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ABSTRACT 

Determining target bearing based on a passive acoustic signal typically relies on 

beamforming the signals from an array of sound pressure sensors.  A major 

drawback, however, is the proportional increase in array aperture when dealing 

with low frequencies, such as the lengthy towed arrays used for anti-submarine 

warfare.  This thesis demonstrates the use of a single acoustic vector sensor 

(Microflown Ultimate Sound Probe (USP)) to derive the target bearing by 

processing both the pressure as well as particle velocity information of an 

acoustic wave. 

Field experiments were set up to track commercial aircraft during their 

final approach before landing.  Despite healthy signal-to-noise (SNR) ratios, 

significant challenges were faced in accurate real-time tracking.  Post-processing 

frequently achieved better results, but required the beamformer to process a 

broader range of frequencies (typically 300-1000 Hz), instead of focusing on 

narrowband energy peaks.  This was attributed to the effects of noise and bottom 

reflections (mainly from the concrete ground), as implied by the distinct Lloyd’s 

mirror patterns in the spectrograms.  Notwithstanding, additional information such 

as target altitude and horizontal distance at the closest point of approach (CPA) 

could be determined from analyzing these patterns. 
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I. INTRODUCTION 

The use of acoustics in target detection is of interest to many fields and 

has conventionally been achieved via phase beamforming spatially distributed 

sensors.  The sensors first capture the pressure signals of the incoming acoustic 

waves.  The signals are then combined in a beamformer to determine the 

direction of arrival (DOA).  Such methods, however, have a major drawback.  In 

order to achieve good bearing resolution, the aperture of an array must be large 

compared with the wavelength.  Furthermore, a single linear array has complete 

azimuthal symmetry making it impossible to distinguish which side of the array 

the target is on.  In low-frequency applications, they usually result in large 

physical footprints with consequently high cost, limited mobility, and counter-

detection issues.   

Acoustic vector sensors, on the other hand, have the potential of 

achieving better DOA estimates with smaller arrays.  Each acoustic wave gives 

rise to pressure as well as particle velocity changes in the transmission fluid.  

Knowledge of both would allow the DOA to be determined, as shown by Hawkes 

(1998).  The Microflown Ultimate Sound Probe (USP) sensor combines three 

orthogonal particle velocity sensors and one pressure microphone.  This enables 

wideband detection of both the polar and azimuthal angle of the acoustic DOA 

with just a single sensor with certain limitations which will be discussed. 

Caulk (2009) demonstrated this using a hybrid array of two Microflown 

sensors and one pressure microphone.  He successfully determined the DOA of 

two sound sources operating at two different frequencies in the anechoic 

chamber to within about 50 accuracy.  However, experiments on contacts of 

interest under field conditions failed due to wind noise issues. 

This paper builds upon Caulk’s thesis to demonstrate the Microflown 

USP’s ability to track actual planes during takeoff and landing at an airport.  

Advances include the direct extraction of sensor data into Matlab for processing 
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(without having to use LabView), and a near real-time display of DOA as visual 

feedback.  A foam wind shield is also utilized to overcome the wind noise that 

prevented the USPs from tracking actual targets previously. 

The rest of this paper is organized as follows: 

• Chapter II: Theoretical background to vector sensors and their 

beamforming.   

• Chapter III: Hardware and software used, details of apparatus and 

experimental setup. 

• Chapter IV: Signal processing algorithms and considerations. 

• Chapter V: Results and analysis. 

• Chapter VI: Conclusion and recommendations. 
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II. THEORY 

A. AXES SETUP 

Figure 1 shows a close-up of the Microflown USP acoustic vector sensor, 

together with the axes configuration for this thesis.  The three particle velocity 

sensors (BLUE, GREEN, RED) are orthogonally placed to detect sound from the 

corresponding Cartesian axes.  φ and θ are the azimuthal and polar angles 

respectively. 

 

Figure 1.   Schematic close-up of Microflown USP and axes setup 

B. BEAMFORMING VECTOR SENSORS 

Each vector sensor includes four sensors, one for pressure and three for 

particle velocity: 

1e  is the pressure sensor output 

2e  is the BLUE velocity sensor output (z-axis) 

3e  is the GREEN velocity sensor output (x-axis) 

4e  is the RED velocity sensor output (y-axis) 
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Although there are always slight deviations from orthogonality amongst 

the three velocity channels, previous work showed that these deviations were 

small compared to the uncertainty in the beamformer output.  Let ( 2 2,θ φ ) be the 

direction of the Maximum Response Axis (MRA) for the BLUE vector sensor, 

( 3 3,θ φ ) be that for GREEN, and ( 4 4,θ φ ) be that for RED.  The unit vectors 

corresponding to the MRA of each of the sensors would then be given in terms of 

the direction cosines as: 

Equation Section 2 

 2 22 2 2 2ˆ ˆsin ˆ ˆsin co si cos n se x y zû zφ θ θθ φ+ + ==  (2.1) 

 3 33 3 3 3ˆ ˆsin ˆ ˆsin co si cos n se x y zû xφ θ θθ φ+ + ==  (2.2) 

 4 44 4 4 4ˆ ˆsin ˆ ˆsin co si cos n se x y zû yφ θ θθ φ+ + ==  (2.3) 

It should be noted that various beamforming methods exist, and this thesis 

retains the method used by Caulk.  Prior to beamforming, the outputs of the 

velocity sensors must be adjusted to be commensurate with the amplitude and 

phase of the pressure sensor output.  This is done by measuring the transfer 

functions between the pressure and particle velocity outputs.  While this can 

theoretically be derived via the supplied calibration data of the Microflown USPs, 

it may fail to capture effects of our mounting apparatus, or other sources of 

interference or noise from the rest of the electronics.  A comprehensive method 

is to conduct in-situ calibration with the sensor in its experimental setup, which 

will be discussed in the following chapter. 

Once the outputs of the individual sensors have been properly calibrated, 

they can be put through the beamforming algorithm.  For a steer direction of 

( ,s sθ φ ), the unit vector in the steer direction is given in terms of the direction 

cosines as: 

 sinˆ ˆ ˆsin cos sin coss s s ss sû x y zφ θθ φ θ+= +  (2.4) 

Each particle velocity output would then be weighted accordingly using 

this steering vector by taking their dot products: 
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 2 ,4ˆ 3ˆ ,s en nu uw n ==   (2.5) 

 
The pressure output is omnidirectional, hence: 

 

 1 1s eû û =  (2.6) 

 
Next, the velocity channels need to be expressed in terms of their 

equivalents to the pressure signal.  This can be achieved by applying the 

appropriate transfer functions, described more in the next section.  Eventually 

when given ˆ ( )nXc k , the discrete Fourier transform of ne corrected to the 

equivalent of the pressure sensor, the linear (Bartlett) beamformer output is given 

by: 

 
4

1

ˆ( , , ) ( )s s n n
n

B k Xc k wθ φ
=

= ∑  (2.7) 

 
4

1

ˆ ˆ ˆ( , , ) ( )( )s s n en s
n

B k Xc k u uθ φ
=

= ∑   (2.8) 

For a chosen thk  frequency bin, the corresponding steer vector su  that 

generates the largest ( , , )s sB k θ φ  would give the DOA of the incoming signal.  

Note (2.8) is only valid for a single vector sensor.  Multiple sensors would require 

additional beamforming to factor in the arrival phase differences that would vary 

according to the sensor separations. 
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C. MEASUREMENT OF TRANSFER FUNCTIONS 

1. Set up 

The set up was performed in the anechoic chamber to minimize 

interference from reflections.  The Microflown USP was rigged up in the array1 

holder, and all three sensors were capped with their respective foam windshields, 

as they would be during data collection. 

2. Procedure 

The transfer functions for each of the three velocity sensors (BLUE, 

GREEN, RED) had to be determined separately.  Therefore, the sensor had to 

be rotated each time so that the MRA of the each velocity sensor faced the 

source speaker.  Broadband white noise was generated using a signal generator.  

Data from all sensors were collected via the National Instruments (NI) cDAQ-

9172 and processed in Matlab. 

3. Computation 

The required transfer function estimates are then generated in the 

frequency domain by taking the ratio of the cross-spectral density estimate 

between pressure (channel one) and the particle velocity channel (channel n) 

and the auto-spectral density estimate of the particle velocity  channel: 

 

 
*

1

*

ˆ ˆ( ) ( )ˆ ( ) 2,3,4ˆ ˆ( ) ( )
n

n
n n

X k X k
H k n

X k X k
= =   (2.9) 

 
where ˆ ( )nH k is the transfer function of thk  frequency bin, ˆ ( )nX k  is respective 

digital Fourier transform of the time-domain signals.   

                                            
1 This paper’s work only uses data from a single Microflown USP, as is sufficient to 

determine DOA as previously mentioned.  However for practical reasons as well as to facilitate 
future work, the hybrid array holder made by Caulk (2009) is retained in the calibration process. 
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Figure 2 shows the plot of the transfer functions obtained for Sensor 323.  The 

coherence subplot indicates that the usable frequencies begin from 

approximately 200 Hz onwards. 

 

 
Figure 2.   Plot of transfer functions for Sensor 323 
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III. EQUIPMENT AND SETUP 

A. HARDWARE 

Appendix A provides a list of the hardware used.  Table 1 lists some 

important configurations used for this thesis. 

 

Throughout entire study 

Microflown Four Channel Signal 

Conditioner 

- Gain set to ‘HIGH’ 

- Correction mode set to ‘OFF’ 

Deriving Transfer Functions 

AUSTIN AU-15G Amplifier 

 

- Overdrive set to ‘ON’ 

- Volume set to ‘MAX’ 

HP Signal Generator 

 

- White Noise selected 

- Vpp set to ‘5V’ 

Windshield Testing 

Kestrel 4000 Handheld Anemometer - Data recording mode at 2-sec 

interval 

Table 1.   Hardware configurations 

B. SOFTWARE 

Previous work done by Caulk (2009) had sensor data recorded via 

LabView, and subsequently post-processed in MatLab.  This precluded real-time 

feedback for in-situ evaluation and adjustments if necessary.  To overcome this, 

the latest Data Acquisition Toolbox within Matlab (version 2010b and above) was 

utilized to directly acquire data from the cDAQ.   
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The detailed component requirements are: 

• Matlab version 2010b and later 

• Data Acquisition Toolbox  

• NI DAQmx 9.4 (http://joule.ni.com/nidu/cds/view/p/id/2604/lang/en) 

This method also offered additional benefits such as programmatically 

setting the sampling frequency, auto-detection and processing of signals above 

threshold strength, etc.  The downside however is that the responsiveness is 

dependent on the computer power available.  This study used a Dell Precision 

M4500 laptop (Core i7 1.60GHz, 4 Gb RAM, 64-bit Windows 7) and was able to 

run the code continuously at a refresh rate of 0.5s or less. 

C. EXPERIMENTAL SETUP 

1. Anechoic Chamber 

For preliminary tests of the algorithms in the anechoic chamber, all of the 

equipment used for deriving the transfer functions were retained, except for the 

source.  A bookshelf speaker was used, driven by a signal generator at 

monotones of various frequencies.  Tests were conducted at varying locations 

respective to the sensor, as well as at different frequencies within the 2 kHz-

Nyquist limit. 

A second set of tests also included ‘clapping hands’ and ‘humming’ while 

walking around the sensor array.  Attempts were also made to test the system 

using mini remote-controlled helicopters, although it was observed that they did 

not generate enough signal strength. 

2. Field Measurement 

The primary purpose of this study was to acoustically detect and track 

aircraft.  The chosen location was therefore in proximity (~1 mile to nearest edge 

of runway) to nearby Monterey Airport and positioned such that arriving and 

departing aircraft would almost fly overhead for maximum signal strengths.  The 
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apparatus was mounted on a stand and placed on a concrete path next to a 

grass patch, approximately 30 meters from the nearest building (Hermann Hall, 

Naval Postgraduate School).  The foam windshields were used on all sensors to 

minimize wind noise.  Figure 3 shows a bird’s eye view of the field. 

 

 

Figure 3.   Field location with respect to Monterey Airport’s runway 
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IV. SIGNAL PROCESSING 

This section discusses some of the programming and signal processing 

considerations.  Key concepts and methodologies will be highlighted, together 

with notes about what worked and what did not. 

A. SAMPLING FREQUENCY 

The National Instruments Data Acquisition (DAQ) equipment uses a 

master internal timebase of 13.1072MHz. The sampling rate is controlled by the 

first installed module with a maximum of 51.2kHz. All other sampling rates must 

be integer divisions of the maximum according to the formula: 

 Equation Section 4  

 / 256M
s

ff
n

=  (4.1) 

where Mf  is the master clock rate and n  is an integer from 1 to 31 (National 

Instruments, n.d). 

For this thesis, a sampling frequency of 4267Hz was chosen (using n = 12 

and rounded off) to achieve a Nyquist frequency of about 2 kHz.  This was 

adequate for the application to commercial aircraft with noise signals typically 

ranging from 200 to 500 Hz.  

B. MATLAB / DAQ-MX CONFIGURATION 

Matlab’s Data Acquisition Toolbox works with NI DAQmx to import data 

from the Microflown USP, via the NI cDAQ in real time.  The process is generally 

straightforward and simple to use.  The following discusses some salient points 

during set up: 
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1. Listening Mode 

Two modes are available; Foreground or Background.  The latter was 

chosen since it allowed simultaneous operations to be carried out while the data 

was streaming.  Foreground mode presumably would be more suited to 

applications requiring higher degrees of control, such that data processing 

commences only upon the completion of data capture. 

2. Data Stream / Buffer 

It was observed that the data stream in Background mode enters a 

memory buffer, and when deemed ‘available’ the programmed function will be 

invoked.  It appeared, however, that the ‘Data Available’ criterion was not 

consistent either by data size (number of data points) or time.  A preliminary 

conclusion was that this refresh rate was a function of overall computing speed 

and data capture parameters, possibly including the prescribed sampling rate 

and even the USB transfer rate.  The variance of each sequence was however 

not more than 10% each time.  For example, in one instance the buffer could 

provide 590 data points, the next 605, then 610. 

Nonetheless, the subsequent data preparation and beamforming expects 

a consistent and pre-determined data length.  As a workaround, the data stream 

was cumulatively assigned to a growing vector, and the latest N  length of data 

would be used each time.  The length N  would be a function of the desired 

resolution (longer means better frequency resolution after FFT), noise reduction 

potential (more data allows noise reduction through averaging) as well as target 

motion resolution (shorter means a tighter snap-shot in time).  This thesis 

adopted the following: 

Length of data processed each time = 210 = 1024  

Given a sampling frequency, sf of 4265 Hz, 

Frequency resolution   = 1sf
N
+ = 4.16 Hz 
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Time duration    = 1024

sf
 = 0.24 s 

3. Real-time processing and feedback 

This is a key component of this thesis.  To allow at least near real-time 

feedback, the data stream needs to be processed and its results presented 

almost immediately.  The time allowed for this would naturally vary across 

applications, although in general the faster change in target position (as 

observed by sensor), the faster refresh rate necessary. 

Depending on the available computer power, no additional setup may be 

necessary.  The Dell M4500 laptop, however, was not able to process every data 

stream quickly enough.  The alternative was therefore to only process data 

streams at intervals, say every x instances of ‘Data Available’.  In this case, 

processing only every 4th data stream resulted in a sustainable refresh rate of 

less than 0.5 seconds.  Each time only the latest N  bits of data were used to 

ensure the most up-to-date data was being processed. 

4. Saving Data Streams 

Notwithstanding the above, the integrity of the entire input data stream is 

preserved in the operating environment, and is saved to file for further processing 

if needed.  This allows detailed analysis which may not have been possible 

during collection. 

C. FREQUENCY DOMAIN ANALYSIS 

Once the data is properly extracted, most of the processing occurs in the 

frequency domain.  This allows the beamforming algorithms to target specific 

frequency or frequency bands of interest.  The following discusses some 

techniques employed to enhance results: 
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1. Bandpass Filtering 

The power spectrum of the incoming data can be evaluated in real-time, 

and a suitable pass band can be determined through a combination of prior 

programming bias, and/or rules such as maximum energy detection.  This thesis 

employed a pre-determined pass band of 300–600 Hz, which corresponded to 

most signals emitted by commercial aircraft.  Since the data has already been 

transformed to the frequency domain, this is a simple process of discarding data 

outside the pass band. 

2. Peak Detection 

Within the pass band, a peak detection algorithm determines the peak 

frequencies for further evaluation.  The algorithm compares each bin value to 

that of its neighbors, and classifies those above the preset threshold as peaks.   

Threshold settings are adjustable for further refinements.   

3. Beamforming 

This is the main process of taking the dot products between the MRAs of 

various particle velocity channels and the unit vector in the steered direction.  As 

expected, this part is the single largest computational bottleneck of the entire 

program.  The more frequencies selected for beamforming and the finer the 

angular resolution, the longer it takes and slower the overall refresh rate.   

Following the peak detection routine, various approaches are possible: 

a) Single maximum peak (plus buffer above and below) 

b) All detected peaks (plus buffer above and below) 

c) Any arbitrary pass band 

Initial configurations to achieve the less-than-0.5 second refresh rate 

adopted Option (a).  Option (b) proved to be marginally slower, and Option (c) is 

highly intensive and more suited to be a post-processing approach. 

 



 17 

4. Angular Resolution 

The code also allows the angular resolution to be adjustable, and the 

obvious tradeoff would be between that of accuracy and speed.  This was set to 

be 1-degree increments for the field experiment, and 5-degree increment for the 

tests conducted in the anechoic chamber. 

D. VISUAL DISPLAY FOR FEEDBACK 

Last but not least, the results of beamforming has to be presented for 

feedback.  Caulk’s work included intensive graphics such as 3D surface plots 

and full-color imagery.  In order to achieve near real-time feedback, this had to 

be replaced by basic 2-D plots (φ - θ), as well as a 3-D directional cone display. 
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V. RESULTS AND ANALYSIS 

A. IN ANECHOIC CHAMBER 

1. Single Source, Varying Frequency 

Driving a single speaker at various frequencies within the Nyquist limit 

gives clear and distinct results.  Utilizing the single peak detection (Option (a)) 

also allowed for fast refresh rates and almost instantaneous feedback.  The 

system performed equally well for most frequencies, with the lowest workable 

frequency found to be approximately 300 Hz.  This is slightly higher than the 200 

Hz suggested by the earlier coherence plots.  The following tests will be 

presented here: 

a) 1000 Hz along positive Y-axis (Figure 4) 

b) 1000 Hz along positive Z-axis (Figure 5) 

c) 300 Hz along positive Y-axis (Figure 6) 

The figures show the detected peak in frequency domains, the 2-D  plot, 

as well as the 3-D cone plot intended as visual feedback in real-time.  The figure 

titles indicate the detected frequencies, as well as source positions. 
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Figure 4.   Single Source at 1000 Hz along positive Y-axis 

 
Figure 5.   Single Source at 1000 Hz along positive Z-axis 
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Figure 6.   Single Source at 300 Hz along positive Y-axis 

While the 1000Hz tone showed excellent tracking along both Y and Z 

directions, inaccuracies started showing in the tracking of the 300Hz tone.  When 

placed along the positive Y-direction, its detected location was at φ = 85° and θ = 

110° (5° and 20° error respectively). 

2. Two Source, Different Frequency 

Two speakers were placed at approximately the same height of and 

distance away from the sensor array, separated by approximately 50 degrees in 

azimuth (in the x-y plane).  One speaker was driven by a 1000Hz monotone, the 

other a 300Hz.  The system managed to sequentially localize each source, 

depending on the frequency selection (choice of peak).   
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Figure 7.   Two sources (300 Hz and 1000 Hz), 300 Hz detected. 

 

 
 

Figure 8.   Two sources (300 and 1000 Hz), 1000Hz detected. 

Figure 7 and Figure 8 show the correct detection of both monotones 

emitted simultaneously, albeit with some inaccuracies.  The heights of both 

sources were the same as the previous test (i.e. θ = 90°), but the 300 Hz tone 

was detected at θ = 125°, while the 1000 Hz tone was detected at θ = 105°. 
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While it was not done, the system could easily be modified to 

simultaneously locate and display both source locations transmitting at different 

frequencies.  This would be done via plot-holding in Matlab, and overlaying the 

two distinct sources as detected by the peak-finding algorithm. 

3. Two Source, Same Frequency 

As expected and presented by Hochwald and Nehorai, the basic 

beamforming algorithm employed is unable to distinguish between two sources 

transmitting at the same frequency or at overlapping frequency bands.  A method 

known as Multiple Source Classification (MUSIC) is widely known to be able to 

do that. Given n vector sensors, the theory hypothesizes the detection of 4n-2 

uncorrelated sources.  A single vector sensor should therefore be capable of 

distinguishing two sources transmitting at overlapping frequencies. 

B. FIELD RESULTS 

1. Original Setup 

A variety of aircraft were tracked in this session, the two most distinctively 

different ones are the twinjets and the twin turboprops. 
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a. Arriving Twinjet 

 

Figure 9.   LOFARgram of arriving twinjet  

 Figure 9 shows the LOFARgram of an arrival twinjet.  A few things can be 

seen immediately from the plot: 

a) Target SNR is high and clearly detectable above ambient noise 

b) Most ambient noise occur at <200 Hz 

c) Clear Doppler shift 

d) Distinct Lloyd’s Mirror pattern due to interference from reflections 
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Figure 10.   LOFARgram of arriving jet with detected peak frequencies 

 Figure 10 shows the same LOFARgram, as well as the detected peak 

frequencies by the peak-finding algorithm, which would be subsequently used for 

beamforming.  Within the specified range of 300–600 Hz, the peak-finding 

algorithm worked well to identify the main signal frequency most of the time.  The 

detected peaks also helped to clearly identify the Doppler shift. 
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Figure 11.   Real-time φ - θ plot for arriving jet 

The real-time tracking, presented as a 2-D φ - θ plot is shown in Figure 11 

and was clearly not an accurate representation of the actual flight path.  Since 

the plane was landing, it can be assumed that it was on a straight course.  Even 

with a changing altitude, the actual φ - θ plot should be relatively smooth, with 

small incremental changes in the polar and azimuthal angle. 

Since the full data was recorded, post-analysis was possible.  The range 

of beamforming options as earlier presented was tested, and the best result was 

produced by beamforming across a wider range of frequencies.  The following 

series of plots (Figure 12) illustrate the incremental improvements.   



 27 

 

Figure 12.   Significant improvements in tracking by beamforming across wider 
range of frequencies—Arriving Jet 

Average beamforming times per data point/cycle are appended 

accordingly.  Beamforming across more frequencies essentially perform 

averaging, and reduces the effect of noise and other interferences.  In particular, 

a vector sensor is most sensitive to reflections that alter the amplitude and phase 

information of the various channels, and averaging may have mitigated that. 

Instead of a selected few frequency bins, the beamformer now computes 

many more and then sums them cumulatively, before presenting the global 

maxima for φ and θ respectively.  This increased computational load would have 

to be balanced with the desire for system responsiveness. 
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B. DEPARTING TURBOPROP 

 

Figure 13.   LOFARgram of departing turboprop 

 Figure 13 shows the LOFARgram of a departing turboprop.  As compared 

to the jet, the broadband signal strength is weaker but still clearly above ambient 

noise levels.  There is still a detectable, albeit smaller Doppler shift due to the 

apparently lower landing speed.  A Lloyd’s Mirror pattern can still be seen, but is 

less obvious due to the smaller signal amplitudes.  This is consistent with the in-

situ observation that the jets sound louder than the turboprops. 
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Figure 14.   LOFARgram of departing turboprop with detected peak frequencies 

Figure 14 shows that the peak-finding algorithm is now struggling to ‘lock’ 

onto a consistent source.  Within the same specified range of 300–600 Hz, the 

presence of similar-amplitude harmonics appear to be challenging for a single 

source to be tracked closely.  It can also be seen that some high-energy peaks 

are occurring at around 200 Hz.  While expanding the peak-finding algorithm 

would produce a better ‘lock’ on these emissions, earlier tests had shown the 

beamformer to only perform decently at frequencies above 300 Hz. 

That said, all the detected peaks are without doubt transmissions 

originating from the target, and not elsewhere.  Theoretically, a vector sensor 

should therefore still be able to resolve the target position from these frequency 

peaks. 
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Figure 15.   Real-time φ - θ plot for arriving turboprop 

As seen in Figure 15, the tracking of the turboprop in real-time was also 

not accurate.  Various other beamforming options, including the proven method 

of summing across more frequencies in the arriving jet did not produce similar 

improvements.   This is shown in the following series of plots (Figure 16).   
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Figure 16.   Negligible improvements by beamforming across wider range of 

frequencies—Arriving turboprop 

 A few reasons could explain this, the most likely of which is that the 

highest energy emissions occurred below the minimum working frequency of the 

Microflown USP.  The higher harmonics may not be adequately strong to provide 

the correct beamforming, or were severely affected by reflections. 

2. Revised Setup—with Foam Box 

 Following the results from the first field setup, an attempt was made to 

minimize bottom reflections.  A cardboard box, lined with sound-absorbent foam 

was used to shield the bottom half of the sensor.  To simplify matters, the sensor 

array was also replaced by a single Microflown USP on an equipment stand.  

Figure 17 shows a picture of the revised setup. 
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Figure 17.   Revised setup of single Microflown USP and anti-reflection foam 
box still need picture 

 Since the transfer functions had been derived for the sensor array, the 

new setup technically had to be re-calibrated by performing the same procedure 

in the anechoic chamber.  A quick check in the chamber however verified that the 

old transfer functions were still valid, and the new setup could still track sources 

accurately.  The re-calibration was therefore not performed in the interest of time. 
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a. Arriving Twinjet 

 
Figure 18.   LOFARgram of arriving twinjet (new setup with foam box) 

 

Figure 19.   LOFARgram of arriving twinjet (original setup) 

Figure 18 shows a markedly different signal profile of a twinjet, with 

a foam box now under the sensor.  Compared to the jet profile using the original 

setup, shown in Figure 19, the Lloyd’s Mirror pattern has been reduced 

substantially, though still noticeable.  Other aspects such as the Doppler shift and 

overall signal amplitude also seem to have been attenuated to some degree. 
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Figure 20.   Real-time φ - θ plot for arriving twinjet (new setup with foam box) 

Figure 20 shows that despite the modifications, the real-time 

tracking is still not accurate.  Post-analysis however show greater incremental 

improvements when summing across more frequencies. 
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Figure 21.   Faster improvements by beamforming across wider range of 
frequencies—Arriving Jet (with foam box) 

Figure 21 shows that the tracking improved substantially faster with 

beamforming across more frequencies, as compared to the previous setup.  The 

tracking however, while relatively linear and smooth, did not depict the actual 

flight path.  With θ reaching 160° at the closet point of approach (φ = 0°), this 

tracking meant that the flight path was only at a 20-degree elevation from the 

sensor, when it clearly flew almost overhead.  Closer analysis revealed that the 

the vertical particle velocity sensor (GREEN, x-axis) was recording a less-than-

expected signal amplitude.  This produced the erroneous tracking of a low-flying 

target. 

It is unclear what may have caused this, but suspicions point to the 

newly added foam-lined box underneath the sensor.  The presence of a faint 
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Lloyd’s Mirror pattern shows the box is not completely opaque to the signals, it 

may have in other ways interfered and contributed to the specific attenuation to 

the GREEN channel.  Preliminary research showed that the wedge foam used 

was not particularly effective in absorbing the low frequencies of 250-500 Hz.  If 

the GREEN signals were artificially boosted by a applying a scalar multiple, the 

resultant tracking approaches the true flightpath, as shown in Figure 22. 

 

 

Figure 22.   Improved tracking by boosting GREEN signal by 5, 10 and 20 times 
(beamformed300–600 Hz) 
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b. Arriving Turboprop 

 

 

Figure 23.   LOFARgram of arriving Turboprop (new setup with foam box) 

 

Figure 24.   LOFARgram of departing Turboprop (original setup) 

Figure 23 shows the signal profile of an arriving turboprop with the 

foam box.  Compared to that using the original setup in Figure 24, the Lloyd’s 

mirror pattern is noticeably suppressed, especially towards the higher 

frequencies.  Signal strength before and after CPA also appeared to have been 

reduced to some degree, resulting in shorter frequency ‘streaks’. 
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Figure 25.   Real-time φ - θ plot for arriving turboprop (new setup with foam box) 

Figure 25 shows that the real-time tracking again is not accurate.  

Beamforming across more frequencies also did not give much improvement.  

Compared to those using the original setup in Figure 16, the tracks, however, 

were smoother and bore greater resemblance to a realistic flight path.  

The 300–1500 Hz plot in particular was interesting.  This implied 

that the plane flew past on the other side of the sensor, away from the buildings 

(θ < 90°), and at an elevation of 20°.  This was previously unseen, and could be 

due to the reflections off the wall of the cardboard box.  Furthermore, the 

modifications would still not address the fact that some high-energy emissions 

from the turboprops are occurring below 300 Hz.  These would continue to 

present problems for the Microflown USP since we were unable to produce loud 

enough low frequency noise to establish good transfer functions that far down in 

frequency. 
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3. Analysis of Lloyd’s Mirror Pattern 

 

Figure 26.   LOFARgram of a arriving jet with distinct Lloyd’s mirror pattern 

 Despite reflections being undesirable for vector sensors in general, 

additional useful information can be derived from careful analysis.  This section 

explains.  The salient features, as indicated on Figure 26 are: 

• Doppler shift ‘streaks’ 

• Locations of maxima at CPA 

• Gradients of frequency peaks 
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a. Target Velocity 

This is the direct application of the Doppler shift equation valid 

where the contact speed is small compared to the speed of sound: 

 

Equation Section 5 u l

u l

f fv c
f f
−

=
+

 (5.1) 

 
where v  is the velocity of target, c  is the speed sound in air (343 m/s) 

and uf , lf  are the upper and lower frequencies of the Doppler streak. 

   

 

Figure 27.   Deriving target velocity from Doppler shift 

Choosing the highest frequency visible Doppler streak in Figure 27 

for the lowest minimum errors, uf
 = 1770 Hz, and uf = 1204 Hz.     

 

 11770 1204343 65 (126 )
1770 1204

v ms knots−− = ≅ +   
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b. Target Altitude 

Assume the sensor has a height d , and the aircraft is flying in the 

y-direction at speed v  and altitude h .  The horizontal range along the x-axis at 

CPA is 0R and occurs at time t  = 0 , as illustrated in Figure 28. 

 

 

Figure 28.   Schematic of flypast 

The exact solution for the path length difference between the direct 

and reflected paths is: 

 

 ( ) ( )2 22 2 2 2 2 2
0 0reflected directr R R h d R v t h d R v t∆ = − = + + + − − + +  (5.2) 

 
 

 

 



 42 

As ,  becomes large compared to  and the 

path length difference can be approximated as: 

 

 ( ) ( )2 22 2
0 0

2 2 2 21 1
h d R h d R

r
v t v t

+ + − +
∆ = + − +   

 ( ) ( )2 22 2
0 0

2 2 2 2

1 11 1
2 2

h d R h d R
r vt vt

v t v t
   + + − +

∆ ≅ + − +      
   

 (5.3) 

 
Expanding the terms and simplifying results in: 
 

 2hdr
vt

∆ ≅  (5.4) 

 
Assuming a rigid boundary condition for the reflection, when the 

path length equals an integral number of wavelengths, you get maxima in the 

LOFARgram.  This condition is given by: 

 

 2
n

n

hd ncr n
vt f

λ∆ ≅ = =  (5.5) 

 
Solving for time and differentiating with respect to frequency gives: 
 

2

n

dt hd
df ncv

≅  

 

 
2n

dt ncvh
df d

 ≅  
 

 (5.6) 

 
So at times far from CPA, the time-frequency plot of the maxima 

are linear with a slope which decreases by integer multiples from the steepest 

slope for n = 1.  Measurement of the slope would therefore yield the altitude of 

the aircraft. 
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Figure 29.   Deriving target altitude from gradient of frequency peaks 

Applying this result to the example above, we first determine the n 

= 1 peak at approximately 182 Hz (Figure 29).  This can be checked by verifying 

the subsequent maxima are indeed integer multiples of this frequency. For 

example, 2nd maximum is 365 Hz (n = 2.00), 3rd maximum is 552 Hz (n = 3.03). 

Next we choose a gradient of frequency peaks.  Recall the use of 

 in simplification earlier.  It is therefore best to choose the visible frequency 

gradient that is furthest away from CPA. 

In this example, the n = 3 maxima was used.  Using d  = 0.9m and 

n = 1, 

 

( ) ( ) ( )
( )

3 343 65.27846.971 5.056 200
1091 733.8 2 0.9

h m
 −

≅ = −  
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c. Horizontal Distance at CPA 

At CPA, t  = 0.  (5.2) then simplifies to: 

 

 ( ) ( )2 22 2
0 0CPAr h d R h d R∆ = + + − − +  (5.7) 

 

This path length difference produces maxima at: 

 

 
( ) ( )2 22 2

0 0

n
ncf

h d R h d R
=

+ + − − +
 (5.8) 

 

Using the previously estimated altitude h , and the frequencies of 

the maxima observed at CPA, the exact solution for 0R can be found using a 

standard root finding algorithm.  If the horizontal range at CPA is small compared 

to the altitude ( ), as in this case of overflying targets, 0R  can also be 

estimated explicitly. 

 

 
 

 

 

Assuming ), this expression can be simplified to: 

 

 ( )
( )

( )
( )

2 2
0 0

2 2
1 11 1
2 2

R Rr h d h d
h d h d

   
∆ ≅ + + − − +      + −   

 (5.9) 
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Expanding the terms and simplifying gives: 

 

 
( ) ( )

2 2 2 2
0 0 0 01 1 1 12 2

2 2 2 21 1

R R R Rr d d
d dh d h d h h
h h

∆ ≅ + − = + −
+ −    + −   

   

 (5.10) 

 

Now assuming h d>>  (200m vs 0.9m in this case), we can further simplify this 

into: 

 

 
2 2 2 2
0 0 0 0

2 2

1 12 1 1 2 2
2 2

R d R d R Rr d d d d
h h h h h h

    ∆ ≅ + − + + = − = −     
     

 (5.11) 

 

From (5.5),      
2
0
22

n

nc Rr d
f h

 
∆ ≅ ≅ − 

 
  

   

 2o
n

ncR h
f d

≅ −  (5.12) 

   

Applying to our example, and using the first maximum at 182 Hz, 

h = 0.95 m (using 0.9 m would result in an imaginary root), d = 200 m, 

 
 

(1)(343)200 2 25
(182)(0.95)oR m≅ − ≅  

 

The exact solution using (5.8) and Matlab ‘roots’ function gave an answer of 25.6 

m, thus validating the prior assumptions. 
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VI. CONCLUSION 

The use of a single acoustic vector sensor in tracking commercial aircraft 

in final landing approaches has been successfully demonstrated.  The 

advantages of a relatively small package with wideband capability could be 

substantially exploited in mobile systems. 

The specific setup used however, did not manage to do so in real-time as 

desired, which is essentially a function of computing power.  Algorithms that are 

more efficient could potentially improve performance. 

The results revealed that vector sensors, since relying heavily on the 

amplitude and phase information between the particle velocity and pressure 

channels, are especially sensitive to reflections.  The contrast between in-

chamber and field testing illustrate the adverse effects of bottom reflections.  

Curbing such interferences would therefore be an utmost priority in the 

employment of vector sensors in general.  Nonetheless, it was also illustrated 

that reflections can become a useful source of information when properly 

analyzed. 

In seeking an eventual capability of real-time tracking, continued efforts 

could be made in various directions: 

• Tracking of higher-frequency (500 Hz and above) targets which operate 

well clear of the minimum working frequency 

• Using acoustic-absorbent material designed for frequency band of interest 

• Re-positioning sensor to minimize bottom reflections 
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APPENDIX A. LIST OF EQUIPMENT 

Microflown Holland Four Channel Ultimate Sound Probe 

(USP)—Model UT0901-23/24 (Sensor 323/324) 

 

Microflown Holland Four Channel Signal Conditioner—

Model E0901-23/24 
 

National Instruments CompactDAQ USB Chassis 

Model NI 9172 

 
National Instruments Sound and Vibration DAQ Module—

Model NI 

9234 (3 total)  

AUSTIN AU-15G Amplifier 

 

Hewlett Packard Function Generator—Model 33120A 

 

Kestrel 4000 Handheld Anemometer 

 
Dell Precision M4500 Laptop Computer 

(Core i7 1.60 GHz, 4 Gb RAM, 64-bit Windows 7) 
- 
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APPENDIX B. COMPUTER CODE 

A. MAIN SCRIPT 

main.m 
%This is the main script to run in real-time, and saves the entire data  
%for subsequent processing and analysis.  User to specify: 
%Fs - sampling frequency in Hz 
%duration - collection duration in seconds 
  
clear all 
close all 
clc 
  
%Specify parameters 
Fs = 4265; %samplng frequency 
duration = 5; %seconds 
  
%use acquireData_4ch or acquireData_12ch as appropriate 
data = acquireData_4ch(Fs, duration); 
  
%save data to file with system timestamp 
dt = datestr(now, 'mmmdd_HHMMSS'); 
ft = strcat('.\Nfloor\',dt); 
save (ft,'data') 
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B. KEY FUNCTIONS 

acquireData_4ch.m 
 
function [data] = acquireData_4ch (Fs, duration) 
%Starts the data acquisition process using Matlab's Data Acquisition 
%Toolbox, and via NI DAQmx drivers. 
  
%Inputs from calling function: 
%Fs - sampling frequency in Hz 
%duration - acquisition duration in seconds 
  
%Variables need to be global so to be used across various functions 
global data 
global Fs 
  
%Create generic session for NI devices 
s = daq.createSession('ni'); 
  
%Setting parameters using provided inputs 
s.Rate = Fs; 
s.DurationInSeconds = duration; 
  
%Add device and channel/s.   
%If unsure, type 'daq.getDevices()' to see what's connected and 
available 
s.addAnalogInputChannel('Dev1',0:3,'voltage'); 
  
%The previous steps take a few seconds, and may affect timely 
recording. 
%The following pause inserts a break, so recording starts almost 
%immediately after a key stroke here. 
pause() 
  
%Start background listening, and specify function to process data when 
%available 
lh = s.addlistener('DataAvailable',@plotData); 
s.startBackground();    
s.wait() 
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acquireData_12ch.m 
 
function [data] = acquireData_12ch (Fs, duration) 
%Starts the data acquisition process using Matlab's Data Acquisition 
%Toolbox, and via NI DAQmx drivers. 
  
%Inputs from calling function: 
%Fs - sampling frequency in Hz 
%duration - acquisition duration in seconds 
  
%Variables need to be global so to be used across various functions 
global data 
global Fs 
  
%Create generic session for NI devices 
s = daq.createSession('ni'); 
  
%Setting parameters using provided inputs 
s.Rate = Fs; 
s.DurationInSeconds = duration; 
  
%Add device and channel/s.   
%If unsure, type 'daq.getDevices()' to see what's connected and 
available 
s.addAnalogInputChannel('cDAQ1Mod1',0:3,'voltage'); 
s.addAnalogInputChannel('cDAQ1Mod2',0:3,'voltage'); 
s.addAnalogInputChannel('cDAQ1Mod3',0:3,'voltage') 
  
%The previous steps take a few seconds, and may affect timely 
recording. 
%The following pause inserts a break, so recording starts almost 
%immediately after a key stroke here. 
pause() 
  
%Start background listening, and specify function to process data when 
%available 
lh = s.addlistener('DataAvailable',@plotData); 
s.startBackground();    
s.wait() 
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plotData.m 
 
function plotData(src,event) 
% Called by 'acquireData_4ch.m' or 'acquireData_12ch.m' when data is 
% available.  Appends entire data stream to global variable 'data' 
  
    persistent tempData; 
    persistent i; 
     
    global data  
    global Fs 
    if(isempty(tempData)) 
         tempData = []; 
          
    end 
   
    data = [data;event.Data]; 
     
    
    %Specify data chunk length for subsequent processing 
    N = 2^10;   
    NFFT = N/2; 
    i = floor(length(data)/N); 
   
     
    j = 0; 
    if i > 0 & i > j 
         
        start = (i-1)*N+1 
        finish = i*N 
        y = data(start:finish,:); 
         
        %Process every 'x' available data chunks to adjust system 
response 
        %time.  Balance between refresh rate and system lag. 
        x = 4; 
        if (mod(i,x)==0) 
            beamform_4ch(Fs,N,NFFT,y); 
        end 
         
         
         
        %Plots single-sided amplitude spectrum for feedback in real-
time 
        L = length(y);     
        NFFT2 = 2^nextpow2(L); 
        Y = fft(y,NFFT2)/L; 
        f = Fs/2*linspace(0,1,NFFT2/2+1); 
        
        figure(1)     
        y2 = 2*abs(Y(1:NFFT2/2+1)); 
        plot(f,2*abs(Y(1:NFFT2/2+1)))  
        axis([0 2000 0 50*mean(y2)]); 
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        time = num2str(i); 
        time = strcat({' '}, time, {' sec'}); 
        figtitle = strcat('Single-Sided Amplitude Spectrum of y(t)', {' 
'}, time); 
        title(figtitle) 
        xlabel('Frequency (Hz)') 
        ylabel('|Y(f)|') 
         
                   
        j = i 
    end 
end 
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beamforme_4ch.m 
function beamform_4ch (Fs,binN,N,bindata) 
%use tic & toc to time beamformer cycle 
tic 
  
global Fpoints targetPosition targetphi targettheta time_taken; 
  
  
    %DAQ channel assignments 
    prs1 = 1; %sensor 324 pressure 
    blu1 = 2; %sensor 324 blu velocity Z axis 
    grn1 = 3; %sensor 324 grn velocity X axis 
    red1 = 4; %sensor 324 red velocity Y axis 
         
    thetainc = 1; %angle increment degrees  
    phiinc = 1; %angle increment degrees  
    numsens = 1; %total number of sensors 
    numel = 4; %number of elements per sensor 
  
  
    %calculated parameters and constants 
    k = linspace(0,N-1,N); %baseline FFT bin numbers 
    d = 0.172; %array element spacing meters - measured 172mm ± 2mm 
    c = 340; %speed of sound meters/sec @ 20°C sea level  
    maxchan = numsens * numel; %total channels 
    x = 1; %X axis designator 
    y = 2; %Y axis designator 
    z = 3; %Z axis designator 
  
    %Vector Sensor Angles relative to Array Apparatus - radians 
    thetab1 = 0; %323 blu1 0° 
    phib1 = pi/2; %323 blu1 90° 
    thetag1 = pi/2; %323 grn1 90° 
    phig1 = 0; %323 grn1 0° 
    thetar1 = pi/2; %323 red1 90° 
    phir1 = pi/2; %323 red1 90° 
  
    %Sensor Element Unit Vectors 
    ue(prs1,:) = [0 0 0]; %323 prs1 dummy [0 0 0] - change in udot to 
[omni] 
    ue(blu1,:) = [sin(thetab1)*cos(phib1) sin(thetab1)*sin(phib1) 
cos(thetab1)]; %323 blu1 [0 0 1] 
    ue(grn1,:) = [sin(thetag1)*cos(phig1) sin(thetag1)*sin(phig1) 
cos(thetag1)]; %323 grn1 [1 0 0] 
    ue(red1,:) = [sin(thetar1)*cos(phir1) sin(thetar1)*sin(phir1) 
cos(thetar1)]; %323 red1 [0 1 0] 
    
    %Steered Unit Vectors 
    thetas = 0:deg2rad(thetainc):pi; %polar steer angle array- radians 
    phis = -pi:deg2rad(phiinc):pi; %azimuthal steer angle array upper 
hemisphere - radians 
    %phis = -pi/2:deg2rad(phiinc):pi/2; %azimuthal steer angle array 
upper hemisphere - radians 
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    m = length(thetas); %total number of angles in theta direction 
    n = length(phis); %total number of angles in psi direction 
    p = length(k); %vector length in k direction 
    u = sin(thetas') * cos(phis); %steered direction cosine x - m x n 
matrix 
    v = sin(thetas') * sin(phis); %steereddirection cosine y - m x n 
matrix 
    w = cos(thetas') * ones(1,n); %steereddirection cosine z - m x n 
matrix 
  
    %element unit vector & steer angle dot product array 
    %calculate one udot per element, same for all sensors,  
    %use first four channels of ue matrix 
    %vectorize dot products for faster multiplication in beamformer 
    udot = ue(prs1:red1,x)*u(:)' + ue(prs1:red1,y)*v(:)' + 
ue(prs1:red1,z)*w(:)'; %1-4 x m*n 
    %omni-directional pressure sensors - vector is "1" in all 
orientations and aspects 
    udot(1,:) = ones(1,m*n); %1 x m*n 
     
     
    Xc = zeros(maxchan,N); 
  
    %hanning window to reduce sidelobes of signal 
    H = hann(binN) * ones(1,maxchan);  
    xwin = bindata .* H; 
    %clear bindata H  
  
    %convert binary signal data to frequency domain 
    Xw = fft(xwin); %by columns binN x maxchan 
  
    %truncate length of signal to match transfer function length N x 
maxchan 
    X = Xw(1:N,:);  
    X = X.'; %change to row data maxchan x N, non conjugate transpose 
    clear xwin Xw %save memory 
  
     
    load '.\txfunction_323.mat' 
    Hp1b_BLUE = Hp1B(1:N,:); 
    Hp1b_GREEN = Hp1G(1:N,:); 
    Hp1b_RED = Hp1R(1:N,:); 
  
    %Apply transfer functions 
    Xc(1,:) = X(1,:); 
    Xc(2,:) = X(2,:) .* Hp1b_BLUE'; %Hb1=Hp1*Hb1 - pre multiply vel and 
prs Xfer funct 
    Xc(3,:) = X(3,:) .* Hp1b_GREEN'; %Hg1=Hp1*Hg1 - pre multiply vel 
and prs Xfer funct 
    Xc(4,:) = X(4,:) .* Hp1b_RED'; %Hr1=Hp1*Hr1 - pre multiply vel and 
prs Xfer funct 
     
      
    %apply band-pass filter 
    length(Xc) 
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    startband = 300; 
    stopband = 600; 
    startbin = floor(startband*2*N/Fs); 
    stopbin = floor(stopband*2*N/Fs); 
    Xc2 = zeros(maxchan,N); 
    Xc2(:,startbin:stopbin) = Xc(:,startbin:stopbin); 
     
    %Use peakfinder.m to determine source frequency/s 
    [peakLoc1, peakMag]=peakfinder(Xc2(1,:)); 
    peakLoc = peakLoc1.*Fs./(N*2); %convert from bin numbers to actual 
frequencies 
     
    %choose maximum peak within earlier specified passband 
    [C,I] = max(peakMag);   
    Fo = peakLoc(I);   
    Fpoints = [Fpoints;Fo]; %store into global variable for appending 
onto LOFARgram 
         
     
    %+-  bins around design freq to truncate - processing bandwidth, 
ignore remainder  
    Fplot = floor(Fo*(N*2)/Fs) + 1; %k bin for freq Fo 
    HBW = Fo/100; %+- freq to offset signal from Fo - broad for live 
signals 
    halfbandwidth = floor(HBW*(N*2)/Fs) + 1; %+- number of bins to 
offset signal 
    kshort = k(:,Fplot-halfbandwidth:Fplot+halfbandwidth); %get 
relevant k values 
    k = kshort; %transfer relevant k values to new k vector 
    clear kshort 
    p = length(k); %new vector length in k direction 
  
     
    %select appropriate bins for beamforming 
    %Option 1:  Use detected peak frequency Fo +- buffer 
    Xcshort = Xc(:,Fplot-halfbandwidth:Fplot+halfbandwidth); 
     
    %Option 2:  Use continuous range of frequencies for noise reduction 
average 
    %Xcshort = Xc(:,startbin:stopbin); 
    Xc = Xcshort; 
    clear Xcshort %save memory 
    Xc = conj(Xc); 
  
  
    %%initialize beamformer%% 
    %%S is sum of all elements and sensors - the beamformer%% 
    S = zeros(m*n,size(Xc,2));  %final beam former output - m*n x p 
array 
  
    %Beamformer output 
    for q = 1:4; 
        %pull element matrix from udot array 
        %Theta m * Phi n vector 
        udotc = squeeze(udot((mod(q+3,4)+1),:,:)); %m*n x 1 
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        sumcalc = udotc(:) * Xc(q,:); %m*n x p     
        S = S + sumcalc; 
    end 
  
    S = sum(abs(S),2);  %sum along k "amplitude", collapse to single 
value in k direction 
    S = reshape(S, [m n]); %mxn thetaxphi 2D matrix 
     
    %remove SdB points outside 90% max value for clearer phi-theta 
plots 
    indices = S > max(max(S)).*0.9; 
    S = indices.*S; 
    
    %convert to dB 
    SdB = 20*log10(abs(S));  
  
    %Find target phi and theta by searching for maximum values 
    [SdBmax1,I1] = max(max(SdB,[],1)); 
    [SdBmax2,I2] = max(max(SdB,[],2)); 
    phisdeg = rad2deg(phis); 
    thetasdeg = rad2deg(thetas); 
    targetphi = phisdeg(I1);  
    targettheta = thetasdeg(I2); 
    targetphirad = phis(I1); 
    targetthetarad = thetas(I2); 
     
    %Append onto global vector for final tracking plot 
    targetPosition = [targetPosition; [targetphi targettheta]]; 
     
    %Convert into coordinate system of 'Cone' subfunction 
    x = sin(targetthetarad) * sin(targetphirad) * 20; 
    y = cos(targetthetarad) * 20; 
    z = sin(targetthetarad) * cos(targetphirad)* 20; 
     
    Cone([0 0 0],[x y z],[0 1],10,'r',0,0,Fo,targettheta,targetphi); 
  
             
    %Overhead Theta by Phi amplitude plot 
    figure (5) 
    %clims = [min(min(SdB)) max(max(SdB))]; 
    %imagesc(rad2deg(phis),rad2deg(thetas),SdB,clims); 
    imagesc(rad2deg(phis),rad2deg(thetas),SdB); 
    location = strcat({' \phi='}, num2str(targetphi), {' \theta='}, 
num2str(targettheta));   
    figtitle = strcat({'Detected source of '}, num2str(Fo,'%4.0f'), {' 
Hz'}, location);  
    title(figtitle) 
    axis([-180 180 0 180]) 
    xlabel('\phi (deg)')  
    ylabel('\theta (deg)')  
    shading interp 
     
    %{ 
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    %3D rendering of sensor beam pattern.  This allows visual 
verification 
    of vector sensor's performance, which is has a maximum in the 
direction 
    of source, and a deep null away from it. 
     
    %convert to cartesian coordinates 
    %r = 1; 
    xdir = SdB .* u; %x coord normal to yz plane - amplitude 
    ydir = SdB .* v; %y coord normal to xz plane - phi 
    zdir = SdB .* w; %z coord normal to xy plane - theta 
     
    figure (3) 
    axis([0 180 0 180 40 90]) 
    surf(ydir,xdir,zdir,SdB,'EdgeColor','none'); %nxm 3D plot at freq 
of interest 
    set(gca,'ZDir','reverse') 
    camup([0 1 0]); 
    campos([20 15 20]) 
    title(figtitle) 
    xlabel('y axis')  
    ylabel('x axis') %phi - n 
    zlabel('z axis') %theta - m 
    shading interp 
     
    %} 
     
time_taken = [time_taken;toc];     
end 
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beamform_12ch.m 
function beamform_12ch (Fs,binN,N,bindata) 
%use tic & toc to time beamformer cycle 
tic 
  
global Fpoints targetPosition targetphi targettheta time_taken; 
  
  
    %DAQ channel assignments 
    prs1 = 1; %sensor 324 pressure 
    blu1 = 2; %sensor 324 blu velocity Z axis 
    grn1 = 3; %sensor 324 grn velocity X axis 
    red1 = 4; %sensor 324 red velocity Y axis 
    prs2 = 5; %ACO calibrated pressure mic 
    blu2 = 6; %ACO calibrated pressure no velocity - dummy 
    grn2 = 7; %ACO calibrated pressure no velocity - dummy 
    red2 = 8; %ACO calibrated pressure no velocity - dummy 
    prs3 = 9; %sensor 323 pressure 
    blu3 = 10; %sensor 323 blu velocity Z axis 
    grn3 = 11; %sensor 323 grn velocity X axis 
    red3 = 12; %sensor 323 red velocity Y axis 
     
    thetainc = 1; %angle increment degrees  
    phiinc = 1; %angle increment degrees  
    numsens = 3; %total number of sensors 
    numel = 4; %number of elements per sensor 
  
  
    %calculated parameters and constants 
    k = linspace(0,N-1,N); %baseline FFT bin numbers 
    d = 0.172; %array element spacing meters - measured 172mm ± 2mm 
    c = 340; %speed of sound meters/sec @ 20°C sea level  
    maxchan = numsens * numel; %number of element channels, 6-8 are 
dummys here 
    x = 1; %X axis designator 
    y = 2; %Y axis designator 
    z = 3; %Z axis designator 
  
    %Vector Sensor Angles relative to Array Apparatus - radians 
    %323 sensor 
    thetab1 = 0; %323 blu1 0° 
    phib1 = pi/2; %323 blu1 90° 
    thetag1 = pi/2; %323 grn1 90° 
    phig1 = 0; %323 grn1 0° 
    thetar1 = pi/2; %323 red1 90° 
    phir1 = pi/2; %323 red1 90° 
    %324 sensor 
    thetab3 = 0; %324 blu3 0° 
    phib3 = pi/2; %324 blu3 90° 
    thetag3 = pi/2; %324 grn3 90° 
    phig3 = 0; %324 grn3 0° 
    thetar3 = pi/2; %324 red3 90° 
    phir3 = pi/2; %324 red3 90° 
  
    %Sensor Element Unit Vectors 
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    ue(prs1,:) = [0 0 0]; %323 prs1 dummy [0 0 0] - change in udot to 
[omni] 
    ue(blu1,:) = [sin(thetab1)*cos(phib1) sin(thetab1)*sin(phib1) 
cos(thetab1)]; %323 blu1 [0 0 1] 
    ue(grn1,:) = [sin(thetag1)*cos(phig1) sin(thetag1)*sin(phig1) 
cos(thetag1)]; %323 grn1 [1 0 0] 
    ue(red1,:) = [sin(thetar1)*cos(phir1) sin(thetar1)*sin(phir1) 
cos(thetar1)]; %323 red1 [0 1 0] 
    ue(prs2,:) = [0 0 0]; %aco prs2 dummy [0 0 0] - change in udot to 
[omni] 
    ue(blu2,:) = [0 0 0]; %aco no vel dummy 
    ue(grn2,:) = [0 0 0]; %aco no vel dummy 
    ue(red2,:) = [0 0 0]; %aco no vel dummy 
    ue(prs3,:) = [0 0 0]; %324 prs3 dummy [0 0 0] - change in udot to 
[omni] 
    ue(blu3,:) = [sin(thetab3)*cos(phib3) sin(thetab3)*sin(phib3) 
cos(thetab3)]; %324 blu3 [0 0 1] 
    ue(grn3,:) = [sin(thetag3)*cos(phig3) sin(thetag3)*sin(phig3) 
cos(thetag3)]; %324 grn3 [1 0 0] 
    ue(red3,:) = [sin(thetar3)*cos(phir3) sin(thetar3)*sin(phir3) 
cos(thetar3)]; %324 red3 [0 1 0] 
  
    %Steered Unit Vectors 
    thetas = 0:deg2rad(thetainc):pi; %polar steer angle array- radians 
    phis = -pi:deg2rad(phiinc):pi; %azimuthal steer angle array upper 
hemisphere - radians 
    %phis = -pi/2:deg2rad(phiinc):pi/2; %azimuthal steer angle array 
upper hemisphere - radians 
    m = length(thetas); %total number of angles in theta direction 
    n = length(phis); %total number of angles in psi direction 
    p = length(k); %vector length in k direction 
    u = sin(thetas') * cos(phis); %steered direction cosine x - m x n 
matrix 
    v = sin(thetas') * sin(phis); %steereddirection cosine y - m x n 
matrix 
    w = cos(thetas') * ones(1,n); %steereddirection cosine z - m x n 
matrix 
  
    %element unit vector & steer angle dot product array 
    %calculate one udot per element, same for all sensors,  
    %use first four channels of ue matrix 
    %vectorize dot products for faster multiplication in beamformer 
    udot = ue(prs1:red1,x)*u(:)' + ue(prs1:red1,y)*v(:)' + 
ue(prs1:red1,z)*w(:)'; %1-4 x m*n 
    %omni-directional pressure sensors - vector is "1" in all 
orientations and aspects 
    udot(1,:) = ones(1,m*n); %1 x m*n 
     
     
    Xc = zeros(maxchan,N); 
  
    %hanning window to reduce sidelobes of signal 
    H = hann(binN) * ones(1,maxchan);  
    xwin = bindata .* H; 
    %clear bindata H  
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    %convert binary signal data to frequency domain 
    Xw = fft(xwin); %by columns binN x maxchan 
  
    %truncate length of signal to match transfer function length N x 
maxchan 
    X = Xw(1:N,:);  
    X = X.'; %change to row data maxchan x N, non conjugate transpose 
    clear xwin Xw %save memory 
  
     
    load '.\txfunction_323.mat' 
    Hp1b_BLUE = Hp1B(1:N,:); 
    Hp1b_GREEN = Hp1G(1:N,:); 
    Hp1b_RED = Hp1R(1:N,:); 
  
    %Apply transfer functions 
    Xc(1,:) = X(1,:); 
    Xc(2,:) = X(2,:) .* Hp1b_BLUE'; %Hb1=Hp1*Hb1 - pre multiply vel and 
prs Xfer funct 
    Xc(3,:) = X(3,:) .* Hp1b_GREEN'; %Hg1=Hp1*Hg1 - pre multiply vel 
and prs Xfer funct 
    Xc(4,:) = X(4,:) .* Hp1b_RED'; %Hr1=Hp1*Hr1 - pre multiply vel and 
prs Xfer funct 
     
    Xc(9,:) = X(9,:); 
    Xc(10,:) = X(10,:) .* Hp1b_BLUE'; %Hb1=Hp1*Hb1 - pre multiply vel 
and prs Xfer funct 
    Xc(11,:) = X(11,:) .* Hp1b_GREEN'; %Hg1=Hp1*Hg1 - pre multiply vel 
and prs Xfer funct 
    Xc(12,:) = X(12,:) .* Hp1b_RED'; %Hr1=Hp1*Hr1 - pre multiply vel 
and prs Xfer funct 
  
     
     
    %apply band-pass filter 
    length(Xc) 
    startband = 300; 
    stopband = 600; 
    startbin = floor(startband*2*N/Fs); 
    stopbin = floor(stopband*2*N/Fs); 
    Xc2 = zeros(maxchan,N); 
    Xc2(:,startbin:stopbin) = Xc(:,startbin:stopbin); 
     
    %Use peakfinder.m to determine source frequency/s 
    [peakLoc1, peakMag]=peakfinder(Xc2(1,:)); 
    peakLoc = peakLoc1.*Fs./(N*2); %convert from bin numbers to actual 
frequencies 
     
    %choose maximum peak within earlier specified passband 
    [C,I] = max(peakMag);   
    Fo = peakLoc(I);   
    Fpoints = [Fpoints;Fo]; %store into global variable for appending 
onto LOFARgram 
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    %+-  bins around design freq to truncate - processing bandwidth, 
ignore remainder  
    Fplot = floor(Fo*(N*2)/Fs) + 1; %k bin for freq Fo 
    HBW = Fo/100; %+- freq to offset signal from Fo - broad for live 
signals 
    halfbandwidth = floor(HBW*(N*2)/Fs) + 1; %+- number of bins to 
offset signal 
    kshort = k(:,Fplot-halfbandwidth:Fplot+halfbandwidth); %get 
relevant k values 
    k = kshort; %transfer relevant k values to new k vector 
    clear kshort 
    p = length(k); %new vector length in k direction 
  
     
    %select appropriate bins for beamforming 
    %Option 1:  Use detected peak frequency Fo +- buffer 
    Xcshort = Xc(:,Fplot-halfbandwidth:Fplot+halfbandwidth); 
     
    %Option 2:  Use continuous range of frequencies for noise reduction 
average 
    %Xcshort = Xc(:,startbin:stopbin); 
    Xc = Xcshort; 
    clear Xcshort %save memory 
    Xc = conj(Xc); 
  
  
    %%initialize beamformer%% 
    %%S is sum of all elements and sensors - the beamformer%% 
    S = zeros(m*n,size(Xc,2));  %final beam former output - m*n x p 
array 
  
    %Beamformer output 
    for q = 9:12; 
        %pull element matrix from udot array 
        %Theta m * Phi n vector 
        udotc = squeeze(udot((mod(q+3,4)+1),:,:)); %m*n x 1 
        sumcalc = udotc(:) * Xc(q,:); %m*n x p     
        S = S + sumcalc; 
    end 
  
    S = sum(abs(S),2);  %sum along k "amplitude", collapse to single 
value in k direction 
    S = reshape(S, [m n]); %mxn thetaxphi 2D matrix 
     
    %remove SdB points outside 90% max value for clearer phi-theta 
plots 
    indices = S > max(max(S)).*0.9; 
    S = indices.*S; 
    
    %convert to dB 
    SdB = 20*log10(abs(S));  
  
    %Find target phi and theta by searching for maximum values 
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    [SdBmax1,I1] = max(max(SdB,[],1)); 
    [SdBmax2,I2] = max(max(SdB,[],2)); 
    phisdeg = rad2deg(phis); 
    thetasdeg = rad2deg(thetas); 
    targetphi = phisdeg(I1);  
    targettheta = thetasdeg(I2); 
    targetphirad = phis(I1); 
    targetthetarad = thetas(I2); 
     
    %Append onto global vector for final tracking plot 
    targetPosition = [targetPosition; [targetphi targettheta]]; 
     
    %Convert into coordinate system of 'Cone' subfunction 
    x = sin(targetthetarad) * sin(targetphirad) * 20; 
    y = cos(targetthetarad) * 20; 
    z = sin(targetthetarad) * cos(targetphirad)* 20; 
     
    Cone([0 0 0],[x y z],[0 1],10,'r',0,0,Fo,targettheta,targetphi); 
  
             
    %Overhead Theta by Phi amplitude plot 
    figure (5) 
    %clims = [min(min(SdB)) max(max(SdB))]; 
    %imagesc(rad2deg(phis),rad2deg(thetas),SdB,clims); 
    imagesc(rad2deg(phis),rad2deg(thetas),SdB); 
    location = strcat({' \phi='}, num2str(targetphi), {' \theta='}, 
num2str(targettheta));   
    figtitle = strcat({'Detected source of '}, num2str(Fo,'%4.0f'), {' 
Hz'}, location);  
    title(figtitle) 
    axis([-180 180 0 180]) 
    xlabel('\phi (deg)')  
    ylabel('\theta (deg)')  
    shading interp 
     
    %{ 
     
    %3D rendering of sensor beam pattern.  This allows visual 
verification 
    of vector sensor's performance, which is has a maximum in the 
direction 
    of source, and a deep null away from it. 
     
    %convert to cartesian coordinates 
    %r = 1; 
    xdir = SdB .* u; %x coord normal to yz plane - amplitude 
    ydir = SdB .* v; %y coord normal to xz plane - phi 
    zdir = SdB .* w; %z coord normal to xy plane - theta 
     
    figure (3) 
    axis([0 180 0 180 40 90]) 
    surf(ydir,xdir,zdir,SdB,'EdgeColor','none'); %nxm 3D plot at freq 
of interest 
    set(gca,'ZDir','reverse') 
    camup([0 1 0]); 
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    campos([20 15 20]) 
    title(figtitle) 
    xlabel('y axis')  
    ylabel('x axis') %phi - n 
    zlabel('z axis') %theta - m 
    shading interp 
     
    %} 
     
time_taken = [time_taken;toc];     
end 
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C. SUPPORTING FUNCTIONS 

peakfinder.m 
 
function varargout = peakfinder(x0, sel, thresh, extrema) 
% http://www.mathworks.com/matlabcentral/fileexchange/25500 
%  
% PEAKFINDER Noise tolerant fast peak finding algorithm 
%  
%   INPUTS: 
%       x0 - A real vector from the maxima will be found (required) 
%       sel - The amount above surrounding data for a peak to be 
%           identified (default = (max(x0)-min(x0))/4). Larger values 
mean 
%           the algorithm is more selective in finding peaks. 
%       thresh - A threshold value which peaks must be larger than to 
be 
%           maxima or smaller than to be minima. 
%       extrema - 1 if maxima are desired, -1 if minima are desired 
%           (default = maxima, 1) 
%   OUTPUTS: 
%       peakLoc - The indicies of the identified peaks in x0 
%       peakMag - The magnitude of the identified peaks 
% 
%   [peakLoc] = peakfinder(x0) returns the indicies of local maxima 
that 
%       are at least 1/4 the range of the data above surrounding data. 
% 
%   [peakLoc] = peakfinder(x0,sel) returns the indicies of local maxima 
%       that are at least sel above surrounding data. 
% 
%   [peakLoc] = peakfinder(x0,sel,thresh) returns the indicies of local  
%       maxima that are at least sel above surrounding data and larger 
%       (smaller) than thresh if you are finding maxima (minima). 
% 
%   [peakLoc] = peakfinder(x0,sel,thresh,extrema) returns the maxima of 
the 
%       data if extrema > 0 and the minima of the data if extrema < 0 
% 
%   [peakLoc, peakMag] = peakfinder(x0,...) returns the indicies of the 
%       local maxima as well as the magnitudes of those maxima 
% 
%   If called with no output the identified maxima will be plotted 
along 
%       with the input data. 
% 
%   Note: If repeated values are found the first is identified as the 
peak 
% 
% Ex: 
% t = 0:.0001:10; 
% x = 12*sin(10*2*pi*t)-3*sin(.1*2*pi*t)+randn(1,numel(t)); 
% x(1250:1255) = max(x); 



 68 

% peakfinder(x) 
% 
% Copyright Nathanael C. Yoder 2011 (nyoder@gmail.com) 
  
% Perform error checking and set defaults if not passed in 
error(nargchk(1,4,nargin,'struct')); 
error(nargoutchk(0,2,nargout,'struct')); 
  
s = size(x0); 
flipData =  s(1) < s(2); 
len0 = numel(x0); 
if len0 ~= s(1) && len0 ~= s(2) 
    error('PEAKFINDER:Input','The input data must be a vector') 
elseif isempty(x0) 
    varargout = {[],[]}; 
    return; 
end 
if ~isreal(x0) 
    warning('PEAKFINDER:NotReal','Absolute value of data will be used') 
    x0 = abs(x0); 
end 
  
if nargin < 2 || isempty(sel) 
    sel = (max(x0)-min(x0))/4; 
elseif ~isnumeric(sel) || ~isreal(sel) 
    sel = (max(x0)-min(x0))/4; 
    warning('PEAKFINDER:InvalidSel',... 
        'The selectivity must be a real scalar.  A selectivity of %.4g 
will be used',sel) 
elseif numel(sel) > 1 
    warning('PEAKFINDER:InvalidSel',... 
        'The selectivity must be a scalar.  The first selectivity value 
in the vector will be used.') 
    sel = sel(1); 
end 
  
if nargin < 3 || isempty(thresh) 
    thresh = []; 
elseif ~isnumeric(thresh) || ~isreal(thresh) 
    thresh = []; 
    warning('PEAKFINDER:InvalidThreshold',... 
        'The threshold must be a real scalar. No threshold will be 
used.') 
elseif numel(thresh) > 1 
    thresh = thresh(1); 
    warning('PEAKFINDER:InvalidThreshold',... 
        'The threshold must be a scalar.  The first threshold value in 
the vector will be used.') 
end 
  
if nargin < 4 || isempty(extrema) 
    extrema = 1; 
else 
    extrema = sign(extrema(1)); % Should only be 1 or -1 but make sure 
    if extrema == 0 
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        error('PEAKFINDER:ZeroMaxima','Either 1 (for maxima) or -1 (for 
minima) must be input for extrema'); 
    end 
end 
  
x0 = extrema*x0(:); % Make it so we are finding maxima regardless 
thresh = thresh*extrema; % Adjust threshold according to extrema. 
dx0 = diff(x0); % Find derivative 
dx0(dx0 == 0) = -eps; % This is so we find the first of repeated values 
ind = find(dx0(1:end-1).*dx0(2:end) < 0)+1; % Find where the derivative 
changes sign 
  
% Include endpoints in potential peaks and valleys 
x = [x0(1);x0(ind);x0(end)]; 
ind = [1;ind;len0]; 
  
% x only has the peaks, valleys, and endpoints 
len = numel(x); 
minMag = min(x); 
  
  
if len > 2 % Function with peaks and valleys 
     
    % Set initial parameters for loop 
    tempMag = minMag; 
    foundPeak = false; 
    leftMin = minMag; 
     
    % Deal with first point a little differently since tacked it on 
    % Calculate the sign of the derivative since we taked the first 
point 
    %  on it does not neccessarily alternate like the rest. 
    signDx = sign(diff(x(1:3))); 
    if signDx(1) <= 0 % The first point is larger or equal to the 
second 
        ii = 0; 
        if signDx(1) == signDx(2) % Want alternating signs 
            x(2) = []; 
            ind(2) = []; 
            len = len-1; 
        end 
    else % First point is smaller than the second 
        ii = 1; 
        if signDx(1) == signDx(2) % Want alternating signs 
            x(1) = []; 
            ind(1) = []; 
            len = len-1; 
        end 
    end 
     
    % Preallocate max number of maxima 
    maxPeaks = ceil(len/2); 
    peakLoc = zeros(maxPeaks,1); 
    peakMag = zeros(maxPeaks,1); 
    cInd = 1; 
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    % Loop through extrema which should be peaks and then valleys 
    while ii < len 
        ii = ii+1; % This is a peak 
        % Reset peak finding if we had a peak and the next peak is 
bigger 
        %   than the last or the left min was small enough to reset. 
        if foundPeak 
            tempMag = minMag; 
            foundPeak = false; 
        end 
         
        % Make sure we don't iterate past the length of our vector 
        if ii == len 
            break; % We assign the last point differently out of the 
loop 
        end 
         
        % Found new peak that was lager than temp mag and selectivity 
larger 
        %   than the minimum to its left. 
        if x(ii) > tempMag && x(ii) > leftMin + sel 
            tempLoc = ii; 
            tempMag = x(ii); 
        end 
         
        ii = ii+1; % Move onto the valley 
        % Come down at least sel from peak 
        if ~foundPeak && tempMag > sel + x(ii) 
            foundPeak = true; % We have found a peak 
            leftMin = x(ii); 
            peakLoc(cInd) = tempLoc; % Add peak to index 
            peakMag(cInd) = tempMag; 
            cInd = cInd+1; 
        elseif x(ii) < leftMin % New left minima 
            leftMin = x(ii); 
        end 
    end 
     
    % Check end point 
    if x(end) > tempMag && x(end) > leftMin + sel 
        peakLoc(cInd) = len; 
        peakMag(cInd) = x(end); 
        cInd = cInd + 1; 
    elseif ~foundPeak && tempMag > minMag % Check if we still need to 
add the last point 
        peakLoc(cInd) = tempLoc; 
        peakMag(cInd) = tempMag; 
        cInd = cInd + 1; 
    end 
     
    % Create output 
    peakInds = ind(peakLoc(1:cInd-1)); 
    peakMags = peakMag(1:cInd-1); 
else % This is a monotone function where an endpoint is the only peak 
    [peakMags,xInd] = max(x); 
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    if peakMags > minMag + sel 
        peakInds = ind(xInd); 
    else 
        peakMags = []; 
        peakInds = []; 
    end 
end 
  
% Apply threshold value.  Since always finding maxima it will always be 
%   larger than the thresh. 
if ~isempty(thresh) 
    m = peakMags>thresh; 
    peakInds = peakInds(m); 
    peakMags = peakMags(m); 
end 
  
  
  
% Rotate data if needed 
if flipData 
    peakMags = peakMags.'; 
    peakInds = peakInds.'; 
end 
  
  
  
% Change sign of data if was finding minima 
if extrema < 0 
    peakMags = -peakMags; 
    x0 = -x0; 
end 
% Plot if no output desired 
if nargout == 0 
    if isempty(peakInds) 
        disp('No significant peaks found') 
    else 
        figure; 
        plot(1:len0,x0,'.-',peakInds,peakMags,'ro','linewidth',2); 
    end 
else 
    varargout = {peakInds,peakMags}; 
end 
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cone.m 
 
function [Cone,EndPlate1,EndPlate2] = 
Cone(X1,X2,R,n,cyl_color,closed,lines,Fo,targettheta,targetphi) 
% 
% This function constructs a cylinder connecting two center points  
%  
% Usage : 
% [Cone,EndPlate1,EndPlate2] = Cone(X1,X2,R,n,cyl_color,closed,lines) 
%     
% Cone-------Handle of the cone 
% EndPlate1------Handle of the Starting End plate 
% EndPlate2------Handle of the Ending End plate 
% X1 and X2 are the 3x1 vectors of the two points 
% R is the radius of the cylinder/cone R(1) = start radius, R(2) = end 
radius 
% n is the no. of elements on the cylinder circumference (more--> 
refined) 
% cyl_color is the color definition like 'r','b',[0.52 0.52 0.52] 
% closed=1 for closed cylinder or 0 for hollow open cylinder 
% lines=1 for displaying the line segments on the cylinder 0 for only 
% surface 
%  
% Typical Inputs 
% X1=[10 10 10]; 
% X2=[35 20 40]; 
% r=[1 5]; 
% n=20; 
% cyl_color='b'; 
% closed=1; 
%  
% NOTE: There is a MATLAB function "cylinder" to revolve a curve about 
an 
% axis. This "Cylinder" provides more customization like direction and 
etc 
  
  
% Calculating the length of the Cone 
length_cyl=norm(X2-X1); 
  
% Creating 2 circles in the YZ plane 
t=linspace(0,2*pi,n)'; 
xa2=R(1)*cos(t); 
xa3=R(1)*sin(t); 
xb2=R(2)*cos(t); 
xb3=R(2)*sin(t); 
  
% Creating the points in the X-Direction 
x1=[0 length_cyl]; 
  
% Creating (Extruding) the cylinder points in the X-Directions 
xx1=repmat(x1,length(xa2),1); 
xx2=[xa2 xb2];%xx2=repmat(x2,1,2); 
xx3=[xa3 xb3];%xx3=repmat(x3,1,2); 
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% Drawing two filled cirlces to close the cylinder 
if closed==1 
    hold on 
    EndPlate1=fill3(xx1(:,1),xx2(:,1),xx3(:,1),'r'); 
    EndPlate2=fill3(xx1(:,2),xx2(:,2),xx3(:,2),'r'); 
end 
  
% Plotting the cylinder along the X-Direction with required length 
starting 
% from Origin 
figure(2) 
Cone=mesh(xx1,xx2,xx3); 
D = 20; 
axis([-D D -D D -D D]) 
%xlabel('y axis')  
%ylabel('x axis')  
%zlabel('z axis')  
camup([0 0 1]) 
campos([70 15 20]) 
location = strcat({' \phi='}, num2str(targetphi), {' \theta='}, 
num2str(targettheta)); 
figtitle = strcat({'Detected source of '}, num2str(Fo,'%4.0f'), {' 
Hz'}, location);  
title(figtitle) 
  
% Defining Unit vector along the X-direction 
unit_Vx=[1 0 0]; 
  
% Calulating the angle between the x direction and the required 
direction 
% of Cone through dot product 
angle_X1X2=acos( dot( unit_Vx,(X2-X1) )/( norm(unit_Vx)*norm(X2-X1)) 
)*180/pi; 
  
% Finding the axis of rotation (single rotation) to roate the Cone in 
% X-direction to the required arbitrary direction through cross product 
axis_rot=cross([1 0 0],(X2-X1) ); 
  
% Rotating the plotted Cone and the end plate circles to the required 
% angles 
if angle_X1X2~=0 % Rotation is not needed if required direction is 
along X 
    rotate(Cone,axis_rot,angle_X1X2,[0 0 0]) 
    if closed==1 
        rotate(EndPlate1,axis_rot,angle_X1X2,[0 0 0]) 
        rotate(EndPlate2,axis_rot,angle_X1X2,[0 0 0]) 
    end 
end 
  
% Till now Cone has only been aligned with the required direction, but 
% position starts from the origin. so it will now be shifted to the 
right 
% position 
if closed==1 
    set(EndPlate1,'XData',get(EndPlate1,'XData')+X1(1)) 
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    set(EndPlate1,'YData',get(EndPlate1,'YData')+X1(2)) 
    set(EndPlate1,'ZData',get(EndPlate1,'ZData')+X1(3)) 
     
    set(EndPlate2,'XData',get(EndPlate2,'XData')+X1(1)) 
    set(EndPlate2,'YData',get(EndPlate2,'YData')+X1(2)) 
    set(EndPlate2,'ZData',get(EndPlate2,'ZData')+X1(3)) 
end 
set(Cone,'XData',get(Cone,'XData')+X1(1)) 
set(Cone,'YData',get(Cone,'YData')+X1(2)) 
set(Cone,'ZData',get(Cone,'ZData')+X1(3)) 
  
% Setting the color to the Cone and the end plates 
set(Cone,'AmbientStrength',1,'FaceColor',cyl_color,'FaceLighting','gour
aud');%,'EdgeColor','none') 
if closed==1 
    set([EndPlate1 
EndPlate2],'AmbientStrength',1,'FaceColor',cyl_color,'FaceLighting','go
uraud');%,'EdgeColor','none') 
else 
    EndPlate1=[]; 
    EndPlate2=[]; 
end 
  
% If lines are not needed making it disapear 
if lines==0 
    set(Cone,'EdgeAlpha',0) 
end 
  
%shading faceted % faceted flat interp; 
%camlight;  
%light; 
%lighting gouraud; %flat gouraud phong none 
material dull; %shiny dull metal 
%surcolormap(bone) 
  
%camlight  headlight; 
%light('Style','local','Position',[720 0 500]); 
light('Style','local','Position',[0 480 500]); 
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D. MISCELLANEOUS 

CPA_rootfinder.m 
%Two methods for solving the horizontal distance at CPA. 
  
n = 1;      %nth frequency maxima 
c = 343;    %speed of sound 
h = 200;    %target altitude 
d = 0.95;   %sensor height 
fn = 182;   %frequency 
  
%Exact solution by root-finding.  Take the positive root for obvious 
%reasons. 
f = @(x)sqrt((h+d).^2 + x.^2)-sqrt((h-d).^2 + x.^2) - n*c/fn; 
r = fzero(f,10) 
  
%Approximation when r << h+d 
r2 = h*sqrt(2-(n*c)/(fn*d)) 
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