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ABSTRACT 

Boolean functions with high algebraic immunity (AI) are vital in reducing the possibility 

of utilizing algebraic attacks to break an encryption system.  Simple algorithms exist to 

compute the AI of a given n-variable Boolean function, but the time required to test a 

large number of functions is much greater on conventional computing systems.  AI was 

computed for all functions through n = 5 using the SRC-6.  AI was also computed for 

n = 5 using a C algorithm.  The SRC-6 performed 4.86 times faster than a conventional 

processor for this computation.  It is believed that this is the first enumeration of all  

5-variable functions with respect to AI. 

 Monte Carlo trials were performed for n = 6, both on the SRC-6 and utilizing a C 

algorithm on a conventional processor.  These trials provided the first known distribution 

of AI for 6-variable functions. 

Some algorithms for computing AI require a conversion between the truth table 

form of the function and its algebraic normal form.  The first known Verilog 

implementation of a reduced transeunt triangle was developed for this conversion.  This 

reduced form requires many fewer gates and has ( )n  delay versus (2 )n  delay for a 

full transeunt triangle. 
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EXECUTIVE SUMMARY 

Computer security is a topic of extreme importance in the Information Age.  The basis for 

secure communications is provably secure cryptographic systems.  There are many 

cryptographic properties that characterize the security of a particular system.  One of the 

more recent and high profile properties is algebraic immunity (AI). 

To understand algebraic immunity, one must first understand some basic 

terminology.  Most cryptographic systems are based on Boolean functions.  A Boolean 

function is simply a mapping from the vector space of n-tuples of bits to the field of two 

elements.  Simply, a Boolean function takes a collection of bits and transforms them into 

a different form, and it is through these transformations that cryptosystems operate. 

Algebraic immunity is a measure of a particular Boolean function’s resistance 

against algebraic attacks.  An algebraic attack is accomplished by utilizing low degree 

functions, called annihilators, to reduce the complexity of a given Boolean function to a 

form that is closer to linear.  Linear systems are simple to solve, and linearizing a system 

is the first step in the process of breaking a cryptosystem when performing an algebraic 

attack. 

Algebraic immunity is the lowest degree of an annihilator of a function or its 

complement.  Degree is the maximum number of unique variables in a term for a 

function.  For example, the function 1 2 3f x x x   has a degree of two because there is a 

maximum of two unique variables in any term in the function.  The complement of a 

function is obtained by changing all of the 1s to 0s in a function and vice versa. 

Many of the computations of AI in this work were carried out on the SRC-6.  The 

SRC-6 is a reconfigurable computer that contains 10 FPGAs, each of which can be 

specifically programmed to carry out the desired computation.  The most complex 

computation in this work required only 10% of the resources of a single FPGA, 

demonstrating the processing power of the SRC-6. 

There are many methods of computing AI.  The first method utilized in this work 

was a brute force method which applied all possible inputs to the function being tested to 



 xviii 

determine the annihilators.  This method is thorough, but it is not efficient.  The algebraic 

immunity was successfully computed for all functions with four variables, but it operated 

so slowly that it took nearly a minute to compute the algebraic immunity for some 

functions of five variables.  Since there are 
52 22 2 4,294,967,296

n

   functions in n = 5 

variables, a more efficient method of computing AI was required. 

This led to the development of the simultaneous equation algorithm.  This 

algorithm first builds a matrix that represents all possible annihilators of a given Boolean 

function.  It then quickly determines the lowest degree annihilator of the function and its 

complement, which is the AI of the function being tested. 

Some mathematical shortcuts are responsible for the speed of the simultaneous 

equation algorithm.  First, the algorithm begins placing the matrix into reduced row 

echelon form.  A matrix in this form has only a single one in each column, and every 

leading one, or first one in a row, is in a row higher than every leading one to its right.  

This results in a matrix where the ones are restricted to the upper triangle of two triangles 

(if the matrix were sliced in half diagonally from the upper left to the lower right, there 

would be two triangles). 

The algorithm reduces the matrix to reduced row echelon form by searching each 

column, starting at the left, for a one, and then adding that row to every other row that has 

a one in the column being searched.  This ensures that the row where a one was found is 

the only row in that column that is nonzero. 

If the algorithm discovers an empty column, it stops searching immediately.  An 

empty column represents a free variable and signifies that an annihilator has been found.  

Similarly, once all the columns for a particular degree have been checked, the algorithm 

stops to determine if an annihilator exists.  Also, the algorithm does not search for 

annihilators of the maximum lowest degree, as such an annihilator is guaranteed to exist 

if lower degree annihilators do not exist. 

Utilizing this algorithm, we performed the first known enumeration of AI for all 

five variable functions.  There were 7,666,550 functions with an AI of one, which 
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correlates with the proven value.  There were 4,089,535,624 functions with an AI of two, 

and there were 197,765,120 functions with an AI of three.  There are no known outside 

sources of comparison at this time. 

The algorithm was coded in C and an enumeration of all five variable functions 

was performed using a conventional processor.  The results were identical, although it 

took the conventional processor 4.86 times as long to achieve the results. 

After these successes, the algorithm was altered to perform a set of Monte Carlo 

trials for n = 6.  Monte Carlo trials are random trials performed to test a property on a 

group that is too large to fully enumerate.  They allow the distribution of the group to be 

estimated so long as the trials are sufficiently random. 

To ensure randomness, the Mersenne Twister pseudorandom number generator 

was utilized.  This generator has known good properties that make it suitable for use in 

Monte Carlo trials. 

The calculated distribution for six variable functions showed that more than 90% 

of the functions have the maximum possible AI of three.  Only a very small percentage of 

functions had an AI of one, which matches the calculated value for that number. 

For six variable functions, the C code outperformed the SRC-6, computing the AI 

for functions 46% faster.  This was primarily due to the difficulty of implementing a 

pseudorandom function on the SRC-6, which runs Verilog code.  Instead of generating 

pseudorandom numbers in Verilog, they were generated in C and memory transferred to 

the SRC-6 FPGA.  These memory transfers are suspected to be the cause of the 

slowdown. 

While performing the initial work for the brute force algorithm, we discovered a 

need for a faster transeunt triangle.  A transeunt triangle is a collection of XOR gates in a 

triangular configuration, with the two gates that are adjacent in one level of the triangle 

providing the input to the same gate in the next level.  The transeunt triangle alters a 

Boolean function between truth table form and algebraic normal form.  Truth table form 

is a form that specifies what the output of the Boolean function is for a given set of 

inputs.  Algebraic normal form specifies which terms are present in the Boolean function. 



 xx 

Each of these forms is useful for determining different properties regarding a 

Boolean function.  For this work, the Boolean function is input in truth table form as that 

provides an easier method of computing annihilators.  The annihilators are output in truth 

table form and must be converted to algebraic normal form so that their degree can be 

determined. 

The complete transeunt triangle was too slow to meet the timing requirements 

necessary to implement the brute force algorithm, so the first known Verilog 

implementation of the reduced transeunt triangle was developed.  The reduced transeunt 

triangle only requires five gate delays to convert a five-variable Boolean function 

between forms, while a complete transeunt triangle requires 25 gate delays for this 

conversion.  This time savings was critical in allowing the brute force algorithm to 

function properly. 

An efficient algorithm for computing algebraic immunity was developed and the 

first known enumeration of AI for all functions in five variables was completed in this 

research.  Further effort is required to extend this work to functions with more variables 

in an effort to secure cryptosystems that are used in real-world applications. 
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I. INTRODUCTION 

A. OBJECTIVE 

Algebraic immunity (AI) is an important cryptographic property.  A Boolean 

function that has a low value for this parameter is provably insecure.  Prior to this work 

with the SCR-6, the distribution of AI among Boolean functions was only known through 

n = 4.  The objective of this work is to exhaustively determine the distribution of AI for 

all functions through n = 5 and to provide a method to test specific groups of Boolean 

functions for larger values of n.  An exhaustive search of Boolean functions for n = 6 and 

beyond exceeds the capabilities of modern hardware.  The methods utilized in this work, 

such as the first Verilog implementation of a reduced transeunt triangle, can allow entire 

groups of Boolean functions to be tested quickly for all important cryptographic 

properties. 

B. BACKGROUND 

Algebraic attacks involve manipulating high degree Boolean functions through 

multiplication with lower degree functions to create a system of equations that is more 

easily solved.  These attacks were first discussed a decade ago [1, 2].  Since that time, 

they have continuously evolved, with more efficient algorithms appearing that are also 

closely targeted at specific types of encryption methodologies [3, 4]. 

The use of encryption has been growing steadily in all sectors.  It is important for 

consumers, businesses, and governments [5].  Many symmetric encryption techniques are 

based on the use of Boolean functions.  Strong encryption requires choosing these 

functions such that they have desirable cryptographic properties.  The SRC-6 has been 

previously used to quantify other properties, such as correlation immunity [6] and 

bentness [7–9].  Algebraic immunity has not yet been addressed. 

Determining all cryptographic properties for a given function or class of functions 

allows a more informed decision to be made regarding the viability of those functions to 

secure communications.  The heavy reliance of the Department of Defense on encryption 
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to conduct operations at all levels requires a continued effort to improve communications 

security [10, 11].  An efficient method for evaluating encryption standards is vital. 

C. METHOD 

A Boolean function is specified by its truth table (TT) form or algebraic normal 

form (ANF).  It is trivial to enumerate the truth tables of all Boolean functions for a given 

number of variables.  This is performed by counting from 0 to 22 1
n

 , where n is the 

number of variables in the Boolean functions of interest. 

As each Boolean function is enumerated, its AI is tested by finding the smallest 

degree annihilator, where an annihilator is any function that reduces the original Boolean 

function to zero when the two are multiplied (bitwise AND) together.  Various algorithms 

are utilized to find low degree annihilators of the function under test (FUT) and its 

complement. 

Once the FUT has been tested with all possible annihilators, the degree of the 

lowest degree annihilator is the AI.  By testing all functions of specific degrees we can 

determine the distribution of AI.  Monte Carlo methods allow us to estimate the 

distribution for higher degrees that cannot be exhaustively tested. 

Some testing is performed on a conventional processor using algorithms written 

in C, but most testing is performed on the SRC-6.  The SRC-6 has ten field 

programmable gate arrays (FPGA) that each operate at 100 MHz.  While this is an order 

of magnitude slower than conventional processors, the machine’s power lies in its ability 

to be specifically programmed for a given task.  In our case, a circuit was designed that 

takes in the FUT and performs all tasks required to calculate the AI.  This allows 

functions to be tested more rapidly than with a conventional processor. 

D. RELATED WORK 

There have been many theses researching various cryptographic properties 

utilizing the programmability of the SRC-6 [6–9].  The properties covered in those works 

relate with AI because a strong cryptographic function requires all properties to exhibit 
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desirable characteristics.  Significant work is being performed on algebraic immunity 

itself, with most work focusing on new algorithms for determining annihilators and for 

computing AI [1–4]. 

E. THESIS OUTLINE 

The thesis is introduced in Chapter I.  An introduction to linear algebra is 

provided in Chapter II.  The concept of AI and its impact on the cryptographic viability 

of a Boolean function is discussed in Chapter III.  The reduced transeunt triangle is 

discussed in Chapter IV.  The algorithms used for computing AI are discussed in Chapter 

V.  Results are discussed in Chapter VI.  Conclusion and recommendations for future 

work are discussed in Chapter VII.  All SRC-6 code utilized for this work is contained in 

Appendix A.  All C code utilized for this work is contained in Appendix B. 
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II. LINEAR ALGEBRA INTRODUCTION 

A. MATRICES 

1. System of Linear Equations 

A matrix is a representation of a system of linear equations. 

Example 1: The equations 2 4 26x y  and3 2 19x y  can be represented by the 

coefficient matrix and the solution matrix 

 
2 4 26

3 2 19

x

y

     
      

      .

 (1) 

2. Augmented Matrix 

An augmented matrix is created by combining the coefficient matrix with the 

solution matrix to produce a single matrix. 

Example 2:  The matrices listed in Example 1 can be combined to form the 

augmented matrix 

 
2 4 26

3 2 19

 
 
  .

 (2) 

Augmented matrices combine all terms of the equations allowing the system of 

equations to be solved for any unknown values.  If all solutions are zero, manipulations 

of the matrix have no impact on the solution, and the augmented matrix may be discarded 

in favor of using a simple coefficient matrix. 

3. Matrix Equivalency 

Two matrices A and B are considered equivalent if there is an invertible m-by-m 

matrix C and an invertible n-by-n matrix D such that 1A C B D   .  This means that the 

two matrices A and B represent the same linear transformation. 
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B. ELEMENTARY ROW OPERATIONS 

There are three elementary row operations that can be performed on a matrix that 

produce an equivalent matrix.  These row operations are utilized to alter the matrix into a 

different form, such as row echelon form or reduced row echelon form, in order to reduce 

any additional computation required to solve the system of equations. 

 

1. Interchange two rows. 

Any two rows of a matrix can be interchanged to yield a second equivalent 

matrix. 

Example 3: The two matrices A and B are equivalent because matrix B is formed 

by interchanging rows one and two of matrix A: 

 
1 2 3 4

3 4 1 2
A B

   
    
    .

 (3) 

 

2. Multiply any row by a nonzero number. 

If any row of a matrix is multiplied by a nonzero number, the result is an 

equivalent matrix. 

Example 4: The two matrices A and B are equivalent because matrix B is formed 

by multiplying row one of matrix A by 3: 

 
1 2 3 6

3 4 3 4
A B

   
    
    .

 (4) 

 

3. Multiply any row by a nonzero number and add the result to another 

row. 

Any row of a matrix can be multiplied by a nonzero number and then added to a 

second row, replacing the original contents of the second row.  This operation is typically 

used to cancel certain terms in a row. 
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Example 5: The two matrices A and B are equivalent because matrix B is formed 

by multiplying row one of matrix A by 3  and adding the result to matrix A: 

 
1 2 1 2

3 4 0 2
A B

   
    

    .

 (5) 

 

C. ROW ECHELON FORM 

A matrix is in row echelon form if it satisfies the following three criteria: 

1. The leading coefficient in a nonzero row is 1. 

2. Any row with nonzero coefficients has fewer leading zeros than all 

rows below it. 

3. Rows with all zeros are below all rows with nonzero coefficients. 

Example 6: These matrices are in row echelon form: 

 

1 3 7 1 2 4

0 1 2 0 0 1

0 0 1 0 0 0

   
   
   
   
    .

 (6) 

Transforming a matrix into row echelon form allows the corresponding linear 

system to be solved using back substitution.  Back substitution is a method of solving the 

lowest equation, or the lowest nonzero row of the matrix, and then substituting the result 

into the next higher equation, i.e., the next higher row.  This process is repeated until the 

system of equations is solved completely. 

D. REDUCED ROW ECHELON FORM 

Reduced row echelon form is an extension of row echelon form.  After a matrix is 

in row echelon form, it is transformed to reduced row echelon form by eliminating all 

nonzero coefficients in each column containing a leading coefficient.  When a matrix is 

in reduced row echelon form, the leading coefficient for each row is also the only 

nonzero coefficient in its column.  Placing a matrix in reduced row echelon form is an 

essential step in many algorithms utilized to compute algebraic immunity. 
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Example 7: These matrices are in reduced row echelon form: 

 

1 0 0 1 2 0

0 1 0 0 0 1

0 0 1 0 0 0

   
   
   
   
    .

 (7) 

Linear algebra techniques are used to solve simultaneous equations in many areas 

of mathematics.  Forming a matrix that represents a system of equations and solving it by 

placing it in reduced row echelon form is critical in many algorithms used to compute 

algebraic immunity. 
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III. ALGEBRAIC IMMUNITY 

A.  DEFINITIONS 

1. Group 

A group G is a set, or collection of objects, combined with an operation, denoted 

*, which together satisfy the group axioms: 

a. Closure: * ,a b G a b G   ; 

b. Identity: . , * *e G s t a G e a a e a      ; 

c. Associativity: ( * )* *( * ) , ,a b c a b c a b c G   ; and 

d. Invertibility: , ( ) . . *( )a G a G s t a a e       . 

2. Abelian Group 

An Abelian group G is a group whose operation is Abelian, or commutative, 

meaning that , , * *a b G a b b a   . 

3. Ring 

A ring is a set along with two operations on the set that satisfies the ring axioms: 

a. The set is an Abelian group under addition, 

b. The set is closed under multiplication, 

c. The set is Associative under multiplication, and 

d. The set is Distributive. 

4. Field 

A field is a ring with the following properties: 

a. The ring is commutative, 

b. The ring has unity; i.e., the ring possesses an identity element with 

respect to multiplication, and 
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c. Every nonzero element in the ring is a unit [12]. 

Example 8: The symbol 2  is the Galois field over two elements.  It has an 

addition operation which functions as the XOR of two bits and a multiplication operation 

which functions as the AND of two bits.  The TT for these operations is shown in Table 1 

and Table 2. 

 

Table 1. TT for addition (XOR) modulo-2. 

a b x = a+b 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

Table 2.  TT for multiplication (AND) modulo-2. 

a b x a b   

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

5. Vector Space 

A vector space over a scalar set is a set V which, given any vectors x, y, and z in 

V and any scalars a and b, satisfies the following properties: 

a. Closure under addition: V x y , 

b. Closure under multiplication: a V x , 

c. Commutative:   x y y x , 

d. Inverse: ( ) . . ( )V V s t       x x x x 0 , 
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e. Additive Identity: 0 . . 0 0V s t     x x x , 

f. Multiplicative Identity: 1 . .1 1V s t     x x x , 

g. Additive Associativity: ( ) ( )    x y z x y z , 

h. Multiplicative Associativity: ( ) ( )a b a b x x , 

i. Scalar Distributivity: ( )a a a  x y x y , and 

j. Vector Distributivity: ( )a b a b  x x x . 

Example 9: The symbol n , which can also be represented as 
2

n , is the vector 

space consisting of all n-tuples of bits.  The first operation for n  is vector addition: 

1 2 3v + v = v , where 1 1( , , ), ( , , ),n na a b b 
1 2

v v  and 3 1 1( , , )n na b a b  v .  The 

second operation is scalar multiplication: ,  
1 1

v v  where   is any scalar and 

1( , , )na a
1

v . 

6. Boolean Function 

A Boolean function is a function which maps variables from a vector space n  

to the field 2 , where n is the number of variables.  There are 22
n

distinct Boolean 

functions for each value of n. 

7. Degree 

The degree of a Boolean function is the largest number of variables that appear in 

a single term of the function. 

Example 10: The function 1 2 2 3f x x x x    is of degree two because there are 

two variables in the 2 3x x term. 

B. ANNIHILATORS 

An annihilator is a nonzero function g such that, for the given function f, 

0g f  .  The function g is said to be an annihilator of f, or one can say that g 

annihilates f. 
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Example 11: 1 1 2

2

1 1 2 2

1 2 1 2 2

1 2 1 2

( )

( )

( ) ( )

( )

( )

0

f x x x x

g x x

f g x x x x

x x x x x

x x x x

 



   

 

 

  
Thus, g annihilates f. 

 

C. ALGEBRAIC IMMUNITY 

Algebraic immunity is the measure of a Boolean function’s resistance to an 

algebraic attack.  Specifically, the AI of a Boolean function is the lowest degree of any 

annihilator of the function or its complement. 

Example 12: The AI of 1 1 2( )f x x x x  is one because it is annihilated by the 

degree one function 2( )g x x , as shown in Example 11, and it cannot have a degree zero 

annihilator. 

1. Range of Algebraic Immunity 

For a given number of variables, there is a known range of possible AI values for 

the functions with that number of variables.  Only the constant functions, whose truth 

tables are all ones or all zeros, have an AI of zero.  All other functions have a lower 

bound of one for AI and an upper bound of 2n   , where n is the number of variables for 

the function [13]. 

Knowledge of the range of possible values for AI greatly simplifies the search for 

the lowest degree annihilator of a function.  If no annihilators are found through 

2 1,n     then it is clear that the lowest degree annihilator is 2n   , as the degree of the 

annihilator can be no higher.  Each increasing degree inserts a large number of potential 

annihilators, so utilizing the upper bound when determining AI dramatically speeds up 

the process. 
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2. Symmetry of AI 

The AI of a function and its complement are always the same, as the AI is the 

lowest degree annihilator of either function.  If a degree one annihilator is found for a 

function, there is no need to analyze its complement, as there can be no lower degree.  

The converse is not true.  Finding an annihilator of degree 2n    for a function does not 

alleviate the need to check its complement, as the AI of both functions is ultimately the 

lowest degree annihilator of either.  Use of this symmetry can provide a speedup for an 

AI algorithm by eliminating unnecessary checks once a degree one annihilator has been 

found. 

Some algorithm used for computing AI return the resultant annihilator in TT 

form.  This form does not immediately provide the degree of the annihilator.  

Transforming the annihilator to ANF is required to determine the degree.  The 

transformation between TT form and ANF is accomplished using a transeunt triangle. 
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IV. REDUCED TRANSEUNT TRIANGLE 

In this chapter n represents the number of inputs into a given transeunt triangle 

and not the number of variables associated with a particular Boolean function. 

A. THE COMPLETE TRANSEUNT TRIANGLE 

 

Figure 1. Complete four-input transeunt triangle. 

 

A transeunt triangle is a collection of exclusive-or (XOR) gates that transform a 

binary input into another representation.  A four-input complete transeunt triangle is 

shown in Figure 1.  Their primary function in cryptographic research is to take as input a 

Boolean function in TT form and provide its ANF as output, and vice versa.  It has 

already been proven that the transeunt triangle transforms a Boolean input between these 

two forms [9]. 

The reason for transforming a function between the two forms is that TT form is 

more useful in some instances, while the ANF is advantageous in other cases.  For 

example, one of the algorithms utilized to calculate AI in this work requires the input to 

be in TT form, but to determine the degree of the computed annihilator requires the 

output to be in ANF.  The transeunt triangle allows this conversion to be made so that 

both forms can be utilized inside the same algorithm. 

While the complete transeunt triangle is effective at converting between a TT 

form and its ANF, it is not the most efficient method of performing this conversion.  
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There are intermediate values computed throughout the transeunt triangle that are not 

necessary in the computation of one form from the other.  These unnecessary 

computations result in increased resource utilization and latency.  While the additional 

amount of logic and delay is negligible for a four-input transeunt triangle, the increases 

become overwhelming for significantly larger transeunt triangles.  This resulted in the 

development of a more efficient method of converting between TT form and ANF. 

B. REDUCED TRANSEUNT TRIANGLE DEVELOPMENT 

Looking at the simple four-input complete transeunt triangle in Figure 1, 

unnecessary gates can easily be seen.  The output T2 is produced by an exclusive-or of 

A0 and A1.  The output T3 is produced by an exclusive-or of T2 with the exclusive-or of 

A1 and A2.  This results in:  

 3 ( 0 1) (A1 A2)=A0 A2.T A A      (8) 

This result can be produced by instead performing an exclusive-or of A0 and A2 directly, 

allowing gate 2 in Figure 1 to be removed.  Similar logic allows the removal of gate 5 so 

that the output of gates 1 and 3 go directly to gate 6.  Removing these unnecessary gates 

produces the reduced transeunt triangle shown in Figure 2. 

 

Figure 2. Four-input reduced transeunt triangle. 

 



 17 

The basic four-input reduced transeunt triangle can be extended to an arbitrarily 

larger reduced transeunt triangle.  The extension of the reduced transeunt triangle to 

accept 2n inputs requires two n-input reduced transeunt triangles, along with an 

additional n XOR gates.  This is demonstrated for an eight-input reduced transeunt 

triangle in Figure 3. 

 

Figure 3. Eight-input reduced transeunt triangle. 

 

The reduced transeunt triangle utilized in this work was independently 

discovered.  There are other examples in the literature which offer similar benefits and 

that have a similar structure, but there are differences in their specific layout and the 

manner in which they are extended to cover a larger number of inputs [14].  This reduced 

transeunt triangle has a simple recursive nature that more simply shows its extension to 

accept a larger number of inputs than other variations. 
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C. REDUCED TRANSEUNT TRIANGLE EQUIVALENCY 

In order to replace the complete transeunt triangle with the reduced transeunt 

triangle, we must establish that the two produce equivalent outputs. 

Theorem IV.C.1:  The reduced transeunt triangle produces output equivalent to the 

output produced by the complete transeunt triangle. 

Proof: 

The proof is by induction, beginning with 4n  , the smallest case for which the 

reduced transeunt triangle removes XOR gates from the complete transeunt triangle. 

Applying inputs A0, A1, A2, and A3 to the complete transeunt triangle in Figure 

1 results in the following equations for the outputs:  

 

0 0

1 0 1

2 ( 0 1) ( 1 2) 0 2

3 (( 0 1) ( 1 2)) (( 1 2) ( 2 3))

0 1 2 3

T A

T A A

T A A A A A A

T A A A A A A A A

A A A A



 

     

       

   

 (9) 

Applying these same inputs to the reduced transeunt triangle in Figure 2 results in 

the following equations for the outputs: 

 

0 0

1 0 1

2 0 2

3 ( 0 1) ( 2 3) 0 1 2 3

T A

T A A

T A A

T A A A A A A A A



 

 

       

 (10) 

This shows that the complete and reduced transeunt triangles are equivalent for 

4n  . 

Next, we assume that the complete and reduced transeunt triangles are equivalent 

for n and show that this must be true for 2n.  We place two n-input triangles together and 

connect their outputs to a string of XOR gates that forms the top left of a larger triangle 

as illustrated in Figure 4. 
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Figure 4. Combination of n-input reduced transeunt triangles and XOR gates. 

 

This allows us to see how the inputs are combined to form the overall output.  The 

top output of each n-input reduced transeunt triangle is the XOR of all its inputs.  Since 

each of these receives half of the 2n overall inputs, combining them with via an XOR 

gate provides the desired overall output of the XOR of all 2n inputs.  Similarly, the 2
nd

 

input from the top of each smaller triangle is the XOR of every other input for each half 

of the 2n inputs, and so the XOR of the outputs from the two smaller triangles results in 

the overall output being the XOR of every other term for all 2n inputs.  Similar logic 

combines each output of the two separate n-input reduced transeunt triangles via an XOR 

gate to produce the desired overall output for the 2n-input reduced transeunt triangle. 

Q.E.D. 

D. REDUCED TRANSEUNT TRIANGLE ADVANTAGES 

The reduced transeunt triangle offers several advantages over a complete 

transeunt triangle, the first of which is greatly improved resource efficiency.  The number 

of gates required to make a complete transeunt triangle with n-inputs is 
1

1

( 1) / 2
n

i

i n n




  , 

while the number of gates for a reduced transeunt triangle with n inputs is defined for n 
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equal to powers of two by the recursion 2
2

2 / 2, 1n na a n a     [14].  The numbers of 

gates for a complete transeunt triangle grows at a rate of ( 1) / 2n n  while the number 

required for a reduced transeunt triangle only grows at a rate of ln( ) / 2n n
 
[14].  This 

results in a significant reduction in the required number of gates as the number of inputs 

increases, as shown in Table 3. 

 

Table 3.  Complete and reduced transeunt triangle gate comparison. 

Inputs Gates (complete 

transeunt triangle) 

Gates (reduced 

transeunt triangle) 

Percent 

reduction 

2 1 1 0% 

4 6 4 33.33% 

8 28 12 57.14% 

16 120 32 73.33% 

32 496 80 83.87% 

64 2016 192 90.48% 

128 8128 448 94.49% 

256 32640 1024 96.86% 

 

The reduction in gate delay afforded by utilizing the reduced transeunt triangle is 

as important as the reduction in the number of gates.  For a complete transeunt triangle, 

the signal must propagate from the inputs to the very top of the triangle before the output 

is ready.  This results in a delay of 1n , where n is the number of inputs.  The reduced 

transeunt triangle only requires one additional gate delay for each doubling of inputs, so 

delay increases logarithmically, a significant improvement.  When working with a typical 

number of inputs for a cryptographic function, this speedup is the difference between an 

efficient circuit and one that is not.  The number of gate delays for the complete and 

reduced transeunt triangles and the percent speedup achieved at various input numbers is 

shown in Table 4. 
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Table 4.  Complete and reduced transeunt triangle delay comparison. 

Inputs Delay (complete 

transeunt triangle) 

Delay (reduced 

transeunt triangle) 

Percent 

speedup 

2 1 1 0% 

4 3 2 50% 

8 7 3 133% 

16 15 4 275% 

32 31 5 520% 

64 63 6 950% 

128 127 7 1714% 

256 255 8 3087% 

 

The final major advantage of the reduced transeunt triangle is that its recursive 

nature allows it to be easily produced in Verilog.  While the complete transeunt triangle 

has been produced in Verilog in other works, the code to do so is not as clean and easy to 

follow as that for the reduced transeunt triangle [9].  As each doubling of inputs simply 

adds one level to the recursion, the reduced transeunt triangle can be made to an arbitrary 

size relatively simply in any programming language. 

The advantages of the reduced transeunt triangle allow it to function in circuits at 

a speed not possible using a complete transeunt triangle.  This speedup is critical in 

determining the degree of an annihilator in the brute force algorithm for computing 

algebraic immunity. 

 

 



 22 

THIS PAGE INTENTIONALLY LEFT BLANK  

 

 

 



 23 

V. ALGEBRAIC IMMUNITY ALGORITHMS 

A. INTRODUCTION 

Throughout the course of this work, several algorithms were developed to 

efficiently calculate AI.  The algorithms varied in complexity and capability, with each 

succeeding algorithm having increased capability over the previous at the cost of 

increased complexity.  The final algorithm is the most capable and best lends itself to 

future work, but there are interesting results from each algorithm. 

B. BRUTE FORCE COMBINATORIAL ALGORITHM 

1. Overview 

The brute force combinatorial algorithm provides a mechanical processing of the 

input FUT to calculate the AI.  It is best understood looking at the top level view show in 

Figure 5. 

 

Figure 5. Brute force combinatorial algorithm top-level view. 

 

Looking at the figure, the FUT f  is applied in TT form to the annihilator 

generator.  The counter successively applies inputs to the function and its complement.  It 

does this by starting at one and incrementing every clock cycle.  It must start at one, 
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because zero is an annihilator for all functions.  The counter outputs are applied to the 

values in f that have a one in the TT to produce annihilators of f .  Similarly for f , the 

complement of f , the counter outputs are applied to the values in f  that have a zero in 

the TT to produce the annihilators of f . 

After the annihilators are produced in the annihilator generator, they are output to 

the transeunt triangle where they are converted to an ANF.  Next, their degree is 

determined, and this degree is compared with the global minimum to see if a new lowest 

degree annihilator has been found.  The inhibit signals allow the output of the annihilator 

generator for either f  or f  to be ignored since, for unbalanced functions, either the 

function or its complement will have all possible annihilators exhausted first due to the 

mismatch in the number of 1s and 0s in the TT.  When one output is inhibited, the 

maximum possible AI is substituted for the output of that annihilator generator. 

Once both annihilator generators have exhausted all possible annihilators, as 

signaled by the inhibit signal, the global minimum value represents the AI of the FUT 

and is output to the controlling function.  The next function can then be tested in a similar 

manner. 

2. Advantages 

The first advantage of this algorithm is that it operates very quickly due to its 

combinatorial nature.  A requirement is that all operations either complete within one 

clock cycle or can be pipelined so that a portion completes within a clock cycle. 

Although this implementation does not track this data, it is a relatively simple 

modification to store the annihilators that are computed in the annihilator generator.  

Knowing all annihilators provides a considerable benefit when performing an algebraic 

attack on a Boolean function [15]. 

3. Disadvantages 

The first disadvantage of the brute force combinatorial algorithm is that its 

performance suffers for unbalanced functions.  When a function is balanced, meaning 

that its truth table has the same number of ones and zeros, the performance of this 
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algorithm is optimal.  As a function becomes more unbalanced, one half of the annihilator 

generator becomes idle since the other half is responsible for processing the majority of 

the possible annihilators, lowering efficiency. 

This algorithm does not operate quickly enough to run on the SRC-6 for 5n  .  

Without an undue effort spent pipelining the design, this algorithm would not run for 

values of n larger than three, and so a new algorithm was developed. 

C. BRUTE FORCE STATE MACHINE ALGORITHM 

1. Overview 

The requirement for increased speed resulted in the development of a brute force 

state machine algorithm.  This algorithm executes in a manner very similar to the 

combinatorial algorithm, but it utilizes states to shift some of the processing to different 

clock cycles in order to execute within the clock period of the SRC-6.  A state machine 

diagram is shown in Figure 6. 

 
Figure 6. Brute force state machine algorithm state diagram. 

 

The CLEAR state initializes some of the variables that are used in the operation of 

the algorithm, and the IDLE state continues with initialization once the clear signal has 

been removed.  Once the start signal is received, the active state begins counting and 

applying annihilators to the FUT, just as in the combinatorial algorithm previously 
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discussed.  Once both inhibit signals are received, the algorithm exits and returns to the 

controlling function, delivering the calculated AI. 

This algorithm relies on the reduced transeunt triangle to accomplish all 

processing during a clock cycle, and the development of this algorithm was directly 

responsible for the development of the reduced transeunt triangle.  Without the efficiency 

of the reduced transeunt triangle this algorithm would too slow to complete all required 

calculations within one clock period. 

2. Advantages 

The primary advantage of the state machine algorithm over the pure 

combinatorial algorithm is that this algorithm will successfully run for 4n  .  By moving 

the initialization to various states, the ACTIVE state is capable of performing all 

functions during each clock cycle to iterate through the annihilators and search for the 

lowest value. 

Another advantage of this algorithm is that it is easily parameterized.  This makes 

the process of moving between different values of n very simple, requiring the alteration 

of a single parameter to accomplish all required changes.  Other algorithms can prove 

more tedious to adapt to varying values of n. 

3. Disadvantages 

This brute force state machine algorithm suffers from the same inefficiencies due 

to unbalanced functions as the combinatorial algorithm described previously.  The vast 

majority of the processing time to enumerate all functions for 4n   is spent on 

unbalanced functions. 

The major disadvantage of this algorithm is that the runtime precludes its use to 

enumerate all Boolean functions for n = 5.  When performing the first trial runs for small 

ranges at n = 5, it was noted that some individual functions required nearly four billion 

clock cycles.  This is because, for unbalanced functions, the counter may need to run as 

high as 312  to process a single function.  It is this failure of the brute force state machine 

algorithm that required the development of a more efficient method to compute AI. 



 27 

D. SIMULTANEOUS EQUATION ALGORITHM 

1. Overview 

The simultaneous equation algorithm operates in a manner similar to most 

algorithms that are being pursued by other sources, which are all variations on solving the 

simultaneous equations that are built from the TT of the FUT [2–4, 13, 15, 16].  This is 

the first known implementation using Verilog on an FPGA. 

This algorithm starts by using the TT for the FUT to populate a matrix we call the 

annihilator matrix.  This matrix represents the terms that exist in all possible annihilators 

of the FUT.  The matrix is produced by examining each bit which is a one in the TT.  

Every bit has a one-to-one correspondence with a row in the matrix because that row 

represents the ANF of the minterm of a particular bit in the TT.  For instance, the 4
th

 row 

in the matrix corresponds to the ANF of the minterm for the 4
th

 bit in the TT if both are 

numbered starting at zero.  Each annihilator matrix is unique because the TT is unique for 

each Boolean function. 

For example, given n = 5, there are 32 unique rows which can be part of the 

matrix, producing a 32 by 32 matrix.  Each row where the TT for the FUT has a one is 

filled with the default values from this complete matrix, and each row where the TT has a 

zero is filled with all zero.  Solving the annihilator matrix provides all possible 

annihilators for the FUT.  Computation of the AI does not require the matrix to be fully 

solved, but instead requires a solution to be found of the lowest degree, both for the FUT 

and its complement. 

The requirement for a lowest degree solution dramatically speeds up the 

algorithm utilized for this work.  Since the AI can be no higher than 2n   , there is no 

need to even solve for annihilators of that degree (as it is guaranteed that at least one 

exists if there is no annihilator of lesser degree).  Instead, we search for annihilators of 

degree one through 2 1n    , understanding that if none are found, the AI of the FUT is 

2n   . 
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An additional speedup is obtained from the knowledge that for all functions other 

than the two constant functions, the AI must be at least one.  Once a degree one 

annihilator is found, the algorithm stops testing for that function even if the complement 

has not been checked since the AI can be no lower. 

2. Operation for n = 4 

 

Figure 7. Simultaneous equation algorithm (n = 4) state machine top-level diagram. 

 

For n = 4, the only possible values for AI are one and two, ignoring the constant 

functions.  The top level diagram governing the operation of the algorithm is shown in 

Figure 7.  After initialization, the algorithm begins searching through the rows, column 

by column, looking for the leading one in each row, and then it zeros out the remainder of 
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that column.  Rows are swapped if necessary, ultimately resulting in the transformation 

of the annihilator matrix to reduced row echelon form if the algorithm continues to 

completion.  If the algorithm finds an empty column, the AI is set to one because the 

empty column represents a free variable, signifying that a degree one solution exists.  If 

the algorithm fails to find an empty column, it searches the nonzero rows for two values 

in a row for the degree zero and degree one terms.  If the algorithm finds two values in a 

single row, this represents a degree one solution, and the algorithm exits. 

If no degree one solutions are found after searching the original TT, the same 

operation is performed on the complement.  Finding a degree one solution, either by 

finding an empty column or two terms in a row, causes the algorithm to exit and output 

one for AI.  If no degree one solution is found in the complement, the algorithm provides 

two as the output for AI since there must be a degree two annihilator that is of lowest 

degree. 

3. Operation for n = 5 

The algorithm for n = 5 operates very similar to that for n = 4.  Rows searches are 

performed, and the annihilator matrix is placed in reduced row echelon form.  Once a 

degree one annihilator is found, the algorithm exits without continuing its checks.  An 

empty column or two values from the set of degree zero and degree one terms in a single 

row still represents a degree one solution. 

The difference between the algorithms occurs if a degree one solution is not 

found.  This algorithm must search for degree two solutions since a degree three solution 

is possible for n = 5 because 2 3n    .  The determination of a degree two solution is 

performed the same as that for degree one.  An empty column represents a free variable 

and, thus, a degree two solution.  Two terms from the set of degree zero, one, and two 

terms in a single row also represents that a degree two solution exists.  Once a degree two 

solution is found, AI is tentatively set to two, and the algorithm tests the complement.  If 

no degree two solution is found, the lowest degree annihilator for the original function is 

three, and the complement must be tested. 
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Figure 8. Simultaneous equation algorithm (n = 5) state machine top-level diagram. 

 

If a degree one solution is found for the complement, the algorithm exits with an 

output of one for AI.  If no degree one solution is found for the complement and the 

original TT had a degree two annihilator, the algorithm exits with an output of two for 

AI, as shown in Figure 8.  Degree two annihilators will only be checked in the 

complement if no degree one or two annihilators were found in the original TT.  If a 

degree two annihilator is found, the function exits and outputs two for AI.  If no degree 

two annihilator is found, the function exits and outputs three for AI since neither the 

original function nor its complement had any annihilator lower than degree three. 
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4. Operation for n = 6 

Operation for n = 6 is the same as for n = 5, except that there are more terms in 

the annihilator matrix.  Both numbers of variables have the same maximum for AI, and 

the same testing is performed for either. 

5. Advantages 

The primary advantage of this algorithm is that it is significantly faster than the 

other algorithms.  As this algorithm immediately exits at the earliest possible opportunity, 

unnecessary testing is eliminated.  There is no need to look for annihilators of the 

maximal degree as it known that at least one exists (if no lower degree annihilators exist), 

and there is no need to continue testing once a degree one solution is found since it is 

known that no lower degree solution exists except for the constant functions. 

Another significant advantage of this algorithm is that with it all annihilators for a 

given function may be found.  As currently implemented, this algorithm only searches for 

the lowest degree annihilator, but it can easily be altered to provide all annihilators.  This 

is useful when assessing the security of a particular Boolean function.  When a function is 

being attacked, the attackers will utilize as many annihilators as possible in an effort to 

reduce the system to one as close to linear as possible.  The brute force algorithm also 

finds all annihilators, but many algorithms for computing AI do not find all annihilators. 

6. Disadvantages 

The disadvantage of this algorithm is that its complexity grows rapidly as n 

increases.  Each time a new highest degree annihilator is permitted, such as when moving 

from n = 4 to 5 or n = 6 to 7, another set of states has to be added to the algorithm along 

with an increasing number of registers and a larger array for the simultaneous equation 

matrix.  Maintaining the optimum efficiency with this algorithm requires a significant 

amount of coding for each successive value of n. 

Each algorithm had strengths and weaknesses.  A thorough comparison of the 

results obtained shows why the simultaneous equation algorithm was the most effective 

at enumerating algebraic immunity. 
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VI. RESULTS 

The most significant result of this work is the first known enumeration of 

algebraic immunity for n = 5.  This is noteworthy because there are 

52 22 2 4,294,967,296
n

   Boolean functions for n = 5, and each function must be tested, 

along with its complement, to fully enumerate AI.  The number of functions with each AI 

is listed in Table 5 for all Boolean functions through n = 5.  The newly entered data is  in 

bold. 

 

Table 5.  Number of functions with each algebraic immunity through n = 5. 

 Number of variables (n) 

AI 2 3 4 5 

0 2 2 2 2 

1 14 198 10,582 7,666,550 

2 0 56 54,952 4,089,535,624 

3 0 0 0 197,765,120 

Total 16 256 65,536 4,294,967,296 

 

In the interest of presenting the results in sequence, the results from AI 

enumeration for n = 4 are fully discussed first. 

A. FULL ENUMERATION OF ALGEBRAIC IMMUNITY (N = 4) 

The algorithms that produced the results in this thesis were created initially to test 

the n = 4 case.  This case has enough unique functions to require a certain degree of 

computational effort, but not so many that debugging the algorithm is too difficult.  The 

proper choice for the starting case is critical in initial algorithm development. 
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1. SRC-6 

As previously discussed, two different algorithms were implemented on the 

SRC-6 to compute AI for n = 4.  The brute force algorithm was implemented first, and 

then the simultaneous equation algorithm was developed. 

a. Runtime Comparison 

The runtime for the brute force algorithm was significantly longer than 

that for simultaneous equation algorithm.  This shows that time spent in algorithm 

development can yield impressive performance gains.  These comparisons are 

summarized in Table 6. 

 

Table 6.  Comparison of brute force and simultaneous equation algorithms (n = 4) 

runtime. 

 Brute force Simultaneous equation 

Total clocks 80,748,733 4,946,111 

Number of functions 65,536 65,536 

Clocks per function 1,232.1 75.47 

Total time (sec) 0.807 0.0495 

Functions per second 81,160 1,325,000 

 

The simultaneous equation algorithm was able to compute the AI for all functions 

at n = 4 in only 6.13% of the time as the brute force algorithm, representing a 

1632% speedup. 

b. Resource Utilization Comparison 

The two algorithms used a similar amount of the FPGA resources with the 

simultaneous equation algorithm ultimately showing a slightly improved efficiency, as 

shown in Table 7. 
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Table 7.  Comparison of brute force and simultaneous equation algorithms (n = 4) 

resource utilization. 

 Brute force Simultaneous 

equation 

Total 

Number of 

slice flip flops/% 

2,931/3% 2,760/3% 88,192/100% 

Number of 

4 input LUTs/% 

2,368/2% 2,343/2% 88,192/100% 

Number of 

occupied slices/% 

2,190/4% 2,120/4% 44,096/100% 

Total number of 

4 input LUTs/% 

2,616/2% 2,569/2% 88,192/100% 

Frequency 103.4 MHz 109.4 MHz Not Applicable 

 

Both algorithms use a very small amount of the total available resources.  

The highest utilization is 4% of occupied slices, which is very minor, so resource 

utilization is not a concern for either algorithm.  The difference in their utilization is also 

so small as to not be statistically significant. 

The most interesting item is the frequency.  This denotes the maximum 

speed at which the designed circuit can operate.  As the SRC-6 has a clock frequency of 

100 MHz, it is preferable for the circuit frequency to be greater than 100 MHz, although 

code will still run properly at slightly lower frequencies.  The simultaneous equation 

algorithm is capable of operating 6 MHz faster than the brute force algorithm.  This 

implies that the simultaneous algorithm is more readily scaled to a larger number of 

variables. 
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2. C Code 

The source code to compute AI for n = 4 in C was developed utilizing the Verilog 

algorithm that first enumerated AI on the SRC-6.  The code was compiled using 

Code::Blocks 10.05 and was executed on a Windows 7 PC with 4 GB of RAM and an 

Intel® Core™2 Duo P8400 CPU operating at 2.26 GHz.  The code is designed for single 

core operation and does not take advantage of the second core present in the processor. 

From Table 8 we see the results of executing the C code for n = 4.  The 

enumeration of AI for all functions took a fraction of a second.  The total time was 

obtained by performing 1,000 complete iterations and dividing that time by 1,000. 

 

Table 8.  C code runtime (n = 4). 

 C code 

Total time (sec) 0.143006 

Number of functions 65,536 

Functions per second 458,275 

 

3. SRC-6 and C Code Comparison 

The first comparison point for the three methods utilized to enumerate AI for 

n = 4 is compile time.  The C code took less than a second to compile, while each version 

of the SRC-6 code required approximately 5 minutes of compilation time. 

The more interesting result is the computation time.  The simplest method of 

comparing the three algorithms was to calculate the number of functions each could 

process per second.  The slowest of the three methods was the brute force algorithm, 

which was capable of evaluating only 81,160 functions per second.  The C algorithm 

actually outperformed this brute force algorithm, evaluating 458,275 functions per 

second. 
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The simultaneous equation algorithm on the SRC-6 was faster than both other 

methods, evaluating 1,325,000 functions per second.  This makes the simultaneous 

equation algorithm nearly three times faster than the C algorithm and over 16 times faster 

than the brute force algorithm. 

B. FULL ENUMERATION OF ALGEBRAIC IMMUNITY (N = 5) 

The primary goal of this work was to complete the first ever enumeration of AI 

for all Boolean functions for n = 5.  That goal was first completed utilizing the 

simultaneous equation algorithm on the SRC-6.  The brute force algorithm proved too 

slow to enumerate all functions for n = 5; although, it was compiled and tested on a small 

number of functions. 

It was believed that a C algorithm would prove too slow to enumerate AI for all 

functions at n = 5, but the algorithm was developed for potential use in some Monte 

Carlo trials.  After development and initial testing, it was discovered that the C algorithm 

operated quickly enough that full enumeration could be performed for n = 5. 

One difficulty with computing the distribution of AI among functions for n = 5 

for the first time is determining if the computation is accurate.  Fortunately, there is an 

existing theoretical calculation that has proven the number of functions which have an AI 

of one for any number of variables [17].  The calculated value matches precisely with the 

computational results, providing confidence that the determination of AI for n = 5 was 

performed correctly. 

1. SRC-6 

When the brute force algorithm was extended to the n = 5 case, it was quickly 

discovered that it operated too slowly to enumerate AI for all functions.  This is because 

for unbalanced functions, the counter in the annihilator generator may have to count as 

high as 2 12
n  , which is 312  for n = 5.  This caused the computation of AI for some 

individual functions to take nearly a minute, precluding the possibility of computing AI 

for all 322  functions. 
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a. Runtime Comparison 

The runtime for the brute force algorithm was computed based on only ten 

trials.  This is because the algorithm takes so long to compute AI for unbalanced 

functions that it is not effective to use it for n = 5.  The runtime for the simultaneous 

equation algorithm is based on complete enumeration of AI for n = 5.  These comparisons 

are summarized in Table 9. 

 

Table 9.  Comparison of brute force and simultaneous equation algorithms (n = 5) 

runtime. 

 Brute Force Simultaneous Equation 

Total clocks 13,421,773,163 1,496,439,942,292 

Number of functions 10 4,294,967,296 

Clocks per function 1,342,177,316.3 348.4 

Total Time (sec) 134.2 14964.4 

Functions per second 0.0745 287012.3 

 

The data for the brute force algorithm represents its worst case scenario 

for calculating AI for functions.  Given this worst case performance, the simultaneous 

equation algorithm was nearly four million times faster.  For the best case scenario, i.e., 

all perfectly balanced functions, the brute force algorithm would still need to count to 

162 ,  so each function would require a minimum of 65,536 clocks.  The average 

simultaneous equation algorithm performance is 188 times faster than this best case 

performance. 

b. Resource Utilization Comparison 

The difference in the algorithms is also apparent when looking at the 

resource utilization data in Table 10.  Here we see that the simultaneous equation 

algorithm is using more resources than the brute force algorithm.  This is because the 
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complexity of the simultaneous equation algorithm increases more rapidly than for the 

brute force algorithm, due primarily to the increased number of registers required for all 

of the arrays. 

 

Table 10.  Comparison of brute force and simultaneous equation algorithms (n = 5) 

resource utilization. 

 Brute Force Simultaneous 

Equation 

Total 

Number of 

slice flip flops/% 

3,278/3% 4,110/4% 88,192/100% 

Number of 

4 input LUTs/% 

3,811/4% 5,037/5% 88,192/100% 

Number of 

occupied slices/% 

2,987/6% 3,780/8% 44,096/100% 

Total number of 

4 input LUTs/% 

4,091/4% 5,471/6% 88,192/100% 

Frequency 63.3 MHz 100.9 MHz Not Applicable 

 

The most significant difference between the two algorithms is the frequency.  For 

the simultaneous equation algorithm, projections show that it will continue to operate 

above 100 MHz, the actual frequency of the SRC-6.  The brute force algorithm slows 

down to 63.3 MHz.  At that frequency, operation is less reliable, and the results can no 

longer be guaranteed to be accurate.  This is another reason for performing so few trials 

with the brute force algorithm.  This result also correlates with the expectation that the 

simultaneous equation algorithm would operate properly for higher values of n. 
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2. C Code 

The source code to compute AI for n = 5 in C is an extension of the code used to 

compute AI for n = 4.  This code continues to closely follow the algorithm that is utilized 

for computing AI using the SRC-6. 

In Table 11, we see the results of executing the C code for n = 5.  The 

enumeration of AI for all functions with this number of variables took significantly 

longer than for the n = 4 case. 

 

Table 11.  C code runtime (n = 5). 

 C code 

Total time (sec) 72760.026 

Number of functions 4,294,967,296 

Functions per second 59029.2 

 

The C code required nearly eight times as much processing time per function as 

compared to the n = 4 case. 

3. SRC-6 and C Code Comparison 

We will again start the comparison with compile time.  The C code for n = 5 

required less than a second to compile, while each version of the SRC-6 code required 

approximately 15 minutes of compilation time.  The time difference for creating the C 

executable was not noticeable between this case and the n = 4 case.  The SRC-6 code 

required three times as much compile time as the previous case and significantly more 

time than the C code. 

Comparing the number of functions processed per second, we see a more 

substantial difference for the n = 5 case as compared to n = 4.  The brute force method 

was again the slowest of the three, a condition exacerbated by only testing it for worst-
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case functions.  It processed only 0.0745 functions per second, making it orders of 

magnitude slower than either of the other functions. 

The real comparison for n = 5 is between the simultaneous equation algorithm on 

the SRC-6 and the same algorithm implemented in C.  The SRC-6 continued to 

outperform the C code, processing 287012.3 functions per second.  The C code processed 

only 59029.2 functions per second. 

The SRC-6 computed AI for functions at a rate 4.86 times faster than the 

equivalent C code.  This is an improvement over the n = 4 case when it was only 

approximately three times faster than the equivalent C code. 

Much of this speedup is due to the manner in which the SRC-6 processes 

matrices.  A conventional processor has to manipulate variables in a matrix one operation 

at a time, and if the matrix is large enough multiple operations may be required to 

manipulate a single element.  The SRC-6 can handle multiple operations simultaneously, 

and this is a powerful capability for higher degree functions.  When putting a matrix into 

reduced row echelon form, the entire matrix can be updated in a single clock period each 

time the leading coefficient is found in the column being process. 

C. PARTIAL ENUMERATION OF ALGEBRAIC IMMUNITY (N = 6) 

There are 642  unique functions for n = 6.  This is far too many functions to 

compute AI for each individual function with current technology in a reasonable amount 

of time.  In order to extend AI determination to n = 6, Monte Carlo techniques were 

employed. 

For Monte Carlo trials, a large number of random functions are tested to generate 

a distribution of expected values for the property being tested.  In this case, large 

numbers of functions were tested to determine their AI using these random trials. 

In order for the distribution produced by Monte Carlo techniques to be accurate, 

the numbers used for the random trials must either be truly random or be pseudorandom 

numbers with appropriate statistical properties.  For this work, a version of the Mersenne 

Twister algorithm was used to generate pseudorandom numbers.  The Mersenne Twister 



 42 

algorithm has excellent statistical properties which make it well suited to produce 

pseudorandom numbers for Monte Carlo trials [18].  The algorithm was seeded with a 

truly random number obtained from random.org.  The same seed was used for both the C 

code and the SRC-6 code so that the same pseudorandom sequence would be utilized in 

each to aid in comparison. 

Completing 500 million iterations provided sufficient data to form an estimate of 

the distribution of algebraic immunity among functions for n = 6, and this is shown in 

Table 12.  The estimated number of functions with an AI of one is 1,143,698,132,570.  

This matches closely with the calculated value of 1,081,682,871,734 [17]. 

 

Table 12.  Number of functions with each algebraic immunity through n = 6. 

 Number of variables (n) 

AI 2 3 4 5 6 

0 2 2 2 2 2 

1 14 198 10,582 7,666,550 1,081,682,871,734 

2 0 56 54,952 4,089,535,624 1,269,431,213,963,372,798 

3 0 0 0 197,765,120 17,177,311,716,048,046,248 

Total 16 256 65,536 4,294,967,296 18,446,744,073,709,551,616 

 

We can see the estimated distribution of AI among functions for n = 6 in Table 

12, where the estimated numbers are italicized.  The numbers for AI of 0 and 1 are 

known, as are the total number of functions.  The estimates for an AI of 2 and 3 are based 

on 500 million iterations of the C algorithm.  This represents a sample size of 

92.7105 10 % .  You can see the exact number of functions with each AI in Table 13. 
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Table 13.  Result of 500 million AI computations for n = 6 in C. 

Algebraic Immunity Number of Functions 

1 31 

2 34,408,002 

3 465,591,967 

 

1. SRC-6 

The extension of the simultaneous equation algorithm to n = 6 involved a 

relatively simple modification of the code.  This is primarily because for n = 6 there are 

the same possible values for AI as for n = 5, so no entirely new portions of code had to be 

designed.  An extension to n = 7 would not be as simple. 

The difficulty with performing random trials came from the generation of 

pseudorandom numbers.  There are built-in macros that can aid in producing 

pseudorandom numbers, but they require that the user macro be pipelined.  The 

simultaneous equation algorithm is state machine based, preventing the use of built-in 

randomization.  Some attempts were made to implement random functions in Verilog, but 

these were unsuccessful.  With each compile requiring more than 24 hours, there was 

insufficient time to continue further experimentation with Verilog randomization. 

Instead, the same Mersenne Twister code that was used in the C algorithm was 

implemented in the main.c file, allowing that file to pass random numbers to the FPGA 

for processing.  This introduces a significant delay as compared to generating random 

numbers in Verilog, and the SRC-6 documentation does not adequately quantify this 

delay.  This prevents a meaningful comparison of the SRC-6 implementation and the C 

implementation for n = 6.  The resource utilization data is provided in Table 14. 
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Table 14.  Simultaneous equation algorithm resource utilization on the SRC-6 

(n = 6). 

 Simultaneous 

Equation 

Total 

Number of 

Slice Flip Flops/% 

3,235/3% 88,192/100% 

Number of 

4 input LUTs/% 

8,990/10% 88,192/100% 

Number of 

occupied Slices/% 

5,060/11% 44,096/100% 

Total Number of 

4 input LUTs/% 

9,010/10% 88,192/100% 

Frequency 87.5 MHz Not Applicable 

 

The large number of arrays required for n = 6 only requires 11% of the resources 

of a single FPGA.  The frequency has dropped to only 87.5 MHz, indicating that the 

circuit is not meeting all time constraints. 

2. C Code 

The C code for n = 6 was again a simple extension from the code used for n = 5.  

The code required only a few seconds of time to compile.  The code ran for 500 million 

iterations to provide the distribution of AI for n = 6, and its performance characteristics 

can be seen in Table 15. 
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Table 15.  C code runtime (n = 6). 

 C code 

Total time (sec) 26673.582 

Number of functions 500,000,000 

Functions per second 18745.14 

 

The C code computed AI for n = 6 at approximately one-third of the rate for 

n = 5.  A significant contributor to this slowdown is the distribution of functions with an 

AI of three for n = 6.  Those functions take the most time to process because they require 

the code to execute in its entirety. 

3. SRC-6 and C Code Comparison 

Randomization for the SRC-6 was implemented by using the Mersenne Twister 

algorithm in main.c to send individual random functions to the macro for testing.  This 

unnecessarily slowed the execution time of the SRC-6 randomization and makes the 

comparison between it and the C code inaccurate, but the evaluation provides some 

discussion points.  The runtimes for each can be seen in Table 16. 

 

Table 16.  SRC-6 and C code runtime comparison (n = 6). 

 C code SRC-6 

simultaneous 

equation 

Total time (sec) 26673.582 1949.51 

Number of functions 500,000,000 25,000,000 

Functions per second 18745.14 12823.74 
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The C code performed 46% faster than the SRC-6 simultaneous equation 

algorithm for n = 6.  This shows the viability of the SRC-6 for computing AI with larger 

numbers of variables.  Hindered by slow memory transfers for every computation, the 

SRC-6 remained nearly at parity in performance with the C code algorithm.  A Verilog-

based pseudorandom number generator would provide a better measure of the SRC-6’s 

performance for n = 6. 

These results demonstrate the power of the SRC-6 in computing algebraic 

immunity.  The most complex algorithm used for computing AI required a small portion 

of the total resources of the SRC-6.  Tremendous potential exists to expand this work to 

larger numbers of variables. 
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VII. CONCLUSION AND RECOMMENDATIONS 

A. CONCLUSION 

The first known computation of algebraic immunity for all Boolean functions 

with five variables was successfully completed.  This computation was carried out both 

on the SRC-6 using a simultaneous equation algorithm and on a conventional processor 

using an algorithm developed in C.  The results obtained through these computations 

matched each other.  The computed number of functions with an AI of one exactly 

matched the calculated value.  The calculated value is a proven number, which validates 

the results obtained. 

Monte Carlo trials were performed to estimate the number of functions with each 

algebraic immunity for six variable Boolean functions.  The number of estimated 

functions with an AI of one deviated from the calculated value by less than 6 percent. 

The first known Verilog implementation of a reduced transeunt triangle was 

utilized for the brute force algorithm for computing algebraic immunity.  This reduced 

transeunt triangle has n delay versus 2n  delay for a complete transeunt triangle and 

requires significantly fewer gates.  Its Verilog design is recursive in nature, allowing for 

easy expansion to accept arbitrary numbers of inputs. 

B. RECOMMENDATIONS FOR FURTHER RESEARCH 

1. Monte Carlo Trials for n = 6 Using Verilog Randomization 

The next significant step in expanding this work is to provide an accurate 

assessment of its runtime in comparison to C code for n = 6.  To accomplish this, a 

pseudorandom number generator in Verilog must be implemented to eliminate the delay 

created by passing all parameters via memory.  There are available Verilog 

implementations that should be adaptable for this purpose. 

2. Monte Carlo Trials for n = 7 and n = 8 

The next logical extension of the work is to perform random trials for n = 7 and 

n = 8.  Testing these functions will provide a better estimate of the distribution of AI at 
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higher functions and bring this work closer to the number of variables utilized in actual 

cryptosystems.  This will require the computation of degree three annihilators, since 

functions with these numbers of variables can have AI up to four. 

3. Nonlinearity Sieve 

A correlation exists between nonlinearity and algebraic immunity.  This 

relationship can be exploited to speed up the process of calculating AI or to more quickly 

search for functions with a specific AI.  Previous thesis work at the Naval Postgraduate 

School has produced an algorithm that determines nonlinearity in a single clock on the 

SRC-6.  This work could be used to efficiently implement a nonlinearity sieve. 

4. Equivalence Classes 

There are equivalence classes where each function in the class has the same AI.  

The number of such classes is known, and there are listings containing a representative 

from each class.  These classes could be used to determine the complete distribution of 

AI for numbers of variables where it is computationally infeasible to test each individual 

function. 

5. Algorithm Modularity 

The code utilized for AI computation is efficient, but code creation is difficult and 

time consuming.  Making the code modular would allow it to be simply expanded to 

larger numbers of variables so that specific classes of functions could be tested to 

determine their algebraic immunity. 
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APPENDIX A.  SRC-6 SOURCE CODE 

The source code for the SRC-6 is divided into six separate files: Makefile, main.c, 

subr.mc, macro.v, info, and blk.v.  The macro.v, info, and blk.v files are only required if 

a user macro is being implement; although, the power of the SRC-6 is its ability to use 

custom macros to perform a desired computation.  The first three files reside in the 

working directory, and the final three files are typically placed in a folder called 

“my_macro” inside of the working directory.  The locations of files can be changed if 

desired so long as the Makefile is appropriately edited. 

For this thesis, the directory structure discussed is utilized.  The macro file is 

named Algebraic_Immunity.v instead of macro.v.  For each case whose files are 

provided, all files are included to aid those desiring to repeat this work. 

All source code was formatted with Notepad++. 

A.1 COMMON SRC-6 FILES 

The Makefile, blk.v, and info files did not change between cases, so one set of 

these is included in the initial section.  The main.c, subr.mc, and Algebraic_Immunity.v 

files did change, and the new files are included for each case. 

1. Makefile 

# $Id: Makefile.template,v 1.13 2005/04/12 19:18:30 jls Exp $ 

# 

# Copyright 2003 SRC Computers, Inc.  All Rights Reserved. 

# 

#       Manufactured in the United States of America. 

# 

# SRC Computers, Inc. 

# 4240 N Nevada Avenue 

# Colorado Springs, CO 80907 

# (v) (719) 262-0213 

# (f) (719) 262-0223 

# 

# No permission has been granted to distribute this software 

# without the express permission of SRC Computers, Inc. 

# 

# This program is distributed WITHOUT ANY WARRANTY OF ANY KIND. 

# 

# ----------------------------------- 
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# ---------------------------------- 

# User defines FILES, MAPFILES, and BIN here 

# ---------------------------------- 

FILES           = main.c 

 

MAPFILES        = subr.mc 

 

BIN             = main 

 

# ---------------------------------- 

# Multi chip info provided here 

# (Leave commented out if not used) 

# ---------------------------------- 

#PRIMARY        = <primary file 1>   <primary file 2> 

 

#SECONDARY      = <secondary file 1> <secondary file 2> 

 

#CHIP2          = <file to compile to user chip 2> 

 

#----------------------------------- 

# User defined directory of code routines 

# that are to be inlined 

#------------------------------------ 

 

#INLINEDIR      = 

 

 

# ----------------------------------- 

# User defined macros info supplied here 

# 

# (Leave commented out if not used) 

# ----------------------------------- 

MACROS          = my_macro/Algebraic_Immunity.v 

MY_BLKBOX       = my_macro/blk.v 

MY_NGO_DIR      = my_macro 

MY_INFO         = my_macro/info 

# ----------------------------------- 

# Floating point macros selection 

# ----------------------------------- 

 

#FPMODE         = SRC_IEEE_V1 # Default SRC version IEEE 

#FPMODE         = SRC_IEEE_V2 # Size reduced SRC IEEE with 

                              # special rounding mode 

# ----------------------------------- 

# User supplied MCC and MFTN flags 

# ----------------------------------- 

 

MCCFLAGS     = -v 

MFTNFLAGS    = -v 

 

# ----------------------------------- 

# User supplied flags for C & Fortran compilers 

# ----------------------------------- 
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CC            = gcc   # icc   for Intel cc for Gnu 

FC            = ifort # ifort for Intel f77 for Gnu 

#LD           = ifort -nofor_main # for mixed C & Fortran, main in C 

#LD           = ifort # for Fortran or C/Fortran mixed, main in Fortran 

LD            = gcc   # for C codes 

 

MY_CFLAGS     = 

MY_FFLAGS     = 

MY_LDFLAGS    =      # Flags to include libs if needed 

# ----------------------------------- 

# VCS simulation settings 

# (Set as needed, otherwise just leave commented out) 

# ----------------------------------- 

 

#USEVCS         = yes  # YES or yes to use vcs instead of vcsi 

#VCSDUMP        = yes  # YES or yes to generate vcd+ trace dump 

# ----------------------------------- 

# MODELSIM simulation settings 

# (Set as needed, otherwise just leave commented out) 

# ----------------------------------- 

 

#USEMDL         = yes  # YES or yes to use modelsim instead of vcs/vcsi 

#USEMDLGUI      = yes  # YES or yes to use modelsim GUI interface 

#MDLDUMP        = yes  # YES or yes to generate vcd trace dump 

# ----------------------------------- 

# No modifications are required below 

# ----------------------------------- 

MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 

include $(MAKIN) 

 

2. info.v 

//********************************************************************* 

//                                                                      

//  info - info file to specify the input and output of the macro ...   

//                                                                      

//       Author:         Eric McCay                                     

//       Created:        July 25, 2011 

//                                                                      

//********************************************************************* 

 

BEGIN_DEF "my_operator"         //Name used in .mc file to call macro. 

        MACRO = "Algebraic_Immunity";       //Macro name. 

        STATEFUL = YES; 

        EXTERNAL = YES; 

        PIPELINED = NO; 

        LATENCY = 0; 

 

        INPUTS = 2: 

            I0 = INT 64 BITS (TT[63:0]) //TT of function under test 

            I1 = INT 1 BITS (START)     //For initialization 

            ; 
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        OUTPUTS = 2: 

            O0 = INT 64 BITS (AI[63:0]) // Output Algebraic Immunity 

            O1 = INT 1 BITS (DONE)      // Indicates completion 

            ; 

 

        IN_SIGNAL: 1 BITS "CLK" = "CLOCK";  //Clock input 

        IN_SIGNAL: 1 BITS "CLR" = "code_block_reset"; 

 

END_DEF 

 

3. blk.v 

//*************************************************************** 

//                                                                

//  blk.v - A blackbox file that specifies inputs and outputs     

//                                                                

//       Author:         Eric McCay & Jon T. Butler 

//       Created:        July 25, 2011 

//                                                                

//*************************************************************** 

 

module Algebraic_Immunity (TT, AI, DONE, CLK, CLR, START); 

    input [63:0] TT; 

    output [63:0] AI; 

    output DONE; 

    input CLK; 

    input CLR; 

    input START; 

endmodule 

 

A.2 BRUTE FORCE STATE MACHINE ALGORITH (n = 4) 

The original brute force algorithm for the SRC-6 functioned properly for the n = 4 

case but is too slow to enumerate all functions for n = 5. 

1. main.c 

//********************************************************************* 

// 

//  main.c  -    C program to run Algebraic_Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program determines the Algebraic Immunity  

//                      of all Boolean functions for a given n and 

//                      provides an output specifying the number of  

//                      functions with each AI. 
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// 

// 

//********************************************************************* 

 

#include <map.h> 

#include <stdlib.h> 

#include <stdio.h> 

 

void subr (int64_t*, int64_t*, int ); //declaration for subr.mc 

 

int main (int argc, char *argv[]) { 

    FILE *res_map, *res_cpu; 

        int mapnum = 0; //specify which map is used 

        int i; 

        int64_t time_clock; //used to track runtime 

        int64_t *AI; 

 

// Allocate array of for the return of AI values 

    AI = (int64_t *) malloc (4* sizeof (int64_t)); 

 

// Set TT to all possible values 

 

        for (i = 0; i < 4; i++){ 

            AI[i] = 0;              //Zero out AI. 

            } 

 

    map_allocate (1);   // reserves map 1 

 

    //This shows that the subr.mc has been called.  Subroutine 

    //calls can take a considerable amount of time so this lets 

    //the user know that execution has started properly. 

    printf ("Calling subr.mc\n\n"); 

 

//  Call subroutine subr.mc on the MAP. 

    subr (AI, &time_clock, mapnum); 

 

    printf("Return from subr.mc\n\n"); 

 

//  Print out the number of clocks. 

printf ("%lld clocks\n", time_clock); 

 

/*  Print out the Algebraic Immunity of each Function   */ 

    printf("Listed below is the number of functions with each " 

            "Algebraic Immunity\n\n"); 

 

 

        printf("AI = 3: %d\n",AI[3]); 

        printf("AI = 2: %d\n",AI[2]); 

        printf("AI = 1: %d\n",AI[1]); 

        printf("AI = 0: %d\n",AI[0]); 

 

    map_free (1); // release the map we were using 

 

    exit(0); 
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    }//int main (int argc, char *argv[]) { 

 

2. subr.mc 

//********************************************************************* 

// 

//  subr.mc  - MAP C subroutine to determine Algebraic Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program calls Algebraic_Immunity.v, which  

//                     determines the Algebraic Immunity of the 

//                     function provided in Truth Table Form. 

// 

//********************************************************************* 

 

#include <libmap.h> 

#define NUM 65536       //number of values in TT 2^(2^n) 

 

void subr (int64_t ai[], int64_t *time, int mapnum) { 

 

// Declare one OBM bank in the SRC-6 to store the number of 

// functions with each possible AI value. 

        OBM_BANK_B (AI, int64_t, 4) 

 

        int64_t t0, t1; // Used to determine runtime 

        int64_t my64bit_in; //input TT to test 

        int64_t my64bit_out; //output AI of tested function 

        int i, j, k, l, m, n; 

 

        read_timer(&t0); 

 

        for (i = 0; i < 4; i++) 

            AI[i] = 0; //Initially, zero out the AI values 

        k = 0; 

        l = 0; 

        m = 0; 

        n = 0; 

 

        //This for loop calls the macro file the required number 

        //of times (65536 in this case) to determine the AI 

        //for each possible TT input on 4 variables.  It then 

        //uses a switch statement to tally the results for 

        //each possible AI value.  For n=4, AI can be at most 

        //two, so the case 3 statement never executes. 

        for (i = 0; i < NUM; i++) 

            { 

                 my64bit_in = i; 

                 my_operator (my64bit_in, &my64bit_out); 

                 j = my64bit_out; 

                 switch (j) 

                 { 
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                 case 0: 

                     k++; 

                     break; 

                 case 1: 

                     l++; 

                     break; 

                 case 2: 

                     m++; 

                     break; 

                 case 3: 

                     n++; 

                     break; 

                 } 

 

             }//for (i = 0; i < NUM; i++){ 

 

        AI[0] = k; 

        AI[1] = l; 

        AI[2] = m; 

        AI[3] = n; 

 

        read_timer(&t1); 

 

        *time = (t1 - t0); 

 

// Return AI values by DMAing TO the CPU 

        DMA_CPU (OBM2CM, AI, MAP_OBM_stripe(1,"B"), ai,  

                 1, 4*sizeof(int64_t), 0); 

        wait_DMA (0); 

 

} 

 

3. Algebraic_Immunity.v 

module Ones_Count (TT_ext, Count); 

//--------------------------------------------------------------------- 

// Ones_Count.v -  A program to count the 1's in a variety of inputs,  

//                 from 2 - 8 variables 

// 

// Created:       August 18, 2007 

// Author:        Jon T. Butler 

// Modified by:   Eric McCay 

// 

// Inputs:        TT_ext  2-8-variable Truth Table 

// Outputs:       Count Number of 1's 

// 

// Notes:        1.  parameter n is used to specify that a n-variable  

//                   function's truth table is being considered 

//                   (TT has 2^n-inputs). 

//--------------------------------------------------------------------- 

 

        parameter n = 2; 

        localparam N = 2**n; 
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        input[N-1:0] TT_ext;    //Function Truth Table 

        output[N:0] Count;  //Need 9 bits to represent all possible 

                            //counts for 8 variables 

        reg[N:0] Count; 

        wire[N-1:0] TT; 

 

        generate 

        assign TT = TT_ext; 

        endgenerate 

 

        always @(TT) 

           begin: CHECK_n 

               case(n) // Call appropriate case for the size of n 

                   2: Count = Count2(TT); 

                   3: Count = Count3(TT); 

                   4: Count = Count4(TT); 

                   5: Count = Count5(TT); 

                   6: Count = Count6(TT); 

                   7: Count = Count7(TT); 

                   8: Count = Count8(TT); 

                   default Count = Count2(TT); 

               endcase 

           end 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count2 for 2-variable functions   -- 

function [8:0] Count2; 

   input [3:0] TT; 

   begin: f2 

      Count2[0]=TT[3]^TT[2]^TT[1]^TT[0]; 

      Count2[1]=(TT[3]&TT[2]|TT[3]&TT[1]|TT[3]&TT[0]|TT[2]&TT[1]|TT[2] 

                &TT[0]|TT[1]&TT[0])&~(TT[3]&TT[2]&TT[1]&TT[0]); 

      Count2[2]=TT[3]&TT[2]&TT[1]&TT[0]; 

      Count2[8:3]=6'b000000; 

   end 

endfunction 

 

//------  The 1's count function - Count2 for 2-variable functions   -- 

//--------------------------------------------------------------------- 

 

// For n = 3 and on, it just recursively calls the previous count 

// function. So, for example, for n = 4, count4 is called, which calls 

// count3 twice, which calls count2 a total of 4 times, and this does 

// the appropriate amount of counting. 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count3 for 3-variable functions   -- 

function [8:0] Count3; 

   input [7:0] TT; 

   begin: f3 

      Count3 = Count2(TT[7:4]) + Count2(TT[3:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count3 for 3-variable functions   -- 
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//--------------------------------------------------------------------- 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count4 for 4-variable functions   -- 

function [8:0] Count4; 

   input [15:0] TT; 

   begin: f4 

      Count4 = Count3(TT[15:8]) + Count3(TT[7:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count4 for 4-variable functions   -- 

//--------------------------------------------------------------------- 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count5 for 5-variable functions   -- 

function [8:0] Count5; 

   input [31:0] TT; 

   begin: f5 

      Count5 = Count4(TT[31:16]) + Count4(TT[15:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count5 for 5-variable functions   -- 

//--------------------------------------------------------------------- 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count6 for 6-variable functions   -- 

function [8:0] Count6; 

   input [63:0] TT; 

   begin: f6 

      Count6 = Count5(TT[63:32]) + Count5(TT[31:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count6 for 6-variable functions   -- 

//--------------------------------------------------------------------- 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count7 for 7-variable functions   -- 

function [8:0] Count7; 

   input [127:0] TT; 

   begin: f7 

      Count7 = Count6(TT[127:64]) + Count6(TT[63:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count7 for 7-variable functions   -- 

//--------------------------------------------------------------------- 

 

//--------------------------------------------------------------------- 

//------  The 1's count function - Count8 for 8-variable functions   -- 

function [8:0] Count8; 

   input [255:0] TT; 

   begin: f8 
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      Count8 = Count7(TT[255:128]) + Count7(TT[127:0]); 

   end 

endfunction 

 

//------  The 1's count function - Count8 for 8-variable functions   -- 

//--------------------------------------------------------------------- 

endmodule 

 

module ANF_to_Degree(ANF, degree); 

//--------------------------------------------------------------------- 

// ANF_to_Degree -  Verilog code to produce, Degree, the highest degree  

//                  of the ANF of an input function. 

// 

// Created:       July 28, 2011 

// Author:        Eric McCay and Jon T. Butler 

// 

// Inputs:        ANF    - Binary 2^n-tuple ANF of given function 

// Outputs:       Degree - Highest degree of ANF that is less than  

//                         parameter ignore. 

// 

//--------------------------------------------------------------------- 

// 

 

parameter n = 2;               // The number of variables. 

localparam N = 2**n;           // Max number of elements in ANF. 

localparam n_degr = clogb2(n); // The number of bits needed to 

                               // represent n, the largest 

                               // possible degree. 

 

input  [N-1:0]      ANF; 

output [n_degr-1:0] degree; 

reg    [n_degr-1:0] degree; 

reg    [n:0]        deg;    // deg[i] = 1 iff there is at least one  

                            // term in the ANF of degree i. 

integer i; 

 

always @(ANF) 

    begin 

        deg = {(n+1){1'b0}}; 

        //synthesis loop_limit 32000 

        for (i = 0; i < N; i = i + 1) 

            begin 

                if((ones_counter(i) <= n) && (ANF[i] == 1'b1)) 

                    deg[ones_counter(i)] = 1'b1; 

            end 

    end 

 

always @(deg) 

    begin 

        degree = 0; 

            for (i = 0; i <= n; i = i+1) 

                if(deg[i] == 1'b1) 

                    degree = i; 

    end 
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/////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////// 

 

//Constant function to produce nbits_fact_n(n) 

function integer ones_counter(input integer n); 

integer m; 

    begin 

        ones_counter = 0; 

        m = n; 

        while (m > 0) 

            begin 

                ones_counter = ones_counter + m%2; 

                m = m >> 1; 

            end 

    end 

endfunction 

 

/////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////// 

//Constant function 

function integer clogb2(input integer depth); 

    begin 

        for(clogb2=0; depth>0; clogb2 = clogb2 + 1) 

            depth = depth >> 1; 

    end 

endfunction 

 

endmodule 

 

module TranseuntTriangleToDegree(TT_ext, Deg_out); 

//--------------------------------------------------------------------- 

// Transeunt_Triangle -  A module to convert between ANF and TT form 

// 

// Created:       January 21, 2012 

// Author:        Eric McCay 

// 

// Inputs:        TT_ext  - input in TT or ANF form 

// Outputs:       TT_out  - output in ANF form or TT form 

// 

// Notes:     1.  parameter n is used to specify that a n-variable  

//                function's truth table is being considered 

//                (TT has 2^n-inputs). 

//--------------------------------------------------------------------- 

 

    parameter n = 3; 

    localparam N = 2**n; 

    localparam n_degr = clogb2(n); // The number of bits needed to  

                                   // represent n, the largest possible 

                                   // degree. 

 

    input   [N-1:0]         TT_ext;     // Function Truth Table 

    reg     [N-1:0]         Alt_form;   // Stores converted ANF or TT,  

                                        // depending on input 

    wire    [N-1:0]         TT_in; 

    output  [n_degr-1:0]    Deg_out; 
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    defparam U1.n = n; // maintains code parameterization 

 

    ANF_to_Degree U1 (Alt_form, Deg_out); // convert the computed ANF 

                                          // to its degree 

 

    generate 

        assign TT_in = TT_ext; 

    endgenerate 

 

    always @(TT_in) 

        begin: CHECK_n 

            case(n)      //  Call appropriate case for the size of n 

                2: Alt_form = TransTri2(TT_in); 

                3: Alt_form = TransTri3(TT_in); 

                4: Alt_form = TransTri4(TT_in); 

                5: Alt_form = TransTri5(TT_in); 

                6: Alt_form = TransTri6(TT_in); 

                7: Alt_form = TransTri7(TT_in); 

                8: Alt_form = TransTri8(TT_in); 

                default Alt_form = TransTri2(TT_in); 

            endcase 

 

        end 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri2 for 2-variable functions  

function [3:0] TransTri2; 

   input [3:0] TT_in; 

   begin: f2 

      TransTri2[0]=TT_in[0]; 

      TransTri2[1]=TT_in[0]^TT_in[1]; 

      TransTri2[2]=TT_in[0]^TT_in[2]; 

      TransTri2[3]=(TT_in[0]^TT_in[1])^(TT_in[2]^TT_in[3]); 

   end 

endfunction 

 

//-The Transeunt Triangle function - TransTri2 for 2-variable functions  

//--------------------------------------------------------------------- 

 

// For n = 3 and on, it just recursively calls the previous TransTri 

// function. So, for example, for n = 4, TransTri4 is called, which 

// calls TransTri3 twice, which calls TransTri2 a total of 4 times. 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri3 for 3-variable functions  

function [7:0] TransTri3; 

   input [7:0] TT_in; 

   begin: f3 

       TransTri3[3:0] = TransTri2(TT_in[3:0]); 

       TransTri3[7:4] = TransTri2(TT_in[7:4])^TransTri3[3:0]; 

   end 

endfunction 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri4 for 4-variable functions 
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function [15:0] TransTri4; 

   input [15:0] TT_in; 

   begin: f4 

       TransTri4[7:0] = TransTri3(TT_in[7:0]); 

       TransTri4[15:8] = TransTri3(TT_in[15:8])^TransTri4[7:0]; 

   end 

endfunction 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri5 for 5-variable functions 

function [31:0] TransTri5; 

   input [31:0] TT_in; 

   begin: f5 

       TransTri5[15:0] = TransTri4(TT_in[15:0]); 

       TransTri5[31:16] = TransTri4(TT_in[31:16])^TransTri5[15:0]; 

   end 

endfunction 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri6 for 6-variable functions  

function [63:0] TransTri6; 

   input [63:0] TT_in; 

   begin: f6 

       TransTri6[31:0] = TransTri5(TT_in[31:0]); 

       TransTri6[63:32] = TransTri5(TT_in[63:32])^TransTri6[31:0]; 

   end 

endfunction 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri7 for 7-variable functions 

function [127:0] TransTri7; 

   input [127:0] TT_in; 

   begin: f7 

       TransTri7[63:0] = TransTri6(TT_in[63:0]); 

       TransTri7[127:64] = TransTri6(TT_in[127:64])^TransTri7[63:0]; 

   end 

endfunction 

 

//--------------------------------------------------------------------- 

//-The Transeunt Triangle function - TransTri8 for 8-variable functions 

function [255:0] TransTri8; 

   input [255:0] TT_in; 

   begin: f8 

       TransTri8[127:0] = TransTri7(TT_in[127:0]); 

       TransTri8[255:128] = TransTri7(TT_in[255:128])^TransTri8[127:0]; 

   end 

endfunction 

 

//Constant function to produce nbits_fact_n(n) 

function integer ones_counter(input integer n); 

integer m; 

    begin 

        ones_counter = 0; 

        m = n; 

        while (m > 0) 
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            begin 

                ones_counter = ones_counter + m%2; 

                m = m >> 1; 

            end 

    end 

endfunction 

 

/////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////// 

//Constant function 

function integer clogb2(input integer depth); 

    begin 

        for(clogb2=0; depth>0; clogb2 = clogb2 + 1) 

            depth = depth >> 1; 

    end 

endfunction 

 

endmodule 

 

module Algebraic_Immunity(TT, AI, DONE, CLK, CLR, START); 

//--------------------------------------------------------------------- 

// Algebraic_Immunity -  Verilog code to determine the algebraic  

//                       immunity of the provided function. 

// 

// Created:       August 24, 2011 

// Author:        Eric McCay and Jon T. Butler 

// 

// Inputs:        TT - Truth table of the function being tested 

// Outputs:       AlgebraicImmunity - The algebraic immunity of the 

//                                    tested function 

// 

//--------------------------------------------------------------------- 

// 

 

parameter n = 4;                // The number of variables. 

localparam N = 2**n;            // Max number of elements in ANF. 

localparam n_degr = clogb2(n);  // The number of bits needed to  

                                // represent n, the largest possible 

                                // degree 

                                 

input           CLK; 

input           CLR; 

input           START; 

input   [63:0]  TT; // The function under test 

wire    [63:0]  TT; 

reg     [63:0]  TT_reg; 

reg     [63:0]  GlobalMinimum; // Used to store the minimum annihilator 

output  [63:0]  AI;     // Algebraic Immunity of function under test 

output          DONE;   // Indicates completion 

reg             DONE; 

reg     [63:0]  AI; 

reg     [63:0]  Max; //The maximum possible value of Algebraic Immunity 

 

reg     [N-1:0] Counter; // Used to cycle through possible annihilators 
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wire [n_degr-1:0]   f_degree_wire; 

wire [n_degr-1:0]   f_bar_degree_wire; 

 

reg    [N-1:0]      TT_annihilator_fbar; // Annihilator function for f 

reg    [N-1:0]      TT_annihilator_f; 

reg                 TT_annihilator_fbar_inhibit; 

reg                 TT_annihilator_f_inhibit; 

reg    [N-1:0]      number_ones_fbar [0:N]; // Used to track which  

                    //counter an output of annihilator_fbar connects to 

reg    [N-1:0]      number_ones_f [0:N]; // Used to track which counter  

                    // an output of annihilator_f connects to 

reg    [N-1:0]      inhibitor_f; //Used to generate the inhibit signals 

wire   [N-1:0]      inhibitor_f_wire;  // Wire for initial assignment 

reg    [N-1:0]      inhibitor_fbar; 

integer i; 

 

 

//state parameters 

localparam IDLE = 0; 

localparam ACTIVE = 1; 

localparam STALL = 2; 

localparam FINISH = 3; 

 

reg [1:0] state; 

 

// Define parameters for the called modules - used for parameterization 

defparam U1.n = n; 

defparam U2.n = n; 

defparam U3.n = n; 

 

// Call One's count to determine number of 1's for input TT 

Ones_Count U1 (TT_reg, inhibitor_f_wire); 

// The transeunt triangles calculate the degrees for the computed 

// annihilators - both f and f_bar 

TranseuntTriangleToDegree U2 (TT_annihilator_f, f_degree_wire); 

TranseuntTriangleToDegree U3 (TT_annihilator_fbar, f_bar_degree_wire); 

 

always @(posedge CLK) 

begin: statereg 

 

    if (CLR) 

        begin: Clearing 

            TT_reg <= TT; 

            state <= IDLE; 

            AI <= 0; 

 

            DONE <= 1'b0; 

 

            Counter <= 1'b1; // Initially set to 1 to avoid the zero 

                             // state, a known annihilator 

 

            number_ones_fbar[0] <= 1'b0; 

            number_ones_f[0] <= 1'b0; 

 

            TT_annihilator_fbar <= 1'b0; 



 64 

            TT_annihilator_f <= 1'b0; 

 

            if(n % 2 == 1)  // Set Max to ceiling of n / 2 

                begin 

                    Max <= n/2 + 1; 

                end 

            else 

                begin 

                    Max <= n/2; 

                end 

 

        end // Clearing 

    else 

        begin 

            case (state) 

                // Indenting is shifted left inside each state 

                // to allow the code to more properly fit on a printed 

                // page 

                 

                // The state machine always begins in IDLE so this 

                // state is used to perform some initialization that 

                // threw off timing in the CLEAR state 

                IDLE: 

begin 

    inhibitor_fbar <= 2**(N - inhibitor_f_wire); // Inhibits for fbar 

    inhibitor_f <= 2**inhibitor_f_wire; //raise 2 ^ inhibitor.  This  

                    // will be compared to counter to generate inhibit. 

 

    // This for loop iteratively populates the number_ones_f and 

    // number_ones_fbar registers, so that for each bit position 

    // each register shows the number of that type that has been 

    // encountered.  For example, if the input TT is, from least 

    // significant bit to most significant bit, 1010, then  

    // number_ones_f will have 01122, and number_ones_fbar will 

    // have 00112. Each starts with 0 in the LSB. These registers 

    // are used to apply the numbers generated by the counter to the 

    // correct places in the input TT in order to annihilate the  

    // function.  This is a blocking assignment because the code will 

    // not work otherwise: each successive value depends on the 

    // previous, so they can't all be assigned simultaneously. 

    // There are fast ways to assign all the values simultaneously 

    // (using multiple instances of one's cont) but it is not 

    // necessary as the code simply runs too slow to work for 

    // more than 4 variables. 

    for (i = 0; i < N; i = i + 1) 

        begin 

            if(TT_reg[i] == 1'b0) 

                begin:f 

                    number_ones_f[i+1]      =  number_ones_f[i]; 

                    number_ones_fbar[i+1]   =  number_ones_fbar[i] + 1; 

                end 

            else 

                begin:f_bar 

                    number_ones_fbar[i+1]   =  number_ones_fbar[i]; 

                    number_ones_f[i+1]      =  number_ones_f[i] + 1; 
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                end 

    end //for 

 

    if(START) 

        begin 

            if(inhibitor_f_wire == N) 

                begin 

                    GlobalMinimum <= 0;  // Covers the all 1's case 

                    state <= FINISH; 

                end 

            else 

                begin 

                    GlobalMinimum <= Max; // Initially set Global  

                                // Minimum to the maximum possible AI 

                    state <= ACTIVE; 

                end 

        end 

end //IDLE 

                // The ACTIVE state is responsible for the actual 

                // determination of the AI.  Once it has enumerated 

                // all possible states it exits to finish, leaving 

                // the degree of the smallest annihilator in 

                // GlobalMinimum 

                ACTIVE: 

begin 

    Counter <= Counter + 1; // Must count each clock - this enumerates 

                            // the annihilators 

 

    // This series of if/else statements determines if either signal 

    // should be inhibited (i.e. if we've checked all possible 

    // annihilators for f/fbar based on the number of 1's/0's). 

    // It also causes the state to change to the FINISH state 

    // once both annihilator generators are inhibited. 

    if(Counter >= inhibitor_f) 

        begin 

            if(Counter >= inhibitor_fbar) //All states are enumerated 

                begin 

                    state <= FINISH; 

                end 

            TT_annihilator_f_inhibit <= 1; 

        end 

    else 

        begin 

            TT_annihilator_f_inhibit <= 0; 

        end 

 

    if(Counter >= inhibitor_fbar) 

        begin 

            TT_annihilator_fbar_inhibit <= 1; 

        end 

    else 

        begin 

            TT_annihilator_fbar_inhibit <= 0; 

        end 
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    // This for loop is actually applying the appropriate inputs 

    // in order to annihilate the function being tested, based on the 

    // number_ones_f and fbar arrays that were populated in IDLE. 

    for (i = 0; i < N; i = i + 1) 

        begin 

            if(TT_reg[i] == 1'b0) 

                begin:f_ann 

                    TT_annihilator_f[i] <=  1'b0; 

                    TT_annihilator_fbar[i] <=  

                        Counter[number_ones_fbar[i]]; 

                end 

            else 

                begin:f_bar_ann 

                    TT_annihilator_fbar[i] <=  1'b0; 

                    TT_annihilator_f[i] <=  Counter[number_ones_f[i]]; 

                end 

        end //for 

 

    // This long combination of if statements is simply to carry out 

    // a minimum function: it puts the minimum of 3 possible values 

    // into GlobalMinimum.  If GlobalMinimum is the smallest it remains 

    // unchanged.  Otherwise, the smaller of the degrees for the 

    // annihilators of f and fbar goes into GlobalMinimum, unless those 

    // signals are being inhibited (i.e. all possible annihilators 

    // have already been enumerated).  A more efficient method of 

    // comparison is possible, but this method is simple and completes 

    // within a clock period. 

    if(TT_annihilator_f_inhibit == 1'b0) 

        begin 

            if(f_degree_wire < GlobalMinimum) 

                begin 

                    GlobalMinimum <= f_degree_wire; 

                end 

        end 

 

    if(TT_annihilator_fbar_inhibit == 1'b0) 

        begin 

            if(TT_annihilator_f_inhibit == 1'b0) 

                begin 

                    if(f_bar_degree_wire < f_degree_wire) 

                        begin 

                            if(f_bar_degree_wire < GlobalMinimum) 

                                begin 

                                    GlobalMinimum <= f_bar_degree_wire; 

                                end 

                        end 

                end 

            else 

                begin 

                    if(f_bar_degree_wire < GlobalMinimum) 

                        begin 

                            GlobalMinimum <= f_bar_degree_wire; 

                        end 

                    end 

                end 
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end // ACTIVE 

                // STALL isn't actually used, but could be used if 

                // this was altered to function as a producer /  

                // consumer model.  This state can be removed. 

                STALL: 

begin 

    if(START) 

        begin 

            state <= ACTIVE; 

        end 

 

end //STALL 

                // FINISH sets AI to the smallest degree annihilator 

                // found and sets DONE causing control to return 

                // to subr.mc 

                FINISH: 

begin 

    AI <= GlobalMinimum; 

    DONE <= 1'b1; 

end //FINISH 

 

            endcase 

 

        end // state cases 

 

end // statereg 

 

/////////////////////////////////////////////////////////////////////// 

 

//Constant function to produce nbits_fact_n(n) 

function integer ones_counter(input integer n); 

integer m; 

    begin 

                ones_counter = 0; 

                m = n; 

                while (m > 0) 

                    begin 

                                ones_counter = ones_counter + m%2; 

                                m = m >> 1; 

                        end 

        end 

endfunction 

 

/////////////////////////////////////////////////////////////////////// 

/////////////////////////////////////////////////////////////////////// 

//Constant function 

function integer clogb2(input integer depth); 

        begin 

                for(clogb2=0; depth>0; clogb2 = clogb2 + 1) 

                        depth = depth >> 1; 

        end 

endfunction 

 

endmodule 
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A.3 SIMULTANEOUS EQUATION ALGORITHM SOURCE CODE (n = 4) 

This algorithm enumerated all functions at n = 4 significantly faster than the brute 

force method. 

1. main.c 

//********************************************************************* 

// 

//  main.c  -    C program to run Algebraic_Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program determines the Algebraic Immunity  

//                     of all Boolean functions for a given n and  

//                     provides an output specifying the number of 

//                     functions with each AI. 

// 

//********************************************************************* 

 

#include <map.h> 

#include <stdlib.h> 

#include <stdio.h> 

 

void subr (int64_t*, int64_t*, int ); 

 

int main (int argc, char *argv[]) { 

    FILE *res_map, *res_cpu; 

        int mapnum = 0; 

        int i; 

        int64_t time_clock; 

        int64_t *AI; 

 

// Allocate array to hold the AI values 

    AI = (int64_t *) malloc (4* sizeof (int64_t)); 

 

    for (i = 0; i < 4; i++){ 

            AI[i] = 0; // Zero out AI. 

        } 

 

    map_allocate (1); // Allocate the first map 

 

    //This shows that the subr.mc has been called.  Subroutine 

    //calls can take a considerable amount of time so this lets 

    //the user know that execution has started properly. 

    printf ("Calling subr.mc\n\n"); 

 

//  Call subroutine subr.mc on the MAP. 

    subr (AI, &time_clock, mapnum); 
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    printf("Return from subr.mc\n\n"); 

 

// Print out the number of clocks. 

    printf ("%lld clocks\n", time_clock); 

 

// Print out the Algebraic Immunity of each Function 

    printf("Listed below is the number of functions with each " 

           "Algebraic Immunity\n\n"); 

 

 

        printf("AI = 3: %d\n",AI[3]); 

        printf("AI = 2: %d\n",AI[2]); 

        printf("AI = 1: %d\n",AI[1]); 

        printf("AI = 0: %d\n",AI[0]); 

 

    map_free (1); // Release the map 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 

 

2. subr.mc 

//********************************************************************* 

// 

//  subr.mc  - MAP C subroutine to determine Algebraic Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program calls Algebraic_Immunity.v, which  

//                     determines the Algebraic Immunity of the 

//                     function provided in Truth Table Form. 

// 

//********************************************************************* 

 

#include <libmap.h> 

#define NUM 65536  //number of values in TT 2^(2^n) 

 

void subr (int64_t ai[], int64_t *time, int mapnum) { 

 

// Declare one OBM bank in the SRC-6 to store the number of 

// functions with each possible AI value. 

        OBM_BANK_B (AI, int64_t, 4) 

 

        int64_t t0, t1; // Used to determine runtime 

        int64_t my64bit_in; //input TT to test 

        int64_t my64bit_out; //output AI of tested function 

        int i, j, k, l, m, n; 

 

        read_timer(&t0); 

 

        for (i = 0; i < 4; i++) 



 70 

            AI[i] = 0; //Initially, zero out the AI values 

        k = 0; 

        l = 0; 

        m = 0; 

        n = 0; 

 

        //This for loop calls the macro file the required number 

        //of times (65536 in this case) to determine the AI 

        //for each possible TT input on 4 variables.  It then 

        //uses a switch statement to tally the results for 

        //each possible AI value.  For n=4, AI can be at most 

        //two, so the case 3 statement never executes. 

        //A modification for this subr.mc vice the one for the brute 

        //force algorithm is that this one does not pass the all 

        //0's or all 1's truth tables to the macro.  It is known that 

        //AI is zero for these constant functions so they are not 

        //tested, which simplified the macro design. 

        for (i = 1; i < (NUM - 1); i++) 

            { 

                 my64bit_in = i; 

                 my_operator (my64bit_in, &my64bit_out); 

                 j = my64bit_out; 

                 switch (j) 

                 { 

                 case 0: 

                     k++; 

                     break; 

                 case 1: 

                     l++; 

                     break; 

                 case 2: 

                     m++; 

                     break; 

                 case 3: 

                     n++; 

                     break; 

                 } 

 

             }//for (i = 0; i < NUM; i++){ 

 

        AI[0] = 2; // It is known that there are 2 functions 

                   // with AI = 0 regardless of the number of variables 

        AI[1] = l; 

        AI[2] = m; 

        AI[3] = n; 

 

        read_timer(&t1); 

 

        *time = (t1 - t0); 

 

// Return AI values by DMAing TO the CPU 

        DMA_CPU (OBM2CM, AI, MAP_OBM_stripe(1,"B"), ai,  

                 1, 4*sizeof(int64_t), 0); 

        wait_DMA (0); 
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} 

 

3. Algebraic_Immunity.v 

module Algebraic_Immunity(TT, AI, DONE, CLK, CLR, START); 

//--------------------------------------------------------------------- 

// Algebraic_Immunity -  Verilog code to determine the algebraic  

//                       immunity of the provided function. 

// 

// Created:       August 24, 2011 

// Author:        Eric McCay and Jon T. Butler 

// 

// Inputs:        TT - Truth table of the function being tested 

// Outputs:       AlgebraicImmunity - The algebraic immunity of the  

//                                    tested function 

// 

//--------------------------------------------------------------------- 

// 

 

parameter       n = 4;       // The number of variables. 

localparam      N = 2**n;    // Max number of elements in TT. 

 

input           CLK; 

input           CLR; 

input           START; 

input   [63:0]  TT;      // The function under test 

wire    [63:0]  TT; 

 

reg     [63:0]  TT_reg; 

 

output  [63:0]  AI;      // Algebraic Immunity of function under test 

output          DONE;    // Indicates completion 

reg             DONE; 

reg     [63:0]  AI; 

 

integer i; 

 

// Variables for simultaneous equation solving 

// The SimultArray holds the simultaneous equations 

// To solve.  It's structure for n=4 is: 

//     A0 A1 A2 A3 A4 A1A2 A1A3 A1A4 A2A3 A2A4 A3A4 

// g0  x  x  x  x  x  x    x    x    x    x    x 

// g1  x  x  x  x  x  x    x    x    x    x    x 

// g2  x  x  x  x  x  x    x    x    x    x    x 

// g3  x  x  x  x  x  x    x    x    x    x    x 

// g4  x  x  x  x  x  x    x    x    x    x    x 

// g5  x  x  x  x  x  x    x    x    x    x    x 

// g6  x  x  x  x  x  x    x    x    x    x    x 

// g7  x  x  x  x  x  x    x    x    x    x    x 

// g8  x  x  x  x  x  x    x    x    x    x    x 

// g9  x  x  x  x  x  x    x    x    x    x    x 

// g10 x  x  x  x  x  x    x    x    x    x    x 

// g11 x  x  x  x  x  x    x    x    x    x    x 
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// g12 x  x  x  x  x  x    x    x    x    x    x 

// g13 x  x  x  x  x  x    x    x    x    x    x 

// g14 x  x  x  x  x  x    x    x    x    x    x 

// g15 x  x  x  x  x  x    x    x    x    x    x 

 

// The x's are filled in based on the TT that is input 

// Where the x's are all 0's if the corresponding bit 

// is 0 in the TT, and are filled in with appropriate 

// values based on whether or not those terms appear 

// for the that particular value in the TT. 

 

reg    [4:0]        SimultArray [0:15]; // array to hold  

                                        // the 2^n equations 

reg    [15:0]       A0Array; 

reg    [15:0]       A1Array;   // of each bit of the truth table 

reg    [15:0]       A2Array;   // - it is used to create the 

reg    [15:0]       A3Array;   // SimultArray. 

reg    [15:0]       A4Array; 

 

reg    [n:0]        RowCounter; // Keeps track of row being searched 

reg    [n:0]        RowUpdate;  //Used to maintain the desired position 

                                //of the next row of interest 

reg    [n:0]        ColCounter; // Tracks the column of interest 

 

reg    [4:0]        Row0Terms;  // Used for determining if the  

reg    [4:0]        Row1Terms;  // annihilator is of degree 1 

reg    [4:0]        Row2Terms; 

reg    [4:0]        Row3Terms; 

 

reg                 CompTrack;  // Used to track if complement has  

                                // been checked 

 

//state parameters 

localparam Idle = 0; 

localparam Init = 1; 

localparam RowSearch = 2; 

localparam RowFound = 3; 

localparam RowSwap = 4; 

localparam FindDegree = 5; 

localparam UpdateDegree = 6; 

localparam ComplementCheck = 7; 

localparam Finish = 8; 

 

reg [3:0] state; 

 

always @(posedge CLK) 

begin: statereg 

 

    if (CLR) 

        begin: Clearing 

 

            state <= Idle; 

            TT_reg <= TT; 

 

            AI <= 0; 
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            DONE <= 1'b0; 

 

            CompTrack <= 0; 

 

            // Initialize the SimultArray to all 0's 

            // And put the correct values in the 

            // Arrays used to build SimultArray 

            for(i = 0;i < N; i = i+1) 

                begin 

                    A0Array[i] <= 1; 

                    A1Array[i] <= i%2; 

                    A2Array[i] <= (i>>1)%2; 

                    A3Array[i] <= (i>>2)%2; 

                    A4Array[i] <= (i>>3)%2; 

                    SimultArray[i] <= {5{1'b0}}; 

                end 

 

        end // Clearing 

    else 

        begin 

            case (state) 

                // The states are indented left to increase readability 

                 

                // Idle waits for start and then moves flow to the Init 

                // state - it performs no operations so that the same 

                // pathway can be used for the function and its 

                // complement. 

                Idle: 

begin 

    if(START) 

        begin 

            state <= Init; 

        end 

end //Idle 

                 

                //Init builds the SimultArray, which is then solved 

                //to determine the lowest degree annihilator for the 

                //function being tested.  It also initializes all 

                //variables used to process the array. 

                Init: 

begin 

 

    for(i = 0;i < N; i = i+1) 

        begin 

            SimultArray[i] <= {TT_reg[i]&A4Array[i], 

                               TT_reg[i]&A3Array[i], 

                               TT_reg[i]&A2Array[i], 

                               TT_reg[i]&A1Array[i], 

                               TT_reg[i]&A0Array[i]}; 

 

        end 

 

    RowCounter <= 0; 

    RowUpdate <= 0; 
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    ColCounter <= 0; 

 

    state <= RowSearch; 

 

end // Init 

 

                // This state checks the rows 1 at a time, starting  

                // after the last row to have been updated, and  

                // attempts to find a 1 in the column of interest. 

                RowSearch: 

begin 

    // If this code executes, we have established 

    // reduced row echelon form and are ready 

    // to determine the lowest degree annihilator 

    if(ColCounter == 5) 

        begin 

            Row0Terms <= SimultArray[0]; 

            Row1Terms <= SimultArray[1]; 

            Row2Terms <= SimultArray[2]; 

            Row3Terms <= SimultArray[3]; 

            state <= FindDegree; 

        end 

    // If the next code executes (meaning we have counted 

    // all rows) then AI is 1 because we have at least 

    // one free variable, allowing us to produce 

    // a degree 1 annihilator 

    else if(RowCounter == N) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    // This executes if we find a 1 in the column of interest 

    else if(((SimultArray[RowCounter]>>(4-ColCounter))%2) == 1) 

        begin 

            state <= RowFound; 

        end 

    // The default code moves us to the next row to continue looking 

    else 

        begin 

            RowCounter <= RowCounter + 1; 

        end 

 

end // RowSearch 

 

                // Entering this state means we found a row with a 1  

                // in the column of interest.  We will use this row to  

                //zero out the column of interest in all other rows. 

                RowFound: 

begin 

 

    // This for loop adds (xors) the found row with all other 

    // rows that have a 1 in the column of interest to zero 

    // them out. 

    for(i = 0;i < N; i = i + 1) 

        begin 
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            if((((SimultArray[i]>>(4-ColCounter))%2) == 1) 

              &&(i != RowCounter)) 

                begin 

                    SimultArray[i] <= (SimultArray[i] ^  

                                       SimultArray[RowCounter]); 

                end 

        end 

 

    if (RowCounter == RowUpdate)//If true the row is in the right place 

        begin 

            RowUpdate <= RowUpdate + 1; 

            ColCounter <= ColCounter + 1; 

            state <= RowSearch; 

            RowCounter <= RowUpdate + 1; 

        end 

    else // the row is in the wrong place 

        begin 

            ColCounter <= ColCounter + 1; 

            state <= RowSwap; 

        end 

 

end // RowFound 

 

                // Swaps the found row to the correct position 

                RowSwap: 

begin 

 

    SimultArray[RowCounter] <= SimultArray[RowUpdate]; 

    SimultArray[RowUpdate] <= SimultArray[RowCounter]; 

 

    RowUpdate <= RowUpdate + 1; 

    RowCounter <= RowUpdate + 1; 

 

    state <= RowSearch; 

 

end // RowSwap 

 

                // Counts the number of 1's in each row 

                FindDegree: 

begin 

 

    Row0Terms <= (Row0Terms[4]+Row0Terms[3]+Row0Terms[2]+Row0Terms[1] 

                    +Row0Terms[0]); 

    Row1Terms <= (Row1Terms[4]+Row1Terms[3]+Row1Terms[2]+Row1Terms[1] 

                    +Row1Terms[0]); 

    Row2Terms <= (Row2Terms[4]+Row2Terms[3]+Row2Terms[2]+Row2Terms[1] 

                    +Row2Terms[0]); 

    Row3Terms <= (Row3Terms[4]+Row3Terms[3]+Row3Terms[2]+Row3Terms[1] 

                    +Row3Terms[0]); 

 

    state <= UpdateDegree; 

 

end // FindDegree 

 

                // First, it checks to see if any row had two 1's. If 
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                // so, AI is 1 (those two variables combine to form 

                // a degree one annihilator).  Otherwise, it checks 

                // to see if the complement has been tested.  If not, 

                // we go test the complement.  If the complement has 

                // been tested, this function has no degree one 

                // annihilators and so AI=2. 

                UpdateDegree: 

begin 

    if((Row0Terms>1)||(Row1Terms>1)||(Row2Terms>1)||(Row3Terms>1)) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    else 

        begin 

            if(CompTrack == 0) 

                begin 

                    state <= ComplementCheck; 

                end 

            else 

                begin 

                    AI <= 2; 

                    state <= Finish; 

                end 

        end 

 

end //UpdateDegree 

 

                // This complements the truth table, updates to show 

                // that we are now testing the complement, and starts 

                // the process over back at Init. 

                ComplementCheck: 

begin 

    TT_reg <= ~TT; 

    state <= Init; 

    CompTrack <= 1; 

end //ComplementCheck 

 

                // Testing is complete.  The AI has already been set,  

                // so the macro just exits 

                Finish: 

begin 

    DONE <= 1'b1; 

end //Finish 

 

            endcase 

 

        end // state cases 

 

end // statereg 

 

endmodule 
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A.4 SIMULTANEOUS EQUATION ALGORITHM SOURCE CODE (n = 5) 

This algorithm was the first known to compute AI for all functions for n = 5.  It is 

an extension of the algorithm used for n = 4. 

1. main.c 

//********************************************************************* 

// 

//  main.c  -    C program to run Algebraic_Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program determines the Algebraic Immunity  

//                     of all Boolean functions for a given n and  

//                     provides an output specifying the number of 

//                     functions with each AI. 

// 

//********************************************************************* 

 

#include <map.h> 

#include <stdlib.h> 

#include <stdio.h> 

#define NUM 4294967296  //number of values in TT 2^(2^n) 

 

void subr (uint64_t*, uint64_t*, int ); 

 

// Use uint64_t for all variables in this function because of the 

// large number we are counting to (2^32). 

int main (int argc, char *argv[]) { 

    FILE *res_map, *res_cpu; 

        int mapnum = 0; // use map 0 

        uint64_t i; 

        uint64_t time_clock; // used for timing 

        uint64_t *AI; 

 

// Allocate array of AI values 

    AI = (uint64_t *) malloc (4* sizeof (uint64_t)); 

 

        for (i = 0; i < 4; i++){ 

                AI[i] = 0; //Zero out AI. 

            } 

 

    map_allocate (1); // hold the map 

 

    //This shows that the subr.mc has been called.  Subroutine 

    //calls can take a considerable amount of time so this lets 

    //the user know that execution has started properly. 

    printf ("Calling subr.mc\n\n"); 

 

//  Call subroutine subr.mc on the MAP. 

    subr (AI, &time_clock, mapnum); 
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    printf("Return from subr.mc\n\n"); 

 

// Print out the number of clocks. 

printf ("%lld clocks\n", time_clock); 

 

// Print out the Algebraic Immunity of each Function 

    printf("Listed below is the number of functions with each " 

            "Algebraic Immunity\n\n"); 

 

        printf("AI = 3: %lld\n",AI[3]); 

        printf("AI = 2: %lld\n",AI[2]); 

        printf("AI = 1: %lld\n",AI[1]); 

        printf("AI = 0: %lld\n",AI[0]); 

 

    map_free (1); // release the map 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 

 

2. subr.mc 

//********************************************************************* 

// 

//  subr.mc  - MAP C subroutine to determine Algebraic Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program calls Algebraic_Immunity.v, which  

//                     determines the Algebraic Immunity of the 

//                     function provided in Truth Table Form. 

// 

//********************************************************************* 

 

#include <libmap.h> 

#define NUM 4294967296  //number of values in TT 2^(2^n) 

 

// all variables in this function are declared as uint64_t due to  

// large numbers being worked with (up to 2^32) 

void subr (uint64_t ai[], uint64_t *time, int mapnum) { 

 

// Declare one OBM bank in the SRC-6 to store the number of 

// functions with each possible AI value. 

        OBM_BANK_B (AI, uint64_t, 4) 

         

        uint64_t t0, t1; // used to determine runtime 

        uint64_t my64bit_in; // TT  of function being tested 

        uint64_t my64bit_out; // AI of tested function 

        uint64_t i, j, k, l, m, n; 

 

        read_timer(&t0); 
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        for (i = 0; i < 4; i++) 

            AI[i] = 0; // set AI to 0 initially 

        k = 0; 

        l = 0; 

        m = 0; 

        n = 0; 

 

        //This for loop calls the macro file the required number 

        //of times (4294967296 in this case) to determine the AI 

        //for each possible TT input on 5 variables.  It then 

        //uses a switch statement to tally the results for 

        //each possible AI value. 

        //A modification for this subr.mc vice the one for the brute 

        //force algorithm is that this one does not pass the all 

        //0's or all 1's truth tables to the macro.  It is known that 

        //AI is zero for these constant functions so they are not 

        //tested, which simplified the macro design. 

        for (i = 1; i < (NUM - 1); i++) 

            { 

                 my64bit_in = i; 

                 my_operator (my64bit_in, &my64bit_out); 

                 j = my64bit_out; 

                 switch (j) 

                 { 

                 case 0: 

                     k++; 

                     break; 

                 case 1: 

                     l++; 

                     break; 

                 case 2: 

                     m++; 

                     break; 

                 case 3: 

                     n++; 

                     break; 

                 } 

 

             } 

 

        AI[0] = 2; 

        AI[1] = l; 

        AI[2] = m; 

        AI[3] = n; 

 

        read_timer(&t1); 

 

        *time = (t1 - t0); 

 

// Return AI values by DMAing TO the CPU 

        DMA_CPU (OBM2CM, AI, MAP_OBM_stripe(1,"B"), ai,  

            1, 4*sizeof(uint64_t), 0); 

        wait_DMA (0); 
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} 

 

3. Algebraic_Immunity.v 

module Algebraic_Immunity(TT, AI, DONE, CLK, CLR, START); 

//--------------------------------------------------------------------- 

// Algebraic_Immunity -  Verilog code to determine the algebraic  

//                       immunity of the provided function. 

// 

// Created:       August 24, 2011 

// Author:        Eric McCay and Jon T. Butler 

// 

// Inputs:        TT - Truth table of the function being tested 

// Outputs:       AlgebraicImmunity - The algebraic immunity of the  

//                                    tested function 

// 

//--------------------------------------------------------------------- 

// 

 

parameter       n = 5;     // The number of variables. 

localparam      N = 2**n;  // Max number of elements in TT. 

 

input           CLK; 

input           CLR; 

input           START; 

input   [63:0]  TT;        // The function under test 

wire    [63:0]  TT; 

 

reg     [63:0]  TT_reg; 

 

output  [63:0]  AI;        // Algebraic Immunity of function under test 

output          DONE;      // Indicates completion 

reg             DONE; 

reg     [63:0]  AI; 

 

integer i; 

 

reg    [15:0]       SimultArray [0:31]; // array to hold  

                                        // the 2^n equations 

reg    [31:0]       A0Array; 

reg    [31:0]       A1Array;   // of each bit of the truth table 

reg    [31:0]       A2Array;   // - it is used to create the 

reg    [31:0]       A3Array;   // SimultArray. 

reg    [31:0]       A4Array; 

reg    [31:0]       A5Array; 

 

reg    [n:0]        RowCounter; // Keeps track of row being searched 

reg    [n:0]        RowUpdate;  //Used to maintain the desired position  

                                // of the next row of interest 

reg    [n:0]        ColCounter; // Tracks the column of interest 

 

reg    [15:0]       Row0Terms1; // Used for determining if the  

reg    [15:0]       Row1Terms1; // annihilator is of degree 1 
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reg    [15:0]       Row2Terms1; 

reg    [15:0]       Row3Terms1; 

reg    [15:0]       Row4Terms1; 

reg    [15:0]       Row0Terms2; 

reg    [15:0]       Row1Terms2; 

reg    [15:0]       Row2Terms2; 

reg    [15:0]       Row3Terms2; 

reg    [15:0]       Row4Terms2; 

reg    [15:0]       Row5Terms2; 

reg    [15:0]       Row6Terms2; 

reg    [15:0]       Row7Terms2; 

reg    [15:0]       Row8Terms2; 

reg    [15:0]       Row9Terms2; 

reg    [15:0]       Row10Terms2; 

reg    [15:0]       Row11Terms2; 

reg    [15:0]       Row12Terms2; 

reg    [15:0]       Row13Terms2; 

reg    [15:0]       Row14Terms2; 

reg    [15:0]       Row15Terms2; 

 

reg                 CompTrack;  // Used to determine if complement  

                                // has been checked 

 

//state parameters 

localparam Idle = 0; 

localparam Init = 1; 

localparam RowSearch1 = 2; 

localparam RowFound1 = 3; 

localparam RowSwap1 = 4; 

localparam FindDegree1 = 5; 

localparam UpdateDegree1 = 6; 

localparam ComplementCheck = 7; 

localparam RowSearch2 = 8; 

localparam RowFound2 = 9; 

localparam RowSwap2 = 10; 

localparam FindDegree2 = 11; 

localparam UpdateDegree2 = 12; 

localparam Finish = 13; 

 

reg [3:0] state; 

 

always @(posedge CLK) 

begin: statereg 

 

    if (CLR) 

        begin: Clearing 

 

            state <= Idle; 

            TT_reg <= TT; 

 

            AI <= 0; 

 

            DONE <= 1'b0; 

 

            CompTrack <= 0; 
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            // Initialize the SimultArray to all 0's 

            // And put the correct values in the 

            // Arrays used to build SimultArray 

            for(i = 0;i < N; i = i+1) 

                begin 

                    A0Array[i] <= 1; 

                    A1Array[i] <= i%2; 

                    A2Array[i] <= (i>>1)%2; 

                    A3Array[i] <= (i>>2)%2; 

                    A4Array[i] <= (i>>3)%2; 

                    A5Array[i] <= (i>>4)%2; 

                    SimultArray[i] <= {16{1'b0}}; 

                end 

 

        end // Clearing 

    else 

        begin 

            case (state) 

                // The state code is shifted left for readability 

                 

                // Idle waits for start and then moves flow to the Init 

                // state - it performs no operations so that the same 

                // pathway can be used for the function and its 

                // complement. 

                Idle: 

begin 

    if(START) 

        begin 

            state <= Init; 

        end 

end //Idle 

 

                //Init builds the SimultArray, which is then solved 

                //to determine the lowest degree annihilator for the 

                //function being tested.  It also initializes all 

                //variables used to process the array. 

                Init: 

begin 

 

    for(i = 0;i < N; i = i+1) 

        begin 

            SimultArray[i] <= {TT_reg[i]&A4Array[i]&A5Array[i], 

                               TT_reg[i]&A3Array[i]&A5Array[i], 

                               TT_reg[i]&A3Array[i]&A4Array[i], 

                               TT_reg[i]&A2Array[i]&A5Array[i], 

                               TT_reg[i]&A2Array[i]&A4Array[i], 

                               TT_reg[i]&A2Array[i]&A3Array[i], 

                               TT_reg[i]&A1Array[i]&A5Array[i], 

                               TT_reg[i]&A1Array[i]&A4Array[i], 

                               TT_reg[i]&A1Array[i]&A3Array[i], 

                               TT_reg[i]&A1Array[i]&A2Array[i], 

                               TT_reg[i]&A5Array[i], 

                               TT_reg[i]&A4Array[i], 

                               TT_reg[i]&A3Array[i], 
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                               TT_reg[i]&A2Array[i], 

                               TT_reg[i]&A1Array[i], 

                               TT_reg[i]&A0Array[i]}; 

 

        end 

 

                        RowCounter <= 0; 

                        RowUpdate <= 0; 

                        ColCounter <= 0; 

 

                        state <= RowSearch1; 

 

                    end // Init 

 

                // This state checks the rows 1 at a time, starting  

                // after the last row to have been updated, and  

                // attempts to find a 1 in the column of interest. 

                RowSearch1: 

begin 

    // If this code executes, we have established 

    // reduced row echelon form and are ready 

    // to determine the lowest degree annihilator 

    if(ColCounter == 6) 

        begin 

            Row0Terms1 <= SimultArray[0]; 

            Row1Terms1 <= SimultArray[1]; 

            Row2Terms1 <= SimultArray[2]; 

            Row3Terms1 <= SimultArray[3]; 

            Row4Terms1 <= SimultArray[4]; 

            state <= FindDegree1; 

        end 

    // If the next code executes (meaning we have counted 

    // all rows) then AI is 1 because we have at least 

    // one free variable, allowing us to produce 

    // a degree 1 annihilator 

    else if(RowCounter == N) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    // This executes if we find a 1 in the column of interest 

    else if(((SimultArray[RowCounter]>>(ColCounter))%2) == 1) 

        begin 

            state <= RowFound1; 

        end 

    // The default code moves us to the next row to continue looking 

    else 

        begin 

            RowCounter <= RowCounter + 1; 

        end 

 

end // RowSearch1 

 

                // Entering this state means we found a row with a 1 in  

                // the column of interest.  We will use this row to  
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                // zero out the column of interest in all other rows. 

                RowFound1: 

begin 

 

    // This for loop adds (xors) the found row with all other 

    // rows that have a 1 in the column of interest to zero 

    // them out. 

    for(i = 0;i < N; i = i + 1) 

        begin 

            if((((SimultArray[i]>>(ColCounter))%2) == 1) 

                  &&(i != RowCounter)) 

                begin 

                    SimultArray[i] <= (SimultArray[i] ^  

                                       SimultArray[RowCounter]); 

                end 

        end 

 

    if (RowCounter == RowUpdate)//If true the row is in the right place 

        begin 

            RowUpdate <= RowUpdate + 1; 

            ColCounter <= ColCounter + 1; 

            state <= RowSearch1; 

            RowCounter <= RowUpdate + 1; 

        end 

    else // the row is in the wrong place 

        begin 

            ColCounter <= ColCounter + 1; 

            state <= RowSwap1; 

        end 

 

                    end // RowFound1 

 

                // Swaps the found row to the correct position 

                RowSwap1: 

begin 

 

    SimultArray[RowCounter] <= SimultArray[RowUpdate]; 

    SimultArray[RowUpdate] <= SimultArray[RowCounter]; 

 

    RowUpdate <= RowUpdate + 1; 

    RowCounter <= RowUpdate + 1; 

 

    state <= RowSearch1; 

 

end // RowSwap1 

 

                // Counts the number of 1's in each row 

                FindDegree1: 

begin 

 

    Row0Terms1 <= (Row0Terms1[5]+Row0Terms1[4]+Row0Terms1[3] 

                    +Row0Terms1[2]+Row0Terms1[1]+Row0Terms1[0]); 

    Row1Terms1 <= (Row1Terms1[5]+Row1Terms1[4]+Row1Terms1[3] 

                    +Row1Terms1[2]+Row1Terms1[1]+Row1Terms1[0]); 

    Row2Terms1 <= (Row2Terms1[5]+Row2Terms1[4]+Row2Terms1[3] 
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                    +Row2Terms1[2]+Row2Terms1[1]+Row2Terms1[0]); 

    Row3Terms1 <= (Row3Terms1[5]+Row3Terms1[4]+Row3Terms1[3] 

                    +Row3Terms1[2]+Row3Terms1[1]+Row3Terms1[0]); 

    Row4Terms1 <= (Row4Terms1[5]+Row4Terms1[4]+Row4Terms1[3] 

                    +Row4Terms1[2]+Row4Terms1[1]+Row4Terms1[0]); 

 

    state <= UpdateDegree1; 

 

end // FindDegree1 

 

                // First, it checks to see if any row had two 1's. If 

                // so, AI is 1 (those two variables combine to form 

                // a degree one annihilator).  Otherwise, it goes to 

                // RowSearch2, which is looking for a degree 2 

                // annihilator 

                UpdateDegree1: 

begin 

    if((Row0Terms1>1)||(Row1Terms1>1)||(Row2Terms1>1)||(Row3Terms1>1) 

      ||(Row4Terms1>1)) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    else 

        begin 

            state <= RowSearch2; 

        end 

 

end //UpdateDegree1 

 

                // This is similar to RowSearch1, except this is 

                // looking for degree 2 annihilators 

                RowSearch2: 

begin 

    // If this code executes, we have established 

    // reduced row echelon form and are ready 

    // to determine the lowest degree annihilator 

    if(ColCounter == 16) 

        begin 

            Row0Terms2 <= SimultArray[0]; 

            Row1Terms2 <= SimultArray[1]; 

            Row2Terms2 <= SimultArray[2]; 

            Row3Terms2 <= SimultArray[3]; 

            Row4Terms2 <= SimultArray[4]; 

            Row5Terms2 <= SimultArray[5]; 

            Row6Terms2 <= SimultArray[6]; 

            Row7Terms2 <= SimultArray[7]; 

            Row8Terms2 <= SimultArray[8]; 

            Row9Terms2 <= SimultArray[9]; 

            Row10Terms2 <= SimultArray[10]; 

            Row11Terms2 <= SimultArray[11]; 

            Row12Terms2 <= SimultArray[12]; 

            Row13Terms2 <= SimultArray[13]; 

            Row14Terms2 <= SimultArray[14]; 

            Row15Terms2 <= SimultArray[15]; 
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            state <= FindDegree2; 

        end 

    // If the next code executes (meaning we have counted 

    // all rows) then AI is 2 because we have at least 

    // one free variable, allowing us to produce 

    // a degree 2 annihilator 

    else if(RowCounter == N) 

        begin 

            AI <= 2; 

            state <= ComplementCheck; 

        end 

    else if(((SimultArray[RowCounter]>>(ColCounter))%2) == 1) 

        begin 

            state <= RowFound2; 

        end 

    else 

        begin 

            RowCounter <= RowCounter + 1; 

        end 

 

end // RowSearch2 

 

                // Entering this state means we found a row with a 1  

                // in the column of interest.  We will use this row to  

                // zero out the column of interest in all other rows. 

                RowFound2: 

begin 

 

    // This for loop adds (xors) the found row with all other 

    // rows that have a 1 in the column of interest to zero 

    // them out. 

    for(i = 0;i < N; i = i + 1) 

        begin 

            if((((SimultArray[i]>>(ColCounter))%2) == 1) 

              &&(i != RowCounter)) 

                begin 

                    SimultArray[i] <= (SimultArray[i] ^  

                                       SimultArray[RowCounter]); 

                end 

            end 

 

    if (RowCounter == RowUpdate)//If true the row is in the right place 

        begin 

            RowUpdate <= RowUpdate + 1; 

            ColCounter <= ColCounter + 1; 

            state <= RowSearch2; 

            RowCounter <= RowUpdate + 1; 

        end 

    else // row in the wrong place 

        begin 

            ColCounter <= ColCounter + 1; 

            state <= RowSwap2; 

        end 

 

end // RowFound2 
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                // swap the row to the correct place 

                RowSwap2: 

begin 

 

    SimultArray[RowCounter] <= SimultArray[RowUpdate]; 

    SimultArray[RowUpdate] <= SimultArray[RowCounter]; 

 

    RowUpdate <= RowUpdate + 1; 

    RowCounter <= RowUpdate + 1; 

 

    state <= RowSearch2; 

 

end // RowSwap2 

 

                // Counts the number of 1's in each row 

                FindDegree2: 

begin 

 

    Row0Terms2 <= (Row0Terms2[15]+Row0Terms2[14]+Row0Terms2[13] 

        +Row0Terms2[12]+Row0Terms2[11]+Row0Terms2[10]+Row0Terms2[9] 

        +Row0Terms2[8]+Row0Terms2[7]+Row0Terms2[6]+Row0Terms2[5] 

        +Row0Terms2[4]+Row0Terms2[3]+Row0Terms2[2]+Row0Terms2[1] 

        +Row0Terms2[0]); 

    Row1Terms2 <= (Row1Terms2[15]+Row1Terms2[14]+Row1Terms2[13] 

        +Row1Terms2[12]+Row1Terms2[11]+Row1Terms2[10]+Row1Terms2[9] 

        +Row1Terms2[8]+Row1Terms2[7]+Row1Terms2[6]+Row1Terms2[5] 

        +Row1Terms2[4]+Row1Terms2[3]+Row1Terms2[2]+Row1Terms2[1] 

        +Row1Terms2[0]); 

    Row2Terms2 <= (Row2Terms2[15]+Row2Terms2[14]+Row2Terms2[13] 

        +Row2Terms2[12]+Row2Terms2[11]+Row2Terms2[10]+Row2Terms2[9] 

        +Row2Terms2[8]+Row2Terms2[7]+Row2Terms2[6]+Row2Terms2[5] 

        +Row2Terms2[4]+Row2Terms2[3]+Row2Terms2[2]+Row2Terms2[1] 

        +Row2Terms2[0]); 

    Row3Terms2 <= (Row3Terms2[15]+Row3Terms2[14]+Row3Terms2[13] 

        +Row3Terms2[12]+Row3Terms2[11]+Row3Terms2[10]+Row3Terms2[9] 

        +Row3Terms2[8]+Row3Terms2[7]+Row3Terms2[6]+Row3Terms2[5] 

        +Row3Terms2[4]+Row3Terms2[3]+Row3Terms2[2]+Row3Terms2[1] 

        +Row3Terms2[0]); 

    Row4Terms2 <= (Row4Terms2[15]+Row4Terms2[14]+Row4Terms2[13] 

        +Row4Terms2[12]+Row4Terms2[11]+Row4Terms2[10]+Row4Terms2[9] 

        +Row4Terms2[8]+Row4Terms2[7]+Row4Terms2[6]+Row4Terms2[5] 

        +Row4Terms2[4]+Row4Terms2[3]+Row4Terms2[2]+Row4Terms2[1] 

        +Row4Terms2[0]); 

    Row5Terms2 <= (Row5Terms2[15]+Row5Terms2[14]+Row5Terms2[13] 

        +Row5Terms2[12]+Row5Terms2[11]+Row5Terms2[10]+Row5Terms2[9] 

        +Row5Terms2[8]+Row5Terms2[7]+Row5Terms2[6]+Row5Terms2[5] 

        +Row5Terms2[4]+Row5Terms2[3]+Row5Terms2[2]+Row5Terms2[1] 

        +Row5Terms2[0]); 

    Row6Terms2 <= (Row6Terms2[15]+Row6Terms2[14]+Row6Terms2[13] 

        +Row6Terms2[12]+Row6Terms2[11]+Row6Terms2[10]+Row6Terms2[9] 

        +Row6Terms2[8]+Row6Terms2[7]+Row6Terms2[6]+Row6Terms2[5] 

        +Row6Terms2[4]+Row6Terms2[3]+Row6Terms2[2]+Row6Terms2[1] 

        +Row6Terms2[0]); 

    Row7Terms2 <= (Row7Terms2[15]+Row7Terms2[14]+Row7Terms2[13] 
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        +Row7Terms2[12]+Row7Terms2[11]+Row7Terms2[10]+Row7Terms2[9] 

        +Row7Terms2[8]+Row7Terms2[7]+Row7Terms2[6]+Row7Terms2[5] 

        +Row7Terms2[4]+Row7Terms2[3]+Row7Terms2[2]+Row7Terms2[1] 

        +Row7Terms2[0]); 

    Row8Terms2 <= (Row8Terms2[15]+Row8Terms2[14]+Row8Terms2[13] 

        +Row8Terms2[12]+Row8Terms2[11]+Row8Terms2[10]+Row8Terms2[9] 

        +Row8Terms2[8]+Row8Terms2[7]+Row8Terms2[6]+Row8Terms2[5] 

        +Row8Terms2[4]+Row8Terms2[3]+Row8Terms2[2]+Row8Terms2[1] 

        +Row8Terms2[0]); 

    Row9Terms2 <= (Row9Terms2[15]+Row9Terms2[14]+Row9Terms2[13] 

        +Row9Terms2[12]+Row9Terms2[11]+Row9Terms2[10]+Row9Terms2[9] 

        +Row9Terms2[8]+Row9Terms2[7]+Row9Terms2[6]+Row9Terms2[5] 

        +Row9Terms2[4]+Row9Terms2[3]+Row9Terms2[2]+Row9Terms2[1] 

        +Row9Terms2[0]); 

    Row10Terms2 <= (Row10Terms2[15]+Row10Terms2[14]+Row10Terms2[13] 

        +Row10Terms2[12]+Row10Terms2[11]+Row10Terms2[10]+Row10Terms2[9] 

        +Row10Terms2[8]+Row10Terms2[7]+Row10Terms2[6]+Row10Terms2[5] 

        +Row10Terms2[4]+Row10Terms2[3]+Row10Terms2[2]+Row10Terms2[1] 

        +Row10Terms2[0]); 

    Row11Terms2 <= (Row11Terms2[15]+Row11Terms2[14]+Row11Terms2[13] 

        +Row11Terms2[12]+Row11Terms2[11]+Row11Terms2[10]+Row11Terms2[9] 

        +Row11Terms2[8]+Row11Terms2[7]+Row11Terms2[6]+Row11Terms2[5] 

        +Row11Terms2[4]+Row11Terms2[3]+Row11Terms2[2]+Row11Terms2[1] 

        +Row11Terms2[0]); 

    Row12Terms2 <= (Row12Terms2[15]+Row12Terms2[14]+Row12Terms2[13] 

        +Row12Terms2[12]+Row12Terms2[11]+Row12Terms2[10]+Row12Terms2[9] 

        +Row12Terms2[8]+Row12Terms2[7]+Row12Terms2[6]+Row12Terms2[5] 

        +Row12Terms2[4]+Row12Terms2[3]+Row12Terms2[2]+Row12Terms2[1] 

        +Row12Terms2[0]); 

    Row13Terms2 <= (Row13Terms2[15]+Row13Terms2[14]+Row13Terms2[13] 

        +Row13Terms2[12]+Row13Terms2[11]+Row13Terms2[10]+Row13Terms2[9] 

        +Row13Terms2[8]+Row13Terms2[7]+Row13Terms2[6]+Row13Terms2[5] 

        +Row13Terms2[4]+Row13Terms2[3]+Row13Terms2[2]+Row13Terms2[1] 

        +Row13Terms2[0]); 

    Row14Terms2 <= (Row14Terms2[15]+Row14Terms2[14]+Row14Terms2[13] 

        +Row14Terms2[12]+Row14Terms2[11]+Row14Terms2[10]+Row14Terms2[9] 

        +Row14Terms2[8]+Row14Terms2[7]+Row14Terms2[6]+Row14Terms2[5] 

        +Row14Terms2[4]+Row14Terms2[3]+Row14Terms2[2]+Row14Terms2[1] 

        +Row14Terms2[0]); 

    Row15Terms2 <= (Row15Terms2[15]+Row15Terms2[14]+Row15Terms2[13] 

        +Row15Terms2[12]+Row15Terms2[11]+Row15Terms2[10]+Row15Terms2[9] 

        +Row15Terms2[8]+Row15Terms2[7]+Row15Terms2[6]+Row15Terms2[5] 

        +Row15Terms2[4]+Row15Terms2[3]+Row15Terms2[2]+Row15Terms2[1] 

        +Row15Terms2[0]); 

 

 

    state <= UpdateDegree2; 

 

end // FindDegree2 

 

                // First, it checks if there are two 1's in a row, 

                // indicating a degree 2 annihilator.  If so, it goes 

                // to ComplementCheck.  If not, it checks if the 

                // complement has been tested.  If so and AI is still 

                // set to 0, then AI is 3 (i.e. neither the function 
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                // nor its complement had a degree 2 or lower 

                // annihilator.  Otherwise, it checks to see if this 

                // is the complement and AI is currently set to 2. 

                // If it is, we are done testing and AI is 2.  Default 

                // is to go to ComplementCheck without adjusting AI, 

                // which signals the the original function is being 

                // tested and has no annihilator less then degree 3. 

                UpdateDegree2: 

begin 

    if((Row0Terms2>1)||(Row1Terms2>1)||(Row2Terms2>1)||(Row3Terms2>1) 

      ||(Row4Terms2>1)||(Row5Terms2>1)||(Row6Terms2>1)||(Row7Terms2>1) 

      ||(Row8Terms2>1)||(Row9Terms2>1)||(Row10Terms2>1) 

      ||(Row11Terms2>1)||(Row12Terms2>1)||(Row13Terms2>1) 

      ||(Row14Terms2>1)||(Row15Terms2>1)) 

        begin 

            AI <= 2; 

            state <= ComplementCheck; 

        end 

    else 

        begin 

            if((CompTrack == 1)&&(AI == 0)) 

                begin 

                    AI <= 3; 

                    state <= Finish; 

                end 

            else if((CompTrack == 1)&&(AI == 2)) 

                begin 

                    state <= Finish; 

                end 

            else 

                begin 

                    state <= ComplementCheck; 

                end 

        end 

 

end //UpdateDegree2 

 

                // If AI is set to 2 and the complement has been 

                // tested, we are done checking and can exit. 

                // Otherwise, it complements the TT, sets the tracker 

                // and starts back over at Init to test the complement. 

                ComplementCheck: 

begin 

    if((AI == 2)&&(CompTrack == 1)) 

        begin 

            state <= Finish; 

        end 

    else if(CompTrack == 0) 

        begin 

            TT_reg <= ~TT; 

            state <= Init; 

            CompTrack <= 1; 

        end 

end //ComplementCheck 
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                // Testing complete.  Set DONE and exit. 

                Finish: 

begin 

    DONE <= 1'b1; 

end //Finish 

 

            endcase 

 

        end // state cases 

 

end // statereg 

 

endmodule 

 

A.5 SIMULTANEOUS EQUATION ALGORITHM SOURCE CODE (n = 6) 

This algorithm was used to perform Monte Carlo trials to estimate the distribution 

of functions with various algebraic immunities for n = 6.  It is an extension of the 

algorithm used for n = 5. 

1. main.c 

//********************************************************************* 

// 

//  main.c  -    C program to run Algebraic_Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program determines the Algebraic Immunity  

//                     of all Boolean functions for a given n and  

//                     provides an output specifying the number of 

//                     functions with each AI. 

// 

//********************************************************************* 

 

/* 

A C-program for MT19937-64 (2004/9/29 version). 

Coded by Takuji Nishimura and Makoto Matsumoto. 

 

This is a 64-bit version of Mersenne Twister pseudorandom number 

generator. 

 

Before using, initialize the state by using init_genrand64(seed) 

or init_by_array64(init_key, key_length). 

 

Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 
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modification, are permitted provided that the following conditions 

are met: 

 

1. Redistributions of source code must retain the above copyright 

   notice, this list of conditions and the following disclaimer. 

 

2. Redistributions in binary form must reproduce the above copyright 

   notice, this list of conditions and the following disclaimer in the 

   documentation and/or other materials provided with the distribution. 

 

3. The names of its contributors may not be used to endorse or promote 

   products derived from this software without specific prior written 

   permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

   References: 

   T. Nishimura, ``Tables of 64-bit Mersenne Twisters'' 

     ACM Transactions on Modeling and 

     Computer Simulation 10. (2000) 348--357. 

   M. Matsumoto and T. Nishimura, 

     ``Mersenne Twister: a 623-dimensionally equidistributed 

       uniform pseudorandom number generator'' 

     ACM Transactions on Modeling and 

     Computer Simulation 8. (Jan. 1998) 3--30. 

 

   Any feedback is very welcome. 

   http://www.math.hiroshima-u.ac.jp/~m-mat/MT/emt.html 

   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove spaces) 

*/ 

 

#include <map.h> 

#include <stdlib.h> 

#include <stdio.h> 

#include <time.h> 

#define NUM 500000000  //number of iterations to perform 

 

#define NN 312 

#define MM 156 

#define MATRIX_A 0xB5026F5AA96619E9ULL 

#define UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */ 

#define LM 0x7FFFFFFFULL /* Least significant 31 bits */ 

 

void subr (uint64_t*, uint64_t*, int ); 
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/* The array for the state vector */ 

static unsigned long long mt[NN]; 

/* mti==NN+1 means mt[NN] is not initialized */ 

static int mti=NN+1; 

 

/* initializes mt[NN] with a seed */ 

void init_genrand64(unsigned long long seed) 

{ 

    mt[0] = seed; 

    for (mti=1; mti<NN; mti++) 

        mt[mti] =  (6364136223846793005ULL * (mt[mti-1] ^ 

                    (mt[mti-1] >> 62)) + mti); 

} 

 

/* initialize by an array with array-length */ 

/* init_key is the array for initializing keys */ 

/* key_length is its length */ 

void init_by_array64(unsigned long long init_key[], 

                     unsigned long long key_length) 

{ 

    unsigned long long i, j, k; 

    init_genrand64(19650218ULL); 

    i=1; j=0; 

    k = (NN>key_length ? NN : key_length); 

    for (; k; k--) { 

        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 62)) * 

          3935559000370003845ULL)) 

          + init_key[j] + j; /* non linear */ 

        i++; j++; 

        if (i>=NN) { mt[0] = mt[NN-1]; i=1; } 

        if (j>=key_length) j=0; 

    } 

    for (k=NN-1; k; k--) { 

        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 62)) * 

          2862933555777941757ULL)) 

          - i; /* non linear */ 

        i++; 

        if (i>=NN) { mt[0] = mt[NN-1]; i=1; } 

    } 

 

    mt[0] = 1ULL << 63; /* MSB is 1; assuring non-zero initial array */ 

} 

 

/* generates a random number on [0, 2^64-1]-interval */ 

unsigned long long genrand64_int64(void) 

{ 

    int i; 

    unsigned long long x; 

    static unsigned long long mag01[2]={0ULL, MATRIX_A}; 

 

    if (mti >= NN) { /* generate NN words at one time */ 

 

        /* if init_genrand64() has not been called, */ 

        /* a default initial seed is used     */ 

        if (mti == NN+1) 
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            init_genrand64(5489ULL); 

 

        for (i=0;i<NN-MM;i++) { 

            x = (mt[i]&UM)|(mt[i+1]&LM); 

            mt[i] = mt[i+MM] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

        } 

        for (;i<NN-1;i++) { 

            x = (mt[i]&UM)|(mt[i+1]&LM); 

            mt[i] = mt[i+(MM-NN)] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

        } 

        x = (mt[NN-1]&UM)|(mt[0]&LM); 

        mt[NN-1] = mt[MM-1] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

 

        mti = 0; 

    } 

 

    x = mt[mti++]; 

 

    x ^= (x >> 29) & 0x5555555555555555ULL; 

    x ^= (x << 17) & 0x71D67FFFEDA60000ULL; 

    x ^= (x << 37) & 0xFFF7EEE000000000ULL; 

    x ^= (x >> 43); 

 

    return x; 

} 

 

/* generates a random number on [0, 2^63-1]-interval */ 

long long genrand64_int63(void) 

{ 

    return (long long)(genrand64_int64() >> 1); 

} 

 

/* generates a random number on [0,1]-real-interval */ 

double genrand64_real1(void) 

{ 

    return (genrand64_int64() >> 11) * (1.0/9007199254740991.0); 

} 

 

/* generates a random number on [0,1)-real-interval */ 

double genrand64_real2(void) 

{ 

    return (genrand64_int64() >> 11) * (1.0/9007199254740992.0); 

} 

 

/* generates a random number on (0,1)-real-interval */ 

double genrand64_real3(void) 

{ 

    return ((genrand64_int64() >> 12) + 0.5) * 

            (1.0/4503599627370496.0); 

} 

 

int main (int argc, char *argv[]) { 

    FILE *res_map, *res_cpu; 

        int mapnum = 0; 

        uint64_t i; 
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        uint64_t *AI, *TT; 

        uint64_t AI3,AI2,AI1,AI0; 

 

// Allocate array of TT values and array of AI values 

    TT = (uint64_t *) malloc (1* sizeof (uint64_t)); 

    AI = (uint64_t *) malloc (1* sizeof (uint64_t)); 

 

    clock_t start = clock(); 

    AI0 = 0; 

    AI1 = 0; 

    AI2 = 0; 

    AI3 = 0; 

 

    //initialize Mersenne Twist 

    init_genrand64(0xd0036009e7a8c44a); // Seed from random.org 

 

    map_allocate (1); 

    for(i=0;i<NUM;i++) 

    { 

        TT[0] = genrand64_int64(); 

        //  Call subroutine subr.mc on the MAP. 

        subr (TT, AI, mapnum); 

        switch(AI[0]) 

        { 

             case 3: 

                { 

                AI3++; 

                break; 

                } 

            case 2: 

                { 

                AI2++; 

                break; 

                } 

            case 1: 

                { 

                AI1++; 

                break; 

                } 

            case 0: 

                { 

                AI0++; 

                break; 

                } 

        } 

 

 

    } 

 

 

    // Display runtime 

    printf("Runtime: %f seconds OR %lld clocks\n", 

        ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

 

    // Print out the Algebraic Immunity of each Function  
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        printf("Listed below is the number of functions with each " 

                "Algebraic Immunity\n\n"); 

 

        printf("AI = 3: %lld\n",AI3); 

        printf("AI = 2: %lld\n",AI2); 

        printf("AI = 1: %lld\n",AI1); 

        printf("AI = 0: %lld\n",AI0); 

 

    map_free (1); 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 

 

subr.mc 

//********************************************************************* 

// 

//  subr.mc  - MAP C subroutine to determine Algebraic Immunity 

// 

//       Author:         Eric McCay 

//       Created:        July 25, 2011 

// 

//       Description:  This program calls Algebraic_Immunity.v, which  

//                     determines the Algebraic Immunity of the 

//                     function provided in Truth Table Form. 

// 

//********************************************************************* 

 

#include <libmap.h> 

 

void subr (uint64_t tt[], uint64_t ai[], int mapnum) { 

 

// Declare two OBM banks in SRC-6, one to store 16 TT values and 

//    the other to store the corresponding output AI values. 

        OBM_BANK_A (TT, uint64_t, 1) 

        OBM_BANK_B (AI, uint64_t, 1) 

        uint64_t my64bit_in; 

        uint64_t my64bit_out; 

 

        // Get 1 TT value by DMAing FROM the CPU 

        DMA_CPU (CM2OBM, TT, MAP_OBM_stripe(1,"A"), tt, 

                 1, 1*sizeof(uint64_t), 0); 

        wait_DMA (0); 

 

        // Call the macro with the input TT, and store the 

        // result in AI[0] to return to main.c 

        my64bit_in = TT[0]; 

        my_operator (my64bit_in, &my64bit_out); 

        AI[0] = my64bit_out; 

 

// Return 1 AI value by DMAing TO the CPU 

        DMA_CPU (OBM2CM, AI, MAP_OBM_stripe(1,"B"), ai, 
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                 1, 1*sizeof(uint64_t), 0); 

        wait_DMA (0); 

 

} 

 

3. Algebraic_Immunity.v 

module Algebraic_Immunity(TT, AI, DONE, CLK, CLR, START); 

//--------------------------------------------------------------------- 

// Algebraic_Immunity -  Verilog code to determine the algebraic  

//                       immunity of the provided function. 

// 

// Created:       August 24, 2011 

// Author:        Eric McCay and Jon T. Butler 

// 

// Inputs:        TT - Truth table of the function being tested 

// Outputs:       AlgebraicImmunity - The algebraic immunity of the  

//                                    tested function 

// 

//--------------------------------------------------------------------- 

// 

 

parameter       n = 6;      // The number of variables. 

localparam      N = 2**n;   // Max number of elements in TT. 

 

input           CLK; 

input           CLR; 

input           START; 

input   [63:0]  TT;         // The function under test 

wire    [63:0]  TT; 

 

reg     [63:0]  TT_reg; 

 

output  [63:0]  AI;     // Algebraic Immunity of function under test 

output          DONE;   // Indicates completion 

reg DONE; 

reg [63:0] AI; 

 

integer i; 

 

// Variables for simultaneous equation solving 

// The SimultArray holds the simultaneous equations 

// To solve.  It's structure for n=6 is too large to  

// display in a readable manner.  It is an extension of 

// the array for n=5, with the degree 1 term A6 included, 

// and each degree 2 term that includes A6. 

 

reg    [21:0]       SimultArray [0:63]; // array to hold 

                                        // the 2^n equations 

reg    [63:0]       A0Array; 

reg    [63:0]       A1Array;   // of each bit of the truth table 

reg    [63:0]       A2Array;   // - it is used to create the 

reg    [63:0]       A3Array;   // SimultArray. 
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reg    [63:0]       A4Array; 

reg    [63:0]       A5Array; 

reg    [63:0]       A6Array; 

 

reg    [n:0]        RowCounter; // Keeps track of which row is 

                                // being searched 

reg    [n:0]        RowUpdate;  // Used to maintain the desired 

                                // position of the next row of interest 

reg    [n:0]        ColCounter; // Tracks the column of interest 

 

// Used for determining if the annihilator is of degree 1 

reg    [21:0]       Row0Terms1; 

reg    [21:0]       Row1Terms1; 

reg    [21:0]       Row2Terms1; 

reg    [21:0]       Row3Terms1; 

reg    [21:0]       Row4Terms1; 

reg    [21:0]       Row5Terms1; 

reg    [21:0]       Row0Terms2; 

reg    [21:0]       Row1Terms2; 

reg    [21:0]       Row2Terms2; 

reg    [21:0]       Row3Terms2; 

reg    [21:0]       Row4Terms2; 

reg    [21:0]       Row5Terms2; 

reg    [21:0]       Row6Terms2; 

reg    [21:0]       Row7Terms2; 

reg    [21:0]       Row8Terms2; 

reg    [21:0]       Row9Terms2; 

reg    [21:0]       Row10Terms2; 

reg    [21:0]       Row11Terms2; 

reg    [21:0]       Row12Terms2; 

reg    [21:0]       Row13Terms2; 

reg    [21:0]       Row14Terms2; 

reg    [21:0]       Row15Terms2; 

reg    [21:0]       Row16Terms2; 

reg    [21:0]       Row17Terms2; 

reg    [21:0]       Row18Terms2; 

reg    [21:0]       Row19Terms2; 

reg    [21:0]       Row20Terms2; 

 

reg                 CompTrack;  // Used to determine if the  

                                // complement has been checked 

 

//state parameters 

localparam Idle = 0; 

localparam Init = 1; 

localparam RowSearch1 = 2; 

localparam RowFound1 = 3; 

localparam RowSwap1 = 4; 

localparam FindDegree1 = 5; 

localparam UpdateDegree1 = 6; 

localparam ComplementCheck = 7; 

localparam RowSearch2 = 8; 

localparam RowFound2 = 9; 

localparam RowSwap2 = 10; 

localparam FindDegree2 = 11; 
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localparam UpdateDegree2 = 12; 

localparam Finish = 13; 

 

reg [3:0] state; 

 

always @(posedge CLK) 

begin: statereg 

 

    if (CLR) 

        begin: Clearing 

 

            state <= Idle; 

            TT_reg <= TT; 

 

            AI <= 0; 

 

            DONE <= 1'b0; 

 

            CompTrack <= 0; 

 

            // Initialize the SimultArray to all 0's 

            // And put the correct values in the 

            // Arrays used to build SimultArray 

            for(i = 0;i < N; i = i+1) 

                begin 

                    A0Array[i] <= 1; 

                    A1Array[i] <= i%2; 

                    A2Array[i] <= (i>>1)%2; 

                    A3Array[i] <= (i>>2)%2; 

                    A4Array[i] <= (i>>3)%2; 

                    A5Array[i] <= (i>>4)%2; 

                    A6Array[i] <= (i>>5)%2; 

                    SimultArray[i] <= {22{1'b0}}; 

                end 

 

        end // Clearing 

    else 

        begin 

            case (state) 

                // state code is shifted left to improve readability 

 

                // Idle does nothing except start execution so that 

                // the function and its complement can follow the 

                // same path through the code 

                Idle: 

begin 

    if(START) 

        begin 

            state <= Init; 

        end 

end //Idle 

 

                //Init builds the SimultArray, which is then solved 

                //to determine the lowest degree annihilator for the 

                //function being tested.  It also initializes all 
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                //variables used to process the array. 

                Init: 

begin 

 

    for(i = 0;i < N; i = i+1) 

        begin 

            SimultArray[i] <= {TT_reg[i]&A5Array[i]&A6Array[i], 

                               TT_reg[i]&A4Array[i]&A6Array[i], 

                               TT_reg[i]&A4Array[i]&A5Array[i], 

                               TT_reg[i]&A3Array[i]&A6Array[i], 

                               TT_reg[i]&A3Array[i]&A5Array[i], 

                               TT_reg[i]&A3Array[i]&A4Array[i], 

                               TT_reg[i]&A2Array[i]&A6Array[i], 

                               TT_reg[i]&A2Array[i]&A5Array[i], 

                               TT_reg[i]&A2Array[i]&A4Array[i], 

                               TT_reg[i]&A2Array[i]&A3Array[i], 

                               TT_reg[i]&A1Array[i]&A6Array[i], 

                               TT_reg[i]&A1Array[i]&A5Array[i], 

                               TT_reg[i]&A1Array[i]&A4Array[i], 

                               TT_reg[i]&A1Array[i]&A3Array[i], 

                               TT_reg[i]&A1Array[i]&A2Array[i], 

                               TT_reg[i]&A6Array[i], 

                               TT_reg[i]&A5Array[i], 

                               TT_reg[i]&A4Array[i], 

                               TT_reg[i]&A3Array[i], 

                               TT_reg[i]&A2Array[i], 

                               TT_reg[i]&A1Array[i], 

                               TT_reg[i]&A0Array[i]}; 

 

        end 

 

    RowCounter <= 0; 

    RowUpdate <= 0; 

    ColCounter <= 0; 

 

    state <= RowSearch1; 

 

end // Init 

 

                // This state checks the rows 1 at a time, starting 

                // after the last row to have been updated, and 

                // attempts to find a 1 in the column of interest. 

                RowSearch1: 

begin 

    // If this code executes, we have established 

    // reduced row echelon form and are ready 

    // to determine the lowest degree annihilator 

    if(ColCounter == 7) 

        begin 

            Row0Terms1 <= SimultArray[0]; 

            Row1Terms1 <= SimultArray[1]; 

            Row2Terms1 <= SimultArray[2]; 

            Row3Terms1 <= SimultArray[3]; 

            Row4Terms1 <= SimultArray[4]; 

            Row5Terms1 <= SimultArray[5]; 
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            state <= FindDegree1; 

        end 

    // If the next code executes (meaning we have counted 

    // all rows) then AI is 1 because we have at least 

    // one free variable, allowing us to produce 

    // a degree 1 annihilator 

    else if(RowCounter == N) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    else if(((SimultArray[RowCounter]>>(ColCounter))%2) == 1) 

        begin 

            state <= RowFound1; 

        end 

    else 

        begin 

            RowCounter <= RowCounter + 1; 

        end 

 

end // RowSearch1 

 

                // Entering this state means we found a row with a 1 

                // in the column of interest.  We will use this row to 

                // zero out the column of interest in all other rows. 

                RowFound1: 

begin 

 

    // This for loop adds (xors) the found row with all other 

    // rows that have a 1 in the column of interest to zero 

    // them out. 

    for(i = 0;i < N; i = i + 1) 

        begin 

            if((((SimultArray[i]>>(ColCounter))%2) == 1) 

                &&(i != RowCounter)) 

                begin 

                    SimultArray[i] <= (SimultArray[i] ^  

                                        SimultArray[RowCounter]); 

                end 

        end 

 

    //If true the row is in the right place 

    if (RowCounter == RowUpdate) 

        begin 

            RowUpdate <= RowUpdate + 1; 

            ColCounter <= ColCounter + 1; 

            state <= RowSearch1; 

            RowCounter <= RowUpdate + 1; 

        end 

    else // row is in the wrong place 

        begin 

            ColCounter <= ColCounter + 1; 

            state <= RowSwap1; 

        end 

 



 101 

end // RowFound1 

 

                // swaps the found row to the proper position 

                RowSwap1: 

begin 

 

    SimultArray[RowCounter] <= SimultArray[RowUpdate]; 

    SimultArray[RowUpdate] <= SimultArray[RowCounter]; 

 

    RowUpdate <= RowUpdate + 1; 

    RowCounter <= RowUpdate + 1; 

 

    state <= RowSearch1; 

 

end // RowSwap1 

 

                // Counts the number of 1's in each row 

                FindDegree1: 

begin 

 

    Row0Terms1 <= (Row0Terms1[6]+Row0Terms1[5]+Row0Terms1[4] 

        +Row0Terms1[3]+Row0Terms1[2]+Row0Terms1[1]+Row0Terms1[0]); 

    Row1Terms1 <= (Row1Terms1[6]+Row1Terms1[5]+Row1Terms1[4] 

        +Row1Terms1[3]+Row1Terms1[2]+Row1Terms1[1]+Row1Terms1[0]); 

    Row2Terms1 <= (Row2Terms1[6]+Row2Terms1[5]+Row2Terms1[4] 

        +Row2Terms1[3]+Row2Terms1[2]+Row2Terms1[1]+Row2Terms1[0]); 

    Row3Terms1 <= (Row3Terms1[6]+Row3Terms1[5]+Row3Terms1[4] 

        +Row3Terms1[3]+Row3Terms1[2]+Row3Terms1[1]+Row3Terms1[0]); 

    Row4Terms1 <= (Row4Terms1[6]+Row4Terms1[5]+Row4Terms1[4] 

        +Row4Terms1[3]+Row4Terms1[2]+Row4Terms1[1]+Row4Terms1[0]); 

    Row5Terms1 <= (Row5Terms1[6]+Row5Terms1[5]+Row5Terms1[4] 

        +Row5Terms1[3]+Row5Terms1[2]+Row5Terms1[1]+Row5Terms1[0]); 

 

    state <= UpdateDegree1; 

 

end // FindDegree1 

 

                // First, it checks to see if any row had two 1's. If 

                // so, AI is 1 (those two variables combine to form 

                // a degree one annihilator).  Otherwise, it goes to 

                // RowSearch2, which is looking for a degree 2 

                // annihilator 

                UpdateDegree1: 

begin 

    if((Row0Terms1>1)||(Row1Terms1>1)||(Row2Terms1>1)||(Row3Terms1>1) 

        ||(Row4Terms1>1)||(Row5Terms1>1)) 

        begin 

            AI <= 1; 

            state <= Finish; 

        end 

    else 

        begin 

            state <= RowSearch2; 

        end 
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end //UpdateDegree1 

 

                // This is similar to RowSearch1, except this is 

                // looking for degree 2 annihilators 

                RowSearch2: 

begin 

    // If this code executes, we have established 

    // reduced row echelon form and are ready 

    // to determine the lowest degree annihilator 

    if(ColCounter == 22) 

        begin 

            Row0Terms2 <= SimultArray[0]; 

            Row1Terms2 <= SimultArray[1]; 

            Row2Terms2 <= SimultArray[2]; 

            Row3Terms2 <= SimultArray[3]; 

            Row4Terms2 <= SimultArray[4]; 

            Row5Terms2 <= SimultArray[5]; 

            Row6Terms2 <= SimultArray[6]; 

            Row7Terms2 <= SimultArray[7]; 

            Row8Terms2 <= SimultArray[8]; 

            Row9Terms2 <= SimultArray[9]; 

            Row10Terms2 <= SimultArray[10]; 

            Row11Terms2 <= SimultArray[11]; 

            Row12Terms2 <= SimultArray[12]; 

            Row13Terms2 <= SimultArray[13]; 

            Row14Terms2 <= SimultArray[14]; 

            Row15Terms2 <= SimultArray[15]; 

            Row16Terms2 <= SimultArray[16]; 

            Row17Terms2 <= SimultArray[17]; 

            Row18Terms2 <= SimultArray[18]; 

            Row19Terms2 <= SimultArray[19]; 

            Row20Terms2 <= SimultArray[20]; 

            state <= FindDegree2; 

        end 

    // If the next code executes (meaning we have counted 

    // all rows) then AI is 1 because we have at least 

    // one free variable, allowing us to produce 

    // a degree 1 annihilator 

    else if(RowCounter == N) 

        begin 

            AI <= 2; 

            state <= ComplementCheck; 

        end 

    else if(((SimultArray[RowCounter]>>(ColCounter))%2) == 1) 

        begin 

            state <= RowFound2; // Found a 1 

        end 

    else // no 1 found, check the next row 

        begin 

            RowCounter <= RowCounter + 1; 

        end 

 

end // RowSearch2 

 

                // Entering this state means we found a row with a 1 
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                // in the column of interest.  We will use this row to 

                // zero out the column of interest in all other rows. 

                RowFound2: 

begin 

 

    // This for loop adds (xors) the found row with all other 

    // rows that have a 1 in the column of interest to zero 

    // them out. 

    for(i = 0;i < N; i = i + 1) 

        begin 

            if((((SimultArray[i]>>(ColCounter))%2) == 1) 

                    &&(i != RowCounter)) 

                begin 

                    SimultArray[i] <= (SimultArray[i] ^ 

                                    SimultArray[RowCounter]); 

                end 

        end 

 

    //If true the row is in the right place 

    if (RowCounter == RowUpdate) 

        begin 

            RowUpdate <= RowUpdate + 1; 

            ColCounter <= ColCounter + 1; 

            state <= RowSearch2; 

            RowCounter <= RowUpdate + 1; 

        end 

    else 

        begin 

            ColCounter <= ColCounter + 1; 

            state <= RowSwap2; 

        end 

 

end // RowFound2 

 

                // Put the row in the proper place 

                RowSwap2: 

begin 

 

    SimultArray[RowCounter] <= SimultArray[RowUpdate]; 

    SimultArray[RowUpdate] <= SimultArray[RowCounter]; 

 

    RowUpdate <= RowUpdate + 1; 

    RowCounter <= RowUpdate + 1; 

 

    state <= RowSearch2; 

 

end // RowSwap2 

 

                // Counts the number of 1's in each row 

                FindDegree2: 

begin 

 

    Row0Terms2 <= (Row0Terms2[21]+Row0Terms2[20]+Row0Terms2[19] 

        +Row0Terms2[18]+Row0Terms2[17]+Row0Terms2[16]+Row0Terms2[15] 

        +Row0Terms2[14]+Row0Terms2[13]+Row0Terms2[12]+Row0Terms2[11] 
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        +Row0Terms2[10]+Row0Terms2[9]+Row0Terms2[8]+Row0Terms2[7] 

        +Row0Terms2[6]+Row0Terms2[5]+Row0Terms2[4]+Row0Terms2[3] 

        +Row0Terms2[2]+Row0Terms2[1]+Row0Terms2[0]); 

    Row1Terms2 <= (Row1Terms2[21]+Row1Terms2[20]+Row1Terms2[19] 

        +Row1Terms2[18]+Row1Terms2[17]+Row1Terms2[16]+Row1Terms2[15] 

        +Row1Terms2[14]+Row1Terms2[13]+Row1Terms2[12]+Row1Terms2[11] 

        +Row1Terms2[10]+Row1Terms2[9]+Row1Terms2[8]+Row1Terms2[7] 

        +Row1Terms2[6]+Row1Terms2[5]+Row1Terms2[4]+Row1Terms2[3] 

        +Row1Terms2[2]+Row1Terms2[1]+Row1Terms2[0]); 

    Row2Terms2 <= (Row2Terms2[21]+Row2Terms2[20]+Row2Terms2[19] 

        +Row2Terms2[18]+Row2Terms2[17]+Row2Terms2[16]+Row2Terms2[15] 

        +Row2Terms2[14]+Row2Terms2[13]+Row2Terms2[12]+Row2Terms2[11] 

        +Row2Terms2[10]+Row2Terms2[9]+Row2Terms2[8]+Row2Terms2[7] 

        +Row2Terms2[6]+Row2Terms2[5]+Row2Terms2[4]+Row2Terms2[3] 

        +Row2Terms2[2]+Row2Terms2[1]+Row2Terms2[0]); 

    Row3Terms2 <= (Row3Terms2[21]+Row3Terms2[20]+Row3Terms2[19] 

        +Row3Terms2[18]+Row3Terms2[17]+Row3Terms2[16]+Row3Terms2[15] 

        +Row3Terms2[14]+Row3Terms2[13]+Row3Terms2[12]+Row3Terms2[11] 

        +Row3Terms2[10]+Row3Terms2[9]+Row3Terms2[8]+Row3Terms2[7] 

        +Row3Terms2[6]+Row3Terms2[5]+Row3Terms2[4]+Row3Terms2[3] 

        +Row3Terms2[2]+Row3Terms2[1]+Row3Terms2[0]); 

    Row4Terms2 <= (Row4Terms2[21]+Row4Terms2[20]+Row4Terms2[19] 

        +Row4Terms2[18]+Row4Terms2[17]+Row4Terms2[16]+Row4Terms2[15] 

        +Row4Terms2[14]+Row4Terms2[13]+Row4Terms2[12]+Row4Terms2[11] 

        +Row4Terms2[10]+Row4Terms2[9]+Row4Terms2[8]+Row4Terms2[7] 

        +Row4Terms2[6]+Row4Terms2[5]+Row4Terms2[4]+Row4Terms2[3] 

        +Row4Terms2[2]+Row4Terms2[1]+Row4Terms2[0]); 

    Row5Terms2 <= (Row5Terms2[21]+Row5Terms2[20]+Row5Terms2[19] 

        +Row5Terms2[18]+Row5Terms2[17]+Row5Terms2[16]+Row5Terms2[15] 

        +Row5Terms2[14]+Row5Terms2[13]+Row5Terms2[12]+Row5Terms2[11] 

        +Row5Terms2[10]+Row5Terms2[9]+Row5Terms2[8]+Row5Terms2[7] 

        +Row5Terms2[6]+Row5Terms2[5]+Row5Terms2[4]+Row5Terms2[3] 

        +Row5Terms2[2]+Row5Terms2[1]+Row5Terms2[0]); 

    Row6Terms2 <= (Row6Terms2[21]+Row6Terms2[20]+Row6Terms2[19] 

        +Row6Terms2[18]+Row6Terms2[17]+Row6Terms2[16]+Row6Terms2[15] 

        +Row6Terms2[14]+Row6Terms2[13]+Row6Terms2[12]+Row6Terms2[11] 

        +Row6Terms2[10]+Row6Terms2[9]+Row6Terms2[8]+Row6Terms2[7] 

        +Row6Terms2[6]+Row6Terms2[5]+Row6Terms2[4]+Row6Terms2[3] 

        +Row6Terms2[2]+Row6Terms2[1]+Row6Terms2[0]); 

    Row7Terms2 <= (Row7Terms2[21]+Row7Terms2[20]+Row7Terms2[19] 

        +Row7Terms2[18]+Row7Terms2[17]+Row7Terms2[16]+Row7Terms2[15] 

        +Row7Terms2[14]+Row7Terms2[13]+Row7Terms2[12]+Row7Terms2[11] 

        +Row7Terms2[10]+Row7Terms2[9]+Row7Terms2[8]+Row7Terms2[7] 

        +Row7Terms2[6]+Row7Terms2[5]+Row7Terms2[4]+Row7Terms2[3] 

        +Row7Terms2[2]+Row7Terms2[1]+Row7Terms2[0]); 

    Row8Terms2 <= (Row8Terms2[21]+Row8Terms2[20]+Row8Terms2[19] 

        +Row8Terms2[18]+Row8Terms2[17]+Row8Terms2[16]+Row8Terms2[15] 

        +Row8Terms2[14]+Row8Terms2[13]+Row8Terms2[12]+Row8Terms2[11] 

        +Row8Terms2[10]+Row8Terms2[9]+Row8Terms2[8]+Row8Terms2[7] 

        +Row8Terms2[6]+Row8Terms2[5]+Row8Terms2[4]+Row8Terms2[3] 

        +Row8Terms2[2]+Row8Terms2[1]+Row8Terms2[0]); 

    Row9Terms2 <= (Row9Terms2[21]+Row9Terms2[20]+Row9Terms2[19] 

        +Row9Terms2[18]+Row9Terms2[17]+Row9Terms2[16]+Row9Terms2[15] 

        +Row9Terms2[14]+Row9Terms2[13]+Row9Terms2[12]+Row9Terms2[11] 

        +Row9Terms2[10]+Row9Terms2[9]+Row9Terms2[8]+Row9Terms2[7] 
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        +Row9Terms2[6]+Row9Terms2[5]+Row9Terms2[4]+Row9Terms2[3] 

        +Row9Terms2[2]+Row9Terms2[1]+Row9Terms2[0]); 

    Row10Terms2 <= (Row10Terms2[21]+Row10Terms2[20]+Row10Terms2[19] 

        +Row10Terms2[18]+Row10Terms2[17]+Row10Terms2[16] 

        +Row10Terms2[15]+Row10Terms2[14]+Row10Terms2[13] 

        +Row10Terms2[12]+Row10Terms2[11]+Row10Terms2[10] 

        +Row10Terms2[9]+Row10Terms2[8]+Row10Terms2[7]+Row10Terms2[6] 

        +Row10Terms2[5]+Row10Terms2[4]+Row10Terms2[3]+Row10Terms2[2] 

        +Row10Terms2[1]+Row10Terms2[0]); 

    Row11Terms2 <= (Row11Terms2[21]+Row11Terms2[20]+Row11Terms2[19] 

        +Row11Terms2[18]+Row11Terms2[17]+Row11Terms2[16] 

        +Row11Terms2[15]+Row11Terms2[14]+Row11Terms2[13] 

        +Row11Terms2[12]+Row11Terms2[11]+Row11Terms2[10] 

        +Row11Terms2[9]+Row11Terms2[8]+Row11Terms2[7]+Row11Terms2[6] 

        +Row11Terms2[5]+Row11Terms2[4]+Row11Terms2[3]+Row11Terms2[2] 

        +Row11Terms2[1]+Row11Terms2[0]); 

    Row12Terms2 <= (Row12Terms2[21]+Row12Terms2[20]+Row12Terms2[19] 

        +Row12Terms2[18]+Row12Terms2[17]+Row12Terms2[16] 

        +Row12Terms2[15]+Row12Terms2[14]+Row12Terms2[13] 

        +Row12Terms2[12]+Row12Terms2[11]+Row12Terms2[10] 

        +Row12Terms2[9]+Row12Terms2[8]+Row12Terms2[7]+Row12Terms2[6] 

        +Row12Terms2[5]+Row12Terms2[4]+Row12Terms2[3]+Row12Terms2[2] 

        +Row12Terms2[1]+Row12Terms2[0]); 

    Row13Terms2 <= (Row13Terms2[21]+Row13Terms2[20]+Row13Terms2[19] 

        +Row13Terms2[18]+Row13Terms2[17]+Row13Terms2[16] 

        +Row13Terms2[15]+Row13Terms2[14]+Row13Terms2[13] 

        +Row13Terms2[12]+Row13Terms2[11]+Row13Terms2[10] 

        +Row13Terms2[9]+Row13Terms2[8]+Row13Terms2[7]+Row13Terms2[6] 

        +Row13Terms2[5]+Row13Terms2[4]+Row13Terms2[3]+Row13Terms2[2] 

        +Row13Terms2[1]+Row13Terms2[0]); 

    Row14Terms2 <= (Row14Terms2[21]+Row14Terms2[20]+Row14Terms2[19] 

        +Row14Terms2[18]+Row14Terms2[17]+Row14Terms2[16] 

        +Row14Terms2[15]+Row14Terms2[14]+Row14Terms2[13] 

        +Row14Terms2[12]+Row14Terms2[11]+Row14Terms2[10] 

        +Row14Terms2[9]+Row14Terms2[8]+Row14Terms2[7]+Row14Terms2[6] 

        +Row14Terms2[5]+Row14Terms2[4]+Row14Terms2[3]+Row14Terms2[2] 

        +Row14Terms2[1]+Row14Terms2[0]); 

    Row15Terms2 <= (Row15Terms2[21]+Row15Terms2[20]+Row15Terms2[19] 

        +Row15Terms2[18]+Row15Terms2[17]+Row15Terms2[16] 

        +Row15Terms2[15]+Row15Terms2[14]+Row15Terms2[13] 

        +Row15Terms2[12]+Row15Terms2[11]+Row15Terms2[10] 

        +Row15Terms2[9]+Row15Terms2[8]+Row15Terms2[7]+Row15Terms2[6] 

        +Row15Terms2[5]+Row15Terms2[4]+Row15Terms2[3]+Row15Terms2[2] 

        +Row15Terms2[1]+Row15Terms2[0]); 

    Row16Terms2 <= (Row16Terms2[21]+Row16Terms2[20]+Row16Terms2[19] 

        +Row16Terms2[18]+Row16Terms2[17]+Row16Terms2[16] 

        +Row16Terms2[15]+Row16Terms2[14]+Row16Terms2[13] 

        +Row16Terms2[12]+Row16Terms2[11]+Row16Terms2[10] 

        +Row16Terms2[9]+Row16Terms2[8]+Row16Terms2[7]+Row16Terms2[6] 

        +Row16Terms2[5]+Row16Terms2[4]+Row16Terms2[3]+Row16Terms2[2] 

        +Row16Terms2[1]+Row16Terms2[0]); 

    Row17Terms2 <= (Row17Terms2[21]+Row17Terms2[20]+Row17Terms2[19] 

        +Row17Terms2[18]+Row17Terms2[17]+Row17Terms2[16] 

        +Row17Terms2[15]+Row17Terms2[14]+Row17Terms2[13] 

        +Row17Terms2[12]+Row17Terms2[11]+Row17Terms2[10] 
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        +Row17Terms2[9]+Row17Terms2[8]+Row17Terms2[7]+Row17Terms2[6] 

        +Row17Terms2[5]+Row17Terms2[4]+Row17Terms2[3]+Row17Terms2[2] 

        +Row17Terms2[1]+Row17Terms2[0]); 

    Row18Terms2 <= (Row18Terms2[21]+Row18Terms2[20]+Row18Terms2[19] 

        +Row18Terms2[18]+Row18Terms2[17]+Row18Terms2[16] 

        +Row18Terms2[15]+Row18Terms2[14]+Row18Terms2[13] 

        +Row18Terms2[12]+Row18Terms2[11]+Row18Terms2[10] 

        +Row18Terms2[9]+Row18Terms2[8]+Row18Terms2[7]+Row18Terms2[6] 

        +Row18Terms2[5]+Row18Terms2[4]+Row18Terms2[3]+Row18Terms2[2] 

        +Row18Terms2[1]+Row18Terms2[0]); 

    Row19Terms2 <= (Row19Terms2[21]+Row19Terms2[20]+Row19Terms2[19] 

        +Row19Terms2[18]+Row19Terms2[17]+Row19Terms2[16] 

        +Row19Terms2[15]+Row19Terms2[14]+Row19Terms2[13] 

        +Row19Terms2[12]+Row19Terms2[11]+Row19Terms2[10] 

        +Row19Terms2[9]+Row19Terms2[8]+Row19Terms2[7]+Row19Terms2[6] 

        +Row19Terms2[5]+Row19Terms2[4]+Row19Terms2[3]+Row19Terms2[2] 

        +Row19Terms2[1]+Row19Terms2[0]); 

    Row20Terms2 <= (Row20Terms2[21]+Row20Terms2[20]+Row20Terms2[19] 

        +Row20Terms2[18]+Row20Terms2[17]+Row20Terms2[16] 

        +Row20Terms2[15]+Row20Terms2[14]+Row20Terms2[13] 

        +Row20Terms2[12]+Row20Terms2[11]+Row20Terms2[10] 

        +Row20Terms2[9]+Row20Terms2[8]+Row20Terms2[7]+Row20Terms2[6] 

        +Row20Terms2[5]+Row20Terms2[4]+Row20Terms2[3]+Row20Terms2[2] 

        +Row20Terms2[1]+Row20Terms2[0]); 

 

    state <= UpdateDegree2; 

 

end // FindDegree2 

 

                // First, it checks if there are two 1's in a row, 

                // indicating a degree 2 annihilator.  If so, it goes 

                // to ComplementCheck.  If not, it checks if the 

                // complement has been tested.  If so and AI is still 

                // set to 0, then AI is 3 (i.e. neither the function 

                // nor its complement had a degree 2 or lower 

                // annihilator.  Otherwise, it checks to see if this 

                // is the complement and AI is currently set to 2. 

                // If it is, we are done testing and AI is 2.  Default 

                // is to go to ComplementCheck without adjusting AI, 

                // which signals the the original function is being 

                // tested and has no annihilator less then degree 3. 

                UpdateDegree2: 

begin 

    if((Row0Terms2>1)||(Row1Terms2>1)||(Row2Terms2>1)||(Row3Terms2>1) 

    ||(Row4Terms2>1)||(Row5Terms2>1)||(Row6Terms2>1)||(Row7Terms2>1) 

    ||(Row8Terms2>1)||(Row9Terms2>1)||(Row10Terms2>1)||(Row11Terms2>1) 

    ||(Row12Terms2>1)||(Row13Terms2>1)||(Row14Terms2>1) 

    ||(Row15Terms2>1)||(Row16Terms2>1)||(Row17Terms2>1) 

    ||(Row18Terms2>1)||(Row19Terms2>1)||(Row20Terms2>1)) 

        begin 

            AI <= 2; 

            state <= ComplementCheck; 

        end 

    else 

        begin 
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            if((CompTrack == 1)&&(AI == 0)) 

                begin 

                    AI <= 3; 

                    state <= Finish; 

                end 

            else if((CompTrack == 1)&&(AI == 2)) 

                begin 

                    state <= Finish; 

                end 

            else 

                begin 

                    state <= ComplementCheck; 

                end 

        end 

 

end //UpdateDegree2 

 

                // If AI is set to 2 and the complement has been 

                // tested, we are done checking and can exit. 

                // Otherwise, it complements the TT, sets the tracker 

                // and starts back over at Init to test the complement. 

                ComplementCheck: 

begin 

    if((AI == 2)&&(CompTrack == 1)) 

        begin 

            state <= Finish; 

        end 

    else if(CompTrack == 0) 

        begin 

            TT_reg <= ~TT_reg; 

            state <= Init; 

            CompTrack <= 1; 

        end 

end //ComplementCheck 

 

                // Testing complete.  Set DONE and exit. 

                Finish: 

begin 

    DONE <= 1'b1; 

end //Finish 

 

            endcase 

 

        end // state cases 

 

end // statereg 

 

endmodule 
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APPENDIX B.  C SOURCE CODE 

The source code to compute AI in C was developed utilizing the Verilog 

algorithm that first enumerated AI on the SRC-6.  The code was compiled using 

Code::Blocks 10.05, and it was executed on a Windows 7 PC with 4 GB of RAM and an 

Intel® Core™2 Duo P8400 CPU operating at 2.26 GHz.  The code is designed for single 

core operation and does not take advantage of the second core present in the processor. 

All source code was formatted for presentation using Notepad++. 

B.1 C SOURCE CODE (n = 4) 

This source code is modeled after the simultaneous algorithm created for the 

SRC-6. 

1. n4ai.c 

//********************************************************************* 

// 

//  n4ai.c  -    C program to calculate Algebraic_Immunity (n=4) 

// 

//    Author:         Eric McCay 

//    Created:        February 5, 2012 

// 

//    Description:  This program determines the Algebraic Immunity of 

//                  all Boolean functions for a given n and provides an 

//                  output specifying the number of functions with each 

//                  AI. 

// 

//********************************************************************* 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <time.h> 

#define NUM 65536  //number of values in TT 2^(2^n) 

 

int main (int argc, char *argv[]) { 

 

    clock_t start = clock(); // used for timing 

 

    int i, j, k; // Some temporary variables 

 

    int AI2;  // These 3 count functions with a particular AI 

    int AI1; 

    int AI0; 

 

    AI0 = 2; 
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    AI2 = 0; 

    AI1 = 0; 

 

    // Variables for simultaneous equation solving 

    // The SimultArray holds the simultaneous equations 

    // To solve.  It's structure for n=4 is: 

    //     A0 A1 A2 A3 A4 

    // g0  1  0  0  0  0 = 1 

    // g1  1  1  0  0  0 = 3 

    // g2  1  0  1  0  0 = 5 

    // g3  1  1  1  0  0 = 7 

    // g4  1  0  0  1  0 = 9 

    // g5  1  1  0  1  0 = 11 

    // g6  1  0  1  1  0 = 13 

    // g7  1  1  1  1  0 = 15 

    // g8  1  0  0  0  1 = 17 

    // g9  1  1  0  0  1 = 19 

    // g10 1  0  1  0  1 = 21 

    // g11 1  1  1  0  1 = 23 

    // g12 1  0  0  1  1 = 25 

    // g13 1  1  0  1  1 = 27 

    // g14 1  0  1  1  1 = 29 

    // g15 1  1  1  1  1 = 31 

 

    // The base Array is the default value that would go in an array 

    // if all values of the TT were 1.  The working array will receive 

    // a copy of this and then will have any lines where the function 

    // being tested has a 0 in the TT set to 0. 

    int AIBaseArray[] = {1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}; 

 

    int AIWorkingArray[]={1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31}; 

 

    int WorkingAI = 0; 

    int ColCount = 0; 

    int RowUpdate = 0; 

    int RowCount = 0; 

 

    int Row0Terms = 0; 

    int Row1Terms = 0; 

    int Row2Terms = 0; 

    int Row3Terms = 0; 

 

    for(i=1;i<(NUM-1);i++) //We know that 1 and NUM-1 have AI=0 

    { 

        // This portion of code is all to test the original function 

 

        for(j=0;j<16;j++) // Fill in array with base 

        { 

            AIWorkingArray[j] = AIBaseArray[j]; 

        } 

 

        WorkingAI = 0; 

        RowUpdate = 0; 

        RowCount = 0; 

        ColCount = 0; 
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        Row0Terms = 0; 

        Row1Terms = 0; 

        Row2Terms = 0; 

        Row3Terms = 0; 

 

        for(j=0;j<16;j++) 

        { 

            if(((i>>j)%2)==0) //Zero out lines with 0 in TT 

                { 

                    AIWorkingArray[j] = 0; 

                } 

 

        } 

 

        while(ColCount<5) 

        { 

            while(WorkingAI == 0) // we change the WorkingAI to exit 

            { 

                // Running this signifies that no empty columns have 

                // been found.  We now determine if there are two 1's 

                // in a row, signifying a degree 1 annihilator 

                if(ColCount == 5) 

                { 

                    // This counts the number of 1's in each row 

                    // Row 4 is ignored because there can be at most 

                    // 1 value in that row. 

                    for(j = 0; j < 5;j++) 

                    { 

                        Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                        Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                        Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                        Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                    } 

                    if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)) 

                    { 

                        WorkingAI = 2; // Found two 1's in a row 

                    } 

                    else 

                    { 

                        WorkingAI = 1; // Didn't find two 1's 

                    } 

                } 

                // free variable, so AI = 1 

                else if(RowCount == 16) 

                { 

                    WorkingAI = 1; 

                } 

                // 1 found in column of interest 

                else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                { 

                    for(j=0;j<16;j++) // zero out column 

                    { 

                        if(((AIWorkingArray[j]>>ColCount)%2==1) 
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                            &(j != RowCount)) //but not row of interest 

                        { 

                            AIWorkingArray[j] = AIWorkingArray[j] ^  

                                            AIWorkingArray[RowCount]; 

                        } 

                    } 

                    if(RowCount != RowUpdate) // row in wrong position 

                    { 

                        k = AIWorkingArray[RowCount]; 

                        AIWorkingArray[RowCount] =  

                            AIWorkingArray[RowUpdate]; 

                        AIWorkingArray[RowUpdate] = k; 

                    } 

                    RowUpdate++; 

                    RowCount = RowUpdate; 

                    ColCount++; 

                } 

                else 

                    { 

                        RowCount++; 

                    } 

            } 

            ColCount++; 

        } 

 

        if(WorkingAI == 2) 

        { 

            WorkingAI = 0; // Used to make the complement test the same 

        } 

 

        //This portion of code is all to test the complement 

        if(WorkingAI != 1) 

        { 

            for(j=0;j<16;j++) // Fill in array with base 

            { 

                AIWorkingArray[j] = AIBaseArray[j];  

            } 

 

            RowUpdate = 0; 

            RowCount = 0; 

            ColCount = 0; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

 

            k = (NUM - 1)^i; //complement the input 

 

            for(j=0;j<16;j++) 

            { 

                if(((k>>j)%2)==0) // Zero out lines with 0 in TT 

                    { 

                        AIWorkingArray[j] = 0; 

                    } 
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            } 

 

            while(ColCount<5) 

            { 

                while(WorkingAI == 0) // Done when AI changes 

                { 

                    if(ColCount == 5) // Found no empty column 

                    { 

                        // Count the number of 1's in each row 

                        for(j = 0; j < 5;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                            &&(Row3Terms<2)) 

                        { 

                            WorkingAI = 2; // No degree 1 annihilators 

                        } 

                        else 

                        { 

                            WorkingAI = 1; // two 1's in a row 

                        } 

                    } 

                    // Indicates a free variable, so AI = 1 

                    else if(RowCount == 16) 

                    { 

                        WorkingAI = 1; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<16;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^  

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // Row is in the wrong position, so swap 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 
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                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

        if(WorkingAI == 2) 

        { 

            AI2++; // Means that no degree 1 annihilators found 

        } 

        else if(WorkingAI == 1) 

        { 

            AI1++; 

        } 

 

    } 

 

    AI0 = 2; // There are 2 degree 0 annihilators for any number of 

             // variables 

 

    // Display runtime 

    printf("Runtime: %f seconds OR %d clocks\n", 

        ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

 

// Print out the Algebraic Immunity of each Function 

    printf("Listed below is the number of functions with each " 

            "Algebraic Immunity\n\n"); 

 

        printf("AI = 2: %d\n",AI2); 

        printf("AI = 1: %d\n",AI1); 

        printf("AI = 0: %d\n",AI0); 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 

 

B.2 C SOURCE CODE (n = 5) 

This source code is an extension of the code for n = 4. 

1. n5ai.c 

//********************************************************************* 

// 

//  n5ai.c  -    C program to calculate Algebraic_Immunity (n=5) 

// 

//    Author:         Eric McCay 

//    Created:        February 5, 2012 
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// 

//    Description:  This program determines the Algebraic Immunity of 

//                  all Boolean functions for a given n and provides an 

//                  output specifying the number of functions with each 

//                  AI. 

// 

//********************************************************************* 

 

#include <stdlib.h> 

#include <stdio.h> 

#include <time.h> 

 

int main (int argc, char *argv[]) { 

 

    clock_t start = clock(); 

 

    long long NUM = 65536; //number of values in TT 2^(2^n) 

    NUM = NUM*NUM; 

 

    long long i, j, k; // Some temporary variables 

 

    long long AI3; 

    long long AI2;  // These 3 count functions with a particular AI 

    long long AI1; 

    long long AI0; 

 

    AI0 = 2; 

    AI1 = 0; 

    AI2 = 0; 

    AI3 = 0; 

 

    // Variables for simultaneous equation solving 

    // The SimultArray holds the simultaneous equations 

    // To solve.  It's structure for n=5 is: 

    //     A0 A1 A2 A3 A4 A5 A12 A13 A14 A15 A23 A24 A25 A34 A35 A45 

    // g0   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g1   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g2   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g3   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g4   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g5   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g6   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g7   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g8   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g9   x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g10  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g11  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g12  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g13  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g14  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g15  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g16  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g17  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g18  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g19  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 
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    // g20  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g21  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g22  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g23  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g24  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g25  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g26  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g27  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g28  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g29  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g30  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

    // g31  x  x  x  x  x  x  x   x   x   x   x   x   x   x   x   x 

 

    // The base Array is the default value that would go in an array 

    // if all values of the TT were 1.  The working array will receive 

    // a copy of this and then will have any lines where the function 

    // being tested has a 0 in the TT set to 0. 

 

    int A0Array[32]; 

    int A1Array[32]; 

    int A2Array[32]; 

    int A3Array[32]; 

    int A4Array[32]; 

    int A5Array[32]; 

 

    int AIBaseArray[32]; 

    int AIWorkingArray[32]; 

 

    // Used to track AI for the function and its complement 

    int WorkingAI1 = 0; 

    int WorkingAI2 = 0; 

     

    // These track position in the matrix to put it in reduced 

    // row echelon form 

    int ColCount = 0; 

    int RowUpdate = 0; 

    int RowCount = 0; 

 

    // These are used to count the number of ones in a row once the 

    // matrix is in reduced row echelon form 

    int Row0Terms = 0; 

    int Row1Terms = 0; 

    int Row2Terms = 0; 

    int Row3Terms = 0; 

    int Row4Terms = 0; 

    int Row5Terms = 0; 

    int Row6Terms = 0; 

    int Row7Terms = 0; 

    int Row8Terms = 0; 

    int Row9Terms = 0; 

    int Row10Terms = 0; 

    int Row11Terms = 0; 

    int Row12Terms = 0; 

    int Row13Terms = 0; 

    int Row14Terms = 0; 
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    // Populating the arrays that are used to create the base array 

    // and prints it as a binary 

    for(i=0;i<32;i++) 

    { 

        A0Array[i]=1; 

        A1Array[i]=i%2; 

        A2Array[i]=(i>>1)%2; 

        A3Array[i]=(i>>2)%2; 

        A4Array[i]=(i>>3)%2; 

        A5Array[i]=(i>>4)%2; 

    } 

 

    // This populates the base array 

    for(i=0;i<32;i++) 

    { 

        AIBaseArray[i] = ((A4Array[i]&A5Array[i])<<15)+ 

                         ((A3Array[i]&A5Array[i])<<14)+ 

                         ((A3Array[i]&A4Array[i])<<13)+ 

                         ((A2Array[i]&A5Array[i])<<12)+ 

                         ((A2Array[i]&A4Array[i])<<11)+ 

                         ((A2Array[i]&A3Array[i])<<10)+ 

                         ((A1Array[i]&A5Array[i])<<9)+ 

                         ((A1Array[i]&A4Array[i])<<8)+ 

                         ((A1Array[i]&A3Array[i])<<7)+ 

                         ((A1Array[i]&A2Array[i])<<6)+ 

                         (A5Array[i]<<5)+ 

                         (A4Array[i]<<4)+ 

                         (A3Array[i]<<3)+ 

                         (A2Array[i]<<2)+ 

                         (A1Array[i]<<1)+ 

                         (A0Array[i]); 

        printf("AIBaseArray[%d]: ",i); 

        if((AIBaseArray[i]&0x8000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x4000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x2000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x1000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0800)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0400)>0) 

            printf("1"); 
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        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0200)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0100)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0080)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0040)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0020)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0010)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0008)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0004)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0002)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0001)>0) 

            printf("1\n"); 

        else 

            printf("0\n"); 

    } 

 

    for(i=1;i<(NUM-1);i++) 

    { 

        if(((i-1)%25000000)==0) 

            printf("Iteration %lld, AI3 = %lld, AI2 = %lld, " 

            " AI1 = %lld, Runtime: %f seconds OR %lld clocks\n", 

            i,AI3,AI2,AI1, 

            ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

             

        // This portion of code is all to test the original function 

        // for degree 1 annihilators 
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        // Fill in array with base 

        for(j=0;j<32;j++) 

        { 

            AIWorkingArray[j] = AIBaseArray[j]; 

        } 

 

        //Zero out all working variables 

        WorkingAI1 = 0; 

        WorkingAI2 = 0; 

        RowUpdate = 0; 

        RowCount = 0; 

        ColCount = 0; 

 

        Row0Terms = 0; 

        Row1Terms = 0; 

        Row2Terms = 0; 

        Row3Terms = 0; 

        Row4Terms = 0; 

 

        // Zero out lines with 0 in TT 

        for(j=0;j<32;j++) 

        { 

            if(((i>>j)%2)==0) 

                { 

                    AIWorkingArray[j] = 0; 

                } 

 

        } 

 

        //Check for degree 1 annihilators 

        while(ColCount<6) 

        { 

            //If we change AI this loop is done 

            while(WorkingAI1 == 0) 

            { 

                // Signifies checking all degree 0 and 1 terms 

                if(ColCount == 6) 

                { 

                    // This adds up the bits in each row 

                    // if more than 1 number in a row, 

                    // there must be an annihilator 

                    for(j = 0; j < 6;j++) 

                    { 

                        Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                        Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                        Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                        Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                        Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                    } 

                    if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)) 

                    { 

                        WorkingAI1 = 2; 

                    } 

                    else 
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                    { 

                        WorkingAI1 = 1; 

                        WorkingAI2 = 1; // set both AIs to 1 

                    } 

                } 

                // Indicates a free variable exists 

                else if(RowCount == 32) 

                { 

                    WorkingAI1 = 1; 

                    WorkingAI2 = 1; // set both AIs to 1 

                } 

                 // 1 found in column of interest 

                else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                { 

                    for(j=0;j<32;j++) // zero out column 

                    { 

                        if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                        { 

                            AIWorkingArray[j] = AIWorkingArray[j] ^  

                                            AIWorkingArray[RowCount]; 

                        } 

                    } 

                    // swap row if in wrong position 

                    if(RowCount != RowUpdate) 

                    { 

                        k = AIWorkingArray[RowCount]; 

                        AIWorkingArray[RowCount] =  

                            AIWorkingArray[RowUpdate]; 

                        AIWorkingArray[RowUpdate] = k; 

                    } 

                    // Move to next row and column 

                    RowUpdate++; 

                    RowCount = RowUpdate; 

                    ColCount++; 

                } 

                else 

                    { 

                        RowCount++; 

                    } 

            } 

            ColCount++; 

        } 

 

        if(WorkingAI1 == 2) 

        { 

            WorkingAI1 = 0; // Used to make the degree 2 test the same 

        } 

 

        // This section tests original function for degree 2 

        // annihilators 

        if(WorkingAI1 != 1) 

        { 

            RowCount = RowUpdate; 

            ColCount = 6; // Start at the correct column 
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            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

            Row5Terms = 0; 

            Row6Terms = 0; 

            Row7Terms = 0; 

            Row8Terms = 0; 

            Row9Terms = 0; 

            Row10Terms = 0; 

            Row11Terms = 0; 

            Row12Terms = 0; 

            Row13Terms = 0; 

            Row14Terms = 0; 

 

            while(ColCount<16) 

            { 

                while(WorkingAI1 == 0) 

                { 

                    if(ColCount == 16) 

                    { 

                        // Found no empty columns, so count the number 

                        // of 1's in each row 

                        for(j = 0; j < 16;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                            Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                            Row6Terms += ((AIWorkingArray[6]>>j)%2); 

                            Row7Terms += ((AIWorkingArray[7]>>j)%2); 

                            Row8Terms += ((AIWorkingArray[8]>>j)%2); 

                            Row9Terms += ((AIWorkingArray[9]>>j)%2); 

                            Row10Terms += ((AIWorkingArray[10]>>j)%2); 

                            Row11Terms += ((AIWorkingArray[11]>>j)%2); 

                            Row12Terms += ((AIWorkingArray[12]>>j)%2); 

                            Row13Terms += ((AIWorkingArray[13]>>j)%2); 

                            Row14Terms += ((AIWorkingArray[14]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2) 

                        &&(Row6Terms<2)&&(Row7Terms<2)&&(Row8Terms<2) 

                        &&(Row9Terms<2)&&(Row10Terms<2)&&(Row11Terms<2) 

                        &&(Row12Terms<2)&&(Row13Terms<2) 

                        &&(Row14Terms<2)) 

                        { 

                            WorkingAI1 = 3; 

                        } 

                        else 

                        { 

                            WorkingAI1 = 2; 
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                        } 

                    } 

                    else if(RowCount == 32) 

                    { 

                        WorkingAI1 = 2; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<32;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

        //This portion of code is all to test the complement 

        //all sections operate the same as in the code above so there 

        //is less commenting 

        if(WorkingAI1 != 1) 

        { 

            for(j=0;j<32;j++) // Fill in array with base 

            { 

                AIWorkingArray[j] = AIBaseArray[j]; 

            } 

 

            RowUpdate = 0; 

            RowCount = 0; 

            ColCount = 0; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 
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            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

 

            k = (NUM - 1)^i; //complement the input 

 

            for(j=0;j<32;j++) // Zero out lines with 0 in TT 

            { 

                if(((k>>j)%2)==0) 

                    { 

                        AIWorkingArray[j] = 0; 

                    } 

 

            } 

 

            while(ColCount<6) 

            { 

                while(WorkingAI2 == 0) 

                { 

                    if(ColCount == 6) 

                    { 

                        for(j = 0; j < 6;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                            &&(Row3Terms<2)&&(Row4Terms<2)) 

                        { 

                            WorkingAI2 = 2; 

                        } 

                        else 

                        { 

                            WorkingAI2 = 1; 

                        } 

                    } 

                    else if(RowCount == 32) 

                    { 

                        WorkingAI2 = 1; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<32;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 
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                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

        if(WorkingAI2 == 2) 

        { 

            WorkingAI2 = 0; // Used to make the degree 2 test the same 

        } 

 

        // This section tests complement function for 

        // degree 2 annihilators 

        if((WorkingAI2 != 1)&&(WorkingAI1 != 1)) 

        { 

            RowCount = RowUpdate; 

            ColCount = 6; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

            Row5Terms = 0; 

            Row6Terms = 0; 

            Row7Terms = 0; 

            Row8Terms = 0; 

            Row9Terms = 0; 

            Row10Terms = 0; 

            Row11Terms = 0; 

            Row12Terms = 0; 

            Row13Terms = 0; 

            Row14Terms = 0; 

 

            while(ColCount<16) 

            { 

                while(WorkingAI2 == 0) 

                { 

                    if(ColCount == 16) 

                    { 
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                        for(j = 0; j < 16;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                            Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                            Row6Terms += ((AIWorkingArray[6]>>j)%2); 

                            Row7Terms += ((AIWorkingArray[7]>>j)%2); 

                            Row8Terms += ((AIWorkingArray[8]>>j)%2); 

                            Row9Terms += ((AIWorkingArray[9]>>j)%2); 

                            Row10Terms += ((AIWorkingArray[10]>>j)%2); 

                            Row11Terms += ((AIWorkingArray[11]>>j)%2); 

                            Row12Terms += ((AIWorkingArray[12]>>j)%2); 

                            Row13Terms += ((AIWorkingArray[13]>>j)%2); 

                            Row14Terms += ((AIWorkingArray[14]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2) 

                        &&(Row6Terms<2)&&(Row7Terms<2)&&(Row8Terms<2) 

                        &&(Row9Terms<2)&&(Row10Terms<2)&&(Row11Terms<2) 

                        &&(Row12Terms<2)&&(Row13Terms<2) 

                        &&(Row14Terms<2)) 

                        { 

                            WorkingAI2 = 3; 

                        } 

                        else 

                        { 

                            WorkingAI2 = 2; 

                        } 

                    } 

                    else if(RowCount == 32) 

                    { 

                        WorkingAI2 = 2; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<32;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 
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                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

 

        if(WorkingAI2 < WorkingAI1) 

        { 

            WorkingAI1 = WorkingAI2; 

        } 

 

        if(WorkingAI1 == 3) 

        { 

            AI3++; // Means no degree 2 annihilators found 

        } 

        else if(WorkingAI1 == 2) 

        { 

            AI2++; // Means that no degree 1 annihilators found 

        } 

        else if(WorkingAI1 == 1) 

        { 

            AI1++; 

        } 

 

    } 

 

    // It is known that there are exactly 2 degree 0 annihilators 

    // for each number of variables 

    AI0 = 2; 

 

    // Display runtime 

    printf("Runtime: %f seconds OR %lld clocks\n",  

        ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

 

// Print out the Algebraic Immunity of each Function 

    printf("Listed below is the number of functions with each " 

            "Algebraic Immunity\n\n"); 

 

    printf("AI = 3: %lld\n",AI3); 

    printf("AI = 2: %lld\n",AI2); 

    printf("AI = 1: %lld\n",AI1); 

    printf("AI = 0: %lld\n",AI0); 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 
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B.3 C SOURCE CODE (n = 6) 

This source code is an extension of the code for n = 5.  It contains a version of the 

Mersenne Twister Pseudorandom number generator, which is used to perform the random 

trials for a Monte Carlo test. 

1. n6ai.c 

//********************************************************************* 

// 

//  n6ai.c  -    C program to calculate Algebraic_Immunity (n=6) 

// 

//    Author:         Eric McCay 

//    Created:        February 5, 2012 

// 

//    Description:  This program determines the Algebraic Immunity of 

//                  all Boolean functions for a given n and provides an 

//                  output specifying the number of functions with each 

//                  AI. 

// 

//********************************************************************* 

 

/* 

A C-program for MT19937-64 (2004/9/29 version). 

Coded by Takuji Nishimura and Makoto Matsumoto. 

 

This is a 64-bit version of Mersenne Twister pseudorandom number 

generator. 

 

Before using, initialize the state by using init_genrand64(seed) 

or init_by_array64(init_key, key_length). 

 

Copyright (C) 2004, Makoto Matsumoto and Takuji Nishimura, 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions 

are met: 

 

1. Redistributions of source code must retain the above copyright 

   notice, this list of conditions and the following disclaimer. 

 

2. Redistributions in binary form must reproduce the above copyright 

   notice, this list of conditions and the following disclaimer in the 

   documentation and/or other materials provided with the distribution. 

 

3. The names of its contributors may not be used to endorse or promote 

   products derived from this software without specific prior written 

   permission. 
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THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 

A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT 

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 

THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

 

   References: 

   T. Nishimura, ``Tables of 64-bit Mersenne Twisters'' 

     ACM Transactions on Modeling and 

     Computer Simulation 10. (2000) 348--357. 

   M. Matsumoto and T. Nishimura, 

     ``Mersenne Twister: a 623-dimensionally equidistributed 

       uniform pseudorandom number generator'' 

     ACM Transactions on Modeling and 

     Computer Simulation 8. (Jan. 1998) 3--30. 

 

   Any feedback is very welcome. 

   http://www.math.hiroshima-u.ac.jp/~m-mat/MT/emt.html 

   email: m-mat @ math.sci.hiroshima-u.ac.jp (remove spaces) 

*/ 

 

#include <stdio.h> 

#include <time.h> 

 

#define NN 312 

#define MM 156 

#define MATRIX_A 0xB5026F5AA96619E9ULL 

#define UM 0xFFFFFFFF80000000ULL /* Most significant 33 bits */ 

#define LM 0x7FFFFFFFULL /* Least significant 31 bits */ 

 

/* The array for the state vector */ 

static unsigned long long mt[NN]; 

/* mti==NN+1 means mt[NN] is not initialized */ 

static int mti=NN+1; 

 

/* initializes mt[NN] with a seed */ 

void init_genrand64(unsigned long long seed) 

{ 

    mt[0] = seed; 

    for (mti=1; mti<NN; mti++) 

        mt[mti] =  (6364136223846793005ULL * (mt[mti-1] ^ 

                    (mt[mti-1] >> 62)) + mti); 

} 

 

/* initialize by an array with array-length */ 

/* init_key is the array for initializing keys */ 

/* key_length is its length */ 

void init_by_array64(unsigned long long init_key[], 

             unsigned long long key_length) 
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{ 

    unsigned long long i, j, k; 

    init_genrand64(19650218ULL); 

    i=1; j=0; 

    k = (NN>key_length ? NN : key_length); 

    for (; k; k--) { 

        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 62)) * 

          3935559000370003845ULL)) 

          + init_key[j] + j; /* non linear */ 

        i++; j++; 

        if (i>=NN) { mt[0] = mt[NN-1]; i=1; } 

        if (j>=key_length) j=0; 

    } 

    for (k=NN-1; k; k--) { 

        mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 62)) * 

          2862933555777941757ULL)) 

          - i; /* non linear */ 

        i++; 

        if (i>=NN) { mt[0] = mt[NN-1]; i=1; } 

    } 

 

    mt[0] = 1ULL << 63; /* MSB is 1; assuring non-zero initial array */ 

} 

 

/* generates a random number on [0, 2^64-1]-interval */ 

unsigned long long genrand64_int64(void) 

{ 

    int i; 

    unsigned long long x; 

    static unsigned long long mag01[2]={0ULL, MATRIX_A}; 

 

    if (mti >= NN) { /* generate NN words at one time */ 

 

        /* if init_genrand64() has not been called, */ 

        /* a default initial seed is used     */ 

        if (mti == NN+1) 

            init_genrand64(5489ULL); 

 

        for (i=0;i<NN-MM;i++) { 

            x = (mt[i]&UM)|(mt[i+1]&LM); 

            mt[i] = mt[i+MM] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

        } 

        for (;i<NN-1;i++) { 

            x = (mt[i]&UM)|(mt[i+1]&LM); 

            mt[i] = mt[i+(MM-NN)] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

        } 

        x = (mt[NN-1]&UM)|(mt[0]&LM); 

        mt[NN-1] = mt[MM-1] ^ (x>>1) ^ mag01[(int)(x&1ULL)]; 

 

        mti = 0; 

    } 

 

    x = mt[mti++]; 

 

    x ^= (x >> 29) & 0x5555555555555555ULL; 
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    x ^= (x << 17) & 0x71D67FFFEDA60000ULL; 

    x ^= (x << 37) & 0xFFF7EEE000000000ULL; 

    x ^= (x >> 43); 

 

    return x; 

} 

 

/* generates a random number on [0, 2^63-1]-interval */ 

long long genrand64_int63(void) 

{ 

    return (long long)(genrand64_int64() >> 1); 

} 

 

/* generates a random number on [0,1]-real-interval */ 

double genrand64_real1(void) 

{ 

    return (genrand64_int64() >> 11) * (1.0/9007199254740991.0); 

} 

 

/* generates a random number on [0,1)-real-interval */ 

double genrand64_real2(void) 

{ 

    return (genrand64_int64() >> 11) * (1.0/9007199254740992.0); 

} 

 

/* generates a random number on (0,1)-real-interval */ 

double genrand64_real3(void) 

{ 

    return ((genrand64_int64() >> 12) + 0.5) * 

            (1.0/4503599627370496.0); 

} 

 

int main (int argc, char *argv[]) { 

 

    clock_t start = clock(); 

 

    long long NUM = 500000000; //number of iterations to perform 

 

    long long i, j, k; // Some temporary variables 

 

    long long TT;  // used as the random TT that will be tested 

 

    long long AI3; 

    long long AI2;  // These 3 count functions with a particular AI 

    long long AI1; 

    long long AI0; 

 

    AI0 = 2; 

    AI1 = 0; 

    AI2 = 0; 

    AI3 = 0; 

 

    // Variables for simultaneous equation solving 

    // The SimultArray holds the simultaneous equations 

    // To solve.  It's structure for n=6 is too large to display 



 131 

    // nicely here.  It looks similar to that for n=5, but includes 

    // the degree 1 term A6 and all degree 2 terms that contain A6. 

 

    // The base Array is the default value that would go in an array 

    // if all values of the TT were 1.  The working array will receive 

    // a copy of this and then will have any lines where the function 

    // being tested has a 0 in the TT set to 0. 

 

    int A0Array[64]; 

    int A1Array[64]; 

    int A2Array[64]; 

    int A3Array[64]; 

    int A4Array[64]; 

    int A5Array[64]; 

    int A6Array[64]; 

 

    int AIBaseArray[64]; 

    int AIWorkingArray[64]; 

 

    int WorkingAI1 = 0; 

    int WorkingAI2 = 0; 

    int ColCount = 0; 

    int RowUpdate = 0; 

    int RowCount = 0; 

 

    int Row0Terms = 0; 

    int Row1Terms = 0; 

    int Row2Terms = 0; 

    int Row3Terms = 0; 

    int Row4Terms = 0; 

    int Row5Terms = 0; 

    int Row6Terms = 0; 

    int Row7Terms = 0; 

    int Row8Terms = 0; 

    int Row9Terms = 0; 

    int Row10Terms = 0; 

    int Row11Terms = 0; 

    int Row12Terms = 0; 

    int Row13Terms = 0; 

    int Row14Terms = 0; 

    int Row15Terms = 0; 

    int Row16Terms = 0; 

    int Row17Terms = 0; 

    int Row18Terms = 0; 

    int Row19Terms = 0; 

    int Row20Terms = 0; 

 

    //initialize Mersenne Twist 

    init_genrand64(0xd0036009e7a8c44a); // Seed from random.org 

 

    // Initialize the arrays to create the base array 

    for(i=0;i<64;i++) 

    { 

        A0Array[i]=1; 

        A1Array[i]=i%2; 
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        A2Array[i]=(i>>1)%2; 

        A3Array[i]=(i>>2)%2; 

        A4Array[i]=(i>>3)%2; 

        A5Array[i]=(i>>4)%2; 

        A6Array[i]=(i>>5)%2; 

    } 

 

    // Creates the base array and prints it in binary form 

    for(i=0;i<64;i++) 

    { 

        AIBaseArray[i] = ((A5Array[i]&A6Array[i])<<21)+ 

                         ((A4Array[i]&A6Array[i])<<20)+ 

                         ((A4Array[i]&A5Array[i])<<19)+ 

                         ((A3Array[i]&A6Array[i])<<18)+ 

                         ((A3Array[i]&A5Array[i])<<17)+ 

                         ((A3Array[i]&A4Array[i])<<16)+ 

                         ((A2Array[i]&A6Array[i])<<15)+ 

                         ((A2Array[i]&A5Array[i])<<14)+ 

                         ((A2Array[i]&A4Array[i])<<13)+ 

                         ((A2Array[i]&A3Array[i])<<12)+ 

                         ((A1Array[i]&A6Array[i])<<11)+ 

                         ((A1Array[i]&A5Array[i])<<10)+ 

                         ((A1Array[i]&A4Array[i])<<9)+ 

                         ((A1Array[i]&A3Array[i])<<8)+ 

                         ((A1Array[i]&A2Array[i])<<7)+ 

                         (A6Array[i]<<6)+ 

                         (A5Array[i]<<5)+ 

                         (A4Array[i]<<4)+ 

                         (A3Array[i]<<3)+ 

                         (A2Array[i]<<2)+ 

                         (A1Array[i]<<1)+ 

                         (A0Array[i]); 

        printf("AIBaseArray[%d]: ",i); 

        if((AIBaseArray[i]&0x200000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x100000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x80000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x40000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x20000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x10000)>0) 

            printf("1"); 
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        else 

            printf("0"); 

        if((AIBaseArray[i]&0x8000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x4000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x2000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x1000)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0800)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0400)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0200)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0100)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0080)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0040)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0020)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0010)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0008)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0004)>0) 
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            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0002)>0) 

            printf("1"); 

        else 

            printf("0"); 

        if((AIBaseArray[i]&0x0001)>0) 

            printf("1\n"); 

        else 

            printf("0\n"); 

    } 

 

    // Perform NUM random iterations 

    for(i=0;i<NUM;i++) 

    { 

        if((i%25000000)==0) 

            printf("Iteration %lld, AI3 = %lld, AI2 = %lld, " 

            "AI1 = %lld, Runtime: %f seconds OR %lld clocks\n", 

            i,AI3,AI2,AI1, 

            ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

        // This portion of code is all to test the original function 

        // for degree 1 annihilators 

 

        // Fill in array with base 

        for(j=0;j<64;j++) 

        { 

            AIWorkingArray[j] = AIBaseArray[j]; 

        } 

 

        //Zero out all working variables 

        WorkingAI1 = 0; 

        WorkingAI2 = 0; 

        RowUpdate = 0; 

        RowCount = 0; 

        ColCount = 0; 

 

        Row0Terms = 0; 

        Row1Terms = 0; 

        Row2Terms = 0; 

        Row3Terms = 0; 

        Row4Terms = 0; 

        Row5Terms = 0; 

 

        // Zero out lines with 0 in TT 

        // Random code inputs here 

        TT = genrand64_int64(); 

        for(j=0;j<64;j++) 

        { 

            if(((TT>>j)%2)==0) 

                { 

                    AIWorkingArray[j] = 0; 

                } 

 

        } 
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        //Check for degree 1 annihilators 

        while(ColCount<7) 

        { 

            //If we change AI this loop is done 

            while(WorkingAI1 == 0) 

            { 

                // Signifies checking all degree 0 and 1 terms 

                if(ColCount == 7) 

                { 

                    // This adds up the bits in each row 

                    // if more than 1 number in a row, 

                    // there must be an annihilator 

                    for(j = 0; j < 7;j++) 

                    { 

                        Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                        Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                        Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                        Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                        Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                        Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                    } 

                    if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                       &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2)) 

                    { 

                        WorkingAI1 = 2; // No degree 1 annihilator 

                    } 

                    else 

                    { 

                        WorkingAI1 = 1; 

                        WorkingAI2 = 1; // set both AIs to 1 

                    } 

                } 

                // Empty column signifies free variable 

                else if(RowCount == 64) 

                { 

                    WorkingAI1 = 1; 

                    WorkingAI2 = 1; // to exit properly 

                } 

                // 1 found in column of interest 

                else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                { 

                    for(j=0;j<64;j++) // zero out column 

                    { 

                        if(((AIWorkingArray[j]>>ColCount)%2==1) 

                        &(j != RowCount)) //but not row of interest 

                        { 

                            AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                        } 

                    } 

                    // swap row if in wrong position 

                    if(RowCount != RowUpdate) 

                    { 

                        k = AIWorkingArray[RowCount]; 
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                        AIWorkingArray[RowCount] =  

                            AIWorkingArray[RowUpdate]; 

                        AIWorkingArray[RowUpdate] = k; 

                    } 

                    // Move to next row and column 

                    RowUpdate++; 

                    RowCount = RowUpdate; 

                    ColCount++; 

                } 

                else 

                    { 

                        RowCount++; 

                    } 

            } 

            ColCount++; 

        } 

 

        if(WorkingAI1 == 2) 

        { 

            WorkingAI1 = 0; // Used to make the degree 2 test the same 

        } 

 

        // This section tests original function for 

        // degree 2 annihilators 

        if(WorkingAI1 != 1) 

        { 

            RowCount = RowUpdate; 

            ColCount = 7; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

            Row5Terms = 0; 

            Row6Terms = 0; 

            Row7Terms = 0; 

            Row8Terms = 0; 

            Row9Terms = 0; 

            Row10Terms = 0; 

            Row11Terms = 0; 

            Row12Terms = 0; 

            Row13Terms = 0; 

            Row14Terms = 0; 

            Row15Terms = 0; 

            Row16Terms = 0; 

            Row17Terms = 0; 

            Row18Terms = 0; 

            Row19Terms = 0; 

            Row20Terms = 0; 

 

            while(ColCount<22) 

            { 

                while(WorkingAI1 == 0) // exit when AI changes 

                { 
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                    if(ColCount == 22) 

                    { 

                        // No empty columns, so count then 1's in 

                        // each row 

                        for(j = 0; j < 22;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                            Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                            Row6Terms += ((AIWorkingArray[6]>>j)%2); 

                            Row7Terms += ((AIWorkingArray[7]>>j)%2); 

                            Row8Terms += ((AIWorkingArray[8]>>j)%2); 

                            Row9Terms += ((AIWorkingArray[9]>>j)%2); 

                            Row10Terms += ((AIWorkingArray[10]>>j)%2); 

                            Row11Terms += ((AIWorkingArray[11]>>j)%2); 

                            Row12Terms += ((AIWorkingArray[12]>>j)%2); 

                            Row13Terms += ((AIWorkingArray[13]>>j)%2); 

                            Row14Terms += ((AIWorkingArray[14]>>j)%2); 

                            Row15Terms += ((AIWorkingArray[15]>>j)%2); 

                            Row16Terms += ((AIWorkingArray[16]>>j)%2); 

                            Row17Terms += ((AIWorkingArray[17]>>j)%2); 

                            Row18Terms += ((AIWorkingArray[18]>>j)%2); 

                            Row19Terms += ((AIWorkingArray[19]>>j)%2); 

                            Row20Terms += ((AIWorkingArray[20]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2) 

                        &&(Row6Terms<2)&&(Row7Terms<2)&&(Row8Terms<2) 

                        &&(Row9Terms<2)&&(Row10Terms<2)&&(Row11Terms<2) 

                        &&(Row12Terms<2)&&(Row13Terms<2) 

                        &&(Row14Terms<2)&&(Row15Terms<2) 

                        &&(Row16Terms<2)&&(Row17Terms<2) 

                        &&(Row18Terms<2)&&(Row19Terms<2) 

                        &&(Row20Terms<2)) 

                        { // no degree 2 annihilators found 

                            WorkingAI1 = 3; 

                        } 

                        else 

                        { // A degree 2 annihilator was found 

                            WorkingAI1 = 2; 

                        } 

                    } 

                    else if(RowCount == 64) 

                    { 

                        WorkingAI1 = 2; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<64;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 
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                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

        //This portion of code is all to test the complement 

        //It functions the same as the previous code so it has 

        //less commenting 

        if(WorkingAI1 != 1) 

        { 

            for(j=0;j<64;j++) // Fill in array with base 

            { 

                AIWorkingArray[j] = AIBaseArray[j]; 

            } 

 

            RowUpdate = 0; 

            RowCount = 0; 

            ColCount = 0; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

            Row5Terms = 0; 

 

            k = ~TT; //complement the input 

 

            for(j=0;j<64;j++) 

            { 

                if(((k>>j)%2)==0) // Zero out lines with 0 in TT 

                    { 

                        AIWorkingArray[j] = 0; 
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                    } 

 

            } 

 

            while(ColCount<7) 

            { 

                while(WorkingAI2 == 0) 

                { 

                    if(ColCount == 7) 

                    { 

                        for(j = 0; j < 7;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 

                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                            Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2)) 

                        { 

                            WorkingAI2 = 2; 

                        } 

                        else 

                        { 

                            WorkingAI2 = 1; 

                        } 

                    } 

                    else if(RowCount == 64) 

                    { 

                        WorkingAI2 = 1; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<64;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 

                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 
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                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

        if(WorkingAI2 == 2) 

        { 

            WorkingAI2 = 0; // Used to make the degree 2 test the same 

        } 

 

        // This section tests complement function for 

        // degree 2 annihilators 

        if((WorkingAI2 != 1)&&(WorkingAI1 != 1)) 

        { 

            RowCount = RowUpdate; 

            ColCount = 7; 

 

            Row0Terms = 0; 

            Row1Terms = 0; 

            Row2Terms = 0; 

            Row3Terms = 0; 

            Row4Terms = 0; 

            Row5Terms = 0; 

            Row6Terms = 0; 

            Row7Terms = 0; 

            Row8Terms = 0; 

            Row9Terms = 0; 

            Row10Terms = 0; 

            Row11Terms = 0; 

            Row12Terms = 0; 

            Row13Terms = 0; 

            Row14Terms = 0; 

            Row15Terms = 0; 

            Row16Terms = 0; 

            Row17Terms = 0; 

            Row18Terms = 0; 

            Row19Terms = 0; 

            Row20Terms = 0; 

 

            while(ColCount<22) 

            { 

                while(WorkingAI2 == 0) 

                { 

                    if(ColCount == 22) 

                    { 

                        for(j = 0; j < 22;j++) 

                        { 

                            Row0Terms += ((AIWorkingArray[0]>>j)%2); 

                            Row1Terms += ((AIWorkingArray[1]>>j)%2); 
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                            Row2Terms += ((AIWorkingArray[2]>>j)%2); 

                            Row3Terms += ((AIWorkingArray[3]>>j)%2); 

                            Row4Terms += ((AIWorkingArray[4]>>j)%2); 

                            Row5Terms += ((AIWorkingArray[5]>>j)%2); 

                            Row6Terms += ((AIWorkingArray[6]>>j)%2); 

                            Row7Terms += ((AIWorkingArray[7]>>j)%2); 

                            Row8Terms += ((AIWorkingArray[8]>>j)%2); 

                            Row9Terms += ((AIWorkingArray[9]>>j)%2); 

                            Row10Terms += ((AIWorkingArray[10]>>j)%2); 

                            Row11Terms += ((AIWorkingArray[11]>>j)%2); 

                            Row12Terms += ((AIWorkingArray[12]>>j)%2); 

                            Row13Terms += ((AIWorkingArray[13]>>j)%2); 

                            Row14Terms += ((AIWorkingArray[14]>>j)%2); 

                            Row15Terms += ((AIWorkingArray[15]>>j)%2); 

                            Row16Terms += ((AIWorkingArray[16]>>j)%2); 

                            Row17Terms += ((AIWorkingArray[17]>>j)%2); 

                            Row18Terms += ((AIWorkingArray[18]>>j)%2); 

                            Row19Terms += ((AIWorkingArray[19]>>j)%2); 

                            Row20Terms += ((AIWorkingArray[20]>>j)%2); 

                        } 

                        if((Row0Terms<2)&&(Row1Terms<2)&&(Row2Terms<2) 

                        &&(Row3Terms<2)&&(Row4Terms<2)&&(Row5Terms<2) 

                        &&(Row6Terms<2)&&(Row7Terms<2)&&(Row8Terms<2) 

                        &&(Row9Terms<2)&&(Row10Terms<2)&&(Row11Terms<2) 

                        &&(Row12Terms<2)&&(Row13Terms<2) 

                        &&(Row14Terms<2)&&(Row15Terms<2) 

                        &&(Row16Terms<2)&&(Row17Terms<2) 

                        &&(Row18Terms<2)&&(Row19Terms<2) 

                        &&(Row20Terms<2)) 

                        { 

                            WorkingAI2 = 3; 

                        } 

                        else 

                        { 

                            WorkingAI2 = 2; 

                        } 

                    } 

                    else if(RowCount == 64) 

                    { 

                        WorkingAI2 = 2; 

                    } 

                    // 1 found in column of interest 

                    else if((AIWorkingArray[RowCount]>>ColCount)%2==1) 

                    { 

                        for(j=0;j<64;j++) // zero out column 

                        { 

                            if(((AIWorkingArray[j]>>ColCount)%2==1) 

                            &(j != RowCount)) //but not row of interest 

                            { 

                                AIWorkingArray[j] = AIWorkingArray[j] ^ 

                                            AIWorkingArray[RowCount]; 

                            } 

                        } 

                        // swap row if in wrong position 

                        if(RowCount != RowUpdate) 
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                        { 

                            k = AIWorkingArray[RowCount]; 

                            AIWorkingArray[RowCount] =  

                                AIWorkingArray[RowUpdate]; 

                            AIWorkingArray[RowUpdate] = k; 

                        } 

                        RowUpdate++; 

                        RowCount = RowUpdate; 

                        ColCount++; 

                    } 

                    else 

                        { 

                            RowCount++; 

                        } 

                } 

                ColCount++; 

            } 

        } 

 

 

        if(WorkingAI2 < WorkingAI1) 

        { 

            WorkingAI1 = WorkingAI2; 

        } 

 

        if(WorkingAI1 == 3) 

        { 

            AI3++; // Means no degree 2 annihilators found 

        } 

        else if(WorkingAI1 == 2) 

        { 

            AI2++; // Means that no degree 1 annihilators found 

        } 

        else if(WorkingAI1 == 1) 

        { 

            AI1++; 

        } 

 

    } 

 

    // It is known that there are two functions with AI = 0 for any 

    // number of variables 

    AI0 = 2; 

 

    // Display the runtime 

    printf("Runtime: %f seconds OR %lld clocks\n",  

        ((double)clock()-start)/CLOCKS_PER_SEC,clock()-start); 

 

/*  Print out the Algebraic Immunity of each Function   */ 

    printf("Listed below is the number of functions with each " 

            "Algebraic Immunity\n\n"); 

 

    printf("AI = 3: %lld\n",AI3); 

    printf("AI = 2: %lld\n",AI2); 

    printf("AI = 1: %lld\n",AI1); 
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    printf("AI = 0: %lld\n",AI0); 

 

    exit(0); 

 

    }//int main (int argc, char *argv[]) { 
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