open files) command is included with

OS X, it offers a convenient and reliable source of information for comparison.

Emulating the output of this tool not only simplifies such analysis, it also gives the

examiner a familiar interface to interact with. For these reasons, lsof was selected as

the model for output format. Figure 3 shows sample output for the lsof command and

Table 3 describes the information in each column. The new volafox module for listing

open files includes functionality for parsing the nine default lsof fields present in

Figure 3 and the mode identifier integrated with the FD column.

$ lsof –p 109
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 109 6ad cwd DIR 14,2 578 202041 /Users/6ad
bash 109 6ad txt REG 14,2 1346544 262558 /bin/bash
bash 109 6ad txt REG 14,2 1054960 264388 /usr/lib/dyld
bash 109 6ad txt REG 14,2 213385216 466405 /private/var/db/
 dyld/dyld_shared
 _cache_x86_64
bash 109 6ad 0u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 1u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 2u CHR 16,0 0t369 611 /dev/ttys000
bash 109 6ad 255u CHR 16,0 0t369 611 /dev/ttys000

Figure 3. UNIX list open files (lsof) command.

34

3.1.3 Implementation Constraints.

While an ideal implementation would fully duplicate the functionality and

nuances of the lsof command, the diversity of data structures required to accomplish

this makes it impractical with the development resources available for this research. A

design choice is made to focus on file rather than socket or IPC handles for this research

due to the forensic value of the information and because file handles logically divide the

development workload. Constraints of the tool implemented are formalized in Chapter 4,

but there are two key decisions that influence the implementation.

Table 3. UNIX lsof output fields.

COMMAND First nine characters of the UNIX command associated with the process.
PID Process identification number.

USER Login name of the user to whom the process belongs.

FD

File descriptor is a numeral index into the process open handle array optionally
followed by a mode identifier: r (read access), w (write access), or u (both). Two
other descriptors commonly seen are cwd representing the current working
directory for the process and txt used for program text (code and data). These
files are of high forensic value because they include the executable from which
the command was launched, linked libraries, and other memory-mapped files.
See the output section of the lsof manpage for a full list of descriptors used
(Apple Inc., 2011).

TYPE
Node type associated with the handle. See the output section of the lsof
manpage a partial type listing (Apple Inc., 2011). Note that numerous
undocumented types were encountered in testing such as FSEVENT.

DEVICE
Major and minor device numbers separated by a comma. The first number
describes a class of hard/software device and the second is a unique identifier
for a particular instance of that class.

SIZE/OFF Size or offset of a file reported in bytes. Offsets are preceded by a leading 0t to
distinguish when the column is mixed.

NODE
The node number for a local file. This unique identifier is filesystem dependent.
For example, files stored on HFS+ report the catalog node identifier (CNID) for
this field, whereas DEVFS files use a UNIX inode number instead.

NAME Mount point and file system on which a file resides, or name of character special
device.

35

First, the volafox open files module supports a subset of handle types, and only

those subscribing to the virtual node (vnode) interface. The excluded types mean POSIX

semaphores and shared memory files, kernel event queue files, pipes, and sockets are

reported as part of the file descriptor table, but with DEVICE, SIZE/OFF, NODE and

NAME fields unsupported. Additionally, the UNIX lsof command classifies sockets by

a variety of subtypes that the volafox open files module groups together using the generic

description ‘SOCKET’ in the TYPE field.

Second, the module supports a subset of the filesystems available for OS X,

specifically HFS+ and DEVFS. HFS+ is the default format for the OS X boot volume and

DEVFS is used to abstract certain devices, such as special character files. Among other

uses, special character files describe ttys devices controlling the print streams stdin,

stdout, and stderr of terminal programs. HFS+ and DEVFS account for the

filesystems most commonly encountered during development and testing, but the vnode

interface makes reference to at least 20 other types. One impact of this constraint is that

files stored on network filesystems, FAT32, NTFS and others, do not have volafox

support for lsof fields outside the vnode interface.

36

3.2 Key Kernel Structures

This section documents the kernel design recovery research objective specified in

Section 1.1. Implementing the new volafox module for listing open files requires

knowledge of 32 unique C data structures from the OS X source code, four of which are

described by Suiche (2010) to list running processes. These include 26 structure (struct),

three enumeration (enum), and three union definitions. Identifying the data structures

containing critical information and the relationships between them is one of the primary

contributions of this research because “the kernel isn’t heavily commented and its

internals aren’t documented, so you learn by tracing code by hand” (Sesek, 2012). Figure

4 shows an overview of the relevant structures and associated UNIX lsof fields from

Table 3. The names, source files, interesting members, and relationships between these

data structures appear as series of relationship diagrams in Figures 5-8 and Appendix B.

Figure 4. C struct relationship overview.

fileproc

_kernproc

pgrp task _vm_map vm_map_entry

vm_object

vnode_pager

USER
session

COMMAND
PID

proc

NAMEpath
TYPEvnode

vnode

MODE
OFF

TYPEnon-v

fileglob

NAMEdev
DEVICEhfs

mount

DEVICEdevfs
specinfo

FD
filedesc

SIZElink
filefork

SIZEreg
ubc_info

NODEdevfs
devnode

NODEhfs
SIZEdir

cnode

37

 Extracting open file information begins with the kernel symbol table, shown in

Figure 5 and described in Section 2.5.3. Symbol _kernproc provides an address for the

head of the process list, kernel_task (PID 0), which is unique in its use of static data

structures (Singh, 2006b, p. 293). Because of this property, PID 0 does not appear in the

output of UNIX commands such as ps or lsof and therefore is excluded from the file

handles module implementation. The COMMAND and PID fields are members of

struct proc, and USER is located in struct session. Note that p_list is a

substructure, meaning proc contains it as a member rather than using a pointer to

reference it.

Figure 5. Symbol table and process list.

p_pid
task
p_fd
p_textvp
p_comm[MAXCOMLEN+1]
pgrp

proc

le_next
le_prev

p_list
proc proc

p_pid = 0
p_comm =
 "kernel_task"

proc

_IdlePDPT
_IdlePML4
_kernproc
_kmod
_machine_info
_mountlist
_nsysent
_osversion
...

kernel symbol table
0x00101000
0x00100000
0x0085D668
0x0083EA28
0x00847D80
0x008527E0
0x008317D0
0x00860420
...

_kernproc 0x0085D668

pg_session
pgrp

s_login[MAXLOGNAME]
session

filedesc

vnode

task

bsd/sys/proc_internal.h

bsd/sys/proc_internal.h

bsd/sys/proc_internal.h

/mach_kernel

38

Structure task, as pointed to by proc in Figure 5, provides the link to program

text files (FD txt). Program text refers to the code and data segments of an executable,

as well as linked libraries and any other memory-mapped files. This information is

invaluable for identifying rouge processes, which often masquerade as legitimate

executables to avoid detection (SANS Institute, 2008).

Figure 6 shows how these files are referenced. Structure _vm_map stores the

header for a ring of vm_map_entry structures containing the union member object.

Each memory object may reference a struct vm_object or recursively refer to

another entry. Memory mapped files are backed by a vnode pager, but the pager may be

located in the shadow object for external memory managers (Singh, 2006b, p. 571).

Figure 6. Memory-mapped files (txt).

_vm_map

nentries

vm_map_header

object

vm_map_entry

proc

map
task

osfmk/kern/task.h
osfmk/vm/vm_map.h

osfmk/vm/bsd_vm.c

shadow
pager

vm_object
osfmk/vm/vm_object.h

vm_map_entry

vm_map_entry
prev
next

vm_map_links
prev
next

vm_map_links

shadow
pager

vm_object

vnode_handle
vnode_pager

osfmk/vm/vm_map.h

vnode

vm_map_entry

39

The file descriptor table and current working directory are referenced from

struct filedesc as shown in Figure 7. Member filedesc.fd_ofiles is a

pointer to the start of a fileproc array. Elements of the array that contain a valid

fileglob pointer reference a handle, those that do not are available to hold one. The

index into this array represents the numerical file identifier used by the FD field of the

lsof output. Integer filedesc.fd_lastfile indexes the last file in the array and

provides an iteration bound. The array itself makes up the file descriptor table, used by a

process to reference all open files (ASCII, word processing, logs, temp, etc.). File mode,

or read/write access, is determined from the value of fileglob.fg_flag using the

bitmap definitions in bsd/sys/fcntl.h. Member fileglob.fg_offset is the

offset for FIFO and special character files as reported in the lsof SIZE/OFF field. The

Figure 7. File descriptor table.

40

fileglob.fg_data member is a generic pointer that may reference a variety of

structures. As described in Section 3.1.3, full support is constrained to vnode types.

Enumerator fileglob.fg_type holds destination type of the pointer. Any non-vnode

handle can be typed using the values of enum file_type_t, but DEVICE,

SIZE/OFF, NODE and NAME fields are unsupported for such handles using this

research implementation.

Figure 8 shows the struct vnode referenced by proc, vnode_pager,

filedesc and fileglob structures shown in Figures 5-7. The lsof NAME field is a

concatenation of the device name from mount.vfsstatfs.f_mntfromname and a

path of vnode.v_name strings recursively references using vnode.v_parent.

Member vnode.vtype describes the file type of any supported file, and

vnode.v_tag holds the associated filesystem. The number of combinations created by

vnode.v_type and vnode.v_tag leads to branches at union v_un and the

generic pointer v_data. NODE is stored at devnode.dn_ino for all files using the

VT_DEVFS filesystem and in cnode.cat_desc.cd_cnid for VT_HFS. An

encoded device identifier is found at specinfo.si_rdev for VT_DEVFS and in

mount.vfsstatfs.fsid.val[0] for VT_HFS. The device identifier is decoded

using macros in bsd/sys/types.h that return major and minor device numbers.

Returning the correct lsof SIZE/OFF value requires knowledge of vnode.v_type.

For VREG files the size is found in ubc_info.ui_size, however this structure is not

valid for system vnodes that are otherwise regular (Singh, 2006b, p. 605).

41

Figure 8. Virtual node (vnode).

p_textvp
proc

v_type
v_tag
v_un
v_name
v_parent
v_mount
v_data

vnode

vnode_handle
vnode_pager

fd_cdir
filedesc

fg_data
fileglob

VNON
VREG
VDIR
VBLK
VCHR
VLNK
VSOCK
VFIFO
VBAD
VSTR
VCPLX

<< enum >>
vtype

bsd/sys/vnode.h

VT_NON
VT_UFS
VT_NFS
VT_MFS
VT_MSDOSF
VT_LFS
VT_LOFS
VT_FDESC
VT_PORTAL
VT_NULL
VT_UMAP
VT_KERNFS
VT_PROCFS
VT_AFS
VT_ISOFS
VT_UNION
VT_HFS
VT_ZFS
VT_DEVFS
VT_WEBDAV
VT_UDF
VT_AFP
VT_CDDA
VT_CIFS
VT_OTHER

<< enum >>
vtagtype

bsd/sys/vnode.h

bsd/sys/vnode_internal.h
si_rdev

specinfo
bsd/miscfs/specfs/specdev.h

bsd/sys/ubc_internal.h

ui_size
ubc_info

a . o u t \0

v_name
v_parent

vnode

bsd/sys/mount_internal.h
mount

f_mntfromname[MAXPATHLEN]

vfsstatfs

val[0]
fsid

bsd/sys/mount.h

bsd/miscfs/devfs/devfsdefs.h

dn_ino
devnode

filefork

cf_size
cat_fork

bsd/hfs/hfs_cnode.h

bsd/hfs/hfs_catalog.h
c_datafork

cnode

cd_cnid
cat_desc

bsd/hfs/hfs_cnode.h

bsd/hfs/hfs_catalog.h

cat_attr
bsd/hfs/hfs_catalog.h

cau_entries
ca_union2

VREG

v_tag
VT_HFS

v_type

VT_DEVFS

VCHR

42

VDIR file size is calculated using the count in cnode.cat_attr.cau_entries,

the equation:

𝑒𝑛𝑡𝑟𝑖𝑒𝑠 + 2 ∗ AVERAGE_HFSDIRENTRY_SIZE

found in bsd/hfs/hfs_vnops.c, and the macro definition from bsd/hfs/hfs.h.

Finally, VLNK sizes are located in filefork.cat_fork.cf_size.

Starting with the address pointed to by _kernproc, this section describes the

structures and relationships for retrieving information needed to emulate lsof output

for all vnode type files stored on HFS+ or DEVFS filesystems. Table 4 summarizes the

structure members needed to support the required fields.

Table 4. Open file data locations.

! DTYPE
_VNODE

DTYPE_VNODE
 VT_HFS VT_DEVFS
 VREG VDIR VLNK VFIFO

COMMAND proc.p_comm

PID proc.p_pid

USER session.s_login

FD & mode filedesc.fd_ofiles[i] + fileglob.fg_flag

TYPE
fileglob.
fg_type

vnode.v_type

DEVICE mount.vfsstatfs.fsid.val[0]
specinfo.
si_rdev

SIZE/
OFF

ubc_info.
ui_size

cnode.
cat_attr.

cau_entries

filefork.
cat_fork.
cf_size

fileglob.
fg_offset

NODE cnode.cat_desc.cd_cnid
devnode.
dn_ino

NAME
mount.vfsstatfs.f_mntfromname +

recurse(vnode.v_parent->v_name) + vnode.v_name

43

3.2.1 OS X Abstraction Layers.

OS X is a commercial operating system integrating a collection of technologies, a

subset of which are made open source by the Darwin UNIX distribution. This research is

concerned with data structures defined by the Darwin kernel, known as xnu. The xnu

kernel is composed of several additional abstraction layers. Mach, sometimes described

as the xnu microkernel, provides critical low-level services. These are leveraged by BSD,

“the primary system programming interface” (Singh, 2006b, p. 31). Among other

features, the BSD layer supports a process model and virtual file system (VFS) layer.

BSD hooks into Mach for numerous services, such as task operations responsible for

execution and the virtual memory subsystems (Singh, 2006b, p. 33).

Much of the preceding design recovery is a consequence of manual inspection of

the Darwin source code and headers, combined with prototype development in volafox to

verify the purpose of various structure members. However, there are several instances

where the destination of a pointer reference is of unknown or ambiguous type,

complicating this analysis considerably. Figure 9 demonstrates the problem using

struct proc. While three of the members shown are explicitly typed, such as pid_t

p_pptr, the structure pointed to by task is unknown using the definition alone.

Similar issues occur at vm_object.pager, fileglob.fg_data, vnode.v_un

struct proc {
 LIST_ENTRY(proc) p_list;
 pid_t p_pid;
 void * task; /* corresponding task (static)*/
 struct proc * p_pptr;
 …
};

Figure 9. struct proc.

44

and vnode.v_data. These generic object pointers appear at locations where an

interface is needed between two or more different abstraction layers. In the example,

struct proc is a BSD structure and proc.task points to a Mach structure. Figure

10 summarizes the relevant layer interfaces. Note that while fileglob.fg_data only

branches back into the BSD layer for this implementation, support for additional file

types would involve structures such as those for pipes and sockets that may exist outside

the BSD abstraction layer (Singh, 2006b, p. 919).

3.3 Project Volafox

This section describes software design details of the volafox project needed to

understand implementation of the new open file listing module. First, the relevant source

files and Python classes are introduced. Next, the execution flow for the main project file

is traversed to explain where the new module interfaces with the existing code.

Figure 10. Abstraction crossover.

proc.task
pgrp

session
filedesc
fileproc

fileglob.fg_data
vnode_pager
vnode.v_un
vnode.v_data

mount
ubc_info

BSD
bsd/sys osfmk

bsd/miscfs

cnode
filefork

HFS
bsd/hfs

task
_vm_map

vm_map_entry
vm_object.pager

Mach

specinfo
devnode

DEVFS

45

3.3.1 Package Organization

Figure 11 shows a summary of the source files from the volafox package related

to OS X memory analysis. Public classes in each file are indicated in bold. Connections

represent file dependencies, which are labeled with the public function names. The new

open files module, lsof.py, is shown but not discussed until Section 3.4.

Figure 11. volafox package diagram.

46

Main program execution depends on the following source files and directory:

addrspace.py – houses FileAddressSpace class responsible for file operations
on linear memory images.

macho.py – support for the Mac Memory Reader image format (Mach-O), the

MachAddressSpace class is written to be the MMR format equivalent of
FileAddressSpace. As of revision 48 of the project this functionality was
disabled due to compatibility problems with 64-bit analysis.

x86.py / ia32_pml4.py – these files house the address space agnostic classes

IA32PagedMemoryPae and IA32PML4MemoryPae respectively. They are
responsible for performing virtual to physical address translations that can
subsequently be converted to file offsets by either FileAddressSpace or
MachAddressSpace (whichever is passed to the initializer). All requests for
reading raw memory are passed through one of these two objects. PML4 is a
reference to the 4th level page map used by the Intel IA-32e paging scheme (Intel
Corporation, 2012), meaning the second file is the one responsible for handling
64-bit architecture images where the first is used for 32-bit.

imageinfo.py – the imageInfo class inspects a memory image file to determine

the file format (MMR or linear) and kernel architecture (32 or 64-bit) required to
initialize the correct address space and PAE objects already described. It also
returns the OS X build version information for the image needed to select the
correct overlay file. This file also has a main so it can be executed as a stand-
alone utility.

Usage: $ python imageinfo.py IMAGE.mem

overlays/ – as of revision 48, volafox.py no longer accepts a mach_kernel file
argument for building the symbol table. All symbols are read from files in the
overlays directory labeled by OS version and architecture using the Python
pickle library for object serialization. New overlays can be generated from the
kernel executable with the overlay_generator.py utility.

volafox.py – houses the project main() and class volafox responsible for

marshaling the remaining files and classes to preform analysis of OS X memory
images.

Usage: $ python volafox.py -i MEMORY_IMAGE
 [-o INFORMATION][-m KEXT ID][-x PID]

47

The volafox package also includes several stand-alone utilities:

showbootermemorymap.py – outputs the load commands from an MMR image in

the same format as the showbootermemorymap kernel macro debug script
and the /dev/pmap device.

 Usage: $ python showbootermemorymap.py IMAGE.mmr

flatten.py – converts MMR image files from Mach-O into a linear equivalent which

can be analyzed by volafox.py. This script is only operable on 32-bit
architecture, as verified using the imageinfo.py utility.

 Usage: $ python flatten.py SOURCE.mmr DEST.flat

overlay_generator.py – reads the symbol table from a mach_kernel executable

and stores to file in the form of a serialized Python dictionary for use in the
overlays directory.

 Usage: $ python overlay_generator.py MACH_KERNEL

 10.MAJOR.MINOR_ARCH.overlay [32|64]

3.3.2 Module Interface.

As summarized in Table 1, volafox features a number of command options for

parsing information from raw memory. The code implementing these branches, around

1300 lines, is contained within the source file volafox.py. This monolithic software

design is not particularly modular, but the implementation of the new open files

functionality strives to be. This section explains where the new code interfaces with the

existing project.

Since volafox.py is intended to be run in Python executable mode, the support

code of concern begins in main(). This function performs the following actions:

1. Handle command line arguments and the usage statement.

2. Instantiate a new volafox object with path to the raw memory image file.

48

3. Delegate to volafox object for initialization of the correct address space and
PAE objects, a method that also returns the architecture and OS version needed to
select the correct overlay file.

4. Import a symbol table as a Python dictionary from the correct overlay stored on
file as a serialized object.

5. Pass addresses for the _IdlePDPT and _IdlePLM4 symbols to the volafox

object, which uses them to initialize the page table map and thereby completes
setup for virtual to physical address translation.

6. Pass address for the _machine_info symbol to the volafox object, which

uses it to determine the kernel version and stores the result as an instance variable
for branching based on OS (Lion versus Snow Leopard).

7. Branch based on user information requested to call the appropriate class

volafox method. Each information method accepts a kernel symbol address and
returns a string matrix of results.

8. Print results and exit.

The new module adds code to main() for additional argument handling and a branch

for calling a new lsof method in class volafox. Method lsof branches on

architecture to correctly read and unpack the _kernproc symbol and delegates all other

open file analysis to the new source file lsof.py shown in Figure 11.

3.4 File Handle Module Implementation

This section introduces a new file handle module for volafox revision 52. First,

the Unified Modeling Language (UML) is used to present a graphical view of how the

new lsof.py source file is organized in Figures 12-13 and Appendix E. The solution to

flexible analysis of multiple kernel architecture and OS versions follows. Next, the issue

of ambiguous data types is discussed. Finally, modifications to the existing volafox

source code are listed.

49

3.4.1 Object-oriented Design.

While the open files module does not require a complex inheritance hierarchy, a

class diagram still offers the best visual explanation of the software’s design. UML is

therefore used to provide an overview of the lsof.py source file, the complete version

of which is available as a single graphic in Appendix D. Some liberty has been taken with

the standard since the source integrates both object-oriented and imperative programming

elements. Note that aggregate associations are modeled when a class definition includes

an explicit instance variable of another class, while dependencies are used if a class

constructs instances for use only within method scope.

Figure 12 shows the class elements corresponding to structures of the process list

and the file descriptor table. It also specifies the abstract superclass Struct, the parent

of all remaining classes in lsof.py. Figure 13 covers structures related to the vnode

interface and memory-mapped files. The utilities box describes global variables and

function dependencies outside the class hierarchy. The lsof.py box shows imperative

functions which depend on the classes, including the public getfilelist() and

printfilelist(), which serve as an interface to the remaining volafox source code.

50

Figure 12. UML 1 – process list and file descriptors.

51

Figure 13. UML 2 – vnode interface and memory-mapped files.

52

Though Python is not a strictly object-oriented language, its support for classes

allows for a modular implementation that maps to the network of kernel structures

previously discussed. Because C structs group data types, a natural solution to parsing

their content uses object instances as containers for the address space they occupy and

class methods for handling the unpacked data (see Appendix C. Python struct

Library). The open files module defines classes for 18 of the structures described in

Section 3.2, the remaining substructures are handled inside the class methods since they

occupy the address space of the struct in which they are defined.

3.4.2 Structure Templates.

Sections 3.4.2 - 3.4.5 collectively document the research objective from Section

1.1 that requires a flexible process for programmatically handling kernel data structures

defined for different kernel architectures and operating system versions. Existing volafox

modules are not readily extensible and require additional logic branching for each variant

in size or composition of the underlying kernel data structures. The module implemented

for this research uses a dynamic runtime solution consisting of two parts.

First, the following interface is defined to describe required members of each

structure for a given architecture and OS version:

template = { MBR_NAME : (MBR_TYPE, OFFSET, SIZE, FIELD,
 SUB_STRUCT), … }

53

Table 5 lists Python types from the C struct template interface, which itself is

implemented as a dictionary. Substructures are defined as those contained within the

memory allocated for a super structure. They share the same dictionary format as regular

structures and their values are referenced recursively. Figure 14 shows the 32-bit Snow

Leopard variant for the struct proc template.

The second component in the template solution is a Python class initializer that

dynamically selects the correct template for a given subclass at runtime based on the OS

version and architecture of the memory image under analysis. Because classes in the open

template = {
 'p_list' : ('LIST_ENTRY(proc)', 0, 8, '' , {
 'le_next' : ('struct proc *', 0, 4, ''),
 'le_prev' : ('struct proc **', 4, 4, '')
 }
),
 'p_pid' : ('pid_t', 8, 4, 'PID'),
 'task' : ('void *', 12, 4, ''),
 'p_fd' : ('struct filedesc *', 104, 4, ''),
 'p_textvp' : ('struct vnode *', 388, 4, ''),
 'p_comm' : ('char[]', 420, 17, 'COMMAND'),
 'p_pgrp' : ('struct pgrp *', 472, 4, '')
}

Figure 14. struct proc template, 10.6 x86.

Table 5. Template interface fields.

Variable Python
Type Description

template dict template implementing the C stuct interface
MBR_NAME str dictionary key, variable name for a struct member
template[MBR_NAME] tuple dictionary value, a struct member description
MBR_TYPE str C type of the named member
OFFSET int offset in bytes for the member
SIZE int size in bytes for the member type
FIELD str lsof field represented by member
SUB_STRUCT dict recursively defined substructure (optional)

54

files module manage fields and methods associated with a particular kernel structure, all

inherit from the abstract superclass in Figure 15.

 The first four static variables belong to the abstract class and are shared by all

Struct subclasses. The mem variable is a reference to one of the PAE objects described

in Section 3.3.1. Verbose flag ver indicates if all file descriptors should be printed,

including those for types not fully supported by the open files module. The arch and

kvers variables report the kernel architecture and version respectively. The final three

fields are virtual static variables because their assignment is deferred to the subclasses.

The constant TEMPLATES is a nested dictionary from which the static template is

assigned the first time the initializer runs based on value of arch and kvers. The static

class Struct(object):

 mem = None
 ver = False
 arch = -1
 kvers = -1

 TEMPLATES = None
 template = None
 ssize = -1

 def __init__(self, addr):

 if self.__class__.template == None:

 self.__class__.template = self.__class__.TEMPLATES[Struct.arch] \
 [Struct.kvers]

 for item in self.__class__.template.values():
 if (item[1] + item[2]) > self.__class__.ssize:
 self.__class__.ssize = item[1] + item[2]

self.smem = Struct.mem.read(addr, self.__class__.ssize);

Figure 15. Simplified abstract class Struct (no error handling).

55

ssize is subsequently assigned based on the selected template and determines how

many bytes the initializer reads from the address passed as an argument to provide

coverage of all members specified in the structure template.

 Combining the structure template interface with an abstract initializer offers a

solution that greatly simplifies the program logic needed to support a selection of

architectures and OS versions. The result is also highly extensible because new templates

can be added without any code refactoring as long as the member names remain

consistent across versions. Figure 16 shows the concrete subclass corresponding to

struct devnode and demonstrates use of the structure template solution.

3.4.3 Member Offsets and Type Sizing.

While the dictionary constants used to implement structure templates are easy to

work with programmatically, generating their syntax is labor intensive. The open files

module uses (18 classes * 2 versions * 2 architectures) = 72 struct templates, requiring a

class Devnode(Struct):

 TEMPLATES = {
 32:{
 10:{'dn_ino':('ino_t',112,4,'NODE')}
 , 11:{'dn_ino':('ino_t',112,4,'NODE')}
 },
 64:{
 10:{'dn_ino':('ino_t',192,8,'NODE')}
 , 11:{'dn_ino':('ino_t',192,8,'NODE')}
 }
 }

 def __init__(self, addr):
 super(Devnode, self).__init__(addr)

 def getnode(self):
 return unpacktype(self.smem, self.template['dn_ino'], INT)

Figure 16. Concrete class Devnode.

56

great deal of error-prone coding and debugging if generated by hand. Determining size

and offset values for each member in the template is also very difficult to accomplish

manually due to the complexity of defined types included in the kernel structures. The

solution to both of these challenges is an external C program that dissects kernel

structures and automates the generation of the Python dictionary syntax needed for each

template.

The offsets.c program was developed to find the size and offset of each

required structure member and print the results as a structure template for use in

lsof.py. Figure 17 shows a function from the program that prints a template for

struct _vm_map. The variable member is a C structure defined in the program to

hold the fields described in Table 5 and printmember() formats each as a key/value

pair for the enclosing Python dictionary. The argument mh is a function pointer to a

substructure that is printed recursively.

int vm_map() {

 member m;
 int (*mh)(unsigned long int offset) = &vm_map_header;

 printf("struct_vmmap = {");

 m.var_name = "hdr";
 m.var_type = "struct vm_map_header";
 m.offset = offsetof(struct _vm_map, hdr);
 m.size = sizeof(struct vm_map_header);
 m.field = "";
 printmember(m, mh);

 printf("}\n");
 return 0;
}

Figure 17. Template generation function.

57

The C language sizeof operator is used to find the size of any type, and the

preprocessing macro offsetof defined in stddef.h can return the offset of any

member for a given structure. However, most of the header files defining the structures

described in Section 3.2 are not available in the include path for OS X. Sesek (2012)

explains the problem and suggests a workaround in a blog post about kernel debugging:

Structs […] are merely human-friendly offsets into a region of memory.
Their definition and layout can be shamelessly copied from the XNU open
source headers into your kext’s project so that you can access fields in
kernel private structures. As it turns out, virtually ever structure within the
kernel is designed to be opaque to a kext. Apple decided to do this so that
they can freely change the kernel structures, but it also makes writing a
debugging tool like this a little harder. To do so you need to edit the
headers so they compile in your project through a process I call
“munging.”

Sesek’s method was modified to access the kernel definitions needed for offsets.c

using the following steps applied to each required header:

1. Identify all required definitions in a given header file, cut the file content after the
last statement needed to avoid irrelevant dependencies.

2. Remove any #ifdef macros necessary to expose the target definitions.

3. Remove any #include statements for kernel dependencies and replace with a
local version of each header file containing a required definition.

4. Recursively apply steps 1-4 for each local header added.

5. Troubleshoot ad nauseam until the target header can be included without
compilation error.

These steps must be completed for each supported version of OS X due to subtle changes

within the header files. For the 10.7 version of the offsets program 27 different header

files were required to define the data structures needed by the open files module. The

58

10.6 version uses only 17 headers because many of the required definitions are relocated

to the dependent file rather than including them recursively.

 Three out of 18 template functions written for offsets.c are known to produce

incorrect member offsets for 64-bit kernel architecture. The problem is believed to be a

complex definition conflict for some low-level types. Several C types are defined for

userspace with standard libraries such as stdio.h. However, the kernel sometime uses

different sizes for these same types and forced redefinition yields a compilation error.

When the offsetof macro measures a userspace definition the result is an error for

some architectures. Figure 18 shows the offsets.c template contradicting the value

calculated manually from the structure definition in Figure 19.

struct ubc_info {
 memory_object_t ui_pager; // 8-byte pointer
 memory_object_control_t ui_control; // 8-byte pointer
 uint32_t ui_flags; // 4-byte int
 // 4-byte PAD (ptr alignment)

vnode_t ui_vnode; // 8 byte pointer
kauth_cred_t ui_ucred; // 8 byte pointer

 // --------------
 // 40-byte offset

off_t ui_size; // 8-byte int
...
};

Figure 19. Manual offset calculation for 64-bit struct ubc_info (annotated).

struct_ubcinfo = {'ui_size':('off_t',32,8,'SIZE/OFF')}

Figure 18. 10.7 x64 template for struct ubc_info.

59

The printhex() utility written for the open files module can be used to print

the address space in hex of a problematic structure for debugging. Output can be used to

confirm manual sizing as shown in Table 6. The correct value of ui_size in the

example can be verified using output from the UNIX lsof command on the machine the

memory was captured from to be sure the interpretation is correct. This analysis indicates

ui_size should have a 40-byte offset instead of 36 in the template for struct

ubc_info. Similar offset issues exist in the offset.c templates for struct

vnode_pager and struct task. Manual offset calculation and hex analysis was

effective in resolving the problem for these templates as well. In all three cases, the

solution is a manual adjustment made to the TEMPLATES constant of the equivalent

structure class in lsof.py.

 A wrapper for offsets.c called printstructs.py is written to verify the

output dictionary as executable Python code and also print the structure members in a

human-readable format for ease of debugging. Figure 20 shows the output of the

program. The architecture argument on the command line instructs printstructs.py

to compile offsets.c using gcc –arch with either i386 or x86_64 specified as

Table 6. Manual hex sizing.
ubc_info ui_pager ui_control

hex A03F4207 80FFFFFF C02B3B07 80FFFFFF
human ffffff8007423fa0 ffffff80073b2bc0

ubc_info ui_flags ui_vnode
hex 1F000000 00000000 00104007 80FFFFFF

human 31 ffffff8007401000

ubc_info ui_ucred ui_size
hex 00000000 00000000 00EE1400 00000000

human NULL 1371648

60

appropriate. The –arch flag is an Apple-only option according to the gcc manpage,

though in limited testing the standard –m32 and –m64 flags also appear to work. Setting

the flag allows one version of offset.c to produce templates for both the 32 and 64-bit

installations. Dictionary output from printstructs.py was then pasted into the

TEMPLATES constant of each class in lsof.py to complete the definition.

3.4.4 Unions and Type Ambiguity.

As discussed in Section 3.2.1, the union data structure and generic pointers can

lead to ambiguity which must be well-handled by the open files module. One example is

the vm_object member of struct vm_map_entry. This union may refer to a

pointer for vm_object or _vm_map and the address itself cannot be used to distinguish

the two. The open files module deals with this situation by implementing a template test,

which unpacks the values at certain offsets and attempts to match these with the types

expected for the template of a particular structure. The initializer for class

Vm_object demonstrates the technique in Figure 21.

$./printstructs6.py 64 -p
struct_proc = {'p_list':('LIST_ENTRY(proc)',0,16,'',{'le_next':([...]

----------- struct proc (6x64) -----------
LIST_ENTRY(proc) p_list 0 16
 struct proc *le_next 0 8
 struct proc **le_prev 8 8
pid_t p_pid 16 4 PID
void *task 24 8
struct filedesc *p_fd 200 8
struct vnode *p_textvp 664 8
char[] p_comm 700 17 COMMAND
struct pgrp *p_pgrp 752 8

Figure 20. Template output from printstructs.py.

61

The vm_object object structure is characterized by two pointer members followed by a

lock, which is in contrast to the lock followed by two pointers in the _vm_map

definition. Moreover, vm_object appears to initialize these pointers with the address of

the object itself, suggesting both should always be valid when tested. The template test

provides a reliable indicator of the structure type for the pointer stored at

vm_object.vm_map_entry and is used to branch program logic.

3.4.5 Modifications to volafox.py.

The implementation for listing open files is confined to the source file lsof.py

whenever possible in order to support modular software design. However, three

noteworthy changes are required to integrate new code with the existing volafox.py

source file. First, additional argument handling is needed to direct execution of the open

files module from the command line. The modified volafox usage statement in Figure 22

explains the new options.

class Vm_object(Struct):

 TEMPLATES = {...}

 def __init__(self, addr):
 super(Vm_object, self).__init__(addr)
 self.map = None

 ptr1 = unpacktype(self.smem, self.template['memq'][4]['next'], INT)
 ptr2 = unpacktype(self.smem, self.template['memq'][4]['prev'], INT)

 if ptr1 == 0 or ptr2 == 0 \
 or not(Struct.mem.is_valid_address(ptr1)) \
 or not(Struct.mem.is_valid_address(ptr2)):

 # on failure, create map instance to be called recursively

self.map = Vm_map(addr)

Figure 21. Template testing.

62

The optional –p flag emulates the UNIX lsof command option to print open files only

for a specified process. Because the new module only fully supports the handle types

described in Section 3.1.3, the –v flag was added to avoid output of limited value to the

examiner by default. The code supporting the new options is of generic, imperative

design is therefore not discussed in detail.

$ python volafox.py

volafox: release r52; lsof research build 1.0
project: http://code.google.com/p/volafox
 lsof: osxmem@gmail.com
support: 10.6-7; 32/64-bit kernel
 input: *.vmem, *.mmr (Mac Memory Reader, flattened x86)
 usage: python volafox.py -i IMAGE [-o COMMAND [-vp PID]]
 [-m KEXT_ID][-x PID]

WARNING: this is an experimental development build adding support for
listing open files. The code here is NOT in sync with project trunk.

Options:
-o CMD : Print kernel information for CMD (below)
-p PID : List open files for PID (where CMD is "lsof")
-v : Include unsupported types in listing (where CMD is "lsof")
-m KID : Dump kernel extension address space for KID
-x PID : Dump process address space for PID

COMMANDS:
os_version Mac OS X build version
machine_info kernel version, CPU, and memory specifications
mount_info mounted filesystems
kern_kext_info kernel KEXT (Kernel Extensions) listing
kext_info KEXT (Kernel Extensions) listing
proc_info process list
syscall_info syscall table
net_info network socket listing (hash table)
lsof open files listing by process (research)

Figure 22. volafox usage statement.

63

Figure 23 shows the second modification, a new module branch added to main(), note

the call to printfilelist(), one of two public functions in lsof.py.

Finally, Figure 24 shows the stub method added to class volafox which calls the

second public function getfilelist().

elif oflag == 'lsof':
 filelist = m_volafox.lsof(symbol_list['_kernproc'], pid, vflag)
 if vflag:
 print ""
 printfilelist(filelist)
 sys.exit()

Figure 23. volafox lsof command branch.

def lsof(self, sym_addr, pid, vflag):

 if self.arch == 32:
 overlay starting at symbol _kernproc
 kernproc = self.x86_mem_pae.read(sym_addr, 4);

 proc_head = struct.unpack('I', kernproc)[0]

 else: # 64-bit
 kernproc = self.x86_mem_pae.read(sym_addr, 8);
 proc_head = struct.unpack('Q', kernproc)[0]

 return getfilelist(self.x86_mem_pae, self.arch, self.os_version, \

 proc_head, pid, vflag)

Figure 24. lsof method stub added to class volafox.

64

3.5 Open Issues

While the majority of system design goals outlined for the open files module in

Section 3.1 are met by the implementation described in 3.4, there are two outstanding

deficiencies not accounted for in the constraints specified. Both describe limitations of

the kernel structure analysis rather than programming error. Problems reporting the

correct process user and sizing the /dev directory are discussed in this section.

3.5.1 User Field Reporting.

The manpage for the UNIX lsof command describes the output of the USER

field as “the user ID number or login name of the user to whom the process belongs,

usually the same as reported by ps(1)”. However, output from the volafox open files

module is known to incorrectly report the process login name as shown in Figures 25-26.

$./volafox.py –i 10.6.8x86.vmem –o lsof –p 15
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE […]
distnoted 15 root cwd DIR 14,2 1088 2 […]
distnoted 15 root txt REG 14,2 50672 268317 […]
distnoted 15 root txt REG 14,2 1054960 264388 […]
distnoted 15 root txt REG 14,2 213385216 466405 […]
distnoted 15 root 0r CHR 3,2 0t0 297 […]
distnoted 15 root 1 PIPE -1 -1 -1 […]
distnoted 15 root 2 PIPE -1 -1 -1 […]
distnoted 15 root 3u KQUEUE -1 -1 -1 […]
distnoted 15 root 56u SOCKET -1 -1 -1 […]

Figure 25. volafox user output.

lsof –p 15
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE […]
distnoted 15 daemon cwd DIR 14,2 1088 2 […]
distnoted 15 daemon txt REG 14,2 50672 268317 […]
distnoted 15 daemon txt REG 14,2 1054960 264388 […]
distnoted 15 daemon txt REG 14,2 213385216 466405 […]
distnoted 15 daemon 0r CHR 3,2 0t0 297 […]
distnoted 15 daemon 1 PIPE 0x02fe2af8 16384 […]
distnoted 15 daemon 2 PIPE 0x02fe2af8 16384 […]
distnoted 15 daemon 3u KQUEUE […]
distnoted 15 daemon 56u unix 0x02fdef80 0t0 […]

Figure 26. lsof user output.

65

The difference shown is not consistent across all processes of a full file listing. In many

cases the expected USER value is reflected in the output, but not always.

The first test in investigating this issue is to determine whether the problem is

specific to the volafox open files module implementation. Since this part of the open files

methodology is taken from the proc_info command, the same erroneous output for a

given process is expected from both commands. Figure 27 shows that both the lsof and

proc_info commands agree on the USER ‘root’, demonstrating the problem is not

isolated to the open files module.

The second test confirms correctness of the volafox proc_info command

implementation. Volafox parses the username based on Suiche’s original analysis, which

states a “[p]ointer to the process group, pgrp structure, allows us to retrieve the

username of the person who launched the program because this structure contains a

pointer to a structure called session with the username” (2010). Figure 28, a

screenshot from his conference slides, shows the username nfi for the launchd

process. Here nfi (short for Netherlands Forensic Institute) is a local user and therefore

cannot be the correct username for the launchd process. As Singh explains, “user-level

startup is initiated when the kernel executes /sbin/launchd as the first user process”

$./volafox.py –i 10.6.8x86.vmem –o proc_info
list_entry_next pid ppid process name username
02f74d20 0 0 kernel_task
02f747e0 1 0 launchd 6ad
02f74540 10 1 kextd root
02f74000 11 1 notifyd root
03271d20 12 1 diskarbitrationd root
03271540 15 1 distnoted root
...

Figure 27. volafox proc_info output.

66

(2006b). The launchd process is therefore always associated with the username root

since the kernel is responsible for executing it. This demonstrates the problem is also not

specific to the volafox implementation of Suiche’s methodology.

Figure 28. Suiche process list output (2010).

67

The third test determines whether the discrepancy could be the result of a

semantic difference between the user/username fields from the Suiche analysis and the

lsof manpage. The manpage’s “login name of the user to whom the process belongs”

could contradict Suiche’s definition of a user as “the person who launched the program.”

The ps command offers a variety of keywords associated with users and names that can

help. Figure 29 shows the ps output for PID 15, the same example previously shown.

This result rules out the possibility that Suiche was discussing a different, but

nevertheless related and valid username. Figure 30 is the same output for launchd,

showing the username nfi for PID 1 must also be incorrect for all user keywords.

In a fourth test, output of the ps command is used to analyze the structures

involved with username output. The ps manpage states the keyword logname reports

the “login name of user who started the session” and sess is the “session ID.” Both

keywords are likely related to the session structure Suiche pulls the username from.

Figure 31 shows the output of both for the ongoing example.

ps –p 15 –o ucomm,pid,logname,ruser,user
UCOMM PID LOGIN RUSER USER
distnoted 15 daemon daemon daemon

Figure 29. ps name keywords.

ps –p 1 –o ucomm,pid,logname,ruser,user
UCOMM PID LOGIN RUSER USER
launchd 1 root root root

Figure 30. launchd name keywords.

68

The hex output for field “session ID” is equivalent to 50161136 in decimal, so the value

appears to be a pointer rather than an integer as one might expect from the ps definition.

The simple modification in Figure 32 to the class Session initializer allows volafox

to print this address for comparison as shown in the output Figure 33.

Because the ps keyword sess and volafox both report the same address for struct

session, there is evidence to suggest the session.s_login[MAXLOGNAME]

member interrogated by volafox is correct for the keyword logname. The discrepancy

therefore does not appear to be a fault in the source analysis by Suiche.

ps –p 15 –o ucomm,pid,user,logname,sess
UCOMM PID USER LOGIN SESS
distnoted 15 daemon daemon 2fd65f0

Figure 31. ps session keywords.

$ python volafox.py –i 10.6.8x86.vmem -o lsof -p 15
Session address: 2fd65f0
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
distnoted 15 root cwd DIR 14,2 1088 2 /dev/null
...

Figure 33. struct session address.

class Session(Struct):

 TEMPLATES = {...}

 def __init__(self, addr):
 super(Session, self).__init__(addr)
 print "Session Address: %x" %addr

 ...
}

Figure 32. class Session testing modification.

69

The final test in this investigation determines if the intermittent discrepancy can

be explained by changes to the structure linked-lists during memory capture. Hay and

Nance (2009) discuss problems associated with inconsistent memory snapshots resulting

from state changes during capture. The goal is to show that the pgrp and session

structures that are returned for these failure cases are in fact correct for the process, and

not in some momentary transitional state recorded in the image. To accomplish this,

volafox is modified to print the values of additional struct members not required for the

open files module implementation. The results of these experiments have shown:

1. In all cases observed, proc.p_pid == proc.p_pgpid, meaning the
process group identifier can be used as a reference to a process. Note that as
verified in ps, the keyword gid	 ≠ pgid. The process group identifier references
a specific process within a group, it does not identify the group itself.

2. For all failure cases	 proc.p_pgrpid	 ==	 pgrp.pg_id	 ==	 session.s_id.
Since all three structures store a correct identifier referencing the source process,
a reference error does not appear to be at fault.

3. The	 session.s_leader	 member is a proc	 structure pointer described in the

comments as “Session leader. (static)”. In all failure cases, this points back the
source process so there is no reference error apparent from either direction.

4. The proc.si_uid	 member is the only example in any of the three structures

discussed that is typed uid_t	 (user identifier). However, it does not correctly
identify the process UID output of ps. Therefore, supplying the UID rather than
username does not appear to be a valid alternative.

Despite the previous analysis, neither the source nor the solution to the username

field-reporting error is identified. There is also no known method to determine when the

session structure returns the correct value. The bug derives from prior work that is not

the direct focus of the research and therefore is not explored further.

70

3.5.2 Sizing the /dev Directory.

A second problem identified during development is an inability to correctly report

the SIZE/OFF field for certain directories. The /dev directory is typed DTYPE_VNODE

in fileglob.fg_type and VDIR in vnode.v_type. However, it has a tag of

VT_DEVFS from vnode.v_tag rather than the VT_HFS seen for most other

directories. Figure 34 shows an example of /dev as reported by the UNIX lsof

command.

Note that 4495 mod 34 ≠ 0, and therefore sizing by the entry count as

described in Section 3.2 is not valid for this directory. Table 4 gives three alternate

locations for the size applicable to other file types, but none were found to be effective in

this case. Fortunately, due to the unique combination of tag and type for /dev, the

failure is possible to detect. Since the location of the size is unknown, the volafox open

files module prints -1 for the size of /dev to indicate the field is unsupported.

lsof +d /dev
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
launchd 1 root 8r DIR 20,5853800 4495 305 /dev

Figure 34. /dev directory size.

71

3.6 Summary

Section 3.1 of this chapter introduces the goals for a new volafox module to list

open files from a raw memory dump. Section 3.2 covers design recovery of the kernel

structures responsible for the process file descriptor table and memory-mapped files.

Section 3.3 reviews technical details for the existing volafox source code. Section 3.4

describes the open files module implementation, including the new source file lsof.py

and external programs offsets.c and printstructs.py. Finally, Section 3.5

offers an analysis of open issues related to the implementation.

Significant effort is put forth to ensure a well-engineered solution which adheres

to fundamental software design principles. The result is a modular, object-oriented

implementation with a minimal interface to the existing volafox source. For comparison,

the analogous volafox output for the information printed by the UNIX lsof command in

Figure 3 concludes this chapter as Figure 35.

$./volafox.py –i 10.6.8x86.vmem –o lsof –p 109
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 109 6ad cwd DIR 14,2 578 202041 /Users/6ad
bash 109 6ad txt REG 14,2 1346544 262558 /bin/bash
bash 109 6ad txt REG 14,2 1054960 264388 /usr/lib/dyld
bash 109 6ad txt REG 14,2 213385216 466405 /private/var/db/
 dyld/dyld_shared
 _cache_x86_64
bash 109 6ad 0u CHR 16,0 0t400 611 /dev/ttys000
bash 109 6ad 1u CHR 16,0 0t400 611 /dev/ttys000
bash 109 6ad 2u CHR 16,0 0t400 611 /dev/ttys000
bash 109 6ad 255u CHR 16,0 0t400 611 /dev/ttys000

Figure 35. volafox open files listing.

72

IV. Results and Analysis

This chapter tests the effectiveness of the volafox module implemented for listing

open files from an OS X memory capture. As discussed in Section 3.1.2, one reason for

selecting the UNIX lsof (list open files) command as the output format model for the

volafox handles module is the relative ease with which it can be validated. When

executed with administrator privileges on a test system, output provided by lsof acts as

a baseline against which analysis on memory captured from the same system can be

measured.

The following sections define a successful research outcome and describe the

tools, processes, and definitions used to analyze the implementation. A suite of software

test cases consisting of two OS X versions running both 32 and 64-bit kernel architecture

is used to validate the tool. Finally, physical memory captured on a variety of Mac

models is used to exercise the tool on real-world data.

4.1 Module Evaluation Methodology

A successful implementation of the volafox open files module must accurately

report all file handles, adjusted for stated constraints and known deficiencies. However,

because the module represents novel research, no tool exists to validate the output using

only the image of physical memory. Therefore, validation must compare data that

approximates the state of open files when the collection occurred. The UNIX lsof

command offers a source of data for comparison when output is redirected to a file just

before suspending a VM or executing the Mac Memory Reader capture tool.

73

Given the difficulty of direct validation, success must be redefined in terms of the

degree to which the volafox output matches that of the UNIX lsof command. The

complex nature of a modern operating system like OS X guarantees changes to the

system state between the time when the lsof command is run and the memory dump

occurs (Hay & Nance, 2009). Some allowance is necessary to account for changes during

this interval. A successful implementation therefore becomes one that can be validated

against the UNIX lsof command, adjusted for stated constraints, known deficiencies,

and accuracy of the validation method.

 By this definition, limitations of the program that are also shared by lsof are

not an indication of correctness. For example, while the HFS+ filesystem supports 16-bit

Unicode file names, lsof “only outputs printable […] 8 bit characters” per its manpage.

Therefore, the lack of Unicode support within the volafox open files module is not

considered a shortcoming of the implementation for the purpose of this research analysis.

4.1.1 Test Configuration and Design.

The following sections provide a step-by-step description of the processes used to

configure, collect, and compare the results discussed in Section 4.2 and employ the

research tools capture.py and validate.py developed for analysis.

4.1.1.1 Controlled Test Configuration.

This section describes the process for configuring OS X virtual machines used to

validate the research implementation. Output of the process is a virtual machine prepared

for the data collection process. The resulting configuration is intended to minimize

operating system activity during the time between when the validation data is gathered

74

and the memory image is created. This is done so that analysis may focus on differences

caused by the implementation, rather than those resulting from temporal changes that

occur during normal operating conditions. Graphical navigation paths begin with

references to items in the OS X menu bar.

1. Install guest using the VMware Fusion Virtual Machine Assistant with default
settings for the OS X version being configured. Wizard will select minimum
RAM configuration for that version. Note: Apple specifies 2 GB of RAM in the
system requirements for 10.6 Server, however VMware selects 1 GB which
installed and tested without issue during this research.

2. Install guest updates (10.6.8 and 10.7.3 test cases only): à Software Update

3. Disable optional virtual hardware and host interaction in VMware Fusion.

a. Do not install the VMware Tools daemon.

b. Virtual Machine à Settings à USB & Bluetooth à uncheck all

c. Virtual Machine à Settings à Sound Card à Sound Card: OFF

d. Virtual Machine à Settings à CD/DVD à Enable CD/DVD Drive: OFF

e. Virtual Machine à Settings à Display à Accelerate 3D Graphics: OFF

f. Virtual Machine à Settings à Sharing à Shared Folders: OFF

4. Disable networking.

a. Guest: à System Preferences à Network: remove all interfaces

b. VMware Fusion: Virtual Machine à Settings à Network Adaptor à Enable
Network Adaptor: OFF

5. Remove OS X startup items in the guest.

a. Select and delete any items in the following directories:

~/Library/LaunchAgents
/Library/LaunchAgents
/Library/LaunchDaemons
/Library/StartupItems

b. à System Preferences à Users & Groups à Login Items: remove all

75

6. Disable other daemons in the guest.

a. à System Preferences à Software Update à Check for updates: uncheck

b. à System Preferences à Date & Time à Set date and time automatically:
unckeck

c. à System Preferences à Desktop & Screen Saver à Start screen saver:
never

d. à System Preferences à Energy Saver à Computer sleep: never; Display
sleep: never; uncheck all other options

e. Spotlight indexing, Terminal.app:

mdutil –a –i off

f. Server administrative daemon (10.6 Server test case only), Terminal.app:

cd /System/Library/LaunchDaemons/
launchctl unload –w com.apple.servermgrd.plist

4.1.1.2 Controlled Data Collection.

This section describes the process for collecting validation data and an image of

physical memory from virtual machines configured to test the tool. The process outputs a

text file containing the handles reported by the lsof command, and an image of physical

memory saved by VMware Fusion when the virtual machine is suspended (Section

2.4.1). All steps reference actions in the guest OS unless stated otherwise.

1. Launch Terminal.app from /Applications/Utilities. Perform an
execution of lsof with administrator privileges prior to data collection. The
lsof manpage indicates certain data structures may be cached so this ensures
minimum filesystem interaction when the command is run for data collection.

2. Let the system stabilize with no user interaction for approximately 5 minutes.

3. Collect validation data, from Terminal.app:

lsof > ~/lsof.out

76

4. Once command-prompt reappears, user immediately navigates to and clicks the
suspend button in the upper-left-hand corner of the virtual machine window.

5. Host: copy suspended memory image, from Terminal.app:

$ cp PATH/TEST_CASE.vmwarevm/*.vmem ~/Desktop

6. Resume virtual machine and recover the lsof.out validation data file. Because
networking and sharing are disabled, USB support is enabled in the guest so the
file can be copied to the host via external media.

4.1.1.3 Real-word Data Collection.

This section describes the process used to collect real-world data from Mac

computers. The process outputs a text file containing the handles reported by the lsof

command, and an image of physical memory originally created by the Mac Memory

Reader tool, which is then converted using the volafox utility described in Section 3.3.1.

1. Create a collection toolkit using a forensic workstation. First format external USB
media as HFS+ in the OS X Disk Utility application. Next, copy the script
capture.py (Section 4.2.4) and a directory containing Mac Memory Reader
kernel extension along with its dependencies to the root of the formatted device.

2. Plug toolkit into the Mac targeted for collection.

3. Double-click the USB device; this should appear on the desktop once mounted.
Within the resulting window, double-click the icon named capture (the OS X
Finder dies not by default show any file extension).

4. A Terminal window will launch and prompt the user for an administrator
password. Enter the password and follow the remaining instructions. The script
will report the total time elapsed during collection when execution has finished. A
new, uniquely named directory is created on the USB toolkit containing both the
image of physical memory and the output from lsof for comparison.

5. Drag the USB toolkit shown on the desktop to the trash to dismount, then unplug
the device.

6. Prior to analysis, the Mac Memory Reader image must first be converted to a
linear format compatible with volafox. On a forensic workstation, execute the
following from the volafox source code directory:

$ python flatten.py SOURCE.mmr DEST.flat

77

4.1.1.4 Results Comparison.

The tool validate.py is developed to compare output of the lsof command

with the volafox open files listing using Python’s extensive library of list and string

operations. The result is a custom diff program used to build the tables throughout this

chapter and its related appendices. This section describes both the process for using the

tool, and also the tool’s processes for performing comparison. Two input files are

required for the results comparison process. First, the baseline file referred to here as

lsof.out contains an approximate list of open files from the time the memory was

collected. Second, a linear memory image referred to here as image.mem which can be

analyzed by volafox. Output of the process depends on the source data. For controlled

test cases, applicable results are analyzed from the tables in Section 4.2.3 and used to

validate the tool. Results for real-world test cases are summarized in the tables of Section

4.2.4. However, these are not considered part of the validation methodology.

1. Obtain a list of open files from image.mem using volafox, and redirect output to
file. Include -v switch to print all handles including those with partial support.

$ python volafox –i image.mem –vo lsof > vlfx.out

2. Input files vlfx.out and lsof.out are both needed to run validate.py.
The script compares input using a difference taxonomy (Section 4.1.2). The –s
switch is used when analyzing 10.7 test cases (E1). Execute the following:

$ python validate.py [-s] lsof.out vlfx.out

The validate.py script automates the following sequence of steps:

a. Read both files from disk, discard the header line, and store the remaining
lines in a 2D array split on whitespace. The resulting matrices use a row for
each handle and a column for each lsof field described in Table 3.

b. Adjust the list of processes in the lsof matrix for E1 and E3 and the list of
handles in the lsof matrix for E4.

78

c. Adjust the process list in the volafox matrix for E2 and E3.

d. Align the list of processes in both matrices and report any differences as F2.

e. Detect differences in the lsof COMMAND and USER fields (columns 0 and
2 of the matrix), report as F1 and D1 respectively.

f. Align the list of handles (matrix rows) and report any differences as F3.

g. Detect differences in the optional file-mode descriptor from the lsof FD
field (column 3) and report any differences as F4.

h. Detect differences in the lsof TYPE field (column 4) and report differences
as F5. Do not consider socket (C1) or symbolic link (E5) handles.

i. Detect differences in the lsof DEVICE field (column 5) and report
differences as F6. Do not consider FIFO (E6), non-vnode (C2), or non-
HFS+/DEVFS (C3) handles.

j. Detect differences in the lsof SIZE/OFF field (column 6) and report
differences as F7. Do not consider non-vnode (C2) or non-HFS+/DEVFS (C3)
handles, nor those corresponding to the /dev directory (D2) or the ttys file
used by lsof (E7).

k. Detect differences in the lsof NODE field (column 7) and report differences
as F8. Do not consider non-vnode (C2) or non-HFS+/DEVFS (C3) handles.

l. Detect differences in the lsof NAME field (column 8) and report differences
as F8. Do not consider non-vnode (C2) handles.

3. Print the count of processes or handles affected by the constraints (C1-3),
deficiencies (D1,2), explained differences (E1-7), and failures (F1-9) described in
Section 4.1.2 to STDOUT. These text results are transcribed into the detailed test
case results (Tables 15-28) located in Appendix E.

4. Ranges of real-world test case results are summarized in Tables 12 and 13 for
auxiliary research analysis. However, these results are not considered part of the
implementation validation methodology described in the following steps.

5. Controlled test cases results are examined with the goal of identifying previously
unidentified implementation problems. The majority of constraints, deficiencies,
and explained differences are not considered in this analysis as the failures alone
describe possible unknown faults in the tool developed. A summary of these
results is found in Tables 8-11. Note that the username reporting deficiency (D1)
is listed only to emphasize the number of handles affected since it is already
classified as a known bug.

79

6. Each failure reported for the controlled test cases is analyzed manually to
determine if it is likely to represent a validation accuracy fault, or an unknown
implementation problem. This judgment is based on knowledge of OS X internals
and the consistency of the failure across test cases.

7. The difference taxonomy described in Section 4.1.2 is developed through the
iterative application of this process. Reclassify failures as deficiencies, constraints
or explained differences when possible and repeat.

4.1.2 Analysis Taxonomy.

This section identifies differences between the lsof command and output from

the volafox open files module as reported by validate.py. Relationships between

classifications are discussed in Section 4.1.2.4. Order listed does not correspond to the

order in which the validation script determines differences; see Section 4.1.1.4 for the

execution sequence. Table 7 compares various file types and the output fields to

summarize which combinations are affected by the differences classified in the following

sections. The table is also useful for visualizing the scope of the implementation with

regard to file type and impact of the known deficiencies.

Table 7. Field differences versus file type.

File Type COMMAND PID USER FD+
mode TYPE DEVICE SIZE/

OFF NODE NAME

cwd ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓
txt ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓

REG ✓ ✓ D1 ✓ ✓ ✓ ✓ ✓ ✓
DIR ✓ ✓ D1 ✓ ✓ ✓ D2 ✓ ✓

CHR ✓ ✓ D1 ✓ ✓ ✓ E7 ✓ ✓
LINK ✓ ✓ D1 ✓ E5 ✓ ✓ ✓ ✓
FIFO ✓ ✓ D1 ✓ ✓ E6 ✓ ✓ ✓

VNODE
(other) ✓ ✓ D1 ✓ ✓ C3 C3 C3 ✓

PSXSHM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
PSXSEM ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
KQUEUE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2

PIPE ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
FSEVENT ✓ ✓ D1 ✓ ✓ C2 C2 C2 C2
SOCKET ✓ ✓ D1 ✓ C1 C2 C2 C2 C2

80

4.1.2.1 Constraints.

Constraints are defined as differences in output that occur due to system design

decisions. As described in Section 3.1.3, the volafox open files module has several

limitations with regard to handle type and filesystem tag.

C1. The lsof subtype for socket handles cannot be determined. A value of
DTYPE_SOCKET for the member filglob.fg_type indicates a socket
handle. The lsof command reports a number of subtypes for these handles
including: systm, unix, IPv4, IPv6, rte, key, ndrv, and possibly others
that were not observed in testing. Sockets are assigned the generic type SOCKET
in the volafox open files output.

C2. Only handles subscribing to the virtual node (vnode) interface are fully supported.

A value of DTYPE_VNODE for the member fileglob.fg_type indicates the
vnode interface is in use for a particular handle. Full support indicates meaningful
output is reported for all nine lsof command fields. Non-vnode handles show
the value ‘-1’ for DEVICE, SIZE/OFF, NODE, and NAME to indicate these
fields are unsupported in the volafox open files output.

C3. Only vnodes tagged HFS+ or DEVFS are fully supported. A value of VT_HFS or

VT_DEVFS for the member vnode.v_tag indicates a supported filesystem.
The lsof command fields DEVICE, SIZE/OFF, and NODE are defined outside
struct vnode and therefore unsupported for other filesystems. Unsupported
fields are indicated in the volafox open files output with an appropriate value
from ECODE, a global dictionary defined for lsof.py.

4.1.2.2 Deficiencies.

Deficiencies are defined as differences in output that occur due to known bugs. As

described in Section 3.5, the volafox open files module has two open issues.

D1. The lsof USER field is not correctly reported for all processes in a full file
listing. This problem is not consistent across all processes and the volafox open
files module is not capable of detecting its occurrence.

D2. Size of the /dev directory cannot be determined. Handles with vnode.v_type
of VDIR and vnode.v_tag of VT_DEVFS such as /dev show the value ‘-1’
in the SIZE/OFF field.

81

4.1.2.3 Explanations.

Explained differences are those in output that occur due to reproducible

idiosyncrasies of the tools used for capture or validation. They are distinct from failures

because the explanations are not speculative, and the differences can be detected using

automation. Explanations E4, E5, and E6 are believed to be bugs in the OS X version of

the lsof program. However, because lsof is defined as the authoritative standard for

measurement, its bugs are classified as explained differences rather than deficiencies.

E1. The UNIX lsof command output always includes the lsof command and its
associated handles, whereas a memory dump does not. For 10.7 only, the
dependent process sudo is present in addition to lsof.

E2. Memory captured using the Mac Memory Reader tool (see Section 2.4.2) includes

evidence of the process MacMemoryReader and its dependency image,
whereas output from the lsof command does not.

E3. Data collected using capture.py (4.4.3) does not share the process sh because

MacMemoryReader and lsof are executed in different subprocesses.

E4. OS X duplicates some handles in a full listing using lsof. Duplication occurs at
least once per listing. Figure 36 demonstrates the problem.

In all observed cases, the file descriptor ‘twd’ (a composite of cwd and txt)
identifies the duplicate, while all other fields remain the same.

E5. OS X reports the type of symbolic links as ‘0012’ instead of ‘LINK’ in the lsof

TYPE field. The keyword ‘LINK’ is specified in the manpage and therefore the
volafox open files module reports symbolic links using that label. The bug has
only been observed in the 10.7 version of OS X.

$ sudo lsof
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
...
mds 29 root cwd DIR 14,2 1088 2 /
mds 29 root twd DIR 14,2 1088 2 /
...

Figure 36. lsof handle duplication.

82

E6. OS X does not report the lsof DEVICE field for FIFO type files. The manpage
does not discuss the omission and the volafox open files module can determine
the major and minor device number for FIFO special files.

E7. Execution of the lsof command causes the offset of its terminal file (ttys) to
grow. For cases where a ttys file is the same used by the lsof command, any
offset difference is classified as E7 rather than F6.

4.1.2.4 Failures.

Failures are defined as differences in output not already accounted for by

constraints, deficiencies, or explanations that occur due to asynchronous data collection

or implementation artifact. It is important to note that the fault causing failure is

undefined by default. Analysis in Section 4.2 indicates that in most cases failure is a

consequence of validation accuracy rather than an error in the volafox open files module

implementation.

F1. Command name mismatch (field: COMMAND). Adjusted for F2.

F2. Missing/extra process (field: PID). Adjusted for E1, E2, and E3.

F3. Missing/extra file descriptor (field: FD). Adjusted for F2 and E4.

F4. File mode mismatch (field: FD). Adjusted for F3.

F5. File type mismatch (field: TYPE). Adjusted for F3, C1 and E5.

F6. Device mismatch (field: DEVICE). Adjusted for F3, C2, C3, and E6.

F7. Size/offset mismatch (field: SIZE/OFF). Adjusted for F3, C2, C3, D2, and E7.

F8. Node identifier mismatch (field: NODE). Adjusted for F3, C2 and C3.

F9. Pathname mismatch (field: NAME). Adjusted for F3, C2.

Username mismatch is classified as D1 and therefore not listed as a failure. It is

reported in the results after adjustment for F2. Reporting failures F2 and F3 also aligns

the process and handle lists of each file respectively for the remaining failure tests. This

83

means, for example, that F1 does not report command name mismatches that occur due to

a missing process because F2 already accounts for it.

4.2 Results

This section describes the experimental setup used to validate the volafox open

files module, summarizes output from the experiments, and provides analysis of the

results. Experimental data is partitioned in two sets: controlled test cases collected in the

lab and real-world collections from physical Mac hardware. Only the controlled test cases

are directly considered in the validation of the tool, but the real-world data is maintained

due to a number of ancillary conclusions that can be derived from it.

4.2.1 Parameters.

Parameters specify the experimental configurations used to validate the tool.

4.2.1.1 Common Collection Parameters.

• Development/analysis platform: iMac (27-inch Mid 2011), 10.7.x, 8 GB RAM
• Volafox base version: r52, research build (with open files support): 1.0
• OS X version (with UNIX lsof built-in)
• RAM installed

4.2.1.2 Controlled Test Case Parameters.

• VMware Fusion version: 4.1.0
• Memory capture format: *.vmem (VMware frozen memory file, linear format)
• Darwin kernel architecture

4.2.1.3 Real-world Collection Parameters.

• Darwin kernel architecture: i386
• Mac Memory Reader version: 3.0.0
• capture.py build: 1.1
• Mac hardware (model specification)

84

4.2.2 Factors.

Factors specify the subset of parameters discretely varied across experiments.

4.2.2.1 Virtual Machine Configurations.

1. OS X version: 10.6.8
Darwin kernel architecture: i386
RAM installed: 1 GB

2. OS X version: 10.6.0 Server
Darwin kernel architecture: x86_64
RAM installed: 1 GB
Note: by default, 10.6 Snow Leopard installs a 32-bit kernel for the client
version. OS X Server was therefore used instead to achieve this configuration.

3. OS X version: 10.7.3
Darwin kernel architecture: i386
RAM installed: 2 GB

4. OS X version: 10.7.0
Darwin kernel architecture: x86_64
RAM installed: 2 GB

4.2.2.2 Real-world Machine Configurations.

1. OS X version: 10.6.8
RAM installed: 3 GB
Mac Model: MacBook Pro (15-inch Core 2 Duo), S/N code: X6A

2. OS X version: 10.6.8
RAM installed: 2 GB
Mac Model: MacBook Air (13-inch, Late 2010), S/N code: DR2

3. OS X version: 10.6.8
RAM installed: 3 GB
Mac Model: iMac (20-inch Late 2006), S/N code: VUW

4. OS X version: 10.6.8
RAM installed: 4 GB
Mac Model: MacBook Pro (15-inch, Mid 2010), S/N code: AGU

5. OS X version: 10.6.8
RAM installed: 2 GB
Mac Model: Mac mini (Early 2006), S/N code: U35

85

6. OS X version: 10.6.8
RAM installed: 1 GB
Mac Model: iMac (24-inch Mid 2007), S/N code: X8A

7. OS X version: 10.6.8
RAM installed: 4 GB
Mac Model: iMac (27-inch, Mid 2010), S/N code: DB5

8. OS X version: 10.6.8
RAM installed: 4 GB
Mac Model: MacBook Pro (13-inch, Mid 2010), S/N code: ATM

9. OS X version: 10.7.0
RAM installed: 4 GB
Mac Model: MacBook (13-inch Early 2008), S/N code: 0P2

10. OS X version: 10.7.2
RAM installed: 2 GB
Mac Model: MacBook Air, S/N code: 18X

4.2.3 Controlled Test Cases.

Because this research involves implementation of a novel tool, direct validation of

the results is inherently problematic. An approximation using output from lsof

therefore demonstrates the capabilities of the system developed. The validation method

used amounts to a suite of software test cases that either pass or fail. Resulting failures

are then addressed individually, or reclassified in the difference taxonomy before the

suite is rerun. Where an explanation is provided for a failure, the discussion must be

viewed as speculative because all concrete differences identified have been integrated

with the taxonomy described in Section 4.1.2. Furthermore, the difficulty in defining,

acquiring, and replicating clean memory captures means no statistical rigor can be

applied to the validation. The majority of firm numbers from test results are therefore

located in Appendix E to avoid the inference that results were achieved through

performance analysis.

86

 As stated in Section 3.1, one design goal for the system implemented is to provide

coverage for a breadth of operating system versions and kernel architectures. These test

cases are intended to demonstrate that coverage by representing both i386 and x86_64

Intel architectures over the span of minor OS X versions (10.6.0-8 and 10.7.0-3) within

the current and previous releases of the operating system. All tests are performed on

guest installations of OS X running as a virtual machine. This setup offers the linear file

format volafox requires in analyzing 64-bit kernel memory, the contents of which are

written to disk when the VM is suspended. Section 4.1.1.1 describes steps taken to

minimize operating system interference with the state of open files during collection.

 Table 8 shows a summary of the results provided in Appendix E (Table 15) for

the first controlled test case. After accounting for the constraints, deficiencies, and

Table 8. OS X 10.6.8 x86 test case summary.

Diff Field Δ
Count Details

F1 COMMAND 0
F2 PID 0
D1 USER 5 15% of usernames misreported
F3 FD 0
F4 mode 0
F5 TYPE 0
F6 DEVICE 0

F7 SIZE/OFF 1

process:
file:

lsof:
volafox:

diff:

Terminal
/dev/ptmx
0t421
0t452
+31 bytes

F8 NODE 2

process:
file:

lsof:
volafox:

notifyd
/usr/share/zoneinfo/America/New_York
266103
266579

process:
file:

lsof:
volafox:

notifyd
/usr/share/zoneinfo/UTC
226396
266606

F9 NAME 0

87

explained differences listed in Section 4.1.2 (not shown), this table indicates how similar

the volafox open files output is to the lsof approximation.

Table 8 indicates the username deficiency (D1) affects a substantial number of

processes reported. The file size failure (F7) is for the pseudo-tty device opened by

process Terminal. The Terminal application is in the process hierarchy for lsof,

which as explained in E7 is known to modify some ttys device offsets during

execution. The node identification failures (F8) are both files related to time zone opened

by the notifyd process. It is unclear why the notification server would make changes

to these files during lsof execution, however the behavior has been observed in all

controlled test cases.

 Table 9 shows a summary for the second controlled test case (Appendix E, Table

16). The offset and node identification failures (F7, F8) are the same process/file

combinations described for the 10.6.8 x86 results.

Table 9. OS X 10.6.0 Server x64 test case summary.

Diff Field Δ
Count Details

F1 COMMAND 0
F2 PID 0
D1 USER 6 17% of usernames misreported
F3 FD 0
F4 mode 0
F5 TYPE 0
F6 DEVICE 0

F7 SIZE/OFF 1

process:
file:

lsof:
volafox:

diff:

Terminal
/dev/ptmx
0t343
0t360
+17 bytes

F8 NODE 1

process:
file:

lsof:
volafox:

notifyd
/usr/share/zoneinfo/UTC
92583
92789

F9 NAME 0

88

Table 10 shows a summary for the third controlled test case (Appendix E, Table

17). The extra process in the volafox output (F2) is a daemon with the highest PID in the

process list. It therefore appears to have been launched after executing lsof. Additional

file descriptors in the volafox output (F3) belong to launchd. Because the launchd

process manages all other daemons (Singh, 2006b, p. 38), it is very active and therefore

volatile. For both 10.7.x test cases the lsof and launchd processes appear to be

confounded. The offset and node identification failures (F7, F8) are the same process/file

combinations previously described.

Table 10. OS X 10.7.3 x86 test case summary.

Diff Field Δ
Count Details

F1 COMMAND 0

F2 PID +1 process:
volafox:

launchdadd
146

D1 USER 17 38 % of usernames misreported

F3 FD +3

process:
volafox:

type:

launchd
8
SOCKET

process:
volafox:

type:

launchd
46
SOCKET

process:
volafox:

type:

launchd
82
PIPE

F4 mode 0
F5 TYPE 0
F6 DEVICE 0

F7 SIZE/OFF 1

process:
file:

lsof:
volafox:

diff:

Terminal
/dev/ptmx
0t446
0t508
+62 bytes

F8 NODE 1

process:
file:

lsof:
volafox:

notifyd
/usr/share/zoneinfo/UTC
86138
86347

F9 NAME 0

89

Table 11 shows a summary for the last controlled test case (Appendix E, Table

18). Offset and node identification failures (F7, F8), extra process (F2), and the extra

launchd handles (F3) are the same previously discussed. The extra WindowServer

file descriptor appears to be a malformed vnode. All members within the structure are

invalid, and the file name is made up of non-ASCII characters. This case does call into

question the methodology described in Section 3.2 for determining valid descriptors in

Table 11. OS X 10.7.0 x64 test case summary.

Diff Field Δ
Count Details

F1 COMMAND 0

F2 PID +1 process:
volafox:

launchdadd
147

D1 USER 8 19 % of usernames misreported

F3 FD +4

process:
volafox:

type:

launchd
8
SOCKET

process:
volafox:

type:

launchd
79
SOCKET

process:
volafox:

type:

launchd
85
PIPE

process:
volafox:

type:
device:

WindowServer
txt
REG
-6, size: -7, node: -8, name: -9/0åÜ

F4 mode 0
F5 TYPE 0
F6 DEVICE 0

F7 SIZE/OFF 1

process:
file:

lsof:
volafox:

diff:

Terminal
/dev/ptmx
0t455
0t509
+54 bytes

F8 NODE 1

process:
file:

lsof:
volafox:

notifyd
/usr/share/zoneinfo/UTC
86138
86347

F9 NAME 0

90

the file table. Since the occurrence appears to be isolated, it is particularly difficult to

debug this potential implementation failure. One possible explanation is that the handle

may be an initialized but as-yet-unused vnode in the file descriptor table. The current tool

has no ability to detect this condition, though the template test method described in

Section 3.4.4 could possibly be used if a reliable test case could be determined for the

failure. Luckily, the error output is well-handled and therefore a human analyst should be

able to make this determination with ease even if the tool cannot.

Results from the four controlled test cases yield several important conclusions.

First, the volafox open files module is functional for kernels utilizing both Intel i386 and

x86_64 architectures. Second, the tool provides coverage for OS X 10.6.x Snow Leopard

and 10.7.x Lion operating systems. Third, as described in Section 3.5.1, the username

deficiency (D1) results suggest that this field cannot be trusted in the volafox output.

Finally, the low number of unexplained failures suggests the implementation is successful

under the definition in Section 4.1.

4.2.4 Real-world Data Analysis.

In addition to the controlled test cases described in Section 4.2.2, the volafox open

files module was also tested against a set of memory collected from physical machines.

The script capture.py was developed to automate the collection of memory using the

Mac Memory Reader tool described in Section 2.4.2 and a variety of incident response

data from Section 2.2.2 for comparison. These real-world collections are invaluable for

program debugging and revealing edge cases in the open files implementation but are not

well suited for validation for several reasons. First, because failures cannot be replicated

it is difficult to determine if a fault is caused by implementation bug or validation

91

accuracy. Second, the collection time required by Mac Memory Reader (see Appendix F)

assures that output from lsof is always stale when compared to a dump of physical

memory. Finally, the real-world data available does not cover the breadth of OS versions

and kernel architectures.

Appendix F summarizes the collections acquired for analysis. As discussed in

Section 2.5.2, revision 52 of the volafox project on which the open files implementation

is based does support the Mac Memory Reader output format directly. As a result, only

i386 captures can be analyzed with the volafox tool and only after conversion to linear

format using the flatten.py utility. The ten qualifying captures are listed in Section

4.2.2 and the full open files results for each is available in Appendix E.

Table 12. OS X 10.6.8 combined real-world results (8 samples).
Diff Description Quantity or % Per Sample
C1 SOCKET handles cannot be subtyped 15-22% of handles affected
C2 Non-vnode handles are not fully supported 27-40% of handles affected

C3 Non-HFS+/DEVFS vnodes are not fully
supported 0-4% of handles affected

D1 Δ USER field 16-51% of usernames misreported
D2 /dev directory cannot be sized 0 handles affected
E1 lsof process is not shared 1 process removed

E2 MacMemoryReader and image processes
are not shared 2 processes removed

E3 sh process is not shared 1 process removed
E4 Duplicate handles labeled FD: ‘twd’ 2-5 handles removed
E5 LINK handles are mislabeled 0 handles affected
E6 FIFO handles do not report device identifier 0-2 handles affected
E7 lsof ttys file size is not shared 10 handles affected
F1 Δ COMMAND field 0 commands differ
F2 Δ PID field 0-6% of processes removed
F3 Δ FD field 4-22% of handles removed
F4 Δ MODE field 0-2 modes differ
F5 Δ TYPE field 0-2 types differ
F6 Δ DEVICE field 0-2 device identifiers differ
F7 Δ SIZE/OFF field 0-10% of sizes/offsets differ
F8 Δ NODE field 0-8% of node identifiers differ
F9 Δ NAME field 0-3% of names differ

92

Table 12 shows a combined summary of the real-world results for 32-bit samples

running OS X 10.6 Snow Leopard (Appendix E, Tables 19-26). Because the hardware

and software configurations vary greatly between collections, the data points represent

different sample populations that cannot be aggregated to produce valid mean or standard

deviation. Instead, the range of each constraint, deficiency, explained difference, and

failure is reported to offer a general impression of how commonly these differences

occur. A few noteworthy conclusions emerge from this analysis.

1. With up to 6% of processes (F2) and 22% of handles (F3) thrown out for
comparison during alignment, lsof does not approximate the real-world data
very closely. This observation supports the earlier statement that such data makes
a poor choice for tool validation.

2. The set of non-vnode handles (sockets, pipes, semaphores, etc.) make up a
significant portion of the lsof results (C2). This observation highlights one
opportunity for future work.

3. Unsupported file systems (C3) in the real-world data were cross-referenced with

the mount information also collected by the capture.py script to determine
which types should be considered for future support. The results included one
instance each of: msdos (FAT32 external hard drive), cddafs (responsible for
reading audio CDs), and ntfs (Apple Bootcamp installation of Windows).

4. As concluded previously, high occurrence of the username reporting bug (D1)

makes the results of the USER field unreliable. This impacts not only the open
files module in volafox, but also affects the process listing module as explained in
Section 3.5.1.

5. Explained differences (E1-E7) and the /dev sizing deficiency (D2) do not affect

a large number of processes and handles. However, they are enumerated in detail
because each occurrence is an important data cleaning consideration during
validation of the tool.

6. For a given handle the size/offset (F7) and node identifier (F8) information can be

particularly volatile, with up to 10 and 8 percent change observed respectively.
This mirrors the failure behavior observed across test cases in Section 4.2.3.

93

7. Upon inspection of the failures by hand, high volatility of the name field (F9) was
often linked to two applications: Spotlight and the Microsoft suite. Spotlight is
Apple’s indexed search technology and automatically begins processing external
media when mounted. Because the capture.py script is delivered on external
media, the act of collection increases indexing activity. Spotlight should therefore
be an important consideration during incident response because of this observed
impact to the state of open files.

Unlike Snow Leopard, Lion installs a 64-bit kernel for the client OS by default. A

32-bit Lion kernel is only present on older models that received an upgrade installation of

Lion from 32-bit Snow Leopard. This results in fewer qualifying samples available for

analysis.

Table 13 summarizes the remaining real-world results, both taken from

installations of 32-bit 10.7 Lion (Appendix E, Tables 27-28). The samples are from

machines running different minor version of the OS and therefore are grouped only for

Table 13. OS X 10.7.x combined real-world results (2 samples).
Diff Description Quantity or % Per Sample
C1 SOCKET handles cannot be subtyped 22% of handles affected
C2 Non-vnode handles are not fully supported 35,36% of handles affected

C3 Non-HFS+/DEVFS vnodes are not fully
supported 1 handle affected

D1 Δ USER field 40,54% of usernames misreported
D2 /dev directory cannot be sized 1 handle affected
E1 lsof process is not shared 1 process removed

E2 MacMemoryReader and image processes
are not shared 0*,2 processes removed

E3 sh process is not shared 0*,1 process removed
E4 Duplicate handles labeled FD: ‘twd’ 5 handles removed
E5 LINK handles are mislabeled 3 handles affected
E6 FIFO handles do not report device identifier 0 handles affected
E7 lsof ttys file size is not shared 0*,13 handles affected
F1 Δ COMMAND field 0 commands differ
F2 Δ PID field 4,10% of processes removed
F3 Δ FD field 11,14% of handles removed
F4 Δ MODE field 0,2 modes differ
F5 Δ TYPE field 0,2 types differ
F6 Δ DEVICE field 0,1 device identifiers differ
F7 Δ SIZE/OFF field 1% of sizes/offsets differ
F8 Δ NODE field 0,1% of node identifiers differ
F9 Δ NAME field 0,1% of names differ

94

convenience. Ranges are replaced with series for values that vary since there are only two

samples. The general conclusions listed from the 10.6 analysis remain unchanged, but

there are a few interesting highlights. First, the 10.7 results include the unsupported

filesystem (C3) mtmfs used to implement the Mobile Time Machine feature unique to

Lion (Siracusa, 2011). Second, the E2, E3, and E7 results include an asterisk because one

of the samples experienced an interesting collection failure. The capture.py script

and all its associated processes (Python, sh, MacMemoryReader, image, etc.) are

all conspicuously absent from the volafox output for the 18X model sample (see Section

4.2.2 for model codes).

The real-world data identifies a number of implementation problems that may not

have been encountered otherwise. In addition to the truncated process list for 18X, the

U35 model sample causes a previous version of the open files module to enter an infinite

loop due to a self-referencing process in the linked list. These two cases led to a host of

new exception handling code being added to the open files module. Originally for

debugging purposes, the new warnings reveal an abundance of broken pointers present

throughout the real-world samples. Model X8A for example generated over 1200

warnings alone, though this was an extreme case.

Since the invalid pointer warnings were not observed in the controlled test cases,

two explanations are postulated. First, the flatten.py image conversion utility may

not be trustworthy, or there exists a bug in the Mac Memory Reader capture tool itself.

Second, changes to the layout of memory made during capture may result in instability of

the linked data structures reflected in the volafox analysis. Given the number of process

95

and handle changes observed from memory capture to lsof execution in the real-world

results, the second explanation is more likely. One recommendation to mitigate this

problem is to assure memory capture proceeds as rapidly as possible. As indicated in

Appendix F, one factor affecting speed is the type of external media used for capture. The

results show a 16 Mb/s average increase in capture speed when using an external hard

drive over flash storage.

4.3 Summary

Section 4.1 of this chapter introduces the evaluation technique used to validate the

results of the volafox open files module by comparison with approximate output from the

UNIX lsof command. Sections 4.1.1 and 4.1.2 describe the methods used to test the

tool and acquire results. Section 4.2 begins with an overview of the experimental

parameters and factors used to test the implementation. Section 4.2.3 offers an analysis of

controlled test cases used to validate the tool across the breadth of designed operating

system and kernel architecture capabilities. Section 4.2.4 closes with an analysis of

results from a set of real-world data collections.

This chapter systematically approaches validation of the volafox open files

module using a suite of controlled software test cases. The number of failures present

after cleaning the data of enumerated constraints, deficiencies, and explained differences

is small enough to permit individual analysis of the faults. Most failures can be

circumstantially attributed to the precision of the validation method, with one

implementation fault outstanding. Because bugs are an expected element of any complex

software system, the results of this analysis are deemed an acceptable research outcome.

96

V. Conclusions and Recommendations

This chapter reviews the overall conclusions provided by the new volafox open

files implementation and compares research results with stated objectives. Academic and

practical contributions of the work are emphasized. Recommendations for future research

topics related to forensic memory analysis on OS X are also provided. Finally, the future

of the open source volafox project extended by the implementation is discussed.

5.1 Research Conclusions

 This section summarizes research results and the key conclusions derived in

Chapter 4. The original research goal and supporting objectives from Section 1.1 are

restated first with a response offered for each.

5.1.1 Research Goal.

Implement and document a capability for parsing file handles from raw
memory captured on OS X.

Success – the volafox open files module implementation documented in Section

3.4 can list handles associated with regular files, directories, symbolic links, FIFO, and

character special files. Memory-mapped files for the process executable are also parsed

along with the current working directory. Test results are favorable on raw memory from

suspended instances of OS X running in VMware (Section 4.2.3) and memory captured

on physical hardware using the Mac Memory Reader tool (Section 4.2.4).

97

5.1.2 Supporting Objectives.

Perform design recovery of the data structures responsible for handling
open files.

Success – the research implementation effectively leverages the data structures

and references described in Section 3.2 to find and parse file handle information. Class

structure of the open files source file lsof.py is organized to closely resemble that of

the design recovery used to build the module (Appendix B, D).

Develop a flexible process for programmatically handling structures
defined for different kernel architectures and operating system versions.
This necessitates extensible software design resilient to changes in future
versions of OS X.

Success – the data structure template process described in Sections 3.4.2 – 3.4.3

effectively parses data and pointer members for 18 different classes written for the

volafox open files module. Implementation of the process tested favorably against two

architectures (i386, x86_64) and two major versions of OS X (10.6 Snow Leopard, 10.7

Lion) in Section 4.2.3. While the template process was found to be flexible across both

tested versions of OS X, future extensibility relies on consistent naming of key structure

members (Section 3.4.2). Because the development process requires kernel headers

defining key structures, extensibility is also dependent on the open source availability of

the kernel code.

98

5.1.3 Additional Research Conclusions.

Testing the implementation also produced several additional conclusions not

directly related to the research goal and its supporting objectives. First, the open files

module does not reliably output the correct user of a running process, as verified across

all controlled and real-world test cases (Section 4.2). No fault could be identified in the

implementation, nor any problem with the kernel structure analysis described in prior

work (Section 3.5.1). The deficiency is formally listed in Section 4.1.2.2 and represented

in the results. Because the login username is only indirectly related to the file handles

through the process, this open issue does not affect the overall research outcome.

Second, due to the time required for memory capture on physical hardware,

memory analysis tools are difficult to validate on real-world data (Section 4.2.4).

Controlled tests using virtual machine memory images should therefore be used in

development.

Third, the OS X indexed search technology, Spotlight, changes numerous handles

in response to the mounting of external media (Section 4.2.4). This observation should be

considered during incident response and subsequent analysis if the memory capture

toolkit is delivered via mounted filesystem.

Finally, memory captured on physical hardware suffers from a high number of

invalid pointer references, occasionally resulting in malformed linked-lists (Section

4.2.4). Robust exception handling should be implemented to address this problem in a

memory analysis tool. Collection must proceed quickly to minimize state changes during

memory copy and avoid possible loss of evidence. External hard disk is preferable to

flash media due to faster collection speeds (Appendix F).

99

5.2 Significance of Research

This research makes three primary contributions to the field of forensic memory

analysis on OS X.

Design recovery of kernel structures related to open files. While the Darwin

kernel foundation of OS X is open source, it is not well documented. Structured memory

analysis requires knowledge of kernel organization that must be traced by hand from the

source code. The description of data structures and their relationships in this document

will be of use to anybody seeking to implement or extend extraction of OS X file handles

from raw memory.

Dynamic data structure templates. The repeatable, general-purpose process

developed to build structure templates for a range of architecture and operating system

configurations can be applied to existing and future volafox modules. It may also prove

extensible to future versions of OS X. The method implemented to dynamically select the

correct template for a given memory image greatly simplifies the programming logic

needed to support multiple configurations.

Volafox open files module implementation. Because the research code was

designed around a minimal interface to the existing project source, the new module can

be patched against the latest development revision with little or no refactoring. The full

source code for the new module is available in Appendix G. With follow on efforts to

address outstanding constraints and deficiencies, this module could be a component in a

comprehensive tool targeted at technical users and forensic analysts.

100

5.3 Recommendations for Future Research

The problem outlined in Chapter 1 emphasizes use of forensic memory analysis to

replace more invasive incident response methods. Section 2.2.2 lists seven pieces of

information that National Institute of Standards and Technology (NIST) specifies should

be captured during the volatile collection process. Including this research, volafox now

has modules to support four of the seven items. For maximum impact, future OS X

memory analysis research efforts should consider the remainder: login sessions, network

configuration, and operating system time.

Constraints and deficiencies of the research implementation for listing open files,

Sections 4.1.2.1 and 4.1.2.2 respectively, enumerate the work remaining for this specific

module. Support for the following features is recommended in particular:

1. Identifying process ownership – the inability to consistently determine the user
associated with a particular process reduces the credibility of the volafox output
and also its usefulness. A process normally expected to run in userland takes on
new significance when observed executing as root for example. The bug is
pervasive as it affects both the open files and running process modules in volafox
so addressing the user problem is a priority.

2. Support for socket handles – sockets make up a significant portion of the
unsupported handle types. They are of high investigative value and can help
identify remote activity on a target or highlight exfiltration of data. Because the
capabilities of the volafox network information module are currently limited
(Section 2.5.2), the next priority in handle support should include the socket
subtypes (Section 4.1.2.1).

3. Additional filesystem support – real-world test results identified four filesystems
currently unsupported by the open files module: msdos, ntfs, cddafs and
mtmfs. The msdos filesystem (usually FAT32) is a common choice for external
media that must be interoperable with OS X and Windows. Though ntfs is
mounted read-only by OS X, mounts may be present if a Mac is partitioned via
Bootcamp to support dual-boot with Windows. Though not observed in testing,
two additional network filesystems are also worth considering. The proprietary
Apple Filing Protocol (AFP) is the default for OS X filesharing and Common
Internet File System (CIFS) is used for shares mounted over Samba.

101

One final suggestion for future research is to consider the performance analysis of

memory capture speed, the interval required to image a target, as it relates to data

structure corruption. This research assumes the occurrence of invalid pointers and broken

linked data structures (looping references, incomplete listings) is correlated with the time

required to image physical memory. Exploring this relationship further might offer

important insights with regard to the development of efficient tools and processes for

copying physical memory for forensic analysis.

5.3.1 Future of the Volafox Project.

The volafox project currently suffers from a lack of contributing members needed

to build a robust forensics capability that can be relied upon by technical users. This

thesis represents the second academic work to extend volafox (Leat, 2011), but to move

beyond the research domain a larger community is required to develop and validate the

tool. An agenda for the upcoming Forensics and Incident Response Summit (SANS

Institute, 2012) indicates OS X memory analysis may soon be added to the Volatility

framework. Volatility is an established project in the field and the de facto standard for

open source forensic memory analysis. Due to the community support and visibility, it is

recommended that existing work from volafox be integrated with the future OS X branch

of Volatility. Because volafox borrows extensively from the Volatility source, the

transition should not require major refactoring.

102

5.4 Summary

Section 5.1 restates the original research goal and its supporting objectives before

comparing both to the conclusions provided in Chapter 4. Testing shows the

implementation successfully responds to the research goal and the development process

offers a practical demonstration of the derived objectives. Section 5.2 describes the three

significant research contributions: design recovery of kernel structures related to open

files, a process for generating and selecting dynamic data structure templates, and the

volafox open files module itself. Section 5.3 offers recommendations for future research

related to OS X forensic memory analysis and the future of the volafox project.

103

Appendix A. Regular Builds OS X 10.4.4 – 10.7.3

OS X Build Date Darwin Notes
10.4.4 8G1165 Jan 2006 8.4 http://support.apple.com/kb/HT2343
10.4.5 8G1454 Feb 2006 8.5 http://support.apple.com/kb/HT2581
10.4.6 8I1119 Apr 2006 8.6 http://support.apple.com/kb/HT2200

10.4.7 8J2135a Jun 2006 8.7 http://support.apple.com/kb/TA24141

10.4.8 8L2127 Sep 2006 8.8 http://support.apple.com/kb/TA24306

10.4.9 8P2137 Mar 2007 8.9 http://support.apple.com/kb/HT1525

10.4.10 8R2232 Jun 2007 8.10 http://support.apple.com/kb/HT1607

10.4.11 8S2167 Nov 2007 8.11 http://support.apple.com/kb/TA24901

10.5 9A581 Oct 2007 9.0 Retail DVD release;
http://support.apple.com/kb/HT1633

10.5.1 9B18 Nov 2007 9.1 http://support.apple.com/kb/HT1566

10.5.2 9C31 Feb 2008 9.2 http://support.apple.com/kb/HT1327

10.5.3 9D34 May 2008 9.3 http://support.apple.com/kb/HT1141

10.5.4
9E17

Jun 2008 9.4
http://support.apple.com/kb/HT1994

9E25 http://support.apple.com/kb/HT1633

10.5.5 9F33 Sep 2008 9.5 http://support.apple.com/kb/HT2405

10.5.6

9G55 Dec 2008

9.6

http://support.apple.com/kb/HT3194

9G66
Jan 2009

Retail DVD release (part of Mac Box Set);
http://support.apple.com/kb/HT1633

9G71 http://support.apple.com/kb/HT3192

10.5.7 9J61 May 2009 9.7 http://support.apple.com/kb/HT3397

10.5.8

9L30

Aug 2009 9.8

http://support.apple.com/kb/HT1633

9L31a http://support.apple.com/kb/HT3606

9L34 http://support.apple.com/kb/HT3607

10.6
10A432

Aug 2009 10.0

Retail DVD release;
http://support.apple.com/kb/HT1633

10A433 Server retail DVD release;
http://support.apple.com/kb/HT1633

10.6.1 10B504 Sep 2009 10.1 http://support.apple.com/kb/HT3810

10.6.2 10C540 Nov 2009 10.2 http://support.apple.com/kb/HT3874

104

10.6.3

10D573 Mar 2010

10.3

http://support.apple.com/kb/HT4014

10D575 Retail DVD release;
http://support.apple.com/kb/HT1633

10D578 Apr 2010 http://support.apple.com/kb/DL1017

10.6.4
10F569

Jun 2010 10.4
http://support.apple.com/kb/HT4150

10F616 http://support.apple.com/kb/DL1050

10.6.5
10H574

Nov 2010 10.5
http://support.apple.com/kb/HT4250

10H575 http://support.apple.com/kb/DL1327

10.6.6 10J567 Jan 2011 10.6 http://support.apple.com/kb/HT4459

10.6.7 10J869 Mar 2011 10.7 http://support.apple.com/kb/HT4472

10.6.8
10K540 Jun 2011

10.8
http://support.apple.com/kb/HT1633

10K549 Jul 2011 http://support.apple.com/kb/DL1400

10.7
11A511,a Jul 2011

11.0
Retail Mac App Store release;
http://support.apple.com/kb/HT1633

11A511s Aug 2011 Retail USB drive release

10.7.1 11B26 Aug 2011 11.1 http://support.apple.com/kb/HT4764

10.7.2 11C74 Oct 2011 11.2 http://support.apple.com/kb/HT4767

10.7.3 10D50 Feb 2012 11.3
Releases b and d have been observed, symbol
tables appear to be interchangeable;
http://support.apple.com/kb/HT5048

Notes:

1. This information largely summarized from Wikipedia release histories for 10.4-10.7, and
the Apple knowledgebase article “Finding your Mac OS X version and build information”
(http://support.apple.com/kb/HT1633).

2. There are also numerous hardware-specific builds in addition to those listed, some of
which are available in the Apple knowledgebase article “Mac OS X versions (builds) for
computers” (http://support.apple.com/kb/HT1159).

3. Build numbers in bold are those encountered in the course of this research, and therefore
ones for which volafox could be patched to support using the data collected.

105

v_
ty

pe
v_

ta
g

v_
un

v_
na

m
e

v_
pa

re
nt

v_
m

ou
nt

v_
da

ta

vn
od

e

<<
 e

nu
m

 >
>

vt
yp

e

bs
d/

sy
s/

vn
od

e.
h

<<
 e

nu
m

 >
>

vt
ag

ty
pe

bs
d/

sy
s/

vn
od

e.
h

bs
d/

sy
s/

vn
od

e_
in

te
rn

al
.h

si_
rd

evsp
ec

in
fo

bs
d/

m
isc

fs
/s

pe
cf

s/
sp

ec
de

v.h

bs
d/

sy
s/

ub
c_

in
te

rn
al

.h

ui
_s

ize
ub

c_
in

fo

a
.

o
u

t
\0

bs
d/

sy
s/

m
ou

nt
_i

nt
er

na
l.h

m
ou

nt

f_
m

nt
fro

m
na

m
e[

M
AX

PA
TH

LE
N]

vf
ss

ta
tfs

va
l[0

]fs
id

bs
d/

sy
s/

m
ou

nt
.h

bs
d/

m
isc

fs
/d

ev
fs

/d
ev

fs
de

fs
.h

dn
_i

no
de

vn
od

e

fil
ef

or
k

cf
_s

izeca
t_

fo
rk

bs
d/

hf
s/

hf
s_

cn
od

e.
h

bs
d/

hf
s/

hf
s_

ca
ta

lo
g.

h

c_
da

ta
fo

rk

cn
od

e

cd
_c

ni
d

ca
t_

de
sc

bs
d/

hf
s/

hf
s_

cn
od

e.
h

bs
d/

hf
s/

hf
s_

ca
ta

lo
g.

h

ca
t_

at
tr

bs
d/

hf
s/

hf
s_

ca
ta

lo
g.

h

ca
u_

en
tri

es
ca

_u
ni

on
2

VR
EG

v_
ta

g
VT

_H
FS

v_
ty

pe

VT
_D

EV
FS

VC
HR

p_
pi

d
ta

sk
p_

fd
p_

te
xt

vp
p_

co
m

m
[M

AX
CO

M
LE

N+
1]

pg
rp

pr
oc

le
_n

ex
t

le
_p

re
vLI

ST
_E

N
TR

Y
pr

oc
pr

oc
p_

pi
d

=
0

p_
co

m
m

 =

 "k

er
ne

l_
ta

sk
"

pr
oc

_I
dl

eP
DP

T
_I

dl
eP

M
L4

_k
er

np
ro

c
_k

m
od

_m
ac

hi
ne

_i
nf

o
_m

ou
nt

lis
t

_n
sy

se
nt

_o
sv

er
sio

n
...

ke
rn

el
 s

ym
bo

l t
ab

le
0x
00
10
10
00

0x
00
10
00
00

0x
00
85
D6
68

0x
00
83
EA
28

0x
00
84
7D
80

0x
00
85
27
E0

0x
00
83
17
D0

0x
00
86
04
20

...

_k
er

np
ro

c
0x

00
85

D6
68

pg
_s

es
sio

n
pg

rp

s_
lo

gi
n[

M
AX

LO
G

NA
M

E]
se

ss
io

n

bs
d/

sy
s/

pr
oc

_i
nt

er
na

l.h

bs
d/

sy
s/

pr
oc

_i
nt

er
na

l.h

bs
d/

sy
s/

pr
oc

_i
nt

er
na

l.h

/m
ac

h_
ke

rn
el

_v
m

_m
ap

ne
nt

rie
s

vm
_m

ap
_h

ea
de

r

ob
je

ct

vm
_m

ap
_e

nt
ry

m
ap

ta
sk

os
fm

k/
ke

rn
/ta

sk
.h

os
fm

k/
vm

/v
m

_m
ap

.h

sh
ad

ow
pa

ge
rvm

_o
bj

ec
t

os
fm

k/
vm

/v
m

_o
bj

ec
t.h

vm
_m

ap
_e

nt
ry

vm
_m

ap
_e

nt
ry

pr
ev

ne
xt

vm
_m

ap
_l

in
ks

pr
ev

ne
xt

vm
_m

ap
_l

in
ks

sh
ad

ow
pa

ge
rvm

_o
bj

ec
t

os
fm

k/
vm

/b
sd

_v
m

.c

vn
od

e_
ha

nd
le

vn
od

e_
pa

ge
r

os
fm

k/
vm

/v
m

_m
ap

.h

vm
_m

ap
_e

nt
ry

fd
_o

file
s

fd
_c

di
r

fd
_l

as
tfi

le

fil
ed

es
c

f_
fg

lo
bfil
ep

ro
c

fil
ep

ro
c

in
de

x-
of

bs
d/

sy
s/

file
_i

nt
er

na
l.h

bs
d/

sy
s/

file
de

sc
.h

fil
ep

ro
c

fil
ep

ro
c

fg
_fl

ag
fg

_t
yp

e
fg

_o
ffs

et
fg

_d
at

a

fil
eg

lo
b

bs
d/

sy
s/

file
_i

nt
er

na
l.h

<<
 e

nu
m

 >
>

fil
e_

ty
pe

_t

bs
d/

sy
s/

file
_i

nt
er

na
l.h

A
pp

en
di

x
B

. F
ul

l S
tr

uc
tu

re
 D

ia
gr

am

106

Appendix C. Python struct Library

Figure 37 demonstrates the Python standard library function struct.unpack

as utilized by the open files module unpacktype() wrapper. The function is used to

convert C structures represented as binary data to a tuple of equivalent Python types.

From the documentation http://docs.python.org/library/struct.html:

struct.unpack(fmt, string)¶
Unpack the string (presumably packed by pack(fmt, ...))
according to the given format. The result is a tuple even if it
contains exactly one item. The string must contain exactly the
amount of data required by the format (len(string) must
equal calcsize(fmt)).

Within the context of this research string is a variable read from file using either

IA32PagedMemoryPae or IA32PML4MemoryPae, whichever object class volafox

is using an instance of. Return value of len(string) is the number of bytes. The fmt

string literal consists of format characters representing primitive C types from Table 14,

STR = 0 # string: char (8-bit) * size
INT = 1 # int: 32 or 64-bit
SHT = 3 # short: 16-bit

def unpacktype(binstr, member, mtype):
 offset = member[1]
 size = member[2]
 fmt = ''

 if mtype == STR:
 fmt = str(size) + 's'
 elif mtype == INT:
 fmt = 'I' if size == 4 else 'Q'
 elif mtype == SHT:
 fmt = 'H'

 return struct.unpack(fmt, binstr[offset:size+offset])[0]

Figure 37. Simplified lsof.py unpacktype() function.

107

any of which can be preceded by an integral to specify a repeat count (e.g. ‘4h’ à

‘hhhh’). Because pointers are not an available type, the format ‘I’ or ‘Q’ is used to

represent a 32 or 64-bit pointer respectively.

The struct.unpack function performs endian conversion as needed, but it is

not capable of handling the nuances of byte and type alignment for members within a

struct. Padding must therefore be explicitly defined in the format string, but bytes marked

‘x’ are not included as items in the output tuple. For the format '2I392xI52sI'

output would consist of the following sequence of types: int, int, int, string, and int.

Table 14. struct.unpack format characters.

Format C Type Python Type Standard
Size

x pad byte no value
c char string of length 1 1
b signed char integer 1
B unsigned char integer 1
? _Bool bool 1
h short integer 2
H unsigned short integer 2
i int integer 4
I unsigned int integer 4
l long integer 4
L unsigned long integer 4
q long long integer 8
Q unsigned long long integer 8
f float float 4
d double float 8
s char[] string
p char[] string

108

Appendix D. Full UML Diagram

<< abstract >>
Struct The constant TEMPLATES is an~

+mem : IA32*MemoryPae abstract static variable whose definition
+llrub : bool is deferred to the subclasses. The static
+illQ.b : int variable template is chosen from
+~:int TEMPLATES at runtime by _ init_ ()
-TEMPLATEf,? :diet based on the value of arch and kve r s.
-t!ill!R!rue : diet
-~:int
-smem : str {binary}
+ _init_(addr : int)
+validaddr(addr : int) : bool

~

I I I
Session - Ubcinfo Specinfo Filefork

-TEMPLATES :diet -TEMPLATES :diet -TEMPLATES :diet -TEMPLATES :diet
+ _init_(addr : int) + _init_(addr : int) + _init_(addr : int) + _init_(addr : int)

-7

Fileglob - +Qetuser() : str +Qetoff() : int +getdev() : str +getoff() : int
-TEMPLATES: diet t t t t
-FILE TYPE: list I I I I

I I I
-MODE: list I

L--------~--~ Pgrp - I Cnode I---ftype : int -TEMPLATES :diet I -TEMPLATES :diet + _init_(addr : int) + _init_(addr : int) I-- Vnode pager Vnode + _init_(addr : int) +getmode(fd : int) : str +getuser() : str -TEMPLATES :diet ---?
-TEMPLATES :diet +getnode() : int +gettype() : str t + _init_(addr : int) -VNODE TYPE : list +getentries() : int +getoff(): i nt

I +gettxt() : int { pointer } -VNODE TAG : list -+:f etoff() : int +getdata(): int {pointer} I
I-- Vm map entry t -vtype : int Proc I--

-TEMPLATES :diet I -tag: int +self_ptr : int { pointer } I
+ _init_(addr : int) -xnode : *node -TEMPLATES :diet Vm object +getnext() : int { pointer }

'----
-mount : Mount Devnode I--Fileproc I--

-~ : int { pointer } -TEMPLATES :diet +Qettxt() : list ---? + _init_(addr : int) -TEMPLATES :diet -TEMPLATES :diet -filedesc_ptr : int { pointer } -map: Vm map
+ _init_(addr : int) -exe_ptr : int { pointer} t in it _(addr : int)

+getnode() : int + _init_(addr : int)
+getfglob() : int { pointer} I + - +getname() : str -+-g_etnode() : int -pgrp_ptr : int { pointer} I +~ ettxt() : list t +getdev() : str -pid: int I-- Vm map +getpath() : str I

I + - init_(int) -TEMPLATES :diet +gettype() : str I<>- Mount I--
Filedesc I-- +next() : Proc + _init_(addr : int) +getoff(fileglob_offset : int) : str -TEMPLATES :diet

-TEMPLATES: diet +valid() : bool +gettxt() : list -qetparent() : int { pointer } + _init_(addr : int)
+ _init_(addr : int) +setpid(): bool t t +getmount() : str
+getcwd() : int { pointer} +getfd() : int { pointer} I

I +getdev() : str
+getfglobs() : diet +getpid() : int I

I
I +getcmd() : str L..._ Task

+getuser() : str -TEMPLATES :diet lsof.py
o#0 1 1 • oJ -ae, arch : int, kvers : int, +gettxt() : list ---7 + _init_(addr : int)

t +Qettxt() : list 3r }, pid : int, vflag : int) : list

---------- j_-----------------------~-----------------------------------_I ~;;~~~:~~~~~~~~(~~~~t~ Proc) : list

109

Appendix E. Full Test Results

Table 15. OS X 10.6.8 x86 controlled test case results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 100 624 16.0 handle F3
C2 TYPE: not(vnode) 239 624 38.3 handle F3
C3 TYPE: vnode(other) 0 624 0.0 handle F3
D1 Δ USER 5 34 14.7 process F2
D2 NAME: /dev 0 624 0.0 handle F3
E1 COMMAND: lsof,sudo 1 removed process
E2 N/A: vm capture E3
E4 FD: twd 1 removed handle
E5 TYPE: link 0 624 0.0 handle F3
E6 TYPE: fifo 0 624 0.0 handle F3
E7 NODE: node(lsof) 7 624 1.1 handle F3
F1 Δ COMMAND 0 34 0.0 process F2

F2 Δ PID - 0
+ 0

34
34

0.0
0.0 process E1

F3 Δ FD - 0
+ 0

624
624

0.0
0.0 handle F2, E4

F2
F4 Δ MODE 0 624 0.0 handle F3
F5 Δ TYPE 0 524 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 385 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 1 378 0.3 handle F3,C2,C3,D2,E7
F8 Δ NODE 2 385 0.5 handle F3,C2,C3
F9 Δ NAME 0 385 0.0 handle F3,C2

110

Table 16. OS X 10.6.0 Server x64 controlled test case results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 98 642 15.3 handle F3
C2 TYPE: not(vnode) 241 642 37.5 handle F3
C3 TYPE: vnode(other) 0 642 0.0 handle F3
D1 Δ USER 6 35 17.1 process F2
D2 NAME: /dev 1 642 0.2 handle F3
E1 COMMAND: lsof,sudo 1 removed process
E2 N/A: vm capture E3
E4 FD: twd 1 removed handle
E5 TYPE: link 0 642 0.0 handle F3
E6 TYPE: fifo 0 642 0.0 handle F3
E7 NODE: node(lsof) 7 642 1.1 handle F3
F1 Δ COMMAND 0 35 0.0 process F2

F2 Δ PID - 0
+ 0

35
35

0.0
0.0 process E1

F3 Δ FD - 0
+ 0

642
642

0.0
0.0 handle F2, E4

F2
F4 Δ MODE 0 642 0.0 handle F3
F5 Δ TYPE 0 544 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 401 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 1 393 0.3 handle F3,C2,C3,D2,E7
F8 Δ NODE 1 401 0.2 handle F3,C2,C3
F9 Δ NAME 0 401 0.0 handle F3,C2

111

Table 17. OS X 10.7.3 x86 controlled test case results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 140 906 15.5 handle F3
C2 TYPE: not(vnode) 333 906 36.8 handle F3
C3 TYPE: vnode(other) 0 906 0.0 handle F3
D1 Δ USER 17 45 37.8 process F2
D2 NAME: /dev 1 906 0.1 handle F3
E1 COMMAND: lsof,sudo 2 removed process
E2 N/A: vm capture E3
E4 FD: twd 2 removed handle
E5 TYPE: link 3 906 0.3 handle F3
E6 TYPE: fifo 0 906 0.0 handle F3
E7 NODE: node(lsof) 7 906 0.8 handle F3
F1 Δ COMMAND 0 45 0.0 process F2

F2 Δ PID - 0
+ 1

45
46

0.0
2.2 process E1

F3 Δ FD - 0
+ 3

906
909

0.0
0.3 handle F2, E4

F2
F4 Δ MODE 0 906 0.0 handle F3
F5 Δ TYPE 0 763 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 573 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 1 565 0.2 handle F3,C2,C3,D2,E7
F8 Δ NODE 1 573 0.2 handle F3,C2,C3
F9 Δ NAME 0 573 0.0 handle F3,C2

112

Table 18. OS X 10.7.0 x64 controlled test case results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 133 868 15.3 handle F3
C2 TYPE: not(vnode) 317 868 36.5 handle F3
C3 TYPE: vnode(other) 0 868 0.0 handle F3
D1 Δ USER 8 43 18.6 process F2
D2 NAME: /dev 1 686 0.1 handle F3
E1 COMMAND: lsof,sudo 2 removed process
E2 N/A: vm capture E3
E4 FD: twd 2 removed handle
E5 TYPE: link 3 868 0.3 handle F3
E6 TYPE: fifo 0 686 0.0 handle F3
E7 NODE: node(lsof) 7 686 0.8 handle F3
F1 Δ COMMAND 0 43 0.0 process F2

F2 Δ PID - 0
+ 1

43
44

0.0
2.3 process E1

F3 Δ FD 0
4

868
872

0.0
0.5 handle F2, E4

F2
F4 Δ MODE 0 868 0.0 handle F3
F5 Δ TYPE 0 732 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 551 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 1 543 0.2 handle F3,C2,C3,D2,E7
F8 Δ NODE 1 551 0.2 handle F3,C2,C3
F9 Δ NAME 0 551 0.0 handle F3,C2

113

Table 19. OS X 10.6.8, model X6A real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 184 1247 14.8 handle F3
C2 TYPE: not(vnode) 418 1247 33.5 handle F3
C3 TYPE: vnode(other) 2 1247 0.2 handle F3
D1 Δ USER 9 56 16.1 process F2
D2 NAME: /dev 0 1247 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 3 removed handle
E5 TYPE: link 0 1247 0.0 handle F3
E6 TYPE: fifo 0 1247 0.0 handle F3
E7 NODE: node(lsof) 10 1247 0.8 handle F3
F1 Δ COMMAND 0 56 0.0 process F2

F2 Δ PID - 0
+ 2

56
58

0.0
3.4 process E1

F3 Δ FD - 21
+ 68

1268
1315

1.7
5.2 handle F2, E4

F2
F4 Δ MODE 0 1247 0.0 handle F3
F5 Δ TYPE 0 1063 0.0 handle F3,C1,E5
F6 Δ DEVICE 2 827 0.2 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 27 817 3.3 handle F3,C2,C3,D2,E7
F8 Δ NODE 29 827 3.5 handle F3,C2,C3
F9 Δ NAME 27 829 3.3 handle F3,C2

114

Table 20. OS X 10.6.8, model DR2 real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 208 1364 15.2 handle F3
C2 TYPE: not(vnode) 419 1364 30.7 handle F3
C3 TYPE: vnode(other) 0 1364 0.0 handle F3
D1 Δ USER 22 53 41.5 process F2
D2 NAME: /dev 0 1364 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 4 removed handle
E5 TYPE: link 0 1364 0.0 handle F3
E6 TYPE: fifo 0 1364 0.0 handle F3
E7 NODE: node(lsof) 10 1364 0.7 handle F3
F1 Δ COMMAND 0 53 0.0 process F2

F2 Δ PID - 0
+ 1

53
54

0.0
1.9 process E1

F3 Δ FD 86
98

1450
1462

5.9
6.7 handle F2, E4

F2
F4 Δ MODE 1 1364 0.1 handle F3
F5 Δ TYPE 1 1156 0.1 handle F3,C1,E5
F6 Δ DEVICE 1 945 0.1 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 93 935 9.9 handle F3,C2,C3,D2,E7
F8 Δ NODE 74 945 7.8 handle F3,C2,C3
F9 Δ NAME 20 945 2.1 handle F3,C2

115

Table 21. OS X 10.6.8, model VUW real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 186 1065 17.5 handle F3
C2 TYPE: not(vnode) 369 1065 34.6 handle F3
C3 TYPE: vnode(other) 37 1065 3.5 handle F3
D1 Δ USER 22 47 46.8 process F2
D2 NAME: /dev 0 1065 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 4 removed handle
E5 TYPE: link 0 1065 0.0 handle F3
E6 TYPE: fifo 0 1065 0.0 handle F3
E7 NODE: node(lsof) 10 1065 0.9 handle F3
F1 Δ COMMAND 0 47 0.0 process F2

F2 Δ PID - 1
+ 2

48
49

2.1
4.1 process E1

F3 Δ FD - 116
+ 146

1181
1211

9.8
12.1 handle F2, E4

F2
F4 Δ MODE 0 1065 0.0 handle F3
F5 Δ TYPE 0 879 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 659 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 11 649 1.7 handle F3,C2,C3,D2,E7
F8 Δ NODE 14 659 2.1 handle F3,C2,C3
F9 Δ NAME 5 696 0.7 handle F3,C2

116

Table 22. OS X 10.6.8, model AGU real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 163 962 16.9 handle F3
C2 TYPE: not(vnode) 327 962 16.9 handle F3
C3 TYPE: vnode(other) 0 962 0.0 handle F3
D1 Δ USER 9 42 21.4 process F2
D2 NAME: /dev 0 962 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 2 removed handle
E5 TYPE: link 0 962 0.0 handle F3
E6 TYPE: fifo 0 962 0.0 handle F3
E7 NODE: node(lsof) 10 962 1.0 handle F3
F1 Δ COMMAND 0 42 0.0 process F2

F2 Δ PID - 0
+ 2

42
44

0.0
4.5 process E1

F3 Δ FD - 34
+ 22

996
984

3.4
2.2 handle F2, E4

F2
F4 Δ MODE 0 962 0.0 handle F3
F5 Δ TYPE 0 799 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 635 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 2 625 0.3 handle F3,C2,C3,D2,E7
F8 Δ NODE 2 635 0.3 handle F3,C2,C3
F9 Δ NAME 0 635 0.0 handle F3,C2

117

Table 23. OS X 10.6.8, model U35 real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 361 1972 18.3 handle F3
C2 TYPE: not(vnode) 595 1972 30.2 handle F3
C3 TYPE: vnode(other) 18 1972 0.9 handle F3
D1 Δ USER 24 60 40.0 process F2
D2 NAME: /dev 0 1972 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 4 removed handle
E5 TYPE: link 0 1972 0.0 handle F3
E6 TYPE: fifo 2 1972 0.1 handle F3
E7 NODE: node(lsof) 10 1972 0.1 handle F3
F1 Δ COMMAND 0 60 0.0 process F2

F2 Δ PID - 0
+ 2

60
62

0.0
3.2 process E1

F3 Δ FD - 26
+ 51

1998
2023

1.3
2.5 handle F2, E4

F2
F4 Δ MODE 1 1972 0.1 handle F3
F5 Δ TYPE 2 1611 0.1 handle F3,C1,E5
F6 Δ DEVICE 0 1357 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 6 1349 0.4 handle F3,C2,C3,D2,E7
F8 Δ NODE 2 1359 0.1 handle F3,C2,C3
F9 Δ NAME 2 1377 0.1 handle F3,C2

118

Table 24. OS X 10.6.8, model X8A real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 366 1633 22.4 handle F3
C2 TYPE: not(vnode) 645 1633 39.5 handle F3
C3 TYPE: vnode(other) 1 1633 0.1 handle F3
D1 Δ USER 38 74 51.4 process F2
D2 NAME: /dev 0 1633 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 5 removed handle
E5 TYPE: link 0 1633 0.0 handle F3
E6 TYPE: fifo 0 1633 0.0 handle F3
E7 NODE: node(lsof) 10 1633 0.0 handle F3
F1 Δ COMMAND 0 74 0.0 process F2

F2 Δ PID - 1
+ 1

75
75

1.3
1.3 process E1

F3 Δ FD - 150
+ 17

1783
1650

8.4
1.0 handle F2, E4

F2
F4 Δ MODE 1 1633 0.1 handle F3
F5 Δ TYPE 0 1267 0.0 handle F3,C1,E5
F6 Δ DEVICE 1 987 0.1 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 17 977 1.7 handle F3,C2,C3,D2,E7
F8 Δ NODE 6 987 0.6 handle F3,C2,C3
F9 Δ NAME 3 988 0.3 handle F3,C2

119

Table 25. OS X 10.6.8, model DB5 real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 280 1672 16.7 handle F3
C2 TYPE: not(vnode) 598 1672 35.8 handle F3
C3 TYPE: vnode(other) 22 1672 1.3 handle F3
D1 Δ USER 22 61 36.1 process F2
D2 NAME: /dev 0 1672 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 2 removed handle
E5 TYPE: link 0 1672 0.0 handle F3
E6 TYPE: fifo 1 1672 0.1 handle F3
E7 NODE: node(lsof) 10 1672 0.6 handle F3
F1 Δ COMMAND 0 1672 0.0 process F2

F2 Δ PID - 0
+ 0

61
61

0.0
0.0 process E1

F3 Δ FD - 127
+ 50

1799
1722

7.1
2.9 handle F2, E4

F2
F4 Δ MODE 0 1672 0.0 handle F3
F5 Δ TYPE 0 1392 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 1051 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 38 1042 3.6 handle F3,C2,C3,D2,E7
F8 Δ NODE 33 1052 3.1 handle F3,C2,C3
F9 Δ NAME 11 1074 1.0 handle F3,C2

120

Table 26. OS X 10.6.8, model ATM real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 471 2794 16.9 handle F3
C2 TYPE: not(vnode) 765 2794 27.4 handle F3
C3 TYPE: vnode(other) 1 2794 0.0 handle F3
D1 Δ USER 12 65 18.5 process F2
D2 NAME: /dev 0 2794 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 3 removed handle
E5 TYPE: link 0 2794 0.0 handle F3
E6 TYPE: fifo 0 2794 0.0 handle F3
E7 NODE: node(lsof) 10 2794 0.0 handle F3
F1 Δ COMMAND 0 65 0.0 process F2

F2 Δ PID - 1
+ 3

66
68

1.5
4.4 process E1

F3 Δ FD - 352
+ 76

3146
2870

11.2
2.6 handle F2, E4

F2
F4 Δ MODE 2 2794 0.1 handle F3
F5 Δ TYPE 2 2323 0.1 handle F3,C1,E5
F6 Δ DEVICE 1 2027 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 55 2017 2.7 handle F3,C2,C3,D2,E7
F8 Δ NODE 49 2027 2.4 handle F3,C2,C3
F9 Δ NAME 42 2029 2.1 handle F3,C2

121

Table 27. OS X 10.7.0, model 0P2 real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 670 3010 22.3 handle F3
C2 TYPE: not(vnode) 1087 3010 36.1 handle F3
C3 TYPE: vnode(other) 1 3010 0.1 handle F3
D1 Δ USER 36 90 40.0 process F2
D2 NAME: /dev 1 3010 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 2 removed
E3 COMMAND: sh 1 removed
E4 FD: twd 5 removed handle
E5 TYPE: link 3 3010 0.1 handle F3
E6 TYPE: fifo 0 3010 0.0 handle F3
E7 NODE: node(lsof) 13 3010 0.4 handle F3
F1 Δ COMMAND 0 90 0.0 process F2

F2 Δ PID - 0
+ 4

90
94

0.0
4.3 process E1

F3 Δ FD - 308
+ 139

3318
3149

9.3
4.4 handle F2, E4

F2
F4 Δ MODE 2 3010 0.1 handle F3
F5 Δ TYPE 2 2337 0.1 handle F3,C1,E5
F6 Δ DEVICE 1 1922 0.1 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 27 1908 1.4 handle F3,C2,C3,D2,E7
F8 Δ NODE 17 1922 0.9 handle F3,C2,C3
F9 Δ NAME 14 1923 0.7 handle F3,C2

122

Table 28. OS X 10.7.2, model 18X real-world results (1 sample).
Diff Test Count Total % Unit Total XRef
C1 TYPE: socket 542 2469 22.0 handle F3
C2 TYPE: not(vnode) 869 2469 35.2 handle F3
C3 TYPE: vnode(other) 1 2469 0.0 handle F3
D1 Δ USER 38 70 54.3 process F2
D2 NAME: /dev 1 2469 0.0 handle F3
E1 COMMAND: lsof 1 removed process
E2 COMMAND: mmr,image 0 removed
E3 COMMAND: sh 0 removed
E4 FD: twd 5 removed handle
E5 TYPE: link 3 2469 0.1 handle F3
E6 TYPE: fifo 0 2469 0.0 handle F3
E7 NODE: node(lsof) 0 2469 0.0 handle F3
F1 Δ COMMAND 0 70 0.0 process F2

F2 Δ PID - 8
+ 0

78
70

10.3
0.0 process E1

F3 Δ FD - 290
+ 7

2759
2476

10.5
0.3 handle F2, E4

F2
F4 Δ MODE 0 2469 0.0 handle F3
F5 Δ TYPE 0 1924 0.0 handle F3,C1,E5
F6 Δ DEVICE 0 1599 0.0 handle F3,C2,C3,E6
F7 Δ SIZE/OFF 9 1598 0.6 handle F3,C2,C3,D2,E7
F8 Δ NODE 5 1599 0.3 handle F3,C2,C3
F9 Δ NAME 2 1600 0.1 handle F3,C2

123

Appendix F. Hardware Capture Summary

Arch OS X Type Model Media Time RAM (GB) MB/s
1 i386 10.6.8 client AGU HDD 02:39 4 25.8
2 i386 10.6.8 client ATM flash 05:02 4 13.6
3 i386 10.6.8 client DB5 HDD 02:45 4 24.8
4 i386 10.6.8 client DR2 flash 02:37 2 13.0
5 i386 10.6.8 client U35 flash 02:32 2 13.5
6 i386 10.6.8 client VUW flash 03:59 3 12.9
7 i386 10.6.8 client X6A HDD 02:18 3 22.3
8 i386 10.6.8 client X8A HDD 00:38 1 26.9
9 i386 10.7.0 client 0P2 HDD 02:34 4 26.6

10 i386 10.7.2 client 18X HDD 01:24 2 24.4
11 x86_64 10.6.8 client M75 HDD 02:22 4 28.8
12 x86_64 10.7.1 server XYK HDD 02:32 4 26.9
13 x86_64 10.7.2 client 1G0 HDD 02:03 4 33.3
14 x86_64 10.7.2 client 4R1 HDD 01:01 2 33.6
15 x86_64 10.7.2 client 66D flash 05:20 4 12.8
16 x86_64 10.7.2 client 66E HDD 01:55 4 35.6
17 x86_64 10.7.2 client ATM HDD 01:55 4 35.6
18 x86_64 10.7.2 client D6H HDD 01:56 4 35.3
19 x86_64 10.7.2 client H2H flash 05:50 4 11.7
20 x86_64 10.7.2 client H2H HDD 02:17 4 29.9
21 x86_64 10.7.2 client HJP flash 05:56 4 11.5
22 x86_64 10.7.2 client HJP HDD 02:39 4 25.8
23 x86_64 10.7.2 client HJW flash 12:47 8 10.7
24 x86_64 10.7.2 client JWT HDD 02:42 4 25.3
25 x86_64 10.7.2 client JWT HDD 02:42 4 25.3
26 x86_64 10.7.2 client JWV flash 07:46 4 8.8
27 x86_64 10.7.2 client JYC flash 02:58 2 11.5
28 x86_64 10.7.2 client JYD flash 06:36 4 10.3
29 x86_64 10.7.2 client JYD HDD 02:38 4 25.9
30 x86_64 10.7.2 client MGG HDD 02:39 4 25.8
31 x86_64 10.7.2 client MW8 flash 05:59 4 11.4
32 x86_64 10.7.2 client V13 flash 07:07 4 9.59
33 x86_64 10.7.2 client V7L HDD 02:52 4 23.8
34 x86_64 10.7.2 client X92 HDD 01:30 2 22.8
35 x86_64 10.7.2 client YAM flash 03:26 2 9.9
36 x86_64 10.7.2 client ZE2 HDD 03:20 4 20.5
37 x86_64 10.7.2 client ZE5 HDD 02:43 4 25.1
38 x86_64 10.7.2 server MFB flash 08:49 6 11.6

 MIN: 00:38 1 8.8
 MAX: 12:47 8 35.6
 27.39

4526
5

 AVG(flash): 11.5
 AVG(HDD): 27.4

124

Appendix G. Complete Source Code: lsof.py

1 #!/usr/bin/env python
2
3 '''
4 Author: student researcher, osxmem@gmail.com
5 Last Edit: 31 Mar 2012
6 Description: Research implementation of file handle support for volafox.
7
8 Dependent: x86.py defines read and is_valid_address functions for the
9 IA32PagedMemoryPae object passed in the first argument of getfilelist,

10 though it is not an import dependency.
11
12 Constraints:
13 1. NODE field will only be returned for files opened on HFS+ or DEVFS filesystems
14 2. Supported filetypes: VNODE
15 3. Supported subtypes: REG, DIR, CHR, LINK, FIFO
16 4. No unicode support for filenames (8-bit characters only)
17
18 Deficiencies:
19 1. USER field is not reported correctly for many processes (mismatch with lsof and all
20 user-related keywords of ps on the OSX command line)
21 3. Files on DEVFS with vnode type of DIR cannot be sized (e.g /dev)
22
23 Notes:
24 1. All struct classes MUST have at least one element in their template dictionaries
25 (even if not fully implemented during development) or there will be serious
26 performance issues as the size is sorted out.
27 '''
28
29 import sys
30 import struct
31 import inspect
32
33 from sys import stderr
34
35 # error codes which may be printed in the program output
36 ECODE = {
37 'unsupported': -1,
38 'command': -2,
39 'pid': -3,
40 'fd': -4,
41 'type': -5,
42 'device': -6,
43 'size': -7,
44 'node': -8,
45 'name': -9
46 }
47
48 ####################################### UTILITIES #######################################

125

49
50 # convert dev_t (also first member in struct fsid_t) encoding to major/minor device IDs
51 def dev_decode(dev_t):
52
53 # interpreted from the major(x) and minor(x) macros in bsd/sys/types.h
54 maj = (dev_t >> 24) & 255
55 min = dev_t & 16777215
56 return "%d,%d" %(maj, min)
57
58 # print hex representation of a binary string in 8-byte chunks, four to a line
59 def printhex(binstr):
60
61 hexstr = binstr.encode("hex")
62
63 l = len(hexstr)
64 i = 0
65 while i < l:
66 if i+32 < l:
67 line = hexstr[i:i+32]
68 else:
69 line = hexstr[i:]
70 out = ""
71 j = 0
72 for k in xrange(len(line)):
73 out += line[k]
74 if j == 7:
75 out += ' '
76 j = 0
77 else:
78 j += 1
79 print out
80 i += 32
81
82 # print a string matrix as a formatted table of columns
83 def columnprint(headerlist, contentlist, mszlist=[]):
84 num_columns = len(headerlist)
85 size_list = []
86
87 # start sizing by length of column titles
88 for title in headerlist:
89 size_list.append(len(title))
90
91 # resize based on content
92 for i in xrange(num_columns):
93 for line in contentlist:
94 if len(line) != len(headerlist):
95 stderr.write("ERROR length of header list does not match content.\n")
96 return -1
97 if len(line[i]) > size_list[i]:
98 size_list[i] = len(line[i])
99

100 # check sizing against optional max size list

126

101 if len(mszlist) > 0:
102 if len(mszlist) != len(headerlist):
103 stderr.write("ERROR length of header list does not match max size

list.\n")
104 return -1
105 for i in xrange(num_columns):
106 if mszlist[i] < size_list[i] and mszlist[i] > 0: # -1/0 for unrestricted

sz
107 if mszlist[i] < len(headerlist[i]):
108 stderr.write("WARNING max size list and column header length

mismatch.\n")
109 size_list[i] = mszlist[i]
110
111 # prepend header to content list
112 contentlist = [headerlist] + contentlist
113
114 # build comprehensive, justified, printstring
115 printblock = ""
116 for line in contentlist:
117 printline = ""
118 for i in xrange(num_columns):
119 if i == 0:
120 printline += line[i][:size_list[i]].ljust(size_list[i])
121 elif i == (num_columns-1):
122 printline += " " + line[i][:size_list[i]]
123 else:
124 printline += line[i][:size_list[i]].rjust(size_list[i]+1)
125 printblock += printline + '\n'
126
127 sys.stdout.write('%s' %printblock)
128
129 # mtype (enum)
130 STR = 0 # string: char (8-bit) * size
131 INT = 1 # int: 32 or 64-bit
132 SHT = 3 # short: 16-bit
133
134 # return unpacked member from a struct given its memory and a member template
135 def unpacktype(binstr, member, mtype):
136 offset = member[1]
137 size = member[2]
138 fmt = ''
139
140 if mtype == STR:
141 fmt = str(size) + 's'
142 elif mtype == INT:
143 fmt = 'I' if size == 4 else 'Q'
144 elif mtype == SHT:
145 fmt = 'H'
146 else:
147 calling_fxn = sys._getframe(1)
148 stderr.write("ERROR %s.%s tried to unpack the unknown type %d.\n"

%(callingclass(calling_fxn), calling_fxn.f_code.co_name, mtype))

127

149 return None
150
151 if struct.calcsize(fmt) != len(binstr[offset:size+offset]):
152 calling_fxn = sys._getframe(1)
153 stderr.write("ERROR %s.%s tried to unpack '%s' (fmt size: %d) from %d bytes.\n"

%(callingclass(calling_fxn), calling_fxn.f_code.co_name, fmt, struct.calcsize(fmt),
len(binstr[offset:size+offset])))

154 return None
155
156 return struct.unpack(fmt, binstr[offset:size+offset])[0]
157
158 # return the enclosing class when called inside a function (error reporting)
159 def callingclass(calling_fxn):
160 try:
161 classname = calling_fxn.f_locals['self'].__class__.__name__
162 except KeyError:
163 classname = "<unknown>"
164 return classname
165
166 #################################### PRIVATE CLASSES #####################################
167
168 # parent from which all structures derive, an abstract class
169 class Struct(object):
170
171 # static variables (common to all structure subclasses)
172 mem = None
173 verb = False
174 arch = -1
175 kvers = -1
176
177 # abstract static variables (subclass-specific)
178 TEMPLATES = None
179 template = None
180 ssize = -1
181
182 def validaddr(self, addr):
183 if addr == 0:
184 calling_fxn = sys._getframe(1)
185 stderr.write("WARNING %s.%s was passed a NULL address.\n"

%(callingclass(calling_fxn), calling_fxn.f_code.co_name))
186 return False
187 elif not(Struct.mem.is_valid_address(addr)):
188 calling_fxn = sys._getframe(1)
189 stderr.write("WARNING %s.%s was passed the invalid address %.8x.\n"

%(callingclass(calling_fxn), calling_fxn.f_code.co_name, addr))
190 return False
191 return True
192
193 def __init__(self, addr):
194 self.smem = None
195
196 if self.__class__.template == None:

128

197
198 # configure template based on architecture and kernel version
199 if Struct.arch in self.__class__.TEMPLATES:
200 if Struct.kvers in self.__class__.TEMPLATES[Struct.arch]:
201 self.__class__.template =

self.__class__.TEMPLATES[Struct.arch][Struct.kvers]
202 else:
203 stderr.write("ERROR %s has no template for x%d Darwin %d.x.\n"

%(self.__class__.__name__, Struct.arch, Struct.kvers))
204 sys.exit()
205 else:
206 stderr.write("ERROR %s does not support %s architecture.\n"

%(self.__class__.__name__, str(Struct.arch)))
207 sys.exit()
208
209 # set size of the structure by iterating over template
210 for item in self.__class__.template.values():
211 if (item[1] + item[2]) > self.__class__.ssize:
212 self.__class__.ssize = item[1] + item[2]
213
214 if self.validaddr(addr):
215 self.smem = Struct.mem.read(addr, self.__class__.ssize);
216 else:
217 stderr.write("ERROR instance of %s failed to construct with address

%.8x.\n" %(self.__class__.__name__, addr))
218
219 # Cnode --> Filefork
220 class Filefork(Struct):
221
222 TEMPLATES = {
223 32:{
224 10:{'ff_data':('struct

cat_fork',16,96,'',{'cf_size':('off_t',16,8,'SIZE/OFF(LINK)')})}
225 , 11:{'ff_data':('struct

cat_fork',16,96,'',{'cf_size':('off_t',16,8,'SIZE/OFF(LINK)')})}
226 },
227 64:{
228 10:{'ff_data':('struct

cat_fork',32,96,'',{'cf_size':('off_t',32,8,'SIZE/OFF(LINK)')})}
229 , 11:{'ff_data':('struct

cat_fork',32,96,'',{'cf_size':('off_t',32,8,'SIZE/OFF(LINK)')})}
230 }
231 }
232
233 def __init__(self, addr):
234 super(Filefork, self).__init__(addr)
235
236 def getoff(self):
237 return unpacktype(self.smem, self.template['ff_data'][4]['cf_size'], INT)
238
239 # Vnode --> Cnode
240 class Cnode(Struct):

129

241
242 TEMPLATES = {
243 32:{
244 10:{'c_desc':('struct

cat_desc',68,20,'',{'cd_cnid':('cnid_t',80,4,'NODE')}),'c_attr':('struct
cat_attr',88,92,'',{'ca_fileid':('cnid_t',88,4,'NODE'),'ca_union2':('union',140,4,'entries
->SIZE/OFF(dir)')}),'c_datafork':('struct filefork *',204,4,'->datafork')}

245 , 11:{'c_desc':('struct
cat_desc',72,20,'',{'cd_cnid':('cnid_t',84,4,'NODE')}),'c_attr':('struct
cat_attr',92,92,'',{'ca_fileid':('cnid_t',92,4,'NODE'),'ca_union2':('union',144,4,'entries
->SIZE/OFF(dir)')}),'c_datafork':('struct filefork *',208,4,'->datafork')}

246 },
247 64:{
248 10:{'c_desc':('struct

cat_desc',104,24,'',{'cd_cnid':('cnid_t',116,4,'NODE')}),'c_attr':('struct
cat_attr',128,120,'',{'ca_fileid':('cnid_t',128,4,'NODE'),'ca_union2':('union',204,4,'entr
ies->SIZE/OFF(dir)')}),'c_datafork':('struct filefork *',288,8,'->datafork')}

249 , 11:{'c_desc':('struct
cat_desc',112,24,'',{'cd_cnid':('cnid_t',124,4,'NODE')}),'c_attr':('struct
cat_attr',136,120,'',{'ca_fileid':('cnid_t',136,4,'NODE'),'ca_union2':('union',212,4,'entr
ies->SIZE/OFF(dir)')}),'c_datafork':('struct filefork *',296,8,'->datafork')}

250 }
251 }
252
253 def __init__(self, addr):
254 super(Cnode, self).__init__(addr)
255
256 def getnode(self):
257 return unpacktype(self.smem, self.template['c_desc'][4]['cd_cnid'], INT)
258
259 def getentries(self): # used to calculate size for DIR files
260 return unpacktype(self.smem, self.template['c_attr'][4]['ca_union2'], INT)
261
262 def getoff(self): # returns the size for LINK files
263 datafork_ptr = unpacktype(self.smem, self.template['c_datafork'], INT)
264 datafork = Filefork(datafork_ptr)
265 return datafork.getoff()
266
267 # Vnode --> Devnode
268 class Devnode(Struct):
269
270 TEMPLATES = {
271 32:{
272 10:{'dn_ino':('ino_t',112,4,'NODE(CHR)')}
273 , 11:{'dn_ino':('ino_t',112,4,'NODE(CHR)')}
274 },
275 64:{
276 10:{'dn_ino':('ino_t',192,8,'NODE(CHR)')}
277 , 11:{'dn_ino':('ino_t',192,8,'NODE(CHR)')}
278 }
279 }
280

130

281 def __init__(self, addr):
282 super(Devnode, self).__init__(addr)
283
284 def getnode(self):
285 return unpacktype(self.smem, self.template['dn_ino'], INT)
286
287 # Vnode --> Specinfo
288 class Specinfo(Struct):
289
290 TEMPLATES = {
291 32:{
292 10:{'si_rdev':('dev_t',12,4,'->DEVICE(CHR)')}
293 , 11:{'si_rdev':('dev_t',12,4,'->DEVICE(CHR)')}
294 },
295 64:{
296 10:{'si_rdev':('dev_t',24,4,'->DEVICE(CHR)')}
297 , 11:{'si_rdev':('dev_t',24,4,'->DEVICE(CHR)')}
298 }
299 }
300
301 def __init__(self, addr):
302 super(Specinfo, self).__init__(addr)
303
304 def getdev(self):
305 dev_t = unpacktype(self.smem, self.template['si_rdev'], INT)
306 return dev_decode(dev_t)
307
308 # Vnode --> Ubcinfo
309 class Ubcinfo(Struct):
310
311 TEMPLATES = {
312 32:{
313 10:{'ui_size':('off_t',20,8,'SIZE/OFF(REG)')}
314 , 11:{'ui_size':('off_t',20,8,'SIZE/OFF(REG)')}
315 },
316 64:{ # NOTE: 10.6/7x64 offset for ui_size edited manually 32 --> 40
317 10:{'ui_size':('off_t',40,8,'SIZE/OFF(REG)')}
318 , 11:{'ui_size':('off_t',40,8,'SIZE/OFF(REG)')}
319 }
320 }
321
322 def __init__(self, addr):
323 super(Ubcinfo, self).__init__(addr)
324
325 def getoff(self):
326 return unpacktype(self.smem, self.template['ui_size'], INT)
327
328 # Vnode --> Mount
329 class Mount(Struct):
330
331 TEMPLATES = {
332 32:{

131

333 10:{'mnt_vfsstat':('struct
vfsstatfs',76,2152,'',{'f_fsid':('fsid_t',132,8,'',{'val[0]':('int32_t',132,4,'-
>DEVICE'),'val[1]':('int32_t',136,4,'')}),'f_mntonname':('char[]',168,1024,'->NAME')})}

334 , 11:{'mnt_vfsstat':('struct
vfsstatfs',76,2152,'',{'f_fsid':('fsid_t',132,8,'',{'val[0]':('int32_t',132,4,'-
>DEVICE'),'val[1]':('int32_t',136,4,'')}),'f_mntonname':('char[]',168,1024,'->NAME')})}

335 },
336 64:{
337 10:{'mnt_vfsstat':('struct

vfsstatfs',136,2164,'',{'f_fsid':('fsid_t',196,8,'',{'val[0]':('int32_t',196,4,'-
>DEVICE'),'val[1]':('int32_t',200,4,'')}),'f_mntonname':('char[]',232,1024,'->NAME')})}

338 , 11:{'mnt_vfsstat':('struct
vfsstatfs',132,2164,'',{'f_fsid':('fsid_t',192,8,'',{'val[0]':('int32_t',192,4,'-
>DEVICE'),'val[1]':('int32_t',196,4,'')}),'f_mntonname':('char[]',228,1024,'->NAME')})}

339 }
340 }
341
342 def __init__(self, addr):
343 super(Mount, self).__init__(addr)
344
345 def getmount(self):
346 return unpacktype(self.smem, Mount.template['mnt_vfsstat'][4]['f_mntonname'],

STR).split('\x00', 1)[0].strip('\x00')
347
348 def getdev(self):
349 dev_t = unpacktype(self.smem,

Mount.template['mnt_vfsstat'][4]['f_fsid'][4]['val[0]'], INT)
350 return dev_decode(dev_t)
351
352 # Proc --> Vnode (exe)
353 # Filesesc --> Vnode (cwd)
354 # Fileglob --> Vnode
355 # Vnode --> Vnode (parent)
356 class Vnode(Struct):
357
358 TEMPLATES = {
359 32:{
360

 10:{'v_type':('uint16_t',68,2,'TYPE(vnode)'),'v_tag':('uint16_t',70,2,'vfs-
type'),'v_un':('union',76,4,'->ubc_info/specinfo'),'v_name':('const char
*',116,4,'NAME'),'v_parent':('vnode_t',120,4,'-
>vnode(parent)'),'v_mount':('mount_t',136,4,'->mount'),'v_data':('void *',140,4,'-
>cnode/devnode')}

361 ,
11:{'v_type':('uint16_t',64,2,'TYPE(vnode)'),'v_tag':('uint16_t',66,2,'vfs-
type'),'v_un':('union',72,4,'->ubc_info/specinfo'),'v_name':('const char
*',112,4,'NAME'),'v_parent':('vnode_t',116,4,'-
>vnode(parent)'),'v_mount':('mount_t',132,4,'->mount'),'v_data':('void *',136,4,'-
>cnode/devnode')}

362 },
363 64:{
364

132

 10:{'v_type':('uint16_t',112,2,'TYPE(vnode)'),'v_tag':('uint16_t',114,2,'vfs-
type'),'v_un':('union',120,8,'->ubc_info/specinfo'),'v_name':('const char
*',184,8,'NAME'),'v_parent':('vnode_t',192,8,'-
>vnode(parent)'),'v_mount':('mount_t',224,8,'->mount'),'v_data':('void *',232,8,'-
>cnode/devnode')}

365 ,
11:{'v_type':('uint16_t',104,2,'TYPE(vnode)'),'v_tag':('uint16_t',106,2,'vfs-
type'),'v_un':('union',112,8,'->ubc_info/specinfo'),'v_name':('const char
*',176,8,'NAME'),'v_parent':('vnode_t',184,8,'-
>vnode(parent)'),'v_mount':('mount_t',216,8,'->mount'),'v_data':('void *',224,8,'-
>cnode/devnode')}

366 }
367 }
368
369 # NOTE 1: type LINK below is called just "LNK" in the source but lsof uses "LINK"
370 # NOTE 2: 10.7 version of lsof appears to be broken for LINK types, it outputs the
371 # undocumented type "0012" instead
372 # NOTE 3: these static lists defined in bsd/sys/vnode.h but modified for printing
373 VNODE_TYPE = ["NON", "REG", "DIR", "BLK", "CHR", "LINK", "SOCK", "FIFO", "BAD",

"STR", "CPLX"]
374 VNODE_TAG = ['NON', 'UFS', 'NFS', 'MFS', 'MSDOSFS', 'LFS', 'LOFS', 'FDESC',

'PORTAL', 'NULL', 'UMAP', 'KERNFS', 'PROCFS', 'AFS', 'ISOFS', 'UNION', 'HFS', 'ZFS',
'DEVFS', 'WEBDAV', 'UDF', 'AFP', 'CDDA', 'CIFS', 'OTHER']

375
376 def __init__(self, addr):
377 super(Vnode, self).__init__(addr)
378 self.vtype = None
379 self.tag = None
380 self.xnode = None # cnode, devnode
381 self.mount = None
382
383 def getnode(self):
384
385 if self.xnode == None:
386 x_node_ptr = unpacktype(self.smem, self.template['v_data'], INT)
387
388 if self.tag == None:
389 self.tag = unpacktype(self.smem, self.template['v_tag'], SHT)
390
391 if self.tag == 16: # VT_HFS
392 self.xnode = Cnode(x_node_ptr)
393
394 elif self.tag == 18: # VT_DEVFS
395 self.xnode = Devnode(x_node_ptr)
396
397 else:
398 if self.tag < len(Vnode.VNODE_TAG):
399 s_tag = Vnode.VNODE_TAG[self.tag]
400 else:
401 s_tag = str(self.tag)
402 stderr.write("WARNING Vnode.getnode(): unsupported FS tag %s,

returning %d.\n" %(s_tag, ECODE['node']))

133

403 return ECODE['node']
404
405 return self.xnode.getnode()
406
407 def getname(self):
408 name_ptr = unpacktype(self.smem, self.template['v_name'], INT)
409
410 if name_ptr == 0 or not(Struct.mem.is_valid_address(name_ptr)):
411 return None
412
413 # NOTE: this may be trouble for the 255 UTF-16 filename characters HFS+ allows
414 name_addr = Struct.mem.read(name_ptr, 255)
415 name = struct.unpack('255s', name_addr)[0]
416 return name.split('\x00', 1)[0].strip('\x00')
417
418 def getparent(self):
419 parent_ptr = unpacktype(self.smem, self.template['v_parent'], INT)
420
421 if parent_ptr == 0 or not(Struct.mem.is_valid_address(parent_ptr)):
422 return None
423 return parent_ptr
424
425 def getdev(self):
426
427 if self.tag == None:
428 self.tag = unpacktype(self.smem, self.template['v_tag'], SHT)
429
430 if self.tag == 18: # CHR
431 vu_specinfo = unpacktype(self.smem, self.template['v_un'], INT)
432
433 # this pointer is invalid for /dev (special case DIR using VT_DEVFS)
434 if not(vu_specinfo == 0) and Struct.mem.is_valid_address(vu_specinfo):
435 specinfo = Specinfo(vu_specinfo)
436 return specinfo.getdev()
437
438 # default return for REG/DIR/LINK
439 if self.mount == None:
440 mount_ptr = unpacktype(self.smem, self.template['v_mount'], INT)
441
442 if mount_ptr == 0 or not(Struct.mem.is_valid_address(mount_ptr)):
443 stderr.write("WARNING Vnode.getdev(): v_mount pointer invalid,

returning %d.\n" %ECODE['device'])
444 return ECODE['device']
445
446 self.mount = Mount(mount_ptr)
447
448 return self.mount.getdev()
449
450 def getpath(self):
451 path = ""
452 mntonname = ""
453 parent = self

134

454
455 if self.tag == None:
456 self.tag = unpacktype(self.smem, self.template['v_tag'], SHT)
457
458 if self.mount == None:
459 mount_ptr = unpacktype(self.smem, self.template['v_mount'], INT)
460
461 if mount_ptr == 0 or not(Struct.mem.is_valid_address(mount_ptr)):
462 stderr.write("WARNING Vnode.getpath(): v_mount pointer invalid,

returning %d.\n" %ECODE['name'])
463 mntonname = str(ECODE['name'])
464
465 else:
466 self.mount = Mount(mount_ptr)
467
468 if self.mount != None:
469 mntonname = self.mount.getmount()
470
471 while True:
472 parent_ptr = parent.getparent()
473 if parent_ptr == 0 or not(Struct.mem.is_valid_address(parent_ptr)):
474 break
475
476 name = parent.getname()
477 if name == None:
478 break
479
480 path = name + "/" + path
481 parent = Vnode(parent_ptr)
482
483 if len(path) < 2: # file is root
484 return mntonname
485
486 if len(mntonname) == 1: # mount is root, delete trailing slash
487 return mntonname + path[:-1]
488
489 return mntonname + "/" + path[:-1] # mount + path, delete trailing slash
490
491 def gettype(self):
492
493 if self.vtype == None:
494 self.vtype = unpacktype(self.smem, self.template['v_type'], SHT)
495
496 if self.vtype < len(Vnode.VNODE_TYPE):
497 return Vnode.VNODE_TYPE[self.vtype]
498
499 return -1 # check for this in the Vnode_pager validation
500
501 def getoff(self, fileglob_offset):
502
503 if self.vtype == None:
504 self.vtype = unpacktype(self.smem, self.template['v_type'], SHT)

135

505 if self.tag == None:
506 self.tag = unpacktype(self.smem, self.template['v_tag'], SHT)
507
508 # NOTE: UBC information not valid for vnodes marked as VSYSTEM
509 if self.vtype == 1: # REG
510 ubcinfo_ptr = unpacktype(self.smem, self.template['v_un'], INT)
511
512 if ubcinfo_ptr == 0 or not(Struct.mem.is_valid_address(ubcinfo_ptr)):
513 stderr.write("WARNING Vnode.getoff(): v_un pointer invalid, returning

%d.\n" %(ECODE['size']))
514 return ECODE['size']
515
516 ubcinfo = Ubcinfo(ubcinfo_ptr)
517 return ubcinfo.getoff()
518
519 elif self.tag == 16: # VT_HFS
520 if self.xnode == None:
521 x_node_ptr = unpacktype(self.smem, self.template['v_data'], INT)
522 self.xnode = Cnode(x_node_ptr)
523
524 if self.vtype == 2: # DIR
525 entries = self.xnode.getentries()
526 return (entries + 2) * 34 # AVERAGE_HFSDIRENTRY_SIZE: bsd/hfs/hfs.h
527
528 elif self.vtype == 5: # LINK
529 return self.xnode.getoff()
530
531 elif self.vtype == 7: # FIFO
532 return "0t%i" %fileglob_offset
533
534 elif self.tag == 18: # VT_DEVFS
535 if self.vtype == 4: # CHR
536 return "0t%i" %fileglob_offset
537
538 elif self.vtype == 2: # /dev
539 return "-1" # not returning ECODE because this

deficiency known
540
541 if self.tag < len(Vnode.VNODE_TAG):
542 s_tag = Vnode.VNODE_TAG[self.tag]
543 else:
544 s_tag = str(self.tag)
545 if self.vtype < len(Vnode.VNODE_TYPE):
546 s_type = Vnode.VNODE_TYPE[self.vtype]
547 else:
548 s_type = str(self.vtype)
549 stderr.write("WARNING Vnode.getoff(): unsupported type %s, tag %s. Returning

%d.\n" %(s_type, s_tag, ECODE['size']))
550 return ECODE['size']
551
552 # Fileproc --> Fileglob
553 class Fileglob(Struct):

136

554
555 TEMPLATES = {
556 32:{
557

 10:{'fg_flag':('int32_t',16,4,'MODE'),'fg_type':('file_type_t',20,4,'FTYPE'),'fg_off
set':('off_t',40,8,'SIZE/OFF'),'fg_data':('caddr_t',48,4,'->vnode')}

558 ,
11:{'fg_flag':('int32_t',16,4,'MODE'),'fg_type':('file_type_t',20,4,'FTYPE'),'fg_offset':(
'off_t',40,8,'SIZE/OFF'),'fg_data':('caddr_t',48,4,'->vnode')}

559 },
560 64:{
561

 10:{'fg_flag':('int32_t',32,4,'MODE'),'fg_type':('file_type_t',36,4,'FTYPE'),'fg_off
set':('off_t',64,8,'SIZE/OFF'),'fg_data':('caddr_t',72,8,'->vnode')}

562 ,
11:{'fg_flag':('int32_t',32,4,'MODE'),'fg_type':('file_type_t',36,4,'FTYPE'),'fg_offset':(
'off_t',64,8,'SIZE/OFF'),'fg_data':('caddr_t',72,8,'->vnode')}

563 }
564 }
565
566 # global defined in bsd/sys/file_internal.h but modified to match lsof output
567 FILE_TYPE = ["-1", "VNODE", "SOCKET", "PSXSHM", "PSXSEM", "KQUEUE", "PIPE",

"FSEVENT"]
568 MODE = [" ", "r ", "w ", "u "]
569
570 def __init__(self, addr):
571 super(Fileglob, self).__init__(addr)
572 self.ftype = None
573
574 def getmode(self, fd):
575 self.ftype = unpacktype(self.smem, self.template['fg_type'], INT)
576 filemode = " "
577
578 # NOTE: in limited lsof testing types known to include file mode reporting are:
579 # VNODE, SOCKET, PSXSHM, PSXSEM, and KQUEUE. Others do not append any
580 # character to the FD identifier.
581 if self.ftype in xrange(1,6):
582 flag = unpacktype(self.smem, self.template['fg_flag'], INT)
583 filemode = Fileglob.MODE[flag & 3]
584
585 return str(fd)+filemode
586
587 def gettype(self):
588
589 if self.ftype == None:
590 self.ftype = unpacktype(self.smem, self.template['fg_type'], INT)
591
592 if self.ftype < 0 or self.ftype > (len(Fileglob.FILE_TYPE) -1):
593 stderr.write("WARNING Fileglob.gettype(): unknown file type %d, excluding

this result.\n" %self.ftype)
594 return -1 # check for this in the getfilelistbyproc()
595

137

596 return Fileglob.FILE_TYPE[self.ftype]
597
598 def getoff(self):
599 return unpacktype(self.smem, self.template['fg_offset'], INT)
600
601 def getdata(self):
602 data_ptr = unpacktype(self.smem, self.template['fg_data'], INT)
603
604 if self.validaddr(data_ptr):
605 return data_ptr
606 return None
607
608 # Filedesc --> Fileproc
609 class Fileproc(Struct):
610
611 TEMPLATES = {
612 32:{
613 10:{'f_fglob':('struct fileglob *',8,4,'->fileglob')}
614 , 11:{'f_fglob':('struct fileglob *',8,4,'->fileglob')}
615 },
616 64:{
617 10:{'f_fglob':('struct fileglob *',8,8,'->fileglob')}
618 , 11:{'f_fglob':('struct fileglob *',8,8,'->fileglob')}
619 }
620 }
621
622 def __init__(self, addr):
623 super(Fileproc, self).__init__(addr)
624
625 def getfglob(self):
626 fileglob_ptr = unpacktype(self.smem, self.template['f_fglob'], INT)
627
628 if self.validaddr(fileglob_ptr):
629 return fileglob_ptr
630 return None
631
632 # Proc --> Filedesc
633 class Filedesc(Struct):
634
635 TEMPLATES = {
636 32:{
637 10:{'fd_ofiles':('struct fileproc **',0,4,'-

>fileproc[]'),'fd_cdir':('struct vnode *',8,4,'->CWD'),'fd_lastfile':('int',20,4,'-
>fileproc[LAST_INDEX]')}

638 , 11:{'fd_ofiles':('struct fileproc **',0,4,'-
>fileproc[]'),'fd_cdir':('struct vnode *',8,4,'->CWD'),'fd_lastfile':('int',20,4,'-
>fileproc[LAST_INDEX]')}

639 },
640 64:{
641 10:{'fd_ofiles':('struct fileproc **',0,8,'-

>fileproc[]'),'fd_cdir':('struct vnode *',16,8,'->CWD'),'fd_lastfile':('int',36,4,'-
>fileproc[LAST_INDEX]')}

138

642 , 11:{'fd_ofiles':('struct fileproc **',0,8,'-
>fileproc[]'),'fd_cdir':('struct vnode *',16,8,'->CWD'),'fd_lastfile':('int',36,4,'-
>fileproc[LAST_INDEX]')}

643 }
644 }
645
646 def __init__(self, addr):
647 super(Filedesc, self).__init__(addr)
648
649 def getcwd(self):
650 cwd_ptr = unpacktype(self.smem, self.template['fd_cdir'], INT)
651 if self.validaddr(cwd_ptr):
652 return cwd_ptr
653 return None
654
655 def getfglobs(self):
656
657 # sometimes the fd is valid, but this array address is not (e.g. kernel_task)
658 ofiles_ptr = unpacktype(self.smem, Filedesc.template['fd_ofiles'], INT)
659 if ofiles_ptr == 0 or not(Struct.mem.is_valid_address(ofiles_ptr)):
660 return None
661
662 # construct a list of addresses from the fd_ofiles array
663 fd_lastfile = unpacktype(self.smem, Filedesc.template['fd_lastfile'], INT)
664 ptr_size = 4 if (Struct.arch == 32) else 8
665 fmt = 'I' if (Struct.arch == 32) else 'Q'
666 fglobs = {}
667 for i in xrange(fd_lastfile+1):
668
669 # **fd_ofiles is an array of pointers, read address at index i
670 fileproc_ptr = Struct.mem.read(ofiles_ptr+(i*ptr_size), ptr_size)
671 fileproc_addr = struct.unpack(fmt, fileproc_ptr)[0]
672
673 # not every index points to a valid file
674 if fileproc_addr == 0 or not(Struct.mem.is_valid_address(fileproc_addr)):
675 continue
676
677 fileproc = Fileproc(fileproc_addr)
678 fileglob_ptr = fileproc.getfglob()
679
680 if fileglob_ptr != None:
681 fglobs[i] = fileglob_ptr
682
683 return fglobs
684
685 # Vm_object --> Vnode_pager
686 class Vnode_pager(Struct):
687
688 TEMPLATES = {
689 32:{
690 10:{'vnode_handle':('struct vnode *',16,4,'->txt')}
691 , 11:{'vnode_handle':('struct vnode *',16,4,'->txt')}

139

692 },
693 64:{ # NOTE: 10.6/7x64 offset for vnode_pager edited manually 24 --> 32
694 10:{'vnode_handle':('struct vnode *',32,8,'->txt')}
695 , 11:{'vnode_handle':('struct vnode *',32,8,'->txt')}
696 }
697 }
698
699 def __init__(self, addr):
700 super(Vnode_pager, self).__init__(addr)
701
702 def gettxt(self):
703 txt_ptr = unpacktype(self.smem, self.template['vnode_handle'], INT)
704
705 # self may not actually be a vnode pager (there are other valid types), need to
706 # run several tests without generating warnings to be sure.
707 if txt_ptr == 0 or not(Struct.mem.is_valid_address(txt_ptr)):
708 return None
709
710 # this pointer test ensures the target memory matches the vnode template
711 vnode = Vnode(txt_ptr)
712 if vnode.gettype() == -1 or vnode.getname() == None:
713 return None
714
715 # return the pointer rather than vnode because duplicates will occur as a

result
716 # of recursive calls in Vm_object
717 return txt_ptr
718
719 # Vm_map_entry --> Vm_object
720 class Vm_object(Struct):
721
722 TEMPLATES = {
723 32:{
724 10:{'memq':('queue_head_t',0,8,'',{'next':('struct queue_entry

*',4,4,'type test(vm_object)'),'prev':('struct queue_entry *',0,4,'type
test(vm_object)')}),'shadow':('struct vm_object *',52,4,'-
>vm_object(recurse)'),'pager':('memory_object_t',64,4,'->pager')}

725 , 11:{'memq':('queue_head_t',0,8,'',{'next':('struct queue_entry
*',4,4,'type test(vm_object)'),'prev':('struct queue_entry *',0,4,'type
test(vm_object)')}),'shadow':('struct vm_object *',52,4,'-
>vm_object(recurse)'),'pager':('memory_object_t',64,4,'->pager')}

726 },
727 64:{
728 10:{'memq':('queue_head_t',0,16,'',{'next':('struct queue_entry

*',8,8,'type test(vm_object)'),'prev':('struct queue_entry *',0,8,'type
test(vm_object)')}),'shadow':('struct vm_object *',72,8,'-
>vm_object(recurse)'),'pager':('memory_object_t',88,8,'->pager')}

729 , 11:{'memq':('queue_head_t',0,16,'',{'next':('struct queue_entry
*',8,8,'type test(vm_object)'),'prev':('struct queue_entry *',0,8,'type
test(vm_object)')}),'shadow':('struct vm_object *',72,8,'-
>vm_object(recurse)'),'pager':('memory_object_t',88,8,'->pager')}

730 }

140

731 }
732
733 def __init__(self, addr):
734 super(Vm_object, self).__init__(addr)
735 self.map = None
736
737 # this test determines wether self matches the struct vm_object template, or

the
738 # vm_map template.
739 ptr1 = unpacktype(self.smem, self.template['memq'][4]['next'], INT)
740 ptr2 = unpacktype(self.smem, self.template['memq'][4]['prev'], INT)
741 if ptr1 == 0 or ptr2 == 0 \
742 or not(Struct.mem.is_valid_address(ptr1)) \
743 or not(Struct.mem.is_valid_address(ptr2)):
744
745 # on failure, create map instance to be called recursively
746 self.map = Vm_map(addr)
747
748 def gettxt(self):
749
750 # recurse on vm_map type
751 if self.map != None:
752 return self.map.gettxt()
753
754 pager_ptr = unpacktype(self.smem, self.template['pager'], INT)
755
756 # objects for memory-mapped files keep the pager in the shadow object rather
757 # than the original, this test determines which self is.
758 if pager_ptr == 0 or not(Struct.mem.is_valid_address(pager_ptr)):
759
760 shadow_ptr = unpacktype(self.smem, self.template['shadow'], INT)
761 if shadow_ptr == 0 or not(Struct.mem.is_valid_address(shadow_ptr)):
762 return [] # Vm_map expects an empty list, never None
763
764 # make recursive call on shadow object
765 shadow = Vm_object(shadow_ptr)
766 return shadow.gettxt()
767
768 # the default case here wraps the return in a list for compatibility with the
769 # recursive map case.
770 pager = Vnode_pager(pager_ptr)
771 return [pager.gettxt()] # NOTE: this may return [None] without error
772
773 # Vm_map_entry --> Vm_map_entry
774 # Vm_map --> Vm_map_entry
775 class Vm_map_entry(Struct):
776
777 TEMPLATES = {
778 32:{
779 10:{'links':('struct vm_map_links',0,24,'',{'prev':('struct vm_map_entry

*',0,4,''),'next':('struct vm_map_entry *',4,4,'->vm_map_entry')}),'object':('union
vm_map_object',24,4,'->vm_object')}

141

780 , 11:{'links':('struct vm_map_links',0,24,'',{'prev':('struct vm_map_entry
*',0,4,''),'next':('struct vm_map_entry *',4,4,'->vm_map_entry')}),'object':('union
vm_map_object',36,4,'->vm_object')}

781 },
782 64:{
783 10:{'links':('struct vm_map_links',0,32,'',{'prev':('struct vm_map_entry

*',0,8,''),'next':('struct vm_map_entry *',8,8,'->vm_map_entry')}),'object':('union
vm_map_object',32,8,'->vm_object')}

784 , 11:{'links':('struct vm_map_links',0,32,'',{'prev':('struct vm_map_entry
*',0,8,''),'next':('struct vm_map_entry *',8,8,'->vm_map_entry')}),'object':('union
vm_map_object',56,8,'->vm_object')}

785 }
786 }
787
788 def __init__(self, addr):
789 super(Vm_map_entry, self).__init__(addr)
790
791 def getnext(self):
792 return unpacktype(self.smem, self.template['links'][4]['next'], INT)
793
794 def gettxt(self):
795 vmobject_ptr = unpacktype(self.smem, self.template['object'], INT)
796
797 # some entries lack an object, check manually to prevent error
798 if vmobject_ptr == 0 or not(Struct.mem.is_valid_address(vmobject_ptr)):
799 return [] # Vm_map expects an empty list, never None
800
801 vm_object = Vm_object(vmobject_ptr)
802 return vm_object.gettxt()
803
804 # Vm_object --> Vm_map
805 # Task --> Vm_map
806 class Vm_map(Struct):
807
808 TEMPLATES = {
809 32:{
810 10:{'hdr':('struct vm_map_header',12,32,'',{'links':('struct

vm_map_links',12,24,'',{'prev':('struct vm_map_entry *',12,4,''),'next':('struct
vm_map_entry *',16,4,'->vm_map_entry')}),'nentries':('int',36,4,'no. nodes')})}

811 , 11:{'hdr':('struct vm_map_header',12,44,'',{'links':('struct
vm_map_links',12,24,'',{'prev':('struct vm_map_entry *',12,4,''),'next':('struct
vm_map_entry *',16,4,'->vm_map_entry')}),'nentries':('int',36,4,'no. nodes')})}

812 },
813 64:{
814 10:{'hdr':('struct vm_map_header',16,40,'',{'links':('struct

vm_map_links',16,32,'',{'prev':('struct vm_map_entry *',16,8,''),'next':('struct
vm_map_entry *',24,8,'->vm_map_entry')}),'nentries':('int',48,4,'no. nodes')})}

815 , 11:{'hdr':('struct vm_map_header',16,56,'',{'links':('struct
vm_map_links',16,32,'',{'prev':('struct vm_map_entry *',16,8,''),'next':('struct
vm_map_entry *',24,8,'->vm_map_entry')}),'nentries':('int',48,4,'no. nodes')})}

816 }
817 }

142

818
819 def __init__(self, addr):
820 super(Vm_map, self).__init__(addr)
821
822 def gettxt(self):
823 vmmapentry_ptr = unpacktype(self.smem,

self.template['hdr'][4]['links'][4]['next'], INT)
824 nentries = unpacktype(self.smem, self.template['hdr'][4]['nentries'], INT)
825 ret_ptrs = []
826
827 # iterate over map entries in the linked-list and collect any backing vnode

ptrs
828 for i in xrange(nentries):
829
830 if self.validaddr(vmmapentry_ptr):
831 vm_map_entry = Vm_map_entry(vmmapentry_ptr)
832 txt_ptrs = vm_map_entry.gettxt()
833
834 for txt_ptr in txt_ptrs:
835
836 # filter duplicates and check for null returns
837 if txt_ptr != None and not(txt_ptr in ret_ptrs):
838 ret_ptrs.append(txt_ptr)
839
840 vmmapentry_ptr = vm_map_entry.getnext()
841
842 # unique list of verified vnode pointers
843 return ret_ptrs
844
845 # Proc --> Task
846 class Task(Struct):
847
848 TEMPLATES = {
849 32:{
850 10:{'map':('vm_map_t',24,4,'->vm_map')}
851 , 11:{'map':('vm_map_t',20,4,'->vm_map')}
852 },
853 64:{
854 10:{'map':('vm_map_t',40,8,'->vm_map'),} # NOTE: 10.6x64 offset for vm_map

edited manually 36 --> 40
855 , 11:{'map':('vm_map_t',32,8,'->vm_map')} # NOTE: 10.7x64 offset for vm_map

edited manually 28 --> 32
856 }
857 }
858
859 def __init__(self, addr):
860 super(Task, self).__init__(addr)
861
862 def gettxt(self):
863 vmmap_ptr = unpacktype(self.smem, self.template['map'], INT)
864
865 if self.validaddr(vmmap_ptr):

143

866 vm_map = Vm_map(vmmap_ptr)
867 return vm_map.gettxt()
868
869 return None
870
871 # Pgrp --> Session
872 class Session(Struct):
873
874 TEMPLATES = {
875 32:{
876 10:{'s_login':('char[]',28,255,'USER')}
877 , 11:{'s_login':('char[]',28,255,'USER')}
878 },
879 64:{
880 10:{'s_login':('char[]',48,255,'USER')}
881 , 11:{'s_login':('char[]',48,255,'USER')}
882 }
883 }
884
885 def __init__(self, addr):
886 super(Session, self).__init__(addr)
887
888 def getuser(self):
889 return unpacktype(self.smem, self.template['s_login'], STR).split('\x00',

1)[0].strip('\x00')
890
891 # Proc --> Pgrp
892 class Pgrp(Struct):
893
894 TEMPLATES = {
895 32:{
896 10:{'pg_session':('struct session *',12,4,'->session')}
897 , 11:{'pg_session':('struct session *',12,4,'->session')}
898 },
899 64:{
900 10:{'pg_session':('struct session *',24,8,'->session')}
901 , 11:{'pg_session':('struct session *',24,8,'->session')}
902 }
903 }
904
905 def __init__(self, addr):
906 super(Pgrp, self).__init__(addr)
907
908 # skipped the full validator here because pg_session is the only pointer/target
909 def getuser(self):
910 session_ptr = unpacktype(self.smem, self.template['pg_session'], INT)
911
912 if self.validaddr(session_ptr):
913 session = Session(session_ptr)
914 return session.getuser()
915
916 return None

144

917
918 # _kernproc --> Proc
919 class Proc(Struct):
920
921 TEMPLATES = {
922 32:{
923 10:{'p_list':('LIST_ENTRY(proc)',0,8,'',{'le_next':('struct proc

*',0,4,''),'le_prev':('struct proc **',4,4,'-
>next')}),'p_pid':('pid_t',8,4,'PID'),'task':('void *',12,4,'->task'),'p_fd':('struct
filedesc *',104,4,'->filedesc'),'p_textvp':('struct vnode *',388,4,'-
>proc(exe)'),'p_comm':('char[]',420,17,'COMMAND'),'p_pgrp':('struct pgrp *',472,4,'-
>pgrp')}

924 , 11:{'p_list':('LIST_ENTRY(proc)',0,8,'',{'le_next':('struct proc
*',0,4,''),'le_prev':('struct proc **',4,4,'-
>next')}),'p_pid':('pid_t',8,4,'PID'),'task':('void *',12,4,'->task'),'p_fd':('struct
filedesc *',128,4,'->filedesc'),'p_textvp':('struct vnode *',412,4,'-
>proc(exe)'),'p_comm':('char[]',444,17,'COMMAND'),'p_pgrp':('struct pgrp *',496,4,'-
>pgrp')}

925 },
926 64:{
927 10:{'p_list':('LIST_ENTRY(proc)',0,16,'',{'le_next':('struct proc

*',0,8,''),'le_prev':('struct proc **',8,8,'-
>next')}),'p_pid':('pid_t',16,4,'PID'),'task':('void *',24,8,'->task'),'p_fd':('struct
filedesc *',200,8,'->filedesc'),'p_textvp':('struct vnode *',664,8,'-
>proc(exe)'),'p_comm':('char[]',700,17,'COMMAND'),'p_pgrp':('struct pgrp *',752,8,'-
>pgrp')}

928 , 11:{'p_list':('LIST_ENTRY(proc)',0,16,'',{'le_next':('struct proc
*',0,8,''),'le_prev':('struct proc **',8,8,'-
>next')}),'p_pid':('pid_t',16,4,'PID'),'task':('void *',24,8,'->task'),'p_fd':('struct
filedesc *',216,8,'->filedesc'),'p_textvp':('struct vnode *',680,8,'-
>proc(exe)'),'p_comm':('char[]',716,17,'COMMAND'),'p_pgrp':('struct pgrp *',768,8,'-
>pgrp')}

929 }
930 }
931
932 head = None
933
934 def __init__(self, addr):
935 super(Proc, self).__init__(addr)
936
937 if Proc.head == None:
938 Proc.head = addr
939
940 self.self_ptr = addr # store this for cycle detection by

getfilelist()
941 self.filedesc_ptr = None
942 self.exe_ptr = None
943 self.pgrp_ptr = None
944 self.pid = -1
945
946 def next(self):
947 nxt_proc = unpacktype(self.smem, Proc.template['p_list'][4]['le_prev'], INT)

145

948
949 if nxt_proc == Proc.head:
950 stderr.write("ERROR %s.%s encountered a circular list.\n"

%(self.__class__.__name__, sys._getframe().f_code.co_name))
951 return None
952
953 elif nxt_proc != 0 and Struct.mem.is_valid_address(nxt_proc):
954 return Proc(nxt_proc)
955
956 return None
957
958 # this method has evolved to check ALL requisite proc structure pointers
959 def valid(self):
960
961 # check *p_fd
962 filedesc_ptr = unpacktype(self.smem, self.template['p_fd'], INT)
963 if filedesc_ptr == 0 or not(Struct.mem.is_valid_address(filedesc_ptr)):
964 return False
965
966 # check *p_textvp
967 exe_ptr = unpacktype(self.smem, self.template['p_textvp'], INT)
968 if exe_ptr == 0 or not(Struct.mem.is_valid_address(exe_ptr)):
969 return False
970
971 # check *p_pgrp
972 pgrp_ptr = unpacktype(self.smem, self.template['p_pgrp'], INT)
973 if pgrp_ptr == 0 or not(Struct.mem.is_valid_address(pgrp_ptr)):
974 return False
975
976 self.filedesc_ptr = filedesc_ptr
977 self.exe_ptr = exe_ptr
978 self.pgrp_ptr = pgrp_ptr
979 return True
980
981 def setpid(self, pid):
982 self.pid = unpacktype(self.smem, Proc.template['p_pid'], INT)
983
984 while self.pid != pid:
985 nxt_proc = unpacktype(self.smem, Proc.template['p_list'][4]['le_prev'],

INT)
986
987 if nxt_proc == Proc.head:
988 stderr.write("ERROR %s.%s encountered a circular list.\n"

%(self.__class__.__name__, sys._getframe().f_code.co_name))
989 return False
990 elif nxt_proc != 0 and Struct.mem.is_valid_address(nxt_proc):
991 self.smem = Struct.mem.read(nxt_proc, Proc.ssize);
992 self.pid = unpacktype(self.smem, Proc.template['p_pid'], INT)
993 else:
994 return False
995
996 filedesc_ptr = unpacktype(self.smem, self.template['p_fd'], INT)

146

997 if filedesc_ptr == 0:
998 print "\nPID: %d (%s) has no open files." %(pid, self.getcmd())
999 sys.exit()

1000 if not(Struct.mem.is_valid_address(filedesc_ptr)):
1001 print "\nPID: %d (%s) has an invalid file descriptor." %(pid,

self.getcmd())
1002 sys.exit()
1003 if not self.valid():
1004 print "\tPID: %d appears in the in process list, but is not compatible

with lsof." %pid
1005 sys.exit()
1006
1007 return True
1008
1009 def getfd(self):
1010 return self.filedesc_ptr
1011
1012 def getpid(self):
1013 if self.pid < 0:
1014 return unpacktype(self.smem, Proc.template['p_pid'], INT)
1015 return self.pid
1016
1017 def getcmd(self):
1018 return unpacktype(self.smem, self.template['p_comm'], STR).split('\x00',

1)[0].replace(' ', '\\x20').strip('\x00')
1019
1020 def getuser(self):
1021 pgrp = Pgrp(self.pgrp_ptr)
1022 return pgrp.getuser()
1023
1024 def gettxt(self):
1025 task_ptr = unpacktype(self.smem, self.template['task'], INT)
1026 task = Task(task_ptr)
1027 txt_ptrs = task.gettxt()
1028
1029 if not(self.exe_ptr in txt_ptrs):
1030 txt_ptrs.append(self.exe_ptr)
1031
1032 return txt_ptrs
1033
1034 ################################### PRIVATE FUNCTIONS ####################################
1035
1036 # given a validated proc stucture, return a list of open files
1037 def getfilelistbyproc(proc):
1038
1039 filedesc = Filedesc(proc.getfd())
1040 fglobs = filedesc.getfglobs()
1041 filelist = []
1042
1043 if fglobs == None:
1044 return []
1045

147

1046 cwd = Vnode(filedesc.getcwd())
1047 if cwd:
1048 filelist.append((proc.getcmd(), proc.getpid(), proc.getuser(), "cwd ",
1049 cwd.gettype(), cwd.getdev(), cwd.getoff(-1), cwd.getnode(), cwd.getpath())
1050)
1051
1052 txt_ptrs = proc.gettxt()
1053 for txt_ptr in txt_ptrs:
1054 txt = Vnode(txt_ptr)
1055 filelist.append((proc.getcmd(), proc.getpid(), proc.getuser(), "txt ",
1056 txt.gettype(), txt.getdev(), txt.getoff(-1), txt.getnode(), txt.getpath())
1057)
1058
1059 # iterate over fileglob structures, note: items() is unsorted by default
1060 for fd, fglob in sorted(fglobs.items()):
1061
1062 # this has been observed as an invalid pointer even when fileproc is not
1063 if fglob == 0 or not Struct.mem.is_valid_address(fglob):
1064 continue
1065
1066 fileglob = Fileglob(fglob)
1067
1068 # full support for VNODE (1) only, otherwise, just print ftype for verbose
1069 ftype = fileglob.gettype()
1070
1071 # exclude file if type cannot be resolved
1072 if ftype == -1:
1073 continue
1074
1075 if ftype != 'VNODE':
1076 if Struct.verb:
1077 filelist.append((proc.getcmd(), proc.getpid(), proc.getuser(),
1078 fileglob.getmode(fd), ftype, -1, -1, -1, -1)
1079)
1080 continue
1081
1082 vnode_ptr = fileglob.getdata()
1083 if vnode_ptr == None:
1084 continue
1085
1086 vnode = Vnode(vnode_ptr)
1087 filelist.append((proc.getcmd(), proc.getpid(), proc.getuser(),
1088 fileglob.getmode(fd), vnode.gettype(), vnode.getdev(),
1089 vnode.getoff(fileglob.getoff()), vnode.getnode(), vnode.getpath())
1090)
1091
1092 return filelist
1093
1094 #################################### PUBLIC FUNCTIONS ####################################
1095
1096 # build list of processes with open files, and return the aggregate listing
1097 def getfilelist(mem, arch, kvers, proc_head, pid, vflag):

148

1098
1099 Struct.mem = mem
1100 Struct.arch = arch
1101 Struct.kvers = kvers
1102 Struct.verb = bool(vflag)
1103
1104 proc = Proc(proc_head)
1105 if pid > -1:
1106 if proc.setpid(pid): # returns True on success
1107 return getfilelistbyproc(proc)
1108 print "\tPID: %d not found in process list." %pid
1109 sys.exit()
1110
1111 ptr_list = [] # this list catches cycles in the linked list (known to occur)
1112 proclist = []
1113 while proc:
1114
1115 if proc.self_ptr in ptr_list: # test for cycle
1116 stderr.write("ERROR getfilelist(): proc linked-list cycles, results may be

incomplete.\n")
1117 break
1118 ptr_list.append(proc.self_ptr)
1119
1120 if proc.valid():
1121 proclist.append(proc)
1122 proc = proc.next()
1123
1124 fullfilelisting = []
1125 for proc in proclist:
1126 fullfilelisting += getfilelistbyproc(proc)
1127
1128 return fullfilelisting
1129
1130 # given the output of getfilelist(), build a string matrix as input to columnprint()
1131 def printfilelist(filelist):
1132 headerlist = ["COMMAND", "PID", "USER", " FD ", "TYPE", "DEVICE", "SIZE/OFF",

"NODE", "NAME"]
1133 contentlist = []
1134
1135 for file in filelist:
1136 line = ["%s" %file[0]]
1137 line.append("%d" %file[1])
1138 line.append("%s" %file[2])
1139 line.append("%s" %file[3])
1140 line.append("%s" %file[4])
1141 line.append("%s" %file[5])
1142 line.append("%s" %file[6])
1143 line.append("%d" %file[7])
1144 line.append("%s" %file[8])
1145 contentlist.append(line)
1146
1147 #columnprint(headerlist, contentlist)

149

1148
1149 # use optional max size list here to match default lsof output, otherwise specify
1150 # lsof +c 0 on the command line to print full name of commands
1151 mszlist = [9, -1, -1, -1, -1, -1, -1, -1, -1]
1152 columnprint(headerlist, contentlist, mszlist)

150

Bibliography

 Apple Inc. (2009, February 4). Mac OS X ABI Mach-O file format reference. Mac OS X
Developer Library. Retrieved from https://developer.apple.com/library/mac/#
documentation/developertools/conceptual/MachORuntime/Reference/reference.html

Apple Inc. (2011, March 21). lsof(8) Mac OS X manual page. Mac OS X Developer

Library. Retrieved from http://developer.apple.com/library/mac/#documentation/
Darwin/Reference/ManPages/man8/lsof.8.html

Architecture Technology Corporation. (2011). Mac Memory Reader. Retrieved from

http://cybermarshal.com/index.php/cyber-marshal-utilities/mac-memory-reader

Becher, M., Dornseif, M., & Klein, C. N. (2005, May). FireWire: All your memory are
belong to us [slides]. CanSecWest. Retrieved from https://cansecwest.com/
core05/2005-firewire-cansecwest.pdf

Bovet, D. P., & Cesati, M. (2006). Understanding the Linux kernel (3rd ed.). Sebastopol,

CA: O’Reilly Media.

Burdach, M. (2004, March 22). Forensic analysis of a live Linux system, Pt. 1.

SecurityFocus. Retrieved from http://www.securityfocus.com/infocus/1769

Burdach, M. (2006, January). Finding digital evidence in physical memory [slides]. Black

Hat Federal. Retrieved from https://www.blackhat.com/presentations/bh-federal-06/
BH-Fed-06-Burdach/bh-fed-06-burdach-up.pdf

Carvey, H. (2009). Windows forensic analysis DVD toolkit (2nd ed.). Burlington, MA:

Syngress.

Case, A. (2011a, March 1). Bringing Linux support to Volatility. Corporate Blog: Digital

Forensics Solutions. Retrieved from http://dfsforensics.blogspot.com/2011/03/
bringing-linux-support-to-volatility.html

Case, A. (2011b, July). Linux memory analysis with Volatility [slides]. Open Memory

Forensics Workshop. Retrieved from http://digitalforensicssolutions.com/papers/
omfw.pdf

Case, A. (2011c, August). Investigating live CDs using Volatility and physical memory

analysis [slides]. Black Hat USA. Retrieved from https://media.blackhat.com/bh-us-
11/Case/BH_US_11_Case_Linux_Slides.pdf

151

Case, A., Cristina, A., Marziale, L., Richard, G. G., & Roussev, V. (2008). FACE:
Automated digital evidence discovery and correlation. Digital Investigation,
5(Supplement), S65-S75.

Case, A., Marziale, L., & Richard, G. G. (2010). Dynamic recreation of kernel data

structures for live forensics. Digital Investigation, 7(Supplemental), S32-S40.

Case, A., Marziale, L., Neckar, C., & Richard, G. G. (2010). Treasure and tragedy in

kmem_cache mining for live forensics investigation. Digital Investigation,
7(Supplement), S41-S47.

Casey, E., Fellows, G., Geiger, M., & Stellatos, G. (2011). The growing impact of full

disk encryption on digital forensics. Digital Investigation, 8(2), 129-134.

Choi, J., Savoldi, A., Gubian, P., Lee, S., & Lee, S. (2008, April). Live forensic analysis

of a compromised Linux system Using LECT (Linux Evidence Collection Tool).
International Conference on Information Security and Assurance. Busan, Korea:
IEEE Computer Society.

Digital Forensics Research Workshop, Inc. (2008). DFRWS 2008 Forensics Challenge

Overview. Inside DFRWS 2008. Retrieved from http://www.dfrws.org/2008/
challenge/index.shtml

Dolan-Gavitt, B. (2008a). Forensic analysis of the Windows registry in memory. Digital

Investigation, 5(Supplement), S26-S32.

Dolan-Gavitt, B. (2008b, April 16). Finding kernel global variables in Windows.

Personal Blog. Retrieved from http://moyix.blogspot.com/2008/04/finding-kernel-
global-variables-in.html

Donnini, G. (2012, April 3). Operating system market share, March 2011 update. Chitika

Insights. Retrieved from http://insights.chitika.com/2012/operating-system-market-
share-march-2012-update/

Garrison, T. (2011, September 18). Mac OS Lion forensic memory acquisition using

IEEE 1394. Personal Blog. Retrieved from http://www.frameloss.org/2011/09/18/
firewire-attacks-against-mac-os-lion-filevault-2-encryption/

Gladyshev, P., & Almansoori, A. (2010, October). Reliable acquisition of RAM dumps

from Intel-based Apple Mac computers over FireWire. Second International ICST
Conference. Abu Dhabi, United Arab Emirates: Springer.

Gladyshev, P., & Almansoori, A. (2011). Goldfish. UCD Centre for Cybersecurity and

Cybercrime Investigation. Retrieved from http://cci.ucd.ie/goldfish

152

Gorman, M. (2004). Understanding the Linux virtual memory manager. Upper Saddle
River, NJ: Prentice Hall.

Graham, R. D. (2011, February 24). Thunderbolt: Introducing a new way to hack Macs.

Errata Security. Retrieved from http://erratasec.blogspot.com/2011/02/thunderbolt-
introducing-new-way-to-hack.html

Haruyama, T., & Suziki, H. (2012, March). One-byte Modifications for Breaking

Memory Forensic Analysis. Black Hat Europe. Retrieved from https://media.
blackhat.com/bh-eu-12/Haruyama/bh-eu-12-Haruyama-Memory_Forensic-
Slides.pdf

Hay, B., & Nance, K. (2009). Live analysis: Process and challenges. IEEE Security &

Privacy, 7(2), 30-37.

Hermann, U. (2008, August 14). Physical memory attacks via Firewire/DMA. Personal

Blog. Retrieved from http://www.hermann-uwe.de/blog/physical-memory-attacks-
via-firewire-dma-part-1-overview-and-mitigation

Inman, K., & Rudin, N. (2002). The origin of evidence. Forensic Science International,

126(1), 11-6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11955825

Inoue, H., Adelstein, F., & Joyce, R. A. (2011). Visualization in testing a volatile

memory forensic tool. Digital Investigation, 8(Supplement), S42-S51.

Intel Corporation. (2012). Intel 64 and IA-32 Architectures Software Developer’s

Manual. Retrieved from http://download.intel.com/products/processor/manual/
325462.pdf

Kessler, T. (2012, February 1). FileVault 2 easily decrypted, warns Passware. CNET

Reviews. Retrieved http://reviews.cnet.com/8301-13727_7-57369983-263/filevault-
2-easily-decrypted-warns-passware/

Kollár, I. (2010). Forensic RAM dump image analyser (Master’s thesis). Charles

University, Prague, Czech Republic.

Kubasiak, R. R., & Morrissey, S. (2009). Mac OS X, iPod, and iPhone forensic analysis

DVD toolkit. Burlington, MA: Syngress.

Law, F. Y. W., Chow, K. P., Kwan, M. Y. K., & Lai, P. K. Y. (2007, December).

Consistency issue on live systems forensics. International Conference on Future
Generation Communication and Networking. Jeju, Korea: IEEE Computer Society.

Leat, C. (2011). Forensic analysis of Mac OS X memory (Master’s thesis). University of

Westminster, London, England.

153

Lee, K. (2012). volafox: Memory analyzer for Mac OS X & BSD. Retrieved from

https://code.google.com/p/volafox/

Leyden, J. (2003, October 17). Caffrey acquittal a setback for cybercrime prosecutions.

The Register. Retrieved from http://www.theregister.co.uk/2003/10/17/caffrey_
acquittal_a_setback/

Ligh, M. H., Adair, S., Hartstein, B., & Richard, M. (2011). Malware analyst’s cookbook

and DVD: Tools and techniques for fighting malicious code. Indianapolis, IN:
Wiley.

Maartmann-Moe, C. (2012, February 6). Adventures with daisy in Thunderbolt-DMA-

land: Hacking Macs through the Thunderbolt interface. Break & Enter. Retrieved
from http://www. breaknenter.org/2012/02/adventures-with-daisy-in-thunderbolt-
dma-land-hacking-macs-through-the-thunderbolt-interface/

Makinen, J. (2008, February 29). Automated OS X Macintosh password retrieval via

FireWire. Personal Blog. Retrieved from http://www.juhonkoti.net/2008/02/29/
automated-os-x-macintosh-password-retrieval-via-firewire

Malard, A. (2011, August 3). H@CKMacOSX: Tips and tricks for Mac OS X hack.

Personal Blog. Retrieved from http://sud0man.blogspot.com/2011/08/hackmacosx-
tips-and-tricks-for-mac-os-x.html

Mandia, K., Prosise, C., & Pepe, M. (2003). Incident response and computer forensics

(2nd ed.). Emeryville, CA: McGraw-Hill.

McGrew, W. (2008, March 28). msramdmp: McGrew Security RAM dumper. McGrew

Security. Retrieved from http://www.mcgrewsecurity.com/tools/msramdmp/

Miller, C., & Zovi, D. D. (2009). The Mac hacker’s handbook. Indianapolis, IN: Wiley.

Movall, P., Nelson, W., & Wetzstein, S. (2005, April). Linux physical memory analysis.

USENIX Annual Technical Conference. Retrieved from http://static.usenix.org/
event/usenix05/tech/freenix/full_papers/movall/movall.pdf

National Institute of Justice. (2008, April). Electronic crime scene investigation: A guide

for first responders (2nd ed.). Washington, DC: Mukasey, M. B., Sedgwick, J. L., &
Hagy, D. W.

National Institute of Standards and Technology. (2008, March). Computer security

incident handling guide: Recommendations of the National Institute of Standards
and Technology. (NIST Special Publication 800-61, Revision 1). Gaithersburg, MD:
Scarfone, K., Grance, T., & Masone, K.

154

National Institute of Standards and Technology. (2006, August). Guide to integrating

forensic techniques into incident response (NIST Special Publication 800-86).
Gaithersburg, MD: Kent, K., Chevalier, S., Grance, T., & Dang, H.

Net Applications. (2012, March). Operating system market share: March 2012.

NetMarketShare.com. Retrieved from http://www.netmarketshare.com/operating-
system-market-share.aspx

Petroni, N. L., Walters, Aa., Fraser, T., & Arbaugh, W. (2006). FATKit: A framework for

the extraction and analysis of digital forensic data from volatile system memory.
Digital Investigation, 3(4), 197-210.

Russinovich, M. (2011, May 18). Handle v3.46. Windows Sysinternals. Retrieved from

http://technet.microsoft.com/en-us/sysinternals/bb896655

SANS Institute. (2008). Covering the tracks on Mac OS X Leopard. Retrieved from

https://www.sans.org/reading_room/whitepapers/apple/covering-tracks-mac-os-
leopard_32993

SANS Institute. (2012). Forensics and Incident Response Summit Agenda. Retrieved

from http://www.sans.org/forensics-incident-response-summit-2012/ agenda.pdf

Schonfeld, E. (2012, January 11). U.S. PC shipments slip 6 percent in Q4, while Apple’s

jump 21 percent. TechCrunch. Retrieved from http://techcrunch.com/2012/01/11/
gartner-pc-shipments-slip-6-percent-q4-apple-jump-21-percent/

Schuster, A. (2011, June 7). Mac OS X memory analysis with volafox. Personal Blog.

Retrieved from http://computer.forensikblog.de/en/2011/06/mac_os_x_memory_
analysis_with_volafox.html

Sesek, R. (2012, January 25). Debugging Mach Ports. Personal Blog. Retrieved from

http://robert.sesek.com/thoughts/2012/1/debugging_mach_ports.html

Singh, A. (2006a). Accessing kernel memory on the x86 version of Mac OS X. In Mac

OS X internals: A systems approach (bonus content). Retrieved from
http://osxbook.com/book/bonus/chapter8/kma

Singh, A. (2006b). Mac OS X internals: A systems approach. Upper Saddle River, NJ:

Addison-Wesley.

Siracusa, J. (2011, July 20). Mac OS X 10.7 Lion: the Ars Technica review. Ars

Technica. Retrieved from http://arstechnica.com/apple/reviews/2011/07/mac-os-x-
10-7.ars/18

155

Solomon, J., Huebner, E., Bem, D., & Szezynska, M. (2007). User data persistence in
physical memory. Digital Investigation, 4(2), 68-72.

Suiche, M. (2010, February). Mac OS X physical memory analysis. Black Hat DC.

Retrieved from https://www.blackhat.com/presentations/bh-dc-10/Suiche_Matthieu/
Blackhat-DC-2010-Advanced-Mac-OS-X-Physical-Memory-Analysis-wp.pdf

Urrea, J. M. (2006). An analysis of Linux RAM forensics (Master’s thesis). Retrieved

from Defense Technical Information Center. (Accession No. ADA445300)

Valenzuela, I. (2011, January 28). Mac OS forensics how-to: Simple RAM acquisition

and analysis with Mac Memory Reader. SANS Computer Forensics Blog. Retrieved
from http://computer-forensics.sans.org/blog/2011/01/28/mac-os-forensics-howto-
simple-ram-acquisition-analysis-mac-memory-reader-part-1

Vidas, T. (2011, January). MemCorp: An open data corpus for memory analysis. 44th

Hawaii International Conference on System Sciences. Koloa, Hawai: IEEE
Computer Society.

Volatile Systems, LLC (2012). Volatility: An advanced memory forensics framework.

Retrieved from https://code.google.com/p/volatility/

Webb, T. (2010, August 7). Creating a OS X live IR CD-ROM. Personal Blog. Retrieved

from https://irhowto.wordpress.com/2010/08/07/creating-a-os-x-live-ir-cd-rom

Witherden, F. (2010, October 15). Memory forensics over the IEEE 1394 interface.

ibforensic1394 Project. Retrieved from https://freddie.witherden.org/tools/
libforensic1394

156

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14 Jun 2012
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

28 Jun 2010 – 14 Jun 2012
4. TITLE AND SUBTITLE

 Forensic Memory Analysis for Apple OS X

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

 Hay, Andrew F.

5d. PROJECT NUMBER
 JON# 11G258
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/12-17

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory
 ATTN: Joseph A. Carozzoni, Research Scientist
 AFRL/RIGD Cyber Science Branch Bldg 3 Suite J2 A-21
 525 Brooks Road, Rome, NY 13441-4505
 315-330-7796, joseph.carozzoni@us.af.mil

10. SPONSOR/MONITOR’S ACRONYM(S)
 AFRL/RIGD
11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES
 This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
 Analysis of raw memory dumps has become a critical capability in digital forensics because it gives insight into the state of
a system that cannot be fully represented through traditional disk analysis. Interest in memory forensics has grown steadily in
recent years, with a focus on the Microsoft Windows operating systems. However, similar capabilities for Linux and Apple
OS X have lagged by comparison. The volafox open source project has begun work on structured memory analysis for OS X.
The tool currently supports a limited set of kernel structures to parse hardware information, system build number, process
listing, loaded kernel modules, syscall table, and socket connections. This research addresses one memory analysis deficiency
on OS X by introducing a new volafox module for parsing file handles. When open files are mapped to a process, an examiner
can learn which resources the process is accessing on disk. This listing is useful for determining what information may have
been the target for exfilitration or modification on a compromised system. Comparing output of the developed module and the
UNIX lsof (list open files) command on two version of OS X and two kernel architectures validates the methodology used to
extract file handle information.

15. SUBJECT TERMS
 digital forensics; memory analysis; apple os x; volafox; file handles

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

166

19a. NAME OF RESPONSIBLE PERSON
 Peterson, Gilbert L., Ph.D

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4281 (gilbert.peterson@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

